1
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Martinod E, Bensidhoum M, Besnard V, Miyara M, Vicaut E. Confirmation of de novo cartilage generation on aortic matrices after tracheal replacement. Eur J Cardiothorac Surg 2024; 65:ezae187. [PMID: 38702801 DOI: 10.1093/ejcts/ezae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Affiliation(s)
- Emmanuel Martinod
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Sorbonne Paris Nord, Faculté de Médecine SMBH, Bobigny, France
- Inserm UMR1272, Hypoxie et Poumon, Université Sorbonne Paris Nord, Faculté de Médecine SMBH, Bobigny, France
- Université Paris Cité, Fondation Alain Carpentier, Laboratoire de Recherche Bio-chirurgicale, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Valérie Besnard
- Inserm UMR1272, Hypoxie et Poumon, Université Sorbonne Paris Nord, Faculté de Médecine SMBH, Bobigny, France
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Département d'Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Eric Vicaut
- AP-HP, Unité de Recherche Clinique, Hôpitaux Saint Louis-Lariboisière-Fernand Widal, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Xie X, Miao B, Yao J, Chen Z. Silk fibroin-hydroxyapatite scaffolds promote the proliferation of adipose-derived mesenchymal stem cells by activating the ERK signal. J Biomater Appl 2023; 37:1767-1775. [PMID: 37001507 DOI: 10.1177/08853282231168730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Adipose-derived mesenchymal stem cell (Ad-MSC) with capacities of releasing trophic factors and chondrogenic differentiation was a promising candidate for tracheal reconstruction. Silk fibroin (SF)- hydroxyapatite (HA) scaffolds were fabricated by the freeze-drying method. And Ad-MSCs were co-cultured on the scaffolds for 14 days in vitro. The role of the SF-HA scaffold in regulating the adhesion, growth, and proliferation of Ad-MSCs, and its potential mechanisms were investigated. The identity of Ad-MSCs was confirmed by cell morphology, surface markers, and differentiation characteristics. Cell proliferation, viability, and morphology were observed via CCK-8, live/dead assay, and scanning electron microscopy (SEM). Gene mRNA and protein levels were examined using quantitative real-time polymerase chain reaction and western blotting, respectively. SF-HA scaffolds showed excellent properties of promoting Ad-MSCs adhesion, growth, and proliferation for at least 14 days. In the CCK-8 assay, the relative OD value of Ad-MSCs cultured on SF-HA scaffolds increased (p < 0.001). Furthermore, live/dead staining showed that the fluorescent coverage increased with time (p < 0.05). SEM also showed that 3 days after inoculation, the coverage of Ad-MSCs on the SF-HA scaffolds was 78.15%, increased to 92.91% on day 7, and reached a peak of 94.38% on day 14. Extracellular signal-regulated kinase (ERK) mRNA and phosphorylated ERK (pERK) protein expression increased at day 3 (p < 0.05), followed by a significant decline at day 7 (p < 0.05). And ERK mRNA expression was positively correlated with Ad-MSCs proliferation (p < 0.05). In summary, the SF-HA scaffold co-cultured with Ad-MSCs is a promising biomaterial for tracheal repair by activating the ERK signal pathway.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Bianliang Miao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zhongchun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
4
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
6
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
7
|
Sampaio P, da Silva MF, Vale I, Roxo-Rosa M, Pinto A, Constant C, Pereira L, Quintão CM, Lopes SS. CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res 2021; 7:00792-2020. [PMID: 34104642 PMCID: PMC8174773 DOI: 10.1183/23120541.00792-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers. Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients. The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18-9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz. We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.
Collapse
Affiliation(s)
- Pedro Sampaio
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mónica Ferro da Silva
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Vale
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
| | - Mónica Roxo-Rosa
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Constant
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Luisa Pereira
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Carla M Quintão
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
- NOVA Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Lisboa, Portugal
| | - Susana S Lopes
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Chen Z, Zhong N, Wen J, Jia M, Guo Y, Shao Z, Zhao X. Porous Three-Dimensional Silk Fibroin Scaffolds for Tracheal Epithelial Regeneration in Vitro and in Vivo. ACS Biomater Sci Eng 2018; 4:2977-2985. [PMID: 33435018 DOI: 10.1021/acsbiomaterials.8b00419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The regeneration of functional epithelial lining is critical for artificial grafts to repair tracheal defects. Although silk fibroin (SF) scaffolds have been widely studied for biomedical application (e.g., artificial skin), its potential for tracheal substitute and epithelial regeneration is still unknown. In this study, we fabricated porous three-dimensional (3D) silk fibroin scaffolds and cocultured them with primary human tracheobronchial epithelial cells (HBECs) for 21 days in vitro. Examined by scanning electronic microscopy (SEM) and calcein-AM staining with inverted phase contrast microscopy, the SF scaffolds showed excellent properties of promoting cell growth and proliferation for at least 21 days with good viability. In vivo, the porous 3D SF scaffolds (n = 18) were applied to repair a rabbit anterior tracheal defect. In the control group (n = 18), rabbit autologous pedicled trachea wall without epithelium, an ideal tracheal substitute, was implanted in situ. Observing by endoscopy and computed tomography (CT) scan, the repaired airway segment showed no wall collapse, granuloma formation, or stenosis during an 8-week interval in both groups. SEM and histological examination confirmed the airway epithelial growth on the surface of porous SF scaffolds. Both the epithelium repair speed and the epithelial cell differentiation degree in the SF scaffold group were comparable to those in the control group. Neither severe inflammation nor excessive fibrosis occurred in both groups. In summary, the porous 3D SF scaffold is a promising biomaterial for tracheal repair by successfully supporting tracheal wall contour and promoting tracheal epithelial regeneration.
Collapse
Affiliation(s)
- Zhongchun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Nongping Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Jianchuan Wen
- Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Minghui Jia
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Yongwei Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Zhengzhong Shao
- Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xia Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| |
Collapse
|
9
|
Kim BR, Coyaud E, Laurent EMN, St-Germain J, Van de Laar E, Tsao MS, Raught B, Moghal N. Identification of the SOX2 Interactome by BioID Reveals EP300 as a Mediator of SOX2-dependent Squamous Differentiation and Lung Squamous Cell Carcinoma Growth. Mol Cell Proteomics 2017; 16:1864-1888. [PMID: 28794006 PMCID: PMC5629269 DOI: 10.1074/mcp.m116.064451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26-28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets.
Collapse
Affiliation(s)
- Bo Ram Kim
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Estelle M N Laurent
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Jonathan St-Germain
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Emily Van de Laar
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ming-Sound Tsao
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- ¶Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Nadeem Moghal
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada;
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
10
|
Kardia E, Mohamed R, Yahaya BH. Stimulatory Secretions of Airway Epithelial Cells Accelerate Early Repair of Tracheal Epithelium. Sci Rep 2017; 7:11732. [PMID: 28916766 PMCID: PMC5601923 DOI: 10.1038/s41598-017-11992-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
Collapse
Affiliation(s)
- Egi Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Rafeezul Mohamed
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
11
|
Law JX, Liau LL, Aminuddin BS, Ruszymah BHI. Tissue-engineered trachea: A review. Int J Pediatr Otorhinolaryngol 2016; 91:55-63. [PMID: 27863642 DOI: 10.1016/j.ijporl.2016.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Tracheal replacement is performed after resection of a portion of the trachea that was impossible to reconnect via direct anastomosis. A tissue-engineered trachea is one of the available options that offer many advantages compared to other types of graft. Fabrication of a functional tissue-engineered trachea for grafting is very challenging, as it is a complex organ with important components, including cartilage, epithelium and vasculature. A number of studies have been reported on the preparation of a graftable trachea. A laterally rigid but longitudinally flexible hollow cylindrical scaffold which supports cartilage and epithelial tissue formation is the key element. The scaffold can be prepared via decellularization of an allograft or fabricated using biodegradable or non-biodegradable biomaterials. Commonly, the scaffold is seeded with chondrocytes and epithelial cells at the outer and luminal surfaces, respectively, to hasten tissue formation and improve functionality. To date, several clinical trials of tracheal replacement with tissue-engineered trachea have been performed. This article reviews the formation of cartilage tissue, epithelium and neovascularization of tissue-engineered trachea, together with the obstacles, possible solutions and future. Furthermore, the role of the bioreactor for in vitro tracheal graft formation and recently reported clinical applications of tracheal graft were also discussed. Generally, although encouraging results have been achieved, however, some obstacles remain to be resolved before the tissue-engineered trachea can be widely used in clinical settings.
Collapse
Affiliation(s)
- Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Bin Saim Aminuddin
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia; Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000, Ampang, Selangor, Malaysia
| | - Bt Hj Idrus Ruszymah
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia; Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Kim BR, Van de Laar E, Cabanero M, Tarumi S, Hasenoeder S, Wang D, Virtanen C, Suzuki T, Bandarchi B, Sakashita S, Pham NA, Lee S, Keshavjee S, Waddell TK, Tsao MS, Moghal N. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis. PLoS Biol 2016; 14:e1002581. [PMID: 27880766 PMCID: PMC5120804 DOI: 10.1371/journal.pbio.1002581] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022] Open
Abstract
Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and worse clinical outcome. We propose that early pathogenesis of most SQCCs involves stabilization of the squamous injury state in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9 possibly being exploited in a subset of SQCCs in later stages.
Collapse
Affiliation(s)
- Bo Ram Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Emily Van de Laar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Cabanero
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shintaro Tarumi
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Hasenoeder
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Carl Virtanen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Takaya Suzuki
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Bizhan Bandarchi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sharon Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Gilpin SE, Charest JM, Ren X, Tapias LF, Wu T, Evangelista-Leite D, Mathisen DJ, Ott HC. Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials 2016; 108:111-9. [PMID: 27622532 DOI: 10.1016/j.biomaterials.2016.08.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.
Collapse
Affiliation(s)
- Sarah E Gilpin
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Jonathan M Charest
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Xi Ren
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Luis F Tapias
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Tong Wu
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Daniele Evangelista-Leite
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Douglas J Mathisen
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| |
Collapse
|
14
|
Saturni S, Contoli M, Spanevello A, Papi A. Models of Respiratory Infections: Virus-Induced Asthma Exacerbations and Beyond. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:525-33. [PMID: 26333698 PMCID: PMC4605924 DOI: 10.4168/aair.2015.7.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory infections are one of the main health problems worldwide. They are a challenging field of study due to an intricate relationship between the pathogenicity of microbes and the host's defenses. To better understand mechanisms of respiratory infections, different models have been developed. A model is the reproduction of a disease in a system that mimics human pathophysiology. For this reason, the best models should closely resemble real-life conditions. Thus, the human model is the best. However, human models of respiratory infections have some disadvantages that limit their role. Therefore, other models, including animal, in vitro, and mathematical ones, have been developed. We will discuss advantages and limitations of available models and focus on models of viral infections as triggers of asthma exacerbations, viral infections being one of the most frequent causes of exacerbating disease. Future studies should focus on the interrelation of various models.
Collapse
Affiliation(s)
- Sara Saturni
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Spanevello
- Department of Respiratory Diseases, Fondazione Maugeri, Tradate, University of Varese, Italy
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Mérol JC, Polette M, Abély M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol 2014; 235:408-19. [DOI: 10.1002/path.4471] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Damien Adam
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Jacqueline Roux-Delrieu
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Emilie Luczka
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Arnaud Bonnomet
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Julien Lesage
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | | | - Myriam Polette
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Laboratory of Histology; University Hospital Centre; Reims France
| | - Michel Abély
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Pediatric Unit A, American Memorial Hospital; University Hospital Centre; Reims France
| | - Christelle Coraux
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| |
Collapse
|
16
|
Leydon C, Imaizumi M, Bartlett RS, Wang SF, Thibeault SL. Epithelial cells are active participants in vocal fold wound healing: an in vivo animal model of injury. PLoS One 2014; 9:e115389. [PMID: 25514022 PMCID: PMC4267843 DOI: 10.1371/journal.pone.0115389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vocal fold epithelial cells likely play an important, yet currently poorly defined, role in healing following injury, irritation and inflammation. In the present study, we sought to identify a possible role for growth factors, epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGFβ1), in epithelial regeneration during wound healing as a necessary first step for uncovering potential signaling mechanisms of vocal fold wound repair and remodeling. Using a rat model, we created unilateral vocal fold injuries and examined the timeline for epithelial healing and regeneration during early and late stages of wound healing using immunohistochemistry (IHC). We observed time-dependent secretion of the proliferation marker, ki67, growth factors EGF and TGFβ1, as well as activation of the EGF receptor (EGFR), in regenerating epithelium during the acute phase of injury. Ki67, growth factor, and EGFR expression peaked at day 3 post-injury. Presence of cytoplasmic and intercellular EGF and TGFβ1 staining occurred up to 5 days post-injury, consistent with a role for epithelial cells in synthesizing and secreting these growth factors. To confirm that epithelial cells contributed to the cytokine secretion, we examined epithelial cell growth factor secretion in vitro using polymerase chain reaction (PCR). Cultured pig vocal fold epithelial cells expressed both EGF and TGFβ1. Our in vivo and in vitro findings indicate that epithelial cells are active participants in the wound healing process. The exact mechanisms underlying their roles in autocrine and paracrine signaling guiding wound healing await study in a controlled, in vitro environment.
Collapse
Affiliation(s)
- Ciara Leydon
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mitsuyoshi Imaizumi
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Rebecca S. Bartlett
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sarah F. Wang
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Leydon C, Imaizumi M, Yang D, Thibeault SL, Fried MP. Structural and functional vocal fold epithelial integrity following injury. Laryngoscope 2014; 124:2764-9. [PMID: 25044022 DOI: 10.1002/lary.24818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/02/2014] [Accepted: 06/13/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS An intact epithelium is an important part of vocal fold defense. Damage to the epithelium can compromise vocal fold homeostasis and protection of the host tissue from viral and bacterial invasion. Elucidating the effects of damage on epithelial architectural and barrier integrity provides insight into the role of epithelium in protecting vocal folds. Using an animal model, we evaluated the time course of structural and functional epithelial restoration following injury. STUDY DESIGN Prospective, controlled animal study. METHODS Forty rats underwent surgery to remove vocal fold mucosa unilaterally. Larynges were harvested at five time intervals between 3 to 90 days postinjury and were prepared for histological and permeability analyses. RESULTS Rapid restoration of structural integrity was demonstrated by return of a multilayerd epithelium, intercellular junctions, and basement membrane at 5 days postinjury. Atypical epithelial permeability was observed up to 5 weeks postinjury. CONCLUSION Restoration of epithelial barrier integrity lags epithelial structural restoration. Consequently, epithelial regeneration cannot be equated with return of functional barrier integrity. Rather, ongoing leakiness of regenerated epithelium indicates that vocal folds remain at risk for damage, pathogen invasion, and remodeling postinjury. LEVEL OF EVIDENCE N/A. Laryngoscope, 124:2764-2769, 2014.
Collapse
Affiliation(s)
- Ciara Leydon
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | | | | | | | | |
Collapse
|
18
|
Ghosh M, Ahmad S, Jian A, Li B, Smith RW, Helm KM, Seibold MA, Groshong SD, White CW, Reynolds SD. Human tracheobronchial basal cells. Normal versus remodeling/repairing phenotypes in vivo and in vitro. Am J Respir Cell Mol Biol 2014; 49:1127-34. [PMID: 23927678 DOI: 10.1165/rcmb.2013-0049oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human tracheobronchial epithelial (TBE) basal cells (BCs) function as progenitors in normal tissue. However, mechanistic studies are typically performed in vitro and frequently use BCs recovered from patients who die of nonrespiratory disease. It is not known whether the cadaveric epithelium (1) is undergoing homeostatic remodeling and/or repair, or (2) yields BC clones that represent homeostatic processes identified in tissue. We sought to compare the phenotype of TBE-BCs with that of BCs cultured under optimal clone-forming conditions. TBE pathology was evaluated using quantitative histomorphometry. The cultured BC phenotype was determined by fluorescence-activated cell sorter analysis. Clone organization and cell phenotype were determined by immunostaining. The cadaveric TBE is 20% normal. In these regions, BCs are keratin (K)-5(+) and tetraspanin CD151(+), and demonstrate a low mitotic index. In contrast, 80% of the cadaveric TBE exhibits homeostatic remodeling/repair processes. In these regions, BCs are K5(+)/K14(+), and a subset expresses tissue factor (TF). Passage 1 TBE cells are BCs that are K5(+)/TF(+), and half coexpress CD151. Optimal clone formation conditions use an irradiated NIH3T3 fibroblast feeder layer (American Type Culture Collection, Frederick, MD) and serum-supplemented Epicult-B medium (Stemcell Technologies, La Jolla, CA). The TF(+)/CD151(-) BC subpopulation is the most clonogenic BC subtype, and is enriched with K14(+) cells. TF(+)/CD151(-) BCs generate clones containing BCs that are K5(+)/Trp63(+), but K14(-)/CD151(-). TF(+) cells are limited to the clone edge. In conclusion, clonogenic human TBE BCs (1) exhibit a molecular phenotype that is a composite of the normal and remodeling/reparative BC phenotypes observed in tissue, and (2) generate organoid clones that contain phenotypically distinct BC subpopulations.
Collapse
|
19
|
Adam D, Perotin JM, Lebargy F, Birembaut P, Deslée G, Coraux C. [Regeneration of airway epithelium]. Rev Mal Respir 2013; 31:300-11. [PMID: 24750950 DOI: 10.1016/j.rmr.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. BACKGROUND The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. CONCLUSION Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution.
Collapse
Affiliation(s)
- D Adam
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - J-M Perotin
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - F Lebargy
- Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - P Birembaut
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Laboratoire d'histologie Pol Bouin, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - G Deslée
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Coraux
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| |
Collapse
|
20
|
In vitro spatial and temporal analysis of Mycoplasma pneumoniae colonization of human airway epithelium. Infect Immun 2013; 82:579-86. [PMID: 24478073 DOI: 10.1128/iai.01036-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory disease, especially in school-age children and young adults. We employed normal human bronchial epithelial (NHBE) cells in air-liquid interface culture to study the interaction of M. pneumoniae with differentiated airway epithelium. These airway cells, when grown in air-liquid interface culture, polarize, form tight junctions, produce mucus, and develop ciliary function. We examined both qualitatively and quantitatively the role of mycoplasma gliding motility in the colonization pattern of developing airway cells, comparing wild-type M. pneumoniae and mutants thereof with moderate to severe defects in gliding motility. Adherence assays with radiolabeled mycoplasmas demonstrated a dramatic reduction in binding for all strains with airway cell polarization, independent of acquisition of mucociliary function. Adherence levels dropped further once NHBE cells achieved terminal differentiation, with mucociliary activity strongly selecting for full gliding competence. Analysis over time by confocal microscopy demonstrated a distinct colonization pattern that appeared to originate primarily with ciliated cells, but lateral spread from the base of the cilia was slower than expected. The data support a model in which the mucociliary apparatus impairs colonization yet cilia provide a conduit for mycoplasma access to the host cell surface and suggest acquisition of a barrier function, perhaps associated with tethered mucin levels, with NHBE cell polarization.
Collapse
|
21
|
Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:529-43. [PMID: 23705900 DOI: 10.1089/ten.teb.2012.0603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Nihal E Vrana
- 1 Institut National de la Santé et de la Recherche Médicale , INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie," Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Ganesan S, Sajjan US. Repair and Remodeling of airway epithelium after injury in Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2013; 2. [PMID: 24187653 DOI: 10.1007/s13665-013-0052-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
COPD is thought to develop as a result of chronic exposure to cigarette smoke, occupational or other environmental hazards and it comprises both airways and parenchyma. Acute infections or chronic colonization of airways with bacteria may also contribute to development and/or progression of COPD lung disease. Airway epithelium is the primary target for the inhaled environmental factors and pathogens. The repetitive injury as a result of chronic exposure to environmental factors may result in persistent activation of pathways involved in airway epithelial repair, such as epithelial to mesenchymal transition, altered migration and proliferation of progenitor cells, and abnormal redifferentiation leading to airway remodeling. Development of model systems which mimics chronic airways disease as observed in COPD is required to understand the molecular mechanisms underlying the abnormal airway epithelial repair that are specific to COPD and to also develop novel therapies focused on airway epithelial repair.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | | |
Collapse
|
23
|
The rabbit as a model for studying lung disease and stem cell therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:691830. [PMID: 23653896 PMCID: PMC3638694 DOI: 10.1155/2013/691830] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
Collapse
|
24
|
The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium. PLoS One 2013; 8:e58658. [PMID: 23527003 PMCID: PMC3603941 DOI: 10.1371/journal.pone.0058658] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/06/2013] [Indexed: 12/19/2022] Open
Abstract
Background We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP. Methods Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC). Results MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC. Conclusions The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.
Collapse
|
25
|
Giangreco A, Lu L, Vickers C, Teixeira VH, Groot KR, Butler CR, Ilieva EV, George PJ, Nicholson AG, Sage EK, Watt FM, Janes SM. β-Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial-mesenchymal transition. J Pathol 2012; 226:575-87. [PMID: 22081448 PMCID: PMC3434372 DOI: 10.1002/path.3962] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
Human lung cancers, including squamous cell carcinoma (SCC) are a leading cause of death and, whilst evidence suggests that basal stem cells drive SCC initiation and progression, the mechanisms regulating these processes remain unknown. In this study we show that β-catenin signalling regulates basal progenitor cell fate and subsequent SCC progression. In a cohort of preinvasive SCCs we established that elevated basal cell β-catenin signalling is positively associated with increased disease severity, epithelial proliferation and reduced intercellular adhesiveness. We demonstrate that transgene-mediated β-catenin inhibition within keratin 14-expressing basal cells delayed normal airway repair while basal cell-specific β-catenin activation increased cell proliferation, directed differentiation and promoted elements of early epithelial-mesenchymal transition (EMT), including increased Snail transcription and reduced E-cadherin expression. These observations are recapitulated in normal human bronchial epithelial cells in vitro following both pharmacological β-catenin activation and E-cadherin inhibition, and mirrored our findings in preinvasive SCCs. Overall, the data show that airway basal cell β-catenin determines cell fate and its mis-expression is associated with the development of human lung cancer. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam Giangreco
- Centre for Respiratory Research, University College London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
27
|
Liu J, Sakurai R, O'Roark EM, Kenyon NJ, Torday JS, Rehan VK. PPARγ agonist rosiglitazone prevents perinatal nicotine exposure-induced asthma in rat offspring. Am J Physiol Lung Cell Mol Physiol 2011; 300:L710-7. [PMID: 21355041 DOI: 10.1152/ajplung.00337.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Perinatal exposure to maternal smoke is associated with adverse pulmonary effects, including reduced lung function and increased incidence of asthma. However, the mechanisms underlying these effects are unknown, and there is no effective preventive and/or therapeutic intervention. Recently, we suggested that downregulation of homeostatic mesenchymal peroxisome proliferator-activated receptor-γ (PPARγ) signaling following in utero nicotine exposure might contribute to chronic lung diseases such as asthma. We used an in vivo rat model to determine the effect of perinatal nicotine exposure on 1) offspring pulmonary function, 2) mesenchymal markers of airway contractility in trachea and lung tissue, and 3) whether administration of a PPARγ agonist, rosiglitazone (RGZ), blocks the molecular and functional effects of perinatal nicotine exposure on offspring lung. Pregnant Sprague-Dawley rat dams received placebo, nicotine, or nicotine + RGZ daily from embryonic day 6 until postnatal day 21, when respiratory system resistance, compliance, tracheal contractility, and the expression of markers of pulmonary contractility were determined. A significant increase in resistance and a decrease in compliance under basal conditions, with more pronounced changes following methacholine challenge, were observed with perinatal nicotine exposure compared with control. Tracheal constriction response and expression of mesenchymal markers of airway contractility were also significantly increased following perinatal nicotine exposure. Concomitant treatment with RGZ completely blocked the nicotine-induced alterations in pulmonary function, as well as the markers of airway contractility, at proximal and distal airway levels. These data suggest that perinatal smoke exposure-induced asthma can be effectively blocked by PPARγ agonists.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chistiakov DA. Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation. J Biomed Sci 2010; 17:92. [PMID: 21138559 PMCID: PMC3004872 DOI: 10.1186/1423-0127-17-92] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 12/07/2010] [Indexed: 12/22/2022] Open
Abstract
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, 1st Dorozhny Proezd 1, Moscow, Russia.
| |
Collapse
|
29
|
Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, Reynolds SD. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol 2010; 45:459-69. [PMID: 21131442 DOI: 10.1165/rcmb.2010-0314oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However, delineation of the TSC-niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49f(bright)/Sca1(+)/ALDH(+) basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type, the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus, rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air-liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However, rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus, the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury, the behavior of CD49f(bright)/Sca1(+)/ALDH(+) cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium, their proliferation rate increased in response to injury, and they retained label for 34 days. We conclude that the CD49f(bright)/Sca1(+)/ALDH(+) tracheal basal cell is a TSC, that it generates its own niche in vitro, and that it participates in tracheal epithelial homeostasis and repair.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Pediatrics, National Jewish Health Denver, CO, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|
31
|
Suppression of the obliteration process by ventilation in a mouse orthotopic tracheal transplantation model. Transplantation 2009; 87:1762-8. [PMID: 19543051 DOI: 10.1097/tp.0b013e3181a6618a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obliterative airway disease (OAD) has been a major obstacle to long-term survival after lung or tracheal transplantations, but the role of airflow has not been examined in the orthotopic or the heterotopic tracheal transplantation models. METHODS Sixty mice were assigned to two experimental groups. Two C57BL/6 tracheal segments were surgically prepared and then orthotopically transplanted into allogeneic BALB/c recipients. In group A mice, both segments were left patent, whereas in group B mice, one of the donor tracheas was occluded with a silk knot to obstruct airflow. Histology, quantitative OAD measurements, electron microscopy, immunohistochemical staining, and apoptosis measurement of the epithelium were performed. RESULTS Gross examination at harvest showed patent lumens of all tracheal segments. Group A allografts (ventilating tracheas) showed a markedly higher proportion of ciliated epitheliums and less lymphocyte infiltration in the lamina propria, whereas the epithelium appeared metaplastic in group B, with a higher proportion of flattened attenuated epithelium and loss of the normal ciliate architecture. Quantitative morphometric measurements suggested more prominent OAD manifestations in the nonventilating allografts of group B than were present in group A, although recipient-derived epithelium was observed in all allografts under immunohistochemical staining. The apoptotic indexes of the epithelium were 12.1% in allografts with adequate ventilation (group A) and 66.2% in ventilation-occluded allotracheas (group B). CONCLUSIONS OAD severity and the epithelial repopulation process are closely related to the physiologic environment of airflow. Further research is warranted to explore the underlying mechanisms of this phenomenon.
Collapse
|
32
|
Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C. Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 2007; 211:340-50. [PMID: 17186573 DOI: 10.1002/path.2118] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) at an advanced stage of the disease is characterized by airway epithelial injury and remodelling. Whether CF remodelling is related to infection and inflammation or due to an abnormal regenerative process is still undecided. We have recently established the expression and secretion profiles of interleukin (IL)-8, matrix metalloproteinase (MMP)-7, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-1 during non-CF airway epithelial regeneration in a humanized nude mouse xenograft model. To enhance our understanding of CF remodelling, we compared the regeneration process of non-infected human CF and non-CF nasal epithelia. In both CF and non-CF situations, epithelial regeneration was characterized by successive steps of cell adhesion and migration, proliferation, pseudostratification, and terminal differentiation. However, histological examination of the grafts showed a delay in differentiation of the CF airway epithelium. Cell proliferation was higher in the regenerating CF epithelium, and the differentiated CF epithelium exhibited a pronounced height increase and basal cell hyperplasia in comparison with non-CF epithelium. In addition, while the number of goblet cells expressing MUC5AC was similar in CF and non-CF regenerated epithelia, the number of MUC5B-immunopositive goblet cells was lower in CF grafts. The expression of human IL-8, MMP-7, MMP-9, and TIMP-1 was enhanced in CF epithelium, especially early in the regenerative process. Together, our data strongly suggest that the regeneration of human CF airway surface epithelium is characterized by remodelling, delayed differentiation, and altered pro-inflammatory and MMP responses.
Collapse
Affiliation(s)
- R Hajj
- INSERM U514, Reims, France; Université de Reims, IFR53, Reims, France
| | | | | | | | | | | |
Collapse
|
33
|
LeSimple P, van Seuningen I, Buisine MP, Copin MC, Hinz M, Hoffmann W, Hajj R, Brody SL, Coraux C, Puchelle E. Trefoil factor family 3 peptide promotes human airway epithelial ciliated cell differentiation. Am J Respir Cell Mol Biol 2006; 36:296-303. [PMID: 17008636 DOI: 10.1165/rcmb.2006-0270oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human airway surface epithelium is frequently damaged by inhaled factors (viruses, bacteria, xenobiotic substances) as well as by inflammatory mediators that contribute to the shedding of surface epithelial cells. To regain its protective function, the epithelium must rapidly repair and redifferentiate. The Trefoil Factor Family (TFF) peptides are secretory products of many mucous cells. TFF3, the major TFF in the airways, is able to enhance airway epithelial cell migration, but the role of this protein in differentiation has not been defined. To identify the specific role of TFF3 in the differentiation of the human airway surface epithelium, we analyzed the temporal expression pattern of TFF3, MUC5AC, and MUC5B mucins (goblet cells) and ciliated cell markers beta-tubulin (cilia) and FOXJ1 (ciliogenesis) during human airway epithelial regeneration using in vivo humanized airway xenograft and in vitro air-liquid interface (ALI) culture models. We observed that TFF3, MUC5AC, MUC5B, and ciliated cell markers were expressed in well-differentiated airway epithelium. The addition of exogenous recombinant human TFF3 to epithelial cell cultures before the initiation of differentiation resulted in no change in MUC5AC or cytokeratin 13 (CK13, basal cell marker)-positive cells, but induced an increase in the number of FOXJ1-positive cells and in the number of beta-tubulin-positive ciliated cells (P < 0.05). Furthermore, this effect on ciliated cell differentiation could be reversed by specific epidermal growth factor (EGF) receptor (EGF-R) inhibition. These results indicate that TFF3 is able to induce ciliogenesis and to promote airway epithelial ciliated cell differentiation, in part through an EGF-R-dependent pathway.
Collapse
Affiliation(s)
- Pierre LeSimple
- INSERM U514, Université Reims Champagne Ardenne, and CHU Reims, Hôpital Maison Blanche, Reims, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells 2006; 25:139-48. [PMID: 17008423 DOI: 10.1634/stemcells.2006-0288] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In numerous airway diseases, such as cystic fibrosis, the epithelium is severely damaged and must regenerate to restore its defense functions. Although the human airway epithelial stem cells have not been identified yet, we have suggested recently that epithelial stem/progenitor cells exist among both human fetal basal and suprabasal cell subsets in the tracheal epithelium. In this study, we analyzed the capacity of human adult basal cells isolated from human adult airway tissues to restore a well-differentiated and functional airway epithelium. To this end, we used the human-specific basal cell markers tetraspanin CD151 and tissue factor (TF) to separate positive basal cells from negative columnar cells with a FACSAria cell sorter. Sorted epithelial cells were seeded into epithelium-denuded rat tracheae that were grafted subcutaneously in nude mice and on collagen-coated porous membranes, where they were grown at the air-liquid interface. Sorted basal and columnar populations were also analyzed for their telomerase activity, a specific transit-amplifying cell marker, by the telomeric repeat amplification protocol assay. After cell sorting, the pure and viable CD151/TF-positive basal cell population proliferated on plastic and adhered on epithelium-denuded rat tracheae, as well as on collagen-coated porous membranes, where it was able to restore a fully differentiated mucociliary and functional airway epithelium, whereas viable columnar negative cells did not. Telomerase activity was detected in the CD151/TF-positive basal cell population, but not in CD151/TF-negative columnar cells. These results demonstrate that human adult basal cells are at least airway surface transit-amplifying epithelial cells.
Collapse
Affiliation(s)
- Rodolphe Hajj
- Institut National de Santé et de Recherche Médicale Unité 514, Centre Hospitalier Universitaire Maison Blanche, Reims, France
| | | | | | | | | | | |
Collapse
|
35
|
Huh WJ, Pan XO, Mysorekar IU, Mills JC. Location, allocation, relocation: isolating adult tissue stem cells in three dimensions. Curr Opin Biotechnol 2006; 17:511-7. [PMID: 16889955 DOI: 10.1016/j.copbio.2006.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/02/2006] [Accepted: 07/21/2006] [Indexed: 02/06/2023]
Abstract
The literature on isolation of adult tissue stem cells is vast and disparate. To better organize the field, we redefine 'isolation', re-expressing it as the sum of three component vectors: location, allocation and relocation. Location is the isolation of stem cells in situ by anatomical features. Allocation is physical isolation by cell sorting. Relocation is isolation of the functional properties of a stem cell to regenerate its normal progeny when relocated to a new environment. Techniques for the allocation and relocation of stem cells from certain tissues (e.g. hematopoietic) are currently better defined than their location, whereas those of other tissues (e.g. mammary glands) have had recent advances along all three vectors. Yet another group (e.g. gastric glands), have stem cells with well characterized location, emerging techniques for allocation but still rudimentary techniques for relocation.
Collapse
Affiliation(s)
- Won Jae Huh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
36
|
Rawlins EL, Hogan BLM. Epithelial stem cells of the lung: privileged few or opportunities for many? Development 2006; 133:2455-65. [PMID: 16735479 DOI: 10.1242/dev.02407] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most reviews of adult stem cells focus on the relatively undifferentiated cells dedicated to the renewal of rapidly proliferating tissues, such as the skin, gut and blood. By contrast, there is mounting evidence that organs and tissues such as the liver and pancreatic islets, which turn over more slowly,use alternative strategies, including the self-renewal of differentiated cells. The response of these organs to injury may also reveal the potential of differentiated cells to act as stem cells. The lung shows both slow turnover and rapid repair. New experimental approaches, including those based on studies of embryonic development, are needed to identify putative lung stem cells and strategies of lung homeostasis and repair.
Collapse
Affiliation(s)
- Emma L Rawlins
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Coraux C, Hajj R, Lesimple P, Puchelle E. [Repair and regeneration of the airway epithelium]. Med Sci (Paris) 2006; 21:1063-9. [PMID: 16324647 DOI: 10.1051/medsci/200521121063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions, through several mechanisms including basal cell spreading and migration, followed by proliferation and differentiation of epithelial cells. The cellular and molecular factors involved in wound repair and epithelial regeneration are closely interacting and imply extracellular matrix proteins, matrix metalloproteinases (MMPs) and their inhibitors as well as cytokines and growth factors secreted by airway epithelial and mesenchymal cells. The development of in vitro and in vivo models of airway epithelium wound repair allowed the study of the spatio-temporal modulation of these factors during the different steps of epithelial repair and regeneration. In this context, several studies have demonstrated that the matrix and secretory environment are markedly involved in these mechanisms and that their dysregulation may induce remodelling of the airway mucosa. A better knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to regenerative therapeutics allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.
Collapse
Affiliation(s)
- Christelle Coraux
- Inserm UMRS 514, IFR 53, CHU Maison Blanche, 45, rue Cognacq- Jay, 51092 Reims Cedex, France
| | | | | | | |
Collapse
|
38
|
Coraux C, Martinella-Catusse C, Nawrocki-Raby B, Hajj R, Burlet H, Escotte S, Laplace V, Birembaut P, Puchelle E. Differential expression of matrix metalloproteinases and interleukin-8 during regeneration of human airway epithelium in vivo. J Pathol 2005; 206:160-9. [PMID: 15806599 DOI: 10.1002/path.1757] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many airway diseases, the airway epithelium is severely damaged and has to regenerate rapidly to restore its function. The regeneration process involves chronological steps of epithelial cell migration, proliferation, stratification, and differentiation. The present study has used an in vivo humanized airway xenograft model in nude mice that mimics the regeneration dynamics of human airway epithelium after severe injury, and human-specific molecular tools, to study the expression profiles of epithelial matrix metalloproteinases (MMPs)-7 and -9, of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and of the pro-inflammatory cytokine interleukin-8 (IL-8) during the different steps of human airway epithelium regeneration. It was found that during the cell migration and proliferation steps, airway epithelial cells expressed IL-8 at a high level, whereas airway epithelial pseudo-stratification and surface airway epithelial differentiation were associated with increased expression of MMPs and a progressive decrease in IL-8. Interestingly, immunohistochemical analysis revealed exclusive expression of MMPs at the apical part of the well-differentiated regenerated airway epithelium, and incubation of the regenerating epithelial cells with MMP inhibitors led to abnormal epithelial differentiation. These data provide new insight into the temporal expression of MMPs and IL-8 during the regeneration of airway epithelium and demonstrate the involvement of these factors during the different steps that lead to restoration of a well-differentiated and functional airway epithelium.
Collapse
Affiliation(s)
- Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche Santé (UMR S) 514, Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The major function of the respiratory epithelium was once thought to be that of a physical barrier. However, it constitutes the interface between the internal milieu and the external environment as well as being a primary target for inhaled respiratory drugs. It also responds to changes in the external environment by secreting a large number of molecules and mediators that signal to cells of the immune system and underlying mesenchyme. Thus, the epithelium is in a unique position to translate gene-environment interactions. Normally, the epithelium has a tremendous capacity to repair itself following injury. However, evidence is rapidly accumulating to show that the airway epithelium of asthmatics is abnormal and has increased susceptibility to injury compared to normal epithelium. Areas of detachment and fragility are a characteristic feature not observed in other inflammatory diseases such as COPD. In addition to being more susceptible to damage, normal repair processes are also compromised. Failure of appropriate growth and differentiation of airway epithelial cells will cause persistent mucosal injury. The response to traditional therapy such as glucocorticoids may also be compromised. However, whether the differences observed in asthmatic epithelium are a cause of or secondary to the development of the disease remains unanswered. Strategies to address this question include careful examination of the ontogeny of the disease in children and use of gene array technology should provide some important answers, as well as allow a better understanding of the critical role that the epithelium plays under normal conditions and in diseases such as asthma.
Collapse
Affiliation(s)
- Darryl A Knight
- Asthma and Allergy Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
| | | |
Collapse
|
40
|
Fjellbirkeland L, Cambier S, Broaddus VC, Hill A, Brunetta P, Dolganov G, Jablons D, Nishimura SL. Integrin alphavbeta8-mediated activation of transforming growth factor-beta inhibits human airway epithelial proliferation in intact bronchial tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:533-42. [PMID: 12875973 PMCID: PMC1868219 DOI: 10.1016/s0002-9440(10)63681-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transforming growth factor (TGF)-beta is a potent multifunctional cytokine that is an essential regulator of epithelial proliferation. Because TGF-beta is expressed almost entirely in a latent state in vivo, a major source of regulation of TGF-beta function is its activation. A subset of integrins, alphavbeta8 and alphavbeta6, which are expressed in the human airway, has recently been shown to activate latent TGF-beta in vitro, suggesting a regulatory role for integrins in TGF-beta function in vivo. Here we have developed a novel, biologically relevant experimental model of human airway epithelium using intact human bronchial tissue. We have used this model to determine the function of integrin-mediated activation of TGF-beta in the airway. In human bronchial fragments cultured in vitro, authentic epithelial-stromal interactions were maintained and integrin and TGF-beta expression profiles correlated with profiles found in normal lung. In addition, in this model, we found that either the integrin alphavbeta8 or TGF-beta could inhibit airway epithelial cell proliferation. Furthermore, we found that one mechanism of integrin-alphavbeta8-dependent inhibition of cell proliferation was through activation of TGF-beta because anti-beta8 antibody blocked the majority (76%) of active TGF-beta released from bronchial fragments. These data provide compelling evidence for a functional role for integrin-mediated activation of TGF-beta in control of human airway epithelial proliferation in vivo.
Collapse
Affiliation(s)
- Lars Fjellbirkeland
- Department of Anatomic Pathology and Lung Biology Center, San Francisco General Hospital, University of California at San Francisco/Mt. Zion Cancer Center, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P. E-Cadherin mediates MMP down-regulation in highly invasive bronchial tumor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:653-61. [PMID: 12875984 PMCID: PMC1868220 DOI: 10.1016/s0002-9440(10)63692-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The disorganization of E-cadherin/catenin complexes and the overexpression of matrix metalloproteinases (MMPs) are frequently involved in the capacity of epithelial cells to acquire an invasive phenotype. The functional link between E-cadherin and MMPs was studied by transfecting invasive bronchial BZR tumor cells with human E-cadherin cDNA. Using different in vitro (cell dispersion, modified Boyden chamber) and in vivo assays (human airway epithelial xenograft), we showed that E-cadherin-positive clones displayed a decrease of invasive abilities. As shown by immunoprecipitation, the re-expressed E-cadherin was able to sequestrate one part of free cytoplasmic beta-catenin in BZR cells. The decrease of beta-catenin transcriptional activity in E-cadherin-transfected clones was demonstrated using the TOP-FLASH reporter construct. Finally, we observed a decrease of MMP-1, MMP-3, MMP-9, and MT1-MMP, both at the mRNA and at the protein levels, in E-cadherin-positive clones whereas no changes in MMP-2, TIMP-1, or TIMP-2 were observed when compared with control clones. Moreover, zymography analysis revealed a loss of MMP-2 activation ability in E-cadherin-positive clones treated with the concanavalin A lectin. These data demonstrate a direct role of E-cadherin/catenin complex organization in the regulation of MMPs and suggest an implication of this regulation in the expression of an invasive phenotype by bronchial tumor cells.
Collapse
Affiliation(s)
- Béatrice Nawrocki-Raby
- Institut National de la Santé et de la Recherche Mèdicale (INSERM) Unité Mixte de Recherche Santé (UMRS) 514, Laboratoire Pol Bouin, Reims, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferkol T, Cohn LA, Phillips TE, Smith A, Davis PB. Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts. Am J Respir Crit Care Med 2003; 167:1374-9. [PMID: 12615618 DOI: 10.1164/rccm.200209-1119oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cystic fibrosis (CF) lung is uniquely susceptible to Pseudomonas aeruginosa, and infection with this organism incites an intense, compartmentalized inflammatory response that leads to chronic airway obstruction and bronchiectasis. Neutrophils migrate into the airway, and released neutrophil elastase contributes to the progression of the lung disease characteristic of CF. We have developed a strategy that permits the delivery of antiproteases to the inaccessible CF airways by targeting the respiratory epithelium via the human polymeric immunoglobulin receptor (hpIgR). A fusion protein consisting of a single-chain Fv directed against secretory component, the extracellular portion of the pIgR, linked to human alpha1-antitrypsin is effectively ferried across human tracheal xenografts and delivers the antiprotease to the apical surface to a much greater extent than occurs by passive diffusion of human alpha1-antitrypsin alone. Targeted antiprotease delivery paralleled hpIgR expression in the respiratory epithelium in vivo and was not increased by escalating dose, so airway penetration was receptor-dependent, not dose-dependent. Thus, this approach provides us with the ability to deliver therapeutics, like antiproteases, specifically to the lumenal surface of the respiratory epithelium, within the airway surface fluid, where it will be in highest concentration at this site.
Collapse
Affiliation(s)
- Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
43
|
Escotte S, Danel C, Gaillard D, Benoit S, Jacquot J, Dusser D, Triglia JM, Majer-Teboul C, Puchelle E. Fluticasone propionate inhibits lipopolysaccharide-induced proinflammatory response in human cystic fibrosis airway grafts. J Pharmacol Exp Ther 2002; 302:1151-7. [PMID: 12183675 DOI: 10.1124/jpet.102.033407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation, one of the major factors leading to lung damage in cystic fibrosis (CF) patients, is associated with an abnormal increase in proinflammatory cytokines. In this work, we demonstrate the increased release of the proinflammatory cytokines after lipopolysaccharide (LPS) stimulation: human interleukin (hIL)-8 in CF and non-CF airway xenografts, and hIL-6 and human growth-related oncogene-alpha (hGRO-alpha), which could be only analyzed in non-CF xenografts. Under basal conditions, we observed that hIL-8 was higher in CF xenografts compared with non-CF. We also report the anti-inflammatory effect of a glucocorticoid, fluticasone propionate (FP), on CF airway epithelium using a humanized model of airway inflammation developed in nude mice. In CF and non-CF tracheal xenografts, airway inflammation was induced by inoculating Pseudomonas aeruginosa LPS (4 h; 1 microg/ml) in the lumen of the xenografts. FP pretreatment (2 h; 10(-8) M) followed by P. aeruginosa LPS stimulation induced a significant reduction of LPS-induced hIL-8 release in airway liquid collected from CF and non-CF tracheal xenografts (85 and 80%, respectively). In non-CF tracheal xenografts, FP treatment before LPS stimulation induced a significant decrease in hIL-6 and hGRO-alpha. From these data, we suggest that FP exerts anti-inflammatory properties that may be appropriate to CF therapy, at an early stage of the disease. In addition, these results demonstrate that the humanized airway model of inflammation provides a relevant tool for analyzing the effects of anti-inflammatory drugs in different diseases in which airway inflammation is implicated.
Collapse
Affiliation(s)
- Sandie Escotte
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 514, IFR 53, CHU Maison Blanche, Université de Reims, 45 rue Cognacq-Jay, 51092 Reims Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Defective expression and function of the cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) airway epithelial cells are associated with airway mucus hypersecretion, inflammation and infection that begin early in life and lead, at an advanced stage of the disease, to severe airway obstruction with hyperviscous and adhesive airway mucus. Whether the abnormalities of airway mucus are already present at birth before infection is debatable. In CF, the impaired Cl(-) and HCO(3)(-) secretion associated with increased epithelial Na(+) absorption results in dehydration of airway mucus, decreased antimicrobial functions and impaired mucociliary clearance. Alterations in antibacterial peptide function, as well as the increased mucin expression and secretion (MUC 5AC and MUC 5B), are important biochemical factors responsible for the propensity for infection in CF airways. Alterations in mucin and lipid composition induce an increased viscosity and adhesiveness to the airways that can affect the mucociliary and cough transport. The increased content of pro-inflammation cytokines such as interleukin-8 (IL-8) suggest that, before infection, airway inflammation occurs very early in CF. The development of non-invasive techniques and humanised animal models (xenografts) represents a major opportunity to identify early abnormalities in CF airway mucus.
Collapse
Affiliation(s)
- Edith Puchelle
- UMRS 514 INSERM, IFR 53, Hôpital Maison Blanche, 45, rue Cognacq Jay, 51092 Reims Cedex, France
| | | | | |
Collapse
|
45
|
Mongodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, de Bentzmann S. Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun 2002; 70:620-30. [PMID: 11796591 PMCID: PMC127664 DOI: 10.1128/iai.70.2.620-630.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to investigate the molecular mechanisms of Staphylococcus aureus adherence to human airway epithelium. Using a humanized bronchial xenograft model in the nude mouse and primary cultures of human airway epithelial cells (HAEC), we showed that S. aureus adhered mainly to undifferentiated HAEC whereas weak adherence (11- to 20-fold lower) to differentiated HAEC was observed (P < 0.01). A fibronectin (FN)-binding protein (FnBP)-deficient strain of S. aureus had a fivefold-lower adherence level to undifferentiated HAEC than did the parental strain (P < 0.005), suggesting that S. aureus FN-binding capacity is involved in the adherence to HAEC. We also showed that 97% of 32 S. aureus clinical strains, isolated from the airway secretions of cystic fibrosis patients (n = 18) and patients with nosocomial pneumonia (n = 14), possessed the two fnb genes. The strains from pneumonia patients had a significantly (P < 0.05) higher FN-binding capacity than did the strains from CF patients. This result was confirmed by the expression of FnBPs, investigated by Western ligand affinity blotting. Our results suggest a major role of FnBPs in the colonization of the airways by S. aureus and point to the importance of the adhesin regulatory pathways in the staphylococcal infectious process.
Collapse
Affiliation(s)
- Emmanuel Mongodin
- INSERM UMRS514, IFR53, CHU Maison-Blanche. Laboratoire de Bactériologie-Virologie-Hygiène, CHU Robert Debré, 51092 Reims Cedex, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- C Michael Haben
- Department of Pediatric Otolaryngology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
47
|
Puchelle E, Vargaftig BB. Chronic obstructive pulmonary disease: an old disease with novel concepts and drug strategies. Trends Pharmacol Sci 2001; 22:495-7. [PMID: 11680421 DOI: 10.1016/s0165-6147(00)01823-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- E Puchelle
- INSERM Unit 514, University of Reims, Reims Cédex 51092, France.
| | | |
Collapse
|
48
|
Macchiarini P, Candelier JJ, Coullin P, Guerra N, de Montpreville V, Dartevelle P, Duprez-Angioi K, Oriol R. Use of embryonic human trachea grown in nude mice to patch-repair congenital tracheal stenosis. Transplantation 2000; 70:1555-9. [PMID: 11152215 DOI: 10.1097/00007890-200012150-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long congenital tracheal stenosis is a life-threatening condition, and the available surgical treatments do not give satisfactory long-term results. METHODS Human embryonic tracheas were implanted in the abdominal cavities of nude mice until their differentiation was completed. These differentiated tracheas were used to patch-repair surgically induced tracheal stenosis in piglets. The human, mouse, or pig origin, of all the cells in the two successive xenotransplants in the nude mouse and the pig, was determined on tissue sections by in situ hybridization with species-specific DNA probes. RESULTS The transplanted pigs thrived and reached normal adulthood, irrespective of the administration of immunosuppressive treatment. The human tracheal tissue developed in nude mice conserved human structures, with the exception of feeding capillaries, which were of mouse origin. The tracheal patch in the adult healthy pigs comprised only pig cells organized into a fibrous scar, which was covered by normal pig epithelium. CONCLUSIONS Results suggest that human embryonic trachea grown in nude mice can be successfully used as patch tracheoplasty for long congenital tracheal stenosis without conventional immunosuppression.
Collapse
Affiliation(s)
- P Macchiarini
- Department of Thoracic and Vascular Surgery, Heidehaus Hospital Hannover Medical School, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Devor DC, Bridges RJ, Pilewski JM. Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 2000; 279:C461-79. [PMID: 10913013 DOI: 10.1152/ajpcell.2000.279.2.c461] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Forskolin, UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen (Methoxsalen; 8-MOP), and genistein were evaluated for their effects on ion transport across primary cultures of human bronchial epithelium (HBE) expressing wild-type (wt HBE) and DeltaF508 (DeltaF-HBE) cystic fibrosis transmembrane conductance regulator. In wt HBE, the baseline short-circuit current (I(sc)) averaged 27.0 +/- 0.6 microA/cm(2) (n = 350). Amiloride reduced this I(sc) by 13.5 +/- 0.5 microA/cm(2) (n = 317). In DeltaF-HBE, baseline I(sc) was 33.8 +/- 1.2 microA/cm(2) (n = 200), and amiloride reduced this by 29.6 +/- 1.5 microA/cm(2) (n = 116), demonstrating the characteristic hyperabsorption of Na(+) associated with cystic fibrosis (CF). In wt HBE, subsequent to amiloride, forskolin induced a sustained, bumetanide-sensitive I(sc) (DeltaI(sc) = 8.4 +/- 0.8 microA/cm(2); n = 119). Addition of acetazolamide, 5-(N-ethyl-N-isopropyl)-amiloride, and serosal 4, 4'-dinitrostilben-2,2'-disulfonic acid further reduced I(sc), suggesting forskolin also stimulates HCO(3)(-) secretion. This was confirmed by ion substitution studies. The forskolin-induced I(sc) was inhibited by 293B, Ba(2+), clofilium, and quinine, whereas charybdotoxin was without effect. In DeltaF-HBE the forskolin I(sc) response was reduced to 1.2 +/- 0.3 microA/cm(2) (n = 30). In wt HBE, mucosal UTP induced a transient increase in I(sc) (Delta I(sc) = 15. 5 +/- 1.1 microA/cm(2); n = 44) followed by a sustained plateau, whereas in DeltaF-HBE the increase in I(sc) was reduced to 5.8 +/- 0. 7 microA/cm(2) (n = 13). In wt HBE, 1-EBIO, NS004, 8-MOP, and genistein increased I(sc) by 11.6 +/- 0.9 (n = 20), 10.8 +/- 1.7 (n = 18), 10.0 +/- 1.6 (n = 5), and 7.9 +/- 0.8 microA/cm(2) (n = 17), respectively. In DeltaF-HBE, 1-EBIO, NS004, and 8-MOP failed to stimulate Cl(-) secretion. However, addition of NS004 subsequent to forskolin induced a sustained Cl(-) secretory response (2.1 +/- 0.3 microA/cm(2), n = 21). In DeltaF-HBE, genistein alone stimulated Cl(-) secretion (2.5 +/- 0.5 microA/cm(2), n = 11). After incubation of DeltaF-HBE at 26 degrees C for 24 h, the responses to 1-EBIO, NS004, and genistein were all potentiated. 1-EBIO and genistein increased Na(+) absorption across DeltaF-HBE, whereas NS004 and 8-MOP had no effect. Finally, Ca(2+)-, but not cAMP-mediated agonists, stimulated K(+) secretion across both wt HBE and DeltaF-HBE in a glibenclamide-dependent fashion. Our results demonstrate that pharmacological agents directed at both basolateral K(+) and apical Cl(-) conductances directly modulate Cl(-) secretion across HBE, indicating they may be useful in ameliorating the ion transport defect associated with CF.
Collapse
Affiliation(s)
- D C Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania 15261, USA. dd2+@pitt.edu
| | | | | |
Collapse
|
50
|
Puchelle E, Peault B. Human airway xenograft models of epithelial cell regeneration. Respir Res 2000; 1:125-8. [PMID: 11667974 PMCID: PMC59558 DOI: 10.1186/rr21] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Accepted: 09/06/2000] [Indexed: 11/15/2022] Open
Abstract
Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.
Collapse
|