1
|
Qin L, Zhu W, Yang L, Zheng M, Liu G. Persistent free radicals in the environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138332. [PMID: 40262311 DOI: 10.1016/j.jhazmat.2025.138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are environmental pollutants whose potential DNA damage and apoptosis toxicity may be mediated by reactive oxygen species (ROS). The currently available knowledge of their environmental characteristics and transformation mechanisms is not sufficient to understand the environmental behaviors and health effects of EPFRs and should be further expanded. This review offers a comprehensive review of the current state of EPFRs, including characterization methods, formation mechanisms, and environmental behavior of EPFRs. Electron paramagnetic resonance (EPR) spectroscopy directly probes EPFRs in environmental matrices. EPFRs can be simply categorized by g value, but structure confirmation solely by EPR is challenging because the complexity of environmental matrices results in the absence of a hyperfine splitting spectrum. Combined advanced EPR and multi-spectroscopic methods enable the structural identification of EPFRs in environmental samples. The environmental behavior and ecological impacts of EPFRs have been progressively studied. This review highlights the important role of EPFRs in natural environments and emphasizes the necessity of further research on EPFRs.
Collapse
Affiliation(s)
- Linjun Qin
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wuyuxin Zhu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
2
|
Lard ML, Eichler SE, Gao P, Singh K, Ortiz JD, Cook RL, Lomnicki S, Cormier SA, Richmond-Bryant J. Soil contamination by environmentally persistent free radicals and dioxins following train derailment in East Palestine, OH. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:729-740. [PMID: 39981852 PMCID: PMC11843876 DOI: 10.1039/d4em00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The Norfolk Southern train derailment on February 3, 2023, in East Palestine, Ohio, prompted concerns about the health impacts from the chemical spills and open-air combustion. We hypothesize that the combustion of chemicals, including vinyl chloride, in the presence of transition-metal oxides from the train, tracks, and soil minerals were conducive to the formation of hazardous byproducts including environmentally persistent free radicals (EPFRs), dioxins, and furans. We also hypothesize that these harmful byproducts of combustion have a shared origin and thus will have elevated concentrations in soil samples collected close to the derailment site when compared to concentrations in background soils. This study examined the co-occurrence of these soil contaminants from samples collected August 14-17, 2023, within a two-mile radius of the incident site to assess the concentration of EPFRs, dioxins, and furans. We measured elevated levels of EPFRs (average: 3.00 × 1017 spins per g) and dioxin/furan toxic equivalence (TEQ) (average: 32.8 pg g-1) near the derailment area compared to background levels (EPFRs: 1.33 × 1017 spins per g; TEQ: 10.7 pg g-1). Significant positive correlations (p < 0.002) between EPFRs and specific dioxin/furan congener concentrations (0.63-0.74) indicated robust associations between EPFRs and dioxin/furan congeners, the first such observations in field-collected soil samples. These results highlight the environmental health impact of the derailment and associated combustion, underscoring the need for comprehensive longitudinal monitoring and remediation efforts in the affected area and similar industrial accident sites. This study also offers insights into the formation mechanisms and persistence of EPFRs, dioxins, and furans.
Collapse
Affiliation(s)
- Myron L Lard
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sarah E Eichler
- Department of Life Sciences, Kent State University, Kent, OH 44243, USA
| | - Peng Gao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kuldeep Singh
- Department of Earth Sciences, Kent State University, Kent, OH, 44243, USA
| | - Joseph D Ortiz
- Department of Earth Sciences, Kent State University, Kent, OH, 44243, USA
| | - Robert L Cook
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Slawomir Lomnicki
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Stephania A Cormier
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jennifer Richmond-Bryant
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Cawley GF, Connick JP, Eyer MK, Backes WL. Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism. Drug Metab Dispos 2025; 53:100012. [PMID: 39884817 DOI: 10.1124/dmd.124.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor. However, another characteristic of EPFRs is their ability to inhibit P450 activities. CYP2E1 is one of the P450s that is inhibited by EPFR (MCP230, the laboratory-generated EPFR made by heating silica 5% copper oxide, and silica [<0.2 μm in diameter] and 2-monochlorophenol at ≥230 °C) exposure. Because CYP2E1 is also known to generate ROS, it is important to understand the ability of EPFRs to influence the function of this enzyme and to identify the mechanisms involved. CYP2E1 was shown to be inhibited by EPFRs and to a lesser extent by non-EPFR particles. Because EPFR-mediated inhibition was more robust at subsaturating NADPH-P450 reductase (POR) concentrations, disruption of POR•CYP2E1 complex formation and electron transfer were examined. Surprisingly, neither complex formation nor electron transfer between POR and CYP2E1 was inhibited by EPFRs. Examination of ROS production showed that MCP230 generated a greater amount of ROS than the non-EPFR control particle (CuO-Si). When a POR/CYP2E1-containing reconstituted system was added to the pollutant-particle systems, there was a synergistic stimulation of ROS production. The results indicate that EPFRs cause inhibition of CYP2E1-mediated substrate metabolism, yet do not alter electron transfer and actually stimulate ROS generation. Taken together, the results are consistent with EPFRs affecting CYP2E1 function by inhibiting substrate metabolism and increasing the generation of ROS. SIGNIFICANCE STATEMENT: Environmentally persistent free radicals affect CYP2E1 function by inhibition of monooxygenase activity. This inhibition is not due to disruption of the POR•CYP2E1 complex or inhibition of electron transfer but due to the uncoupling of NADPH and oxygen consumption from substrate metabolism to the generation of reactive oxygen species. These results show that environmentally persistent free radicals block the metabolism of foreign compounds and synergistically stimulate the formation of reactive oxygen species that lead to oxidative damage within the organism.
Collapse
Affiliation(s)
- George F Cawley
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - J Patrick Connick
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Marilyn K Eyer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana.
| |
Collapse
|
4
|
Qin L, Yang L, Liu L, Tong S, Liu Q, Li G, Zhang H, Zhu W, Liu G, Zheng M, Jiang G. Oxidative potential and persistent free radicals in dust storm particles and their associations with hospitalization. Nat Commun 2024; 15:10827. [PMID: 39738021 DOI: 10.1038/s41467-024-55151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China. An integrated exposure-response model was used to estimate the association between OP and EPFRs and hospitalization during SDS. EPFRs were strongly associated with circulatory (3.05%; 95% confidence interval [CI]: 1.01%, 4.08%) and respiratory (2.02%; 95% CI: 1.01%, 4.08%) diseases with each increase of 1012 spins/m3. The OP effects on circulatory (3.52%; 95% CI: 2.13%, 4.92%) and respiratory diseases (2.08%; 95% CI: 1.13%, 3.04%) with each increase of 0.2 nmol/min/m3 were also statistically significant. Additionally, 20.47% and 27.26% of all-cause hospitalizations were attributable to OP and EPFRs exposure, respectively. This knowledge could be used to develop effective sand and dust risk prevention in dust-prone countries.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ling Liu
- Peking University Third Hospital, Beijing, 100191, China
| | - Shilu Tong
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Haiyan Zhang
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - WuYuxin Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
5
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Li H, Li H, Zuo N, Lang D, Du W, Zhang P, Pan B. Can the concentration of environmentally persistent free radicals describe its toxicity to Caenorhabditis elegans? Evidence provided by neurotoxicity and oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133823. [PMID: 38442598 DOI: 10.1016/j.jhazmat.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants stabilized on or inside particles. Although the toxicity of EPFR-containing particles has been confirmed, the conclusions are always ambiguous because of the presence of various compositions. A clear dose-response relationship was always challenged by the fact that the concentrations of these coexisted components simultaneously changed with EPFR concentrations. Without these solid dose-response pieces of evidence, we could not confidently conclude the toxicity of EPFRs and the description of potential EPFR risks. In this study, we established a particle system with a fixed catechol concentration but different reaction times to obtain particles with different EPFR concentrations. Caenorhabditis elegans (C. elegans) in response to different EPFR concentrations was systematically investigated at multiple biological levels, including behavior observations and biochemical and transcriptome analyses. Our results showed that exposure to EPFRs disrupted the development and locomotion of C. elegans. EPFRs cause concentration-dependent neurotoxicity and oxidative damage to C. elegans, which could be attributed to reactive oxygen species (ROS) promoted by EPFRs. Furthermore, the expression of key genes related to neurons was downregulated, whereas antioxidative genes were upregulated. Overall, our results confirmed the toxicity from EPFRs and EPFR concentration as a rational parameter to describe the extent of toxicity.
Collapse
Affiliation(s)
- Huijie Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ning Zuo
- Yunnan Research Academy of Eco-environmental Science, Kunming 650034, China
| | - Di Lang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Du
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Ahmed SM, Oumnov RA, Kizilkaya O, Hall RW, Sprunger PT, Cook RL. Role of Electronegativity in Environmentally Persistent Free Radicals (EPFRs) Formation on ZnO. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5179-5188. [PMID: 38567373 PMCID: PMC10983065 DOI: 10.1021/acs.jpcc.3c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Environmentally persistent free radicals (EPFRs), a group of emerging pollutants, have significantly longer lifetimes than typical free radicals. EPFRs form by the adsorption of organic precursors on a transition metal oxide (TMO) surface involving electron charge transfer between the organic and TMO. In this paper, dihalogenated benzenes were incorporated to study the role of electronegativity in the electron transfer process to obtain a fundamental knowledge of EPFR formation mechanism on ZnO. Upon chemisorption on ZnO nanoparticles at 250 °C, electron paramagnetic resonance (EPR) confirms the formation of oxygen adjacent carbon-centered organic free radicals with concentrations between 1016 and 1017 spins/g. The radical concentrations show a trend of 1,2-dibromobenzene (DBB) > 1,2-dichlorobenzene (DCB) > 1,2-difluorobenzene (DFB) illustrating the role of electronegativity on the amount of radical formation. X-ray absorption spectroscopy (XAS) confirms the reduction of the Zn2+ metal center, contrasting previous experimental evidence of an oxidative mechanism for ZnO single crystal EPFR formation. The extent of Zn reduction for the different organics (DBB > DCB > DFB) also correlates to their polarity. DFT calculations provide theoretical evidence of ZnO surface reduction and exhibit a similar trend of degree of reduction for different organics, further building on the experimental findings. The lifetimes of the EPFRs formed confirm a noteworthy persistency.
Collapse
Affiliation(s)
- Syed Monjur Ahmed
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Reuben A. Oumnov
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Orhan Kizilkaya
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
| | - Randall W. Hall
- Department
of Natural Sciences and Mathematics, Dominican
University of California, San Rafael, California 94901, United States
| | - Phillip T. Sprunger
- Center for
Advanced Microstructures and Devices, Louisiana
State University, 6980
Jefferson Highway, Baton Rouge, Louisiana 70806, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Yi JF, Lin ZZ, Li X, Zhou YQ, Guo Y. A short review on environmental distribution and toxicity of the environmentally persistent free radicals. CHEMOSPHERE 2023; 340:139922. [PMID: 37611755 DOI: 10.1016/j.chemosphere.2023.139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are usually generated by the electron transfer of a certain radical precursor on the surface of a carrier. They are characterized with high activity, wide migration range, and relatively long half-life period. In this review, we summarized the literature on EPFRs published since 2010, including their environmental occurrence and potential cytotoxicity and biotoxicity. The EPFRs in the atmosphere are the most abundant in the environment, mainly generated from the combustion of raw materials or biochar, and the C-center types (quinones, semiquinones radicals, etc.) may exist for a relatively long time. These EPFRs can transform into other substances (such as reactive oxygen species, ROS) under the influence of environmental factors, and partly enter soil and water by wet and dry deposition of particulate matter, which may promote the generation of EPFRs in those media. The wide distribution of EPFRs in the environment may lead to their exposure to biota including humans, resulting in cytotoxicity and biotoxicity. The EPFRs can influence the normal redox process of the biota, and generate a large number of free radicals like ROS. Exposure to EPFRs may change the expression of gene and activity of metabolic enzymes, and damage the cells, as well as some organs such as the lung, trachea, and heart. However, due to the difficulty in sample extraction, identification, and quantification of the specific EPFR individuals, the toxicity and exposure evaluation of biota are still limited which merits study in the future.
Collapse
Affiliation(s)
- Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yue-Qiao Zhou
- Department of Department of Medical Oncology, Qionghai People's Hospital, Qionghai, 571499, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
9
|
Wang Y, Huang J, Li S, Xu W, Wang H, Xu W, Li X. A mechanistic and kinetic investigation on the oxidative thermal decomposition of decabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121991. [PMID: 37328125 DOI: 10.1016/j.envpol.2023.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The thermal processes of materials containing decabromodiphenyl ether (BDE-209) normally result in the exposure of BDE-209 to high-temperature environments, generating a series of hazardous compounds. However, the evolution mechanisms of BDE-209 during oxidative thermal processes remain unclear. Thus, this paper presents a detailed investigation on the oxidative thermal decomposition mechanism of BDE-209 by utilizing density functional theory methods at the M06/cc-pVDZ theoretical level. The results show that the barrierless fission of the ether linkage dominates the initial degradation of BDE-209 at all temperatures, with branching ratio over 80%. The decomposition of BDE-209 in oxidative thermal processes is mainly along BDE-209 → pentabromophenyl and pentabromophenoxy radicals → pentabromocyclopentadienyl radicals → brominated aliphatic products. Additionally, the study results on the formation mechanisms of several hazardous pollutants indicate that the ortho-phenyl-type radicals created by ortho-C-Br bond fission (branching ratio reached 15.1% at 1600 K) can easily be converted into octabrominated dibenzo-p-dioxin and furan, which require overcoming the energy barriers of 99.0 and 48.2 kJ/mol, respectively. The O/ortho-C coupling of two pentabromophenoxy radicals also acts as a non-negligible pathway for the formation of octabrominated dibenzo-p-dioxin. The synthesis of octabromonaphthalene involves the self-condensation of pentabromocyclopentadienyl radicals, followed by an intricately intramolecular evolution. Results presented in this study can enhance our understanding of the transformation mechanism of BDE-209 in thermal processes, and offer an insight into controlling the emissions of hazardous pollutants.
Collapse
Affiliation(s)
- Yao Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sijia Li
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weifeng Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Xu Y, Lu X, Su G, Chen X, Meng J, Li Q, Wang C, Shi B. Scientific and regulatory challenges of environmentally persistent free radicals: From formation theory to risk prevention strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131674. [PMID: 37236112 DOI: 10.1016/j.jhazmat.2023.131674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
EPFRs (Environmentally Persistent Free Radicals) are a class of pollutants that have been identified as potential environmental contaminants due to their persistence and ability to generate reactive oxygen species (ROS) that can cause oxidative stress in living organisms. However, no study has comprehensively summarized the production conditions, influencing factors and toxic mechanisms of EPFRs, impeding exposure toxicity assessments and risk prevention strategies. To bridge the gap between theoretical research and practical application, a thorough literature review to summarize the formation, environmental effects, and biotoxicity of EPFRs are conducted. A total of 470 relevant papers were screened in Web of Science Core collection databases. The transfer of electrons between interfaces and the cleavage of covalent bonds of persistent organic pollutants is crucial to the generation of EPFRs, which is induced by external sources of energy, including thermal energy, light energy, transition metal ions, and others. In the thermal system, the stable covalent bond of organic matter can be destroyed by heat energy at low temperature to form EPFRs, while the formed EPFRs can be destroyed at high temperature. Light can also accelerate the production of free radicals and promote the degradation of organic matter. The persistence and stability of EPFRs are synergistically influenced by individual environmental factors such as environmental humidity, oxygen content, organic matter content, and environmental pH. Studying the formation mechanism of EPFRs and their biotoxicity is essential for fully understanding the hazards posed by these emerging environmental contaminants.
Collapse
Affiliation(s)
- Yulin Xu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhao J, Shen G, Shi L, Li H, Lang D, Zhang L, Pan B, Tao S. Real-World Emission Characteristics of Environmentally Persistent Free Radicals in PM 2.5 from Residential Solid Fuel Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3997-4004. [PMID: 35262334 DOI: 10.1021/acs.est.1c08449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) can induce reactive oxygen species, causing adverse health impacts, and residential fuel (biomass and coal) combustion is believed to be an important emission source for EPFRs; however, the residential emission characteristics of EPFRs are rarely studied in the real world. Here, we conducted a field campaign evaluating the presence and characteristics of EPFRs generated from residential biomass and coal burning in rural China. The emission factors (EFs) of EPFRs (with units of 1020 spins·kg-1) in PM2.5 from the combustion of crop residues (3.97 ± 0.47) were significantly higher than those from firewood (2.06 ± 0.19) and coal (2.13 ± 0.33) (p < 0.05). The EPFRs from residential solid fuel combustion were carbon-centered free radicals adjacent to oxygen atoms. The fuel type was a primary factor controlling EPFR discharge, explaining 68% of the variation in EPFR EFs. The emissions from biomass burning had higher EPFRs per particle than those from coal combustion. EPFRs had stronger relationships with carbonaceous components than with other incomplete combustion products. The EPFRs from biomass burning were mostly generated during the pyrolysis of fuels, while the EPFRs generated from coal combustion were mainly associated with refractory organic compounds. This study provides valuable information for evaluating the fates of EPFRs, promoting a better understanding of the health impacts of air pollution.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lin Shi
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Lu Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Guo C, Richmond-Bryant J. A critical review of environmentally persistent free radical (EPFR) solvent extraction methodology and retrieval efficiency. CHEMOSPHERE 2021; 284:131353. [PMID: 34225117 PMCID: PMC8487994 DOI: 10.1016/j.chemosphere.2021.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/16/2023]
Abstract
Long-lived environmentally persistent free radical (EPFR) exposures have been shown in toxicology studies to lead to respiratory and cardiovascular effects, which were thought to be due to the persistence of EPFR and their ability to produce reactive oxygen species. To characterize EPFR exposure and resulting health impacts, it is necessary to identify and systematize analysis protocols. Both direct measurement and solvent extraction methods have been applied to analyze environmental samples containing EPFR. The use of different protocols and solvents in EPFR analyses makes it difficult to compare results among studies. In this work, we reviewed EPFR studies that involved solvent extraction and carefully reported the details of the extraction methodology and retrieval recovery. EPFR recovery depends on the structure of the radical species and the solvent. For the limited number of studies available for review, the polar solvents had superior recovery in more studies. Radicals appeared to be more oxygen-centered following extraction for fly ash and particulate matter (PM) samples. Different solvent extraction methods to retrieve EPFR may produce molecular products during the extraction, thus potentially changing the sample toxicity. The number of studies reporting detailed methodologies is limited, and data in these studies were not consistently reported. Thus, inference about the solvent and protocol that leads to the highest EPFR extraction efficiency for certain types of radicals is not currently possible. Based on our review, we proposed reporting criteria to be included for future EPFR studies.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jennifer Richmond-Bryant
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
14
|
Sakr NI, Kizilkaya O, Carlson SF, Chan S, Oumnov RA, Catano J, Kurtz RL, Hall RW, Poliakoff ED, Sprunger PT. Formation of Environmentally Persistent Free Radicals (EPFRs) on the Phenol-Dosed α-Fe 2O 3(0001) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21882-21890. [PMID: 34992708 PMCID: PMC8725784 DOI: 10.1021/acs.jpcc.1c04298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on α-Fe2O3(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage. However, upon dosing at high temperature (>200 °C), both photoemission techniques have shown distinctive features that strongly suggest electron transfer from adsorbed phenol to Fe2O3 surface atoms and consequent formation of a surface radical. Consistent with the experiment, DFT calculations show that phenoxyl adsorption on the iron oxide surface at RT leads to a minor charge transfer to the adsorbed molecule. The experimental findings at high temperatures agree well with the EPFRs' proposed formation mechanism and can guide future experimental and computational studies.
Collapse
Affiliation(s)
- N I Sakr
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Orhan Kizilkaya
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Sierra F Carlson
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Simon Chan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Reuben A Oumnov
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Jaqueline Catano
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Richard L Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Randall W Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - E D Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States; Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
15
|
Harmon AC, Noël A, Subramanian B, Perveen Z, Jennings MH, Chen YF, Penn AL, Legendre K, Paulsen DB, Varner KJ, Dugas TR. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol 2021; 321:H667-H683. [PMID: 34415187 PMCID: PMC8794232 DOI: 10.1152/ajpheart.00725.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.NEW & NOTEWORTHY Particulate matter (PM) resulting from the combustion of organic matter is known to contribute to cardiopulmonary disease. Despite hypotheses that cardiovascular dysfunction occurring after PM exposures is secondary to lung or systemic inflammation, these studies investigating exposures to PM-containing environmentally persistent free radicals (EPFRs) demonstrate that cardiovascular dysfunction precedes pulmonary inflammation. The cardiopulmonary health consequences of EPFRs have yet to be thoroughly evaluated, especially in healthy, adult mice. Our data suggest the vasculature as a direct target of PM exposure, and our studies aimed to elucidate the mechanisms contributing to EPFR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Merilyn H Jennings
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Yi-Fan Chen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kelsey Legendre
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
16
|
Guo C, Hasan F, Lay D, Dela Cruz ALN, Ghimire A, Lomnicki SM. Phytosampling-a supplementary tool for particulate matter (PM) speciation characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39310-39321. [PMID: 33755885 PMCID: PMC8713460 DOI: 10.1007/s11356-021-13292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Ambient air particulate matter (PM) and PM-associated environmentally persistent free radicals (EPFRs) have been documented to contribute to pollution-related health effects. Studies of ambient air PM potentially bear artifacts stemming from the collection methods. We have investigated the applicability of PM phytosampling (PHS) as a supplementary tool to a classic PM sampler in respect of achieving better PM chemical composition assessment (primarily organic fraction). Phytosampling is a static PM collection method relying on the particle entrapment by the plant's leaf through electrostatic forces and surface trichomes. We have investigated the differences in the EPFR and polycyclic aromatic hydrocarbon (PAH) speciation and concentration on ambient air PM for PHS and high-volume PM sampler (HVS). The advantages of PHS are easy particle recovery from the matrix, collection under natural environmental conditions, and the ability to apply a dense collection network to accurately represent spatial pollutant distribution. The experimental results show that the PHS can provide valuable speciation information, sometimes different from that observed for HVS. For PM collected by PHS, we detected the larger contribution of oxygen-centered EPFRs, different decay behavior, and more consistent PAH distribution between different PM sizes compared to the PM from HVS. These results indicate that the isolation of samples from the ambient during HVS sampling and exposure to high-volume airflow may alter the chemical composition of the samples, while the PHS method could provide details on the original speciation and concentration and be more representative of the PM surface. However, PHS cannot evaluate an absolute air concentration of PM, so it serves as an excellent supplementary tool to work in conjunction with the standard PM collection method.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dean Lay
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Albert Leo N Dela Cruz
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ajit Ghimire
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Slawo M Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
17
|
Zhao Z, Wu M, Zhou D, Chen Q, Li H, Lang D, Pan B, Xing B. CuO and TiO 2 particles generated more stable and stronger EPFRs in dark than under UV-irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145555. [PMID: 33631563 DOI: 10.1016/j.scitotenv.2021.145555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Environmentally persistent free radicals (EFPRs) have recently attracted a great deal of research attention because of their significant toxicity and ubiquitous occurrence in the environment. The information is still very limited on how to estimate the intensity of EPFRs under ambient circumstances. This study is designed to specifically compare EPFRs generation during catechol degradation in dark and UV light irradiation. CuO and TiO2 were selected as model metal oxides to coat on silica at 1% CuO has a large electron exchange capacity, which may mediate catechol degradation in dark, while TiO2 possesses strong photocatalytic property and could accelerate catechol degradation under UV light. Under UV light irradiation, EPFRs were generated very quickly and reached the maximum value in 4 d, which was related to the photocatalytic property of the particle. However, these EPFRs dissipated quickly in 14 d. On the contrary, the intensities of EPFRs generated in dark were 2 times higher, and stabled for over 2 months. Therefore, the environmental impacts of EPFRs in dark may be widespread and long-lasting, which should be monitored more carefully. It should be noted that for CuO-coated silica, a significant amount of EPFRs (20% of the maximum) survived the UV-light irradiation and stabled during the experimental period (45 d). Stronger EPFRs were associated with more abundant dimer structures, suggesting the dimer structures were related to EPFRs formation during catechol degradation. Monitoring the generation of dimer structures in the degradation of organic chemicals may provide useful information to estimate EPFRs generation and risks.
Collapse
Affiliation(s)
- Ziyu Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Meixuan Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Dandan Zhou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Quan Chen
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Lang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
18
|
Liu X, Yang L, Liu G, Zheng M. Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6529-6541. [PMID: 33956443 DOI: 10.1021/acs.est.0c08762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Attention is increasingly being paid to environmentally persistent free radicals (EPFRs), which are organic pollutants with the activities of free radicals and stabilities of organic pollutants. EPFRs readily form during thermal processes through the decomposition of organic precursors such as phenols, halogenated phenols, and quinone-type molecules, which are also important precursors of toxic unintentionally produced persistent organic pollutants (UPOPs). We have found that EPFRs are important intermediates for UPOP formation during thermal-related processes. However, interest in EPFRs is currently mostly focused on the toxicities and formation mechanisms of EPFRs themselves. Little information is available on the important roles EPFRs play in toxic UPOP formation during thermal processes. Here, we review the mechanisms involved in EPFR formation and transformation into UPOPs during thermal processes. The review is focused on typical EPFRs, including cyclopentadiene, phenoxy, and semiquinone radicals. The reaction temperature, metal species present, and oxygen concentration strongly affect EPFR and UPOP formation during thermal-related processes. Gaps in current knowledge and future directions for research into EPFR and UPOP formation, transformation, and control are presented. Understanding the relationships between EPFRs and UPOPs will allow synergistic control strategies to be developed for thermal-related industrial sources of EPFRs and UPOPs.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
19
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
20
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
21
|
Zhang X, Gu W, Ma Z, Liu Y, Ru H, Zhou J, Zang Y, Xu Z, Qian G. Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114039. [PMID: 32220747 DOI: 10.1016/j.envpol.2020.114039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are easily generated in the combustion processes of municipal solid waste (MSW) and can cause adverse effects on human health. This study focuses on understanding the toxicity of EPFR particles (ZnO/MCB containing EPFRs) to human bronchial epithelial cell lines BEAS-2B and 16HBE, murine macrophages Raw264.7, and the lung of BALB/c mice after a short exposure (7 days). Exposure of BEAS-2B, 16HBE, and Raw264.7 cells to ZnO/MCB particles significantly increased the reactive oxygen species (ROS) production and perturbed levels of intracellular redox conditions (decreased the intracellular GSH level and the activity of cytosolic SOD, and stimulated oxidative stress related proteins such as HO-1 and Nrf2). EPFR particles decreased the mitochondrial membrane potential (MMP) and induced cell apoptosis, including the activation of Caspase-3, Bax, and Bcl-2 apoptotic signalling pathways. A signature inflammatory condition was observed in both cell models and the mouse model for lung lesions. Our data suggest that EPFRs in particles have greater toxicity to lung cells and tissues that are potential health hazards to human lung.
Collapse
Affiliation(s)
- Xing Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yun Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Hongbo Ru
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - Jizhi Zhou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China
| | - Yi Zang
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, No.19A, China
| | - ZhiPing Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD, 4072, Australia
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Rd., Shanghai, 200444, PR China.
| |
Collapse
|
22
|
Wang C, Huang Y, Zhang Z, Cai Z. Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113353. [PMID: 31662268 DOI: 10.1016/j.envpol.2019.113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 05/16/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are receiving increasing concern due to their toxicity and ubiquity in the environment. To avoid restrictions imposed when using a high-volume active sampler, this study uses tree leaves to act as passive samplers to investigate the spatial distribution characteristics and sources of airborne EPFRs. Tree leaf samples were collected from 120 sites in five areas around China (each approximately 4 km × 4 km). EPFR concentrations in particles (<2 μm) on the surface of 110 leaf samples were detected, ranging from 7.5 × 1016 to 4.5 × 1019 spins/g. For the 10 N.D. samples, they were all collected from areas inaccessible by vehicles. The g-values of EPFRs on 68% leaf samples were larger than 2.004, suggesting the electron localized on the oxygen atom, and they were consistent with the road dust sample (g-value: 2.0042). Significant positive correlation was found between concentrations of elemental carbon (tracer of vehicle emissions) and EPFRs. Spatial distribution mapping showed that EPFR levels in various land uses differed noticeably. Although previous work has linked atmospheric EPFRs to waste incineration, the evidence in this study suggests that vehicle emissions, especially from heavy-duty vehicles, are the main sources. While waste incinerators with low emissions or effective dust-control devices might not be an important EPFR contributor. According to our estimation, over 90% of the EPFRs deposited on tree leaves might be attributed to automotive exhaust emissions, as a synergistic effect of primary exhausts and degradation of aromatic compounds in road dust. With adding the trapping agent into the particle samples (<2 μm), signals of hydroxyl radicals were observed. This indicates that EPFRs collected from this phytosampling method can lead to the release of reactive oxygen species (ROS) once they are inhaled by human beings. Thus, this study helps highlight EPFR "hotspots" for potential health risk identification.
Collapse
Affiliation(s)
- Chen Wang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen, 518055, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China
| | - Yanpeng Huang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Zuotai Zhang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China
| |
Collapse
|
23
|
Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, Hu X, Li S, Gao Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. ENVIRONMENT INTERNATIONAL 2020; 134:105172. [PMID: 31739134 DOI: 10.1016/j.envint.2019.105172] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 05/22/2023]
Abstract
Biochars are used globally in agricultural crop production and environmental remediation. However, environmentally persistent free radicals (EPFRs), which are stable emerging pollutants, are generated as a characteristic feature during biomass pyrolysis. EPFRs can induce the formation of reactive oxygen species, which poses huge agro-environmental and human health risks. Their half-lives and persistence in both biochar residues and in the atmosphere may lead to potentially adverse risks in the environment. This review highlights the comprehensive research into these bioreactive radicals, as well as the bottlenecks of biochar production leading up to the formation and persistence of EPFRs. Additionally, a way forward has been proposed, based on two main recommendations. A global joint initiative to create an all-encompassing regulations policy document that will improve both the technological and the quality control aspects of biochars to reduce EPFR generation at the production level. Furthermore, environmental impact and risk assessment studies should be conducted in the extensive applications of biochars in order to protect the environmental and human health. The highlighted key research directions proposed herein will shape the production, research, and adoption aspects of biochars, which will mitigate the considerable concerns raised on EPFRs.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Sakr NI, Patterson MC, Daemen L, Poliakoff ED, Sprunger PT. Vibrational and Structural Studies of Environmentally Persistent Free Radicals Formed by Phenol-Dosed Metal Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16726-16733. [PMID: 31786916 DOI: 10.1021/acs.langmuir.9b02948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are formed by the adsorption of substituted aromatic precursors on the surface of metal oxides and are known to have significant health and environmental impact due to their unique stability. In this article, the formation of EPFRs is studied by adsorption of phenol on ZnO, CuO, Fe2O3, and TiO2 nanoparticles (∼10-50 nm) at high temperatures. Electron paramagnetic resonance indicates the formation of phenoxyl-type radicals. Fourier transform infrared spectroscopy provides further evidence of EPFR formation by the disappearance of -OH groups, indicating the chemisorption of the organic precursor on the metal oxide surface. These results are further confirmed by inelastic neutron scattering, which shows both ring out-of-plane bend and C-H in-plane bend motions characteristic of phenol adsorption on the studied systems. Also, the changes in the oxidation state of the metal cations are investigated by X-ray photoelectron spectroscopy, which shows that the direction of electron transfer (redox) during phenol chemisorption is strongly dependent on surface properties as well as surface defects of the metal oxide surface.
Collapse
Affiliation(s)
- Nadra I Sakr
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| | - Matthew C Patterson
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Luke Daemen
- Spallation Neutron Source , Oak Ridge National Laboratory , MS-6473 , Oak Ridge , Tennessee 37831 , United States
| | - Erwin D Poliakoff
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Phillip T Sprunger
- Department of Physics and Astronomy , Louisiana State University , 202 Nicholson Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
25
|
Pan B, Li H, Lang D, Xing B. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:320-331. [PMID: 30802746 DOI: 10.1016/j.envpol.2019.02.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/23/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are defined as organic free radicals stabilized on or inside particles. They are persistent because of the protection by the particles and show significant toxicity to organisms. Increasing research interests have been attracted to study the potential environmental implications of EPFRs. Because of their different physical forms from conventional contaminants, it is not applicable to use the commonly used technique and strategy to predict and assess the behavior and risks of EPFRs. Current studies on EPFRs are scattered and not systematic enough to draw clear conclusions. Therefore, this review is organized to critically discuss the current research progress on EPFRs, highlighting their occurrence and transport, generation mechanisms, as well as their environmental implications (including both toxicity and reactivity). EPFR formation and stabilization as affected by the precursors and environmental factors are useful breakthrough to understand their formation mechanisms. To better understand the major differences between EPFRs and common contaminants, we identified the unique processes and/or mechanisms related to EPFRs. The knowledge gaps will be also addressed to highlight the future research while summarizing the research progress. Quantitative analysis of the interactions between organic contaminants and EPFRs will greatly improve the predictive accuracy of the multimedia environmental fate models. In addition, the health risks will be better evaluated when considering the toxicity contributed by EFPRs.
Collapse
Affiliation(s)
- Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Di Lang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
26
|
Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One 2018; 13:e0205412. [PMID: 30308017 PMCID: PMC6181347 DOI: 10.1371/journal.pone.0205412] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Particulate matter (PM) is emitted during the combustion of fuels and wastes. PM exposure exacerbates pulmonary diseases, and the mechanism may involve oxidative stress. At lower combustion temperatures such as occurs in the cool zone of a flame, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, resulting in the formation of surface-stabilized environmentally persistent free radicals (EPFR). Prior studies showed that PM-containing EPFR redox cycle to produce reactive oxygen species (ROS), and after inhalation, EPFR induce pulmonary inflammation and oxidative stress. Our objective was to elucidate mechanisms linking EPFR-induced oxidant injury with increased cytokine production by pulmonary epithelial cells. We thus treated human bronchial epithelial cells with EPFR at sub-toxic doses and measured ROS and cytokine production. To assess aryl hydrocarbon receptor (AhR) activity, cells were transfected with a luciferase reporter for xenobiotic response element activation. To test whether cytokine production was dependent upon AhR activation or oxidative stress, some cells were co-treated with an antioxidant or an AhR antagonist. EPFR increased IL-6 release in an ROS and AhR- and oxidant-dependent manner. Moreover, EPFR induced an AhR activation that was dependent upon oxidant production, since antioxidant co-treatment blocked AhR activation. On the other hand, EPFR treatment increased a cellular ROS production that was at least partially attenuated by AhR knockdown using siRNA. While AhR activation was correlated with an increased expression of oxidant-producing enzymes like cytochrome P450 CYP1A1, it is possible that AhR activation is both a cause and effect of EPFR-induced ROS. Finally, lipid oxidation products also induced AhR activation. ROS-dependent AhR activation may be a mechanism for altered epithelial cell responses after EPFR exposure, potentially via formation of bioactive lipid or protein oxidation products.
Collapse
|
27
|
Potential and Actual Health Hazards in the Dense Urban Operational Environment: Critical Gaps and Solutions for Military Occupational Health. J Occup Environ Med 2018; 59:e197-e203. [PMID: 28795994 DOI: 10.1097/jom.0000000000001118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: This paper presents environmental health risks which are prevalent in dense urban environments.We review the current literature and recommendations proposed by environmental medicine experts in a 2-day symposium sponsored by the Department of Defense and supported by the Johns Hopkins University Applied Physics Laboratory.Key hazards in the dense urban operational environment include toxic industrial chemicals and materials, water pollution and sewage, and air pollution. Four critical gaps in environmental medicine were identified: prioritizing chemical and environmental concerns, developing mobile decision aids, personalized health assessments, and better real-time health biomonitoring.As populations continue to concentrate in cities, civilian and military leaders will need to meet emerging environmental health concerns by developing and delivering adequate technology and policy solutions.
Collapse
|
28
|
Yang L, Liu G, Zheng M, Jin R, Zhao Y, Wu X, Xu Y. Pivotal Roles of Metal Oxides in the Formation of Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12329-12336. [PMID: 29027793 DOI: 10.1021/acs.est.7b03583] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants that can adversely affect human health. Although the pivotal roles of metal oxides in EPFR formation have been identified, few studies have investigated the influence of the metal oxide species, size, or concentration on the formation of EPFRs. In this study, EPFR formation from a polyaromatic hydrocarbon with chlorine and hydroxyl substituents (2,4-dichloro-1-naphthol) was investigated using electron paramagnetic resonance spectroscopy. The effect of the metal oxide on the EPFR species and its lifetime and yield were evaluated. The spectra obtained with catalysis by CuO, Al2O3, ZnO, and NiO were obviously different, indicating that different EPFRs formed. The abilities of the metal oxides to promote EPFR formation were in the order Al2O3 > ZnO > CuO > NiO, which were in accordance with the oxidizing strengths of the metal cations. A decay study showed that the generated radicals were persistent, with a maximum 1/e lifetime of 108 days on the surface of Al2O3. The radical yields were dependent on the concentration and particle size of the metal oxide. Metal oxide nanoparticles increased the EPFR concentrations more than micrometer-sized particles.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
29
|
Chuang GC, Xia H, Mahne SE, Varner KJ. Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 2017; 17:140-149. [PMID: 27052339 DOI: 10.1007/s12012-016-9367-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Samples of environmental particulate matter contain environmentally persistent free radicals (EPFRs) capable of sustained generation of oxygen radicals. While exposure to EPFRs produces cardiac toxicity and oxidative stress in experimental animals, the underlying mechanisms are largely unknown. To determine whether EPFRs could directly damage cardiomyocytes, cultured mouse cardiomyocytes (HL-1) and primary rat adult left ventricular myocytes (ALVM) were incubated with an EPFR consisting of 1,2-dichlorobenzene chemisorbed to CuO-coated silica beads (DCB230). Treatment with DCB230 killed both HL-1 and ALVM in a dose- and time-dependent manner. The cytotoxic effects of DCB230 were significantly attenuated by treatment with α-tocopherol. One to 2 h after exposure to DCB230, there were significant reductions in mitochondrial membrane potential and significant increases in cleaved caspase-9, but no significant increases in DNA damage or cell death. After 8 h of treatment, there were significant increases in caspase-3, caspase-9, DNA damage and PARP cleavage associated with significant cell death. Together, these data indicate that DCB230 kills HL-1 myocytes by inducing oxidative stress that initiates apoptosis, with the intrinsic or mitochondrial pathway acting early in the apoptotic signaling process.
Collapse
Affiliation(s)
- Gin C Chuang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sarah E Mahne
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA.,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, 1901 Perdido St, MEB 5262, New Orleans, LA, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA. .,Superfund Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
30
|
Oyana TJ, Lomnicki SM, Guo C, Cormier SA. A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10663-10673. [PMID: 28805054 PMCID: PMC5792061 DOI: 10.1021/acs.est.7b03643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM2.5. These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential "hotspots" risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies.
Collapse
Affiliation(s)
- Tonny J. Oyana
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Preventive Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Le Bonheur Children’s Medical Center, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
31
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
32
|
Deweirdt J, Quignard JF, Crobeddu B, Baeza-Squiban A, Sciare J, Courtois A, Lacomme S, Gontier E, Muller B, Savineau JP, Marthan R, Guibert C, Baudrimont I. Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicol In Vitro 2017; 45:340-350. [PMID: 28688989 DOI: 10.1016/j.tiv.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
Abstract
Recent studies have revealed that particulate matter (PM) exert deleterious effects on vascular function. Pulmonary artery endothelial cells (HPAEC), which are involved in the vasomotricity regulation, can be a direct target of inhaled particles. Modifications in calcium homeostasis and oxidative stress are critical events involved in the physiopathology of vascular diseases. The objectives of this study were to assess the effects of PM2.5 on oxidative stress and calcium signaling in HPAEC. Different endpoints were studied, (i) intrinsic and intracellular production of reactive oxygen species (ROS) by the H2DCF-DA probe, (ii) intrinsic, intracellular and mitochondrial production of superoxide anion (O2-) by electronic paramagnetic resonance spectroscopy and MitoSOX probe, (iii) reactive nitrosative species (RNS) production by Griess reaction, and (vi) calcium signaling by the Fluo-4 probe. In acellular conditions, PM2.5 leads to an intrinsic free radical production (ROS, O2-) and a 4h-exposure to PM2.5 (5-15μg/cm2), induced, in HPAEC, an increase of RNS, of global ROS and of cytoplasmic and mitochondrial O2- levels. The basal intracellular calcium ion level [Ca2+]i was also increased after 4h-exposure to PM2.5 and a pre-treatment with superoxide dismutase and catalase significantly reduced this response. This study provides evidence that the alteration of intracellular calcium homeostasis induced by PM2.5 is closely correlated to an increase of oxidative stress.
Collapse
Affiliation(s)
- J Deweirdt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J F Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Crobeddu
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - A Baeza-Squiban
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205 Paris, France
| | - J Sciare
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS, Centre de Saclay, F-91190 Gif sur Yvette, France; Energy Environment Water Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - A Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - S Lacomme
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - E Gontier
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - B Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - J P Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - R Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente et Service d'Exploration Fonctionnelle Respiratoire, Place Amélie Raba Léon, Bordeaux F-33076, France
| | - C Guibert
- Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France
| | - I Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux F-33076, France.
| |
Collapse
|
33
|
Dubes V, Parpaite T, Ducret T, Quignard JF, Mornet S, Reinhardt N, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Muller B, Savineau JP, Courtois A. Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells. Toxicology 2016; 375:37-47. [PMID: 27939335 DOI: 10.1016/j.tox.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The development and use of nanomaterials, especially engineered nanoparticles (NP), is expected to provide many benefits. But at the same time the development of such materials is also feared because of their potential human health risks. Indeed, NP display some characteristics similar to ultrafine environmental particles which are known to exert deleterious cardiovascular effects including pro-hypertensive ones. In this context, the effect of NP on calcium signalling, whose deregulation is often involved in hypertensive diseases, remain poorly described. We thus assessed the effect of SiO2 NP on calcium signalling by fluorescence imaging and on the proliferation response in rat pulmonary artery smooth muscle cells (PASMC). In PASMC, acute exposure to SiO2 NP, from 1 to 500μg/mL, produced an increase of the [Ca2+]i. In addition, when PASMC were exposed to NP at 200μg/mL, a proliferative response was observed. This calcium increase was even greater in PASMC isolated from rats suffering from pulmonary hypertension. The absence of extracellular calcium, addition of diltiazem or nicardipine (L-type voltage-operated calcium channel inhibitors both used at 10μM), and addition of capsazepine or HC067047 (TRPV1 and TRPV4 inhibitors used at 10μM and 5μM, respectively) significantly reduced this response. Moreover, this response was also inhibited by thapsigargin (SERCA inhibitor, 1μM), ryanodine (100μM) and dantrolene (ryanodine receptor antagonists, 10μM) but not by xestospongin C (IP3 receptor antagonist, 10μM). Thus, NP induce an intracellular calcium rise in rat PASMC originating from both extracellular and intracellular calcium sources. This study also provides evidence for the implication of TRPV channels in NP induced calcium rise that may highlight the role of these channels in the deleterious cardiovascular effects of NP.
Collapse
Affiliation(s)
- Virginie Dubes
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thibaud Parpaite
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thomas Ducret
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-François Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Stéphane Mornet
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Nora Reinhardt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Isabelle Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Mathilde Dubois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Véronique Freund-Michel
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Roger Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut-Lévêque, Service d'Exploration Fonctionnelle Respiratoire, Avenue de Magellan, Pessac, F-33076, France.
| | - Bernard Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-Pierre Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Arnaud Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente, Place Amélie Raba Léon, Bordeaux, F-33076, France.
| |
Collapse
|
34
|
Dugas TR, Lomnicki S, Cormier SA, Dellinger B, Reams M. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060573. [PMID: 27338429 PMCID: PMC4924030 DOI: 10.3390/ijerph13060573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant.
Collapse
Affiliation(s)
- Tammy R Dugas
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | - Slawomir Lomnicki
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Sciences Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA.
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | - Margaret Reams
- Department of Environmental Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| |
Collapse
|
35
|
Barrier M, Bégorre MA, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Savineau JP, Muller B, Courtois A. Involvement of Heme Oxygenase-1 in particulate matter-induced impairment of NO-dependent relaxation in rat intralobar pulmonary arteries. Toxicol In Vitro 2016; 32:205-11. [DOI: 10.1016/j.tiv.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/06/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
|
36
|
Wauters A, Vicenzi M, De Becker B, Riga JP, Esmaeilzadeh F, Faoro V, Vachiéry JL, van de Borne P, Argacha JF. At high cardiac output, diesel exhaust exposure increases pulmonary vascular resistance and decreases distensibility of pulmonary resistive vessels. Am J Physiol Heart Circ Physiol 2015; 309:H2137-44. [PMID: 26497960 DOI: 10.1152/ajpheart.00149.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Air pollution has recently been associated with the development of acute decompensated heart failure, but the underlying biological mechanisms remain unclear. A pulmonary vasoconstrictor effect of air pollution, combined with its systemic effects, may precipitate decompensated heart failure. The aim of the present study was to investigate the effects of acute exposure to diesel exhaust (DE) on pulmonary vascular resistance (PVR) under resting and stress conditions but also to determine whether air pollution may potentiate acquired pulmonary hypertension. Eighteen healthy male volunteers were exposed to ambient air (AA) or dilute DE with a particulate matter of <2.5 μm concentration of 300 μg/m(3) for 2 h in a randomized, crossover study design. The effects of DE on PVR, on the coefficient of distensibilty of pulmonary vessels (α), and on right and left ventricular function were evaluated at rest (n = 18), during dobutamine stress echocardiography (n = 10), and during exercise stress echocardiography performed in hypoxia (n = 8). Serum endothelin-1 and fractional exhaled nitric oxide were also measured. At rest, exposure to DE did not affect PVR. During dobutamine stress, the slope of the mean pulmonary artery pressure-cardiac output relationship increased from 2.8 ± 0.5 mmHg · min · l (-1) in AA to 3.9 ± 0.5 mmHg · min · l (-1) in DE (P < 0.05) and the α coefficient decreased from 0.96 ± 0.15 to 0.64 ± 0.12%/mmHg (P < 0.01). DE did not further enhance the hypoxia-related upper shift of the mean pulmonary artery pressure-cardiac output relationship. Exposure to DE did not affect serum endothelin-1 concentration or fractional exhaled nitric oxide. In conclusion, acute exposure to DE increased pulmonary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels at high cardiac output.
Collapse
Affiliation(s)
- Aurélien Wauters
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium;
| | - Marco Vicenzi
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Benjamin De Becker
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Philippe Riga
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatemeh Esmaeilzadeh
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Jean-Luc Vachiéry
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Argacha
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Noubiap JJN, Essouma M, Bigna JJR. Targeting Household Air Pollution for Curbing the Cardiovascular Disease Burden: A Health Priority in Sub-Saharan Africa. J Clin Hypertens (Greenwich) 2015; 17:825-9. [PMID: 26140428 PMCID: PMC8031568 DOI: 10.1111/jch.12610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Household air pollution (HAP) is a major public health problem, particularly in sub-Saharan Africa where most of the populations still rely on solid fuels for cooking, heating, and lighting. This narrative review highlights the direct and indirect evidence of the important role of HAP in cardiovascular disease, especially in sub-Saharan African countries where highest rates of major cardiovascular disease and death are observed, and thus provides ample reason for promotion of preventive interventions to reduce HAP exposures in the region. There is an urgent need for efficient strategies to educate populations on the health issues associated with this health hazard, to provide affordable clean cooking energy for poor people and to promote improved household ventilation. High-quality data on household energy practices and patterns of HAP and related health issues are still needed for efficient policy making in this region.
Collapse
Affiliation(s)
- Jean Jacques N. Noubiap
- Department of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
- Medical Diagnostic CenterYaoundéCameroon
| | - Mickael Essouma
- Internal Medicine UnitSangmelima Reference HospitalSangmelimaCameroon
| | - Jean Joel R. Bigna
- Department of Epidemiology and Public HealthCentre Pasteur of YaoundéMember of International Network of the Pasteur InstitutesYaoundéCameroon
| |
Collapse
|
38
|
Thibodeaux CA, Poliakoff E, Kizilkaya O, Patterson MC, DiTusa MF, Kurtz RL, Sprunger P. Probing environmentally significant surface radicals: Crystallographic and temperature dependent adsorption of phenol on ZnO. Chem Phys Lett 2015; 638:56-60. [PMID: 26388650 PMCID: PMC4570833 DOI: 10.1016/j.cplett.2015.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies.
Collapse
Affiliation(s)
- Chad A. Thibodeaux
- Louisiana State University, Department of Chemistry, 232 Choppin Hall, Highland Road, Baton Rouge, LA 70803, United States
| | - E.D. Poliakoff
- Louisiana State University, Department of Chemistry, 232 Choppin Hall, Highland Road, Baton Rouge, LA 70803, United States
| | - Orhan Kizilkaya
- Louisiana State University, Center for Advanced Microstructures and Devices, 6980 Jefferson Hwy., Baton Rouge, LA 70806, United States
| | - Matthew C. Patterson
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - Mark F. DiTusa
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - Richard L. Kurtz
- Louisiana State University, Center for Advanced Microstructures and Devices, 6980 Jefferson Hwy., Baton Rouge, LA 70806, United States
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| | - P.T. Sprunger
- Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803, United States
| |
Collapse
|
39
|
Reed JR, dela Cruz ALN, Lomnicki SM, Backes WL. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2. Toxicol Appl Pharmacol 2015; 289:223-30. [PMID: 26423927 DOI: 10.1016/j.taap.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023]
Abstract
Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2-CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| | - Albert Leo N dela Cruz
- The Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A&M College, Baton Rouge, LA 70803, USA.
| | - Slawo M Lomnicki
- The Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A&M College, Baton Rouge, LA 70803, USA.
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| |
Collapse
|
40
|
Farmer SA, Nelin TD, Falvo MJ, Wold LE. Ambient and household air pollution: complex triggers of disease. Am J Physiol Heart Circ Physiol 2015; 307:H467-76. [PMID: 24929855 DOI: 10.1152/ajpheart.00235.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.
Collapse
|
41
|
Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter. Biochem Pharmacol 2015; 95:126-32. [PMID: 25817938 DOI: 10.1016/j.bcp.2015.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/17/2015] [Indexed: 01/18/2023]
Abstract
Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230 °C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50 °C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR·P450 complex.
Collapse
|
42
|
Burn BR, Varner KJ. Environmentally persistent free radicals compromise left ventricular function during ischemia/reperfusion injury. Am J Physiol Heart Circ Physiol 2015; 308:H998-H1006. [PMID: 25681431 DOI: 10.1152/ajpheart.00891.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
Abstract
Increases in airborne particulate matter (PM) are linked to increased mortality from myocardial ischemia. PM contains environmentally persistent free radicals (EPFRs) that form as halogenated hydrocarbons chemisorb to transition metal oxide-coated particles, and are capable of sustained redox cycling. We hypothesized that exposure to the EPFR DCB230 would increase cardiac vulnerability to subsequent myocardial ischemia-reperfusion (MI/R) injury. Rats were exposed to DCB230 or vehicle via nose-only inhalation (230 μg max/day) over 30 min/day for 7 days. MI/R or sham MI/R (sham) was initiated 24 h after the final exposure. Following 1 or 7 days of reperfusion, left ventricular (LV) function was assessed and infarct size measured. In vehicle-exposed rats, MI/R injury did not significantly reduce cardiac output (CO), stroke volume (SV), stroke work (SW), end-diastolic volume (EDV), or end-systolic volume (ESV) after 1 day of reperfusion, despite significant reductions in end-systolic pressure (ESP). Preload-recruitable SW (PRSW; contractility) was elevated, presumably to maintain LV function. MI/R 1-day rats exposed to DCB230 also had similarly reduced ESP. Compared with vehicle controls, CO, SV, and SW were significantly reduced in DCB230-exposed MI/R 1-day rats; moreover, PRSW did not increase. DCB230's effects on LV function dissipated within 8 days of exposure. These data show that inhalation of EPFRs can exacerbate the deficits in LV function produced by subsequent MI/R injury. Infarct size was not different between the MI/R groups. We conclude that inhalation of EPFRs can compromise cardiac function during MI/R injury and may help to explain the link between PM and MI/R-related mortality.
Collapse
Affiliation(s)
- Brendan R Burn
- Department of Pharmacology and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
43
|
Reed JR, Cawley GF, Ardoin TG, Dellinger B, Lomnicki SM, Hasan F, Kiruri LW, Backes WL. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes. Toxicol Appl Pharmacol 2014; 277:200-9. [PMID: 24713513 DOI: 10.1016/j.taap.2014.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230°C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| | - George F Cawley
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA
| | - Taylor G Ardoin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Slawomir M Lomnicki
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Farhana Hasan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lucy W Kiruri
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112, USA
| |
Collapse
|
44
|
Bajerová P, Adam M, Bajer T, Ventura K. Comparison of various techniques for the extraction and determination of antioxidants in plants. J Sep Sci 2014; 37:835-44. [DOI: 10.1002/jssc.201301139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Petra Bajerová
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Martin Adam
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Tomáš Bajer
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Karel Ventura
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| |
Collapse
|
45
|
dela Cruz ALN, Cook RL, Dellinger B, Lomnicki SM, Donnelly KC, Kelley MA, Cosgriff D. Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:44-52. [PMID: 24244947 PMCID: PMC3907510 DOI: 10.1039/c3em00428g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30×, ~12×, and ~2× higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0 G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment.
Collapse
Affiliation(s)
- Albert Leo N dela Cruz
- Louisiana State University, Department of Chemistry, 338 Choppin Hall, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lomnicki S, Gullett B, Stöger T, Kennedy I, Diaz J, Dugas TR, Varner K, Carlin DJ, Dellinger B, Cormier SA. Combustion By-Products and their Health Effects--combustion engineering and global health in the 21st century: issues and challenges. Int J Toxicol 2014; 33:3-13. [PMID: 24434722 PMCID: PMC3944372 DOI: 10.1177/1091581813519686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15 to 18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists, and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control, and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants, and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented.
Collapse
Affiliation(s)
- Slawo Lomnicki
- Children's Research Foundation Institute, University of Tennessee Health Science Center, 50 N. Dunlap, Memphis, TN 38103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bradley JM, Cryar KA, El Hajj MC, El Hajj EC, Gardner JD. Exposure to diesel exhaust particulates induces cardiac dysfunction and remodeling. J Appl Physiol (1985) 2013; 115:1099-106. [PMID: 23887904 DOI: 10.1152/japplphysiol.00343.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic exposure to diesel exhaust particulates (DEP) increases the risk of cardiovascular disease in urban residents, predisposing them to the development of several cardiovascular stresses, including myocardial infarctions, arrhythmias, thrombosis, and heart failure. DEP contain a high level of polycyclic aromatic hydrocarbons, which activate the aryl hydrocarbon receptor (AHR). We hypothesize that exposure to DEP elicits ventricular remodeling through the activation of the AHR pathway, leading to ventricular dilation and dysfunction. Male Sprague-Dawley rats were exposed by nose-only nebulization to DEP (SRM 2975, 0.2 mg/ml) or vehicle for 20 min/day × 5 wk. DEP exposure resulted in eccentric left ventricular dilation (8% increased left ventricular internal diameter at diastole and 23% decreased left ventricular posterior wall thickness at diastole vs. vehicle), as shown by echocardiograph assessment. Histological analysis using Picrosirius red staining revealed that DEP reduced cardiac interstitial collagen (23% decrease vs. vehicle). Further assessment of cardiac function using a pressure-volume catheter indicated impaired diastolic function (85% increased end-diastolic pressure and 19% decreased Tau vs. vehicle) and contractility (57 and 48% decreased end-systolic pressure-volume relationship and maximum change in pressure over time vs. end-diastolic volume compared with vehicle, respectively) in the DEP-exposed animals. Exposure to DEP significantly increased cardiac expression of AHR (19% increase vs. vehicle). In addition, DEP significantly decreased the cardiac expression of hypoxia inducible factor-1α, the competitive pathway to the AHR, and vascular endothelial growth factor, a downstream mediator of hypoxia inducible factor-1α (26 and 47% decrease vs. vehicle, respectively). These findings indicate that exposure to DEP induced left ventricular dilation by loss of collagen through an AHR-dependent mechanism.
Collapse
Affiliation(s)
- Jessica M Bradley
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | |
Collapse
|
48
|
Kiruri LW, Dellinger B, Lomnicki S. Tar balls from Deep Water Horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4220-6. [PMID: 23510127 PMCID: PMC4267227 DOI: 10.1021/es305157w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041-47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils.
Collapse
|