1
|
Jiang Y, Dhungana A, Odunfa OA, McCoun M, McGill J, Yoon I, Ogunade I. Effects of Saccharomyces cerevisiae fermentation product on ruminal fermentation, total tract digestibility, blood proinflammatory cytokines, and plasma metabolome of Holstein steers fed a high-grain diet. Transl Anim Sci 2025; 9:txaf058. [PMID: 40391287 PMCID: PMC12086543 DOI: 10.1093/tas/txaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
This study aimed to assess the impact of Saccharomyces cerevisiae fermentation product (SCFP) on digestibility, ruminal fermentation, and plasma metabolome of Holstein steers fed a high-grain diet. Steers were fed diet with 80% concentrate and 20% corn silage once daily ad libitum. Steers were stratified based on initial body weight (BW) and randomly assigned to two treatments: 1) control (CON), a basal diet without SCFP; 2) basal diet + 12 g/head/day SCFP, top-dressed. Eight rumen-cannulated Holstein steers (BW: 580 ± 29.2 kg) were enrolled in a crossover design study with 25-d treatment periods and a 24-d washout period. Dry matter intake (DMI) was calculated from daily feed offered and refusals. Blood was collected before morning feeding on day 25 of each period. Rumen fluid was collected at 0, 4, 8 and 12 h post-feeding on d 25. Fecal samples were collected from d 22 to 24 for digestibility measures. Statistical analyses were performed with the GLIMMIX procedure of SAS 9.4 (SAS, 2023). Supplementing SCFP had no effect on digestibility of organic matter (OM, P = 0.63), crude protein (CP, P = 0.97), neutral detergent fiber (NDF, P = 0.59), and acid detergent fiber (ADF, P = 0.84). Treatment did not affect fecal excretion of nitrogen (N, P = 0.69), phosphorus (P, P = 0.24), copper (Cu, P = 0.71), and zinc (Zn, P = 0.95). Supplementing SCFP increased (6.29 vs. 6.01, P = 0.01) ruminal pH compared to CON. Lactic acid concentrations were similar between treatments (P = 0.17) and low in both groups (0.09mM vs. 0.28mM). Treatment did not affect ruminal total volatile fatty acid (VFA) concentrations (P > 0.10) but decreased butyrate molar proportion (P = 0.01) and tended to increase the molar proportions of isobutyrate (P = 0.06) and isovalerate (P ≤ 0.10). Treatment had no effect on the in vitro production of proinflammatory cytokines, IL-1β (P > 0.11) and IL-6 (P > 0.12), in the whole blood in response to various toll-like receptor stimulants. Plasma pathways of purine metabolism, amino sugar and nucleotide sugar metabolism, and lysine degradation were enriched (P ≤ 0.05) by feeding SCFP. Overall, supplementing SCFP did not affect total tract digestibility, fecal excretions of macro minerals but enhanced ruminal pH in cattle fed a high-grain diet. Furthermore, feeding SCFP enriched several important plasma pathways related to protein metabolism.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anjan Dhungana
- School of Agriculture and Natural Resources, Kentucky State University, Frankfort, KY, 40601, USA
| | - Oluwaseun A Odunfa
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan McCoun
- School of Agriculture and Natural Resources, Kentucky State University, Frankfort, KY, 40601, USA
| | - Jodi McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | | - Ibukun Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Iwata K, Noguchi M, Shintani N. Mitochondrial Transplantation in Animal Models of Psychiatric Disorders: A Novel Approach to Psychiatric Treatment. Biomolecules 2025; 15:184. [PMID: 40001487 PMCID: PMC11852835 DOI: 10.3390/biom15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria are essential for brain function, and accumulating evidence from postmortem brain studies, neuroimaging, and basic research indicates mitochondrial impairments in patients with psychiatric disorders. Restoring mitochondrial function therefore represents a promising therapeutic strategy for these conditions. Mitochondrial transplantation, an innovative approach that uses functional mitochondria to repair damaged cells, has demonstrated efficacy through various delivery methods in cell, animal, and animal disease models. This review explores the critical link between mitochondria and psychiatric disorders and provides an overview of mitochondrial transplantation as a therapeutic intervention. It highlights recent advances in mitochondrial transplantation in animal models of psychiatric disorders, focusing on delivery methods, the timing of administration, and the integration of exogenous mitochondria into brain cells. The potential therapeutic effects and the mechanisms that underlie these effects are discussed. Additionally, this review evaluates the clinical relevance, challenges, and future strategies for the application of mitochondrial transplantation in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Keiko Iwata
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | | | | |
Collapse
|
3
|
Hayashi K, Sano M, Kanayasu-Toyoda T, Morita Y, Yamaguchi T, Ohya K, Kikuchi Y, Izutsu KI, Hara-Kudo Y. Evaluation of the effect of cell freshness on pyrogen detection using a serum-free monocyte-activation test. PLoS One 2024; 19:e0316203. [PMID: 39775542 PMCID: PMC11684592 DOI: 10.1371/journal.pone.0316203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Pyrogens cause shock symptoms when released into the bloodstream. They are classified into two main categories: endotoxins (lipopolysaccharides [LPS]) and non-endotoxin pyrogens. The monocyte activation test (MAT) is an in vitro assay to detect pyrogens in human monocytes. Cells were incubated in the culture medium, and the cellular response, specifically the production of the inflammatory cytokine interleukin-6 in the culture supernatant, was analyzed using enzyme-linked immunosorbent assay (ELISA). Technical improvements, such as cell acquisition and culture media selection, will be beneficial for the popularization of MAT. The cell freshness was strictly controlled to achieve high MAT sensitivity. However, it is necessary to investigate the usability of older and stored blood samples in the MAT. This study evaluated the effect of cell freshness on MAT using peripheral blood mononuclear cells (PBMCs) isolated from 2- and 5-d-old donated whole blood samples. To mitigate the influence of serum in the culture medium, a serum-free MAT was developed using the LPS-binding protein (LBP) as an enhancer for LPS detection. PBMCs were incubated with a two-fold dilution series of LPS at 0.001-4.096 endotoxin units/mL (EU/mL). Interleukin-6 levels in the culture supernatant were quantified by ELISA in the presence and absence of LBP. In the presence of LBP, the limit of detection (LOD) for LPS was 0.001-0.008 EU/mL. However, in the absence of LBP, the LOD was 0.512 EU/mL. Peripheral PBMCs were 38.6 times more sensitive in the presence of LBP than in its absence. When utilizing the developed serum-free MAT with LBP, 5-d-old PBMCs showed LODs of 0.016-0.064 EU/mL, indicating a 3.1-fold increase in sensitivity compared with 5- to 2-d-old PBMCs. These results suggest that the sensitivity of PBMCs decreased gradually rather than sharply. The study concluded that 2-d-old PBMCs were sufficiently fresh and could be used as serum-free MAT.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Microbiology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Mizuki Sano
- Department of Infection Control Science, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Toshie Kanayasu-Toyoda
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Teruhide Yamaguchi
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama, Japan
- Institute of Advanced Medical and Engineering Technology for Aging, Kanazawa Institute of Technology. Nonoichi, Ishikawa, Japan
| | - Kenji Ohya
- Division of Microbiology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yutaka Kikuchi
- Department of Nutrition, Faculty of Healthcare Sciences, Chiba Prefectural University of Health Sciences, Chiba, Japan
| | - Ken-ichi Izutsu
- Department of Pharmaceutical Sciences, School of Pharmacy International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
4
|
Wang T, Tian Z, Yu M, Zhang S, Zhang M, Zhai X, Shen W, Wang J. Whole-Transcriptome Analysis Reveals the Regulatory Network of Immune Response in Dapulian Pig. Animals (Basel) 2024; 14:3546. [PMID: 39682511 DOI: 10.3390/ani14233546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
There is a consensus that indigenous pigs in China are more resistant than modern commercial pigs in terms of disease resistance. Generally, the immune response is an important part of anti-disease capability; however, the related mechanism in pigs is largely puzzling. Here, the public transcriptome data of peripheral blood mononuclear cells (PBMCs) from Dapulian (Chinese local breed) and Landrace (Commercial breed) pigs after stimulation with polyinosinic-polycytidylic acid (poly I:C, a conventional reagent used for simulation of the viral infection) were reanalyzed, and the immune response mechanism in different pig breeds was investigated from a transcriptomic perspective. Of note, through comparative analyses of Dapulian and Landrace pigs, the candidate genes involved in swine broad-spectrum resistance were identified, such as TIMD4, RNF128 and VCAM1. In addition, after differential gene expression, target gene identification and functional enrichment analyses, a potential regulatory network of miRNA genes associated with immune response was obtained in Dapulian pigs, including five miRNAs and 12 genes (such as ssc-miR-181a, ssc-miR-486, IL1R1 and NFKB2). This work provides new insights into the immune response regulation of antiviral responses in indigenous and modern commercial pigs.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Min Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Xiangwei Zhai
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Henige M, Anklam K, Aviles M, Buettner J, Henschel S, Yoon I, Wheeler J, Dawson G, McGill J, Döpfer D. The Effect of Saccharomyces cerevisiae Fermentation Product Supplementation on Pro-Inflammatory Cytokines in Holstein Friesian Cattle Experimentally Inoculated with Digital Dermatitis. Animals (Basel) 2024; 14:3260. [PMID: 39595313 PMCID: PMC11591135 DOI: 10.3390/ani14223260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Digital dermatitis (DD) poses a major animal welfare concern for the dairy industry, with even broader economic implications for the agricultural industry worldwide. The postbiotic, a Saccharomyces cerevisiae fermentation product (SCFP), has had a positive influence on the innate immune system of cattle, which makes it a potential candidate as a feed supplement as part of a prevention strategy for DD. This study investigated the effect of a commercial SCFP feed supplement compared to a control feed supplement on the production of pro-inflammatory cytokines (IL-1β and IL-6) by peripheral blood mononuclear cells (PBMCs) in Holstein Friesian steers experimentally infected with DD. The results showed that SCFP supplementation was associated with an overall reduced IL-1β production (p = 0.005), particularly prior to experimental inoculation with a DD lesion homogenate. However, the results of the analysis suggest that the innate immune system in the SCFP group became prepared to respond more rapidly to DD infection post-inoculation. During active (M2), chronic (M4), and focal flare-ups (M4.1) of DD, SCFP supplementation resulted in a more rapid secretion of IL-1β (M2: p = 0.038; M4/M4/1: p = 0.034). A more rapid response to DD infection for IL-6 was only found for chronic (M4) and focal flare-ups (M4.1) of DD (p = 0.006). These findings emphasize the difference in cytokine response between various stages of DD in the SCFP group compared to the control, highlighting implications for DD prevention and treatment.
Collapse
Affiliation(s)
- Marlee Henige
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| | - Kelly Anklam
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| | - Matthew Aviles
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| | - Julia Buettner
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| | - Summer Henschel
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA 52404, USA; (I.Y.); (J.W.); (G.D.)
| | - Jeffrey Wheeler
- Diamond V, Cedar Rapids, IA 52404, USA; (I.Y.); (J.W.); (G.D.)
| | - George Dawson
- Diamond V, Cedar Rapids, IA 52404, USA; (I.Y.); (J.W.); (G.D.)
| | - Jodi McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.); (M.A.); (J.B.); (S.H.); (D.D.)
| |
Collapse
|
6
|
Li J, Hu H, Fu P, Yang Q, Wang P, Gao X, Yang J, Gun S, Huang X. Pig Milk Exosome Packaging ssc-miR-22-3p Alleviates Pig Intestinal Epithelial Cell Injury and Inflammatory Response by Targeting MAPK14. Int J Mol Sci 2024; 25:10715. [PMID: 39409044 PMCID: PMC11476862 DOI: 10.3390/ijms251910715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory diseases of the intestinal tract in piglets severely impair the economic performance of pig farms. Pig milk exosomes can encapsulate miRNAs which can then enter the piglet intestine to play an immunomodulatory role. Previously, we comparatively analyzed and identified exosomal miRNAs in the colostrum and mature milk of Bamei and Landrace pigs, and we screened for ssc-miR-22-3p, which is associated with inflammation and immune response; however, the role played by ssc-miR-22-3p in the immune response in IPEC-J2 cells is not yet clear. In this study, we first constructed a pig intestinal inflammatory response model using Lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (Poly (I:C)), and we investigated the role of ssc-miR-22-3p targeting MAPK14 in the regulation of LPS and Poly (I:C)-induced inflammatory injury in IPEC-J2 cells by RT-qPCR, cell counting kit-8 (CCK-8), EdU staining, lactate dehydrogenase (LDH) activity assay, and dual luciferase reporter gene assay. We successfully established LPS and Poly (I:C)-induced cell damage models in IPEC-J2 cells. The immune response of IPEC-J2 cells was stimulated by induction of IPEC-J2 cells at 10 μg/mL LPS and 20 μg/mL Poly (I:C) for 24 h. Overexpression of ssc-miR-22-3p decreased cytokine expression and promoted cell viability and proliferation. The functional enrichment analysis revealed that ssc-miR-22-3p targets genes enriched in the pathways of negative regulation of inflammatory response and bacterial invasion of epithelial cells. The validity of the binding site of ssc-miR-22-3p to MAPK14 was tested by a dual luciferase reporter gene. Pig milk exosome ssc-miR-22-3p promotes cell viability and proliferation by targeting MAPK14, and it alleviates LPS and Poly (I:C)-induced inflammatory responses in IPEC-J2 cells.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Huihui Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Panpan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| |
Collapse
|
7
|
Gano A, Wojcik H, Danseglio NC, Kelliher K, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) sensitized fever in male Sprague Dawley rats exposed to poly I:C in adulthood. Brain Behav Immun 2024; 120:82-97. [PMID: 38777284 PMCID: PMC11269031 DOI: 10.1016/j.bbi.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1β expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Hannah Wojcik
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Nina C Danseglio
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kaitlyn Kelliher
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
8
|
Mandolfo O, Parker H, Aguado È, Ishikawa Learmonth Y, Liao AY, O'Leary C, Ellison S, Forte G, Taylor J, Wood S, Searle R, Holley RJ, Boutin H, Bigger BW. Systemic immune challenge exacerbates neurodegeneration in a model of neurological lysosomal disease. EMBO Mol Med 2024; 16:1579-1602. [PMID: 38890537 PMCID: PMC11251277 DOI: 10.1038/s44321-024-00092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Helen Parker
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Èlia Aguado
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Yuko Ishikawa Learmonth
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Ai Yin Liao
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Claire O'Leary
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Stuart Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Gabriella Forte
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Jessica Taylor
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Shaun Wood
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rachel Searle
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rebecca J Holley
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- INSERM, UMR 1253, iBrain, Université de Tours, Tours, France
| | - Brian W Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Das BK, Panda SP, Pradhan SP, Raut SS, Kumari M, Meena DK. Molecular insights into STAT1a protein in rohu ( Labeo rohita): unveiling expression profiles, SRC homology domain recognition, and protein-protein interactions triggered by poly I: C. Front Immunol 2024; 15:1398955. [PMID: 38994355 PMCID: PMC11237311 DOI: 10.3389/fimmu.2024.1398955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Soumya Prasad Panda
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Smruti Priyambada Pradhan
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Subhashree Subhasmita Raut
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Mala Kumari
- Riverine & Estuaries Fisheries Division, Indian Council of Agricultural Research (ICAR) -Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Dharmendra Kumar Meena
- Open Water Aquaculture Production and Management (OWAPM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
11
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Calcitriol attenuates poly(I:C)-induced lung injury in obese mice via modulating toll-like receptor 3- and renin-angiotensin system-associated signal pathways. Int Immunopharmacol 2024; 128:111522. [PMID: 38246004 DOI: 10.1016/j.intimp.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of calcitriol on polyinosinic-polycytidylic acid (poly(I:C))-induced acute lung injury (ALI) and its association with Toll-like receptor 3 (TLR3) and renin-angiotensin system (RAS) signal pathways in obese mice. Normal mice were fed a high-fat diet to induce obesity. Obese mice were divided into four groups: SS group, intratracheally instilled with saline and intravenous (IV) saline injection via tail vein; SD group, instilled with saline and IV calcitriol injection; PS group, instilled with poly(I:C) and IV saline injection; and PD group, instilled with poly(I:C) and IV calcitriol injection. All mice were sacrificed 12 or 24 h after poly(I:C) stimulation. The results showed that poly(I:C) instillation led to increased production of systemic inflammatory cytokines. In the lungs, the population of macrophages decreased, while more neutrophils were recruited. TLR3-associated genes including IRF3, nuclear factor-κB, interferon-β and phosphorylated IRF3 expression levels, were upregulated. The RAS-associated AT1R and ACE2 protein levels increased, whereas AT2R, Ang(1-7), and MasR levels decreased. Also, reduced tight junction (TJ) proteins and elevated lipid peroxide levels were observed 24 h after poly(I:C) stimulation. Compared to the PS group, the PD group exhibited reduced systemic and lung inflammatory cytokine levels, increased macrophage while decreased neutrophil percentages, downregulated TLR3-associated genes and phosphorylated IRF3, and polarized toward the RAS-AT2R/Ang(1-7)/MasR pathway in the lungs. Higher lung TJ levels and lower injury scores were also noted. These findings suggest that calcitriol treatment after poly(I:C) instillation alleviated ALI in obese mice possibly by downregulating TLR3 expression and tending toward the RAS-associated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
De Luca SN, Kivivali L, Chong K, Kirby A, Lawther AJ, Nguyen JCD, Hale MW, Kent S. Calorie restriction partially attenuates sickness behavior induced by viral mimetic poly I:C. Behav Brain Res 2024; 457:114715. [PMID: 37838243 DOI: 10.1016/j.bbr.2023.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Calorie restriction (CR) has been shown to extend the mean and maximum lifespan in both preclinical and clinical settings. We have previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and sickness behavior. CR also leads to reductions in pro-inflammatory and increases in anti-inflammatory profiles. LPS is a bacterial mimetic; however, few studies have explored this phenomenon utilizing a viral mimetic, such as polyinosinic:polycytidylic acid (poly I:C). Dose-dependently, poly I:C induced an increase in core body temperature (Tb), with the largest dose (5000 µg/kg) resulting in a 1.62 °C ( ± 0.23 °C) Tb increase at 7 h post-injection in ad libitum mice and was associated with reduced home-cage locomotor activity. We then investigated the effect of 50% CR for 28 days to attenuate fever and sickness behavior induced by a poly I:C (5000 µg/kg) viral immune challenge. CR resulted in the partial attenuation of fever and sickness behavior measures post-poly I:C. The freely fed, control mice demonstrated a 2.02 °C ( ± 0.22 °C) increase in Tb at 7 h post-injection compared to the CR poly I:C group which demonstrated an increase in Tb of 0.94 °C ( ± 0.27 °C). Locomotor patterns post-injection were different, CR mice displayed a reduction in activity during the light phase, and the control group displayed a reduction during the dark phase. CR moderately attenuated the neuroinflammatory response with a reduction in microglial density in the ventromedial nucleus of the hypothalamus. The fever and sickness behavior attenuation seen after CR may be driven by similar anti-inflammatory processes as after LPS; however, further investigation is required.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia; Centre for Respiratory Science & Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Leah Kivivali
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Ken Chong
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Alice Kirby
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Adam J Lawther
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jason C D Nguyen
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia.
| | - Matthew W Hale
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Fujiwara Y, Oroku K, Zhou Y, Takahashi M, Katayama T, Wada K, Tsutsumi N, Sato T, Kabuta T. Expression of RNautophagy/DNautophagy-related genes is regulated under control of an innate immune receptor. RNA Biol 2024; 21:1-9. [PMID: 38200692 PMCID: PMC10793664 DOI: 10.1080/15476286.2023.2291610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/08/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Double-stranded RNA (dsRNA) is a molecular pattern uniquely produced in cells infected with various viruses as a product or byproduct of replication. Cells detect such molecules, which indicate non-self invasion, and induce diverse immune responses to eliminate them. The degradation of virus-derived molecules can also play a role in the removal of pathogens and suppression of their replication. RNautophagy and DNautophagy are cellular degradative pathways in which RNA and DNA are directly imported into a hydrolytic organelle, the lysosome. Two lysosomal membrane proteins, SIDT2 and LAMP2C, mediate nucleic acid uptake via this pathway. Here, we showed that the expression of both SIDT2 and LAMP2C is selectively upregulated during the intracellular detection of poly(I:C), a synthetic analog of dsRNA that mimics viral infection. The upregulation of these two gene products upon poly(I:C) introduction was transient and synchronized. We also observed that the induction of SIDT2 and LAMP2C expression by poly(I:C) was dependent on MDA5, a cytoplasmic innate immune receptor that directly recognizes poly(I:C) and induces various antiviral responses. Finally, we showed that lysosomes can target viral RNA for degradation via RNautophagy and may suppress viral replication. Our results revealed a novel degradative pathway in cells as a downstream component of the innate immune response and provided evidence suggesting that the degradation of viral nucleic acids via RNautophagy/DNautophagy contributes to the suppression of viral replication.
Collapse
Affiliation(s)
- Yuuki Fujiwara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kazuki Oroku
- Research Department, Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | - Yinping Zhou
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masayuki Takahashi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Nobuyuki Tsutsumi
- Research Department, Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | - Tetsuo Sato
- Research Department, Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
14
|
Lee HL, Squire E, Fotio Y, Mabou Tagne A, Lee J, Yoon JJ, Hong Y, Kim LH, Jung KM, Piomelli D. Frequent low-impact exposure to THC during adolescence causes persistent sexually dimorphic alterations in the response to viral infection in mice. Pharmacol Res 2024; 199:107049. [PMID: 38159785 DOI: 10.1016/j.phrs.2023.107049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.
Collapse
Affiliation(s)
- Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Jungyeon Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - John Jeongwoo Yoon
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yedam Hong
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Laura Hyunseo Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, USA; Department of Biological Chemistry, University of California, Irvine, USA; Department of Pharmaceutical Sciences, University of California, Irvine, USA.
| |
Collapse
|
15
|
Kouthouridis S, Sotra A, Khan Z, Alvarado J, Raha S, Zhang B. Modeling the Progression of Placental Transport from Early- to Late-Stage Pregnancy by Tuning Trophoblast Differentiation and Vascularization. Adv Healthc Mater 2023; 12:e2301428. [PMID: 37830445 PMCID: PMC11468690 DOI: 10.1002/adhm.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The early-stage placental barrier is characterized by a lack of fetal circulation and by a thick trophoblastic barrier, whereas the later-stage placenta consists of vascularized chorionic villi encased in a thin, differentiated trophoblast layer, ideal for nutrient transport. In this work, predictive models of early- and late-stage placental transport are created using blastocyst-derived placental stem cells (PSCs) by modulating PSC differentiation and model vascularization. PSC differentiation results in a thinner, fused trophoblast layer, as well as an increase in human chorionic gonadotropin secretion, barrier permeability, and secretion of certain inflammatory cytokines, which are consistent with in vivo findings. Further, gene expression confirms this shift toward a differentiated trophoblast subtype. Vascularization results in a molecule type- and size-dependent change in dextran and insulin permeability. These results demonstrate that trophoblast differentiation and vascularization have critical effects on placental barrier permeability and that this model can be used as a predictive measure to assess fetal toxicity of xenobiotic substances at different stages of pregnancy.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Zaim Khan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Justin Alvarado
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Programme in Medical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
16
|
Wong AC, Devason AS, Umana IC, Cox TO, Dohnalová L, Litichevskiy L, Perla J, Lundgren P, Etwebi Z, Izzo LT, Kim J, Tetlak M, Descamps HC, Park SL, Wisser S, McKnight AD, Pardy RD, Kim J, Blank N, Patel S, Thum K, Mason S, Beltra JC, Michieletto MF, Ngiow SF, Miller BM, Liou MJ, Madhu B, Dmitrieva-Posocco O, Huber AS, Hewins P, Petucci C, Chu CP, Baraniecki-Zwil G, Giron LB, Baxter AE, Greenplate AR, Kearns C, Montone K, Litzky LA, Feldman M, Henao-Mejia J, Striepen B, Ramage H, Jurado KA, Wellen KE, O'Doherty U, Abdel-Mohsen M, Landay AL, Keshavarzian A, Henrich TJ, Deeks SG, Peluso MJ, Meyer NJ, Wherry EJ, Abramoff BA, Cherry S, Thaiss CA, Levy M. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023; 186:4851-4867.e20. [PMID: 37848036 PMCID: PMC11227373 DOI: 10.1016/j.cell.2023.09.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Collapse
Affiliation(s)
- Andrea C Wong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ashwarya S Devason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iboro C Umana
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy O Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Perla
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke T Izzo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihee Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Tetlak
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen Wisser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwon Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Thum
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Mason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Beltra
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michaël F Michieletto
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brittany M Miller
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Megan J Liou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhoomi Madhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oxana Dmitrieva-Posocco
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alex S Huber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Hewins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Candice P Chu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwen Baraniecki-Zwil
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charlotte Kearns
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly Ramage
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kellie A Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA; Rush Center for Integrated Microbiome and Chronobiology Research, Chicago, IL, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Abramoff
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Brandenburg K, Ferrer-Espada R, Martinez-de-Tejada G, Nehls C, Fukuoka S, Mauss K, Weindl G, Garidel P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. Int J Mol Sci 2023; 24:15169. [PMID: 37894850 PMCID: PMC10607443 DOI: 10.3390/ijms242015169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis is a life-threatening condition caused by the body's overwhelming response to an infection, such as pneumonia or urinary tract infection. It occurs when the immune system releases cytokines into the bloodstream, triggering widespread inflammation. If not treated, it can lead to organ failure and death. Unfortunately, sepsis has a high mortality rate, with studies reporting rates ranging from 20% to over 50%, depending on the severity and promptness of treatment. According to the World Health Organization (WHO), the annual death toll in the world is about 11 million. One of the main toxins responsible for inflammation induction are lipopolysaccharides (LPS, endotoxin) from Gram-negative bacteria, which rank among the most potent immunostimulants found in nature. Antibiotics are consistently prescribed as a part of anti-sepsis-therapy. However, antibiotic therapy (i) is increasingly ineffective due to resistance development and (ii) most antibiotics are unable to bind and neutralize LPS, a prerequisite to inhibit the interaction of endotoxin with its cellular receptor complex, namely Toll-like receptor 4 (TLR4)/MD-2, responsible for the intracellular cascade leading to pro-inflammatory cytokine secretion. The pandemic virus SARS-CoV-2 has infected hundreds of millions of humans worldwide since its emergence in 2019. The COVID-19 (Coronavirus disease-19) caused by this virus is associated with high lethality, particularly for elderly and immunocompromised people. As of August 2023, nearly 7 million deaths were reported worldwide due to this disease. According to some reported studies, upregulation of TLR4 and the subsequent inflammatory signaling detected in COVID-19 patients "mimics bacterial sepsis". Furthermore, the immune response to SARS-CoV-2 was described by others as "mirror image of sepsis". Similarly, the cytokine profile in sera from severe COVID-19 patients was very similar to those suffering from the acute respiratory distress syndrome (ARDS) and sepsis. Finally, the severe COVID-19 infection is frequently accompanied by bacterial co-infections, as well as by the presence of significant LPS concentrations. In the present review, we will analyze similarities and differences between COVID-19 and sepsis at the pathophysiological, epidemiological, and molecular levels.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
| | - Raquel Ferrer-Espada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Martinez-de-Tejada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Christian Nehls
- Forschungszentrum Borstel, FG Biophysik, Parkallee 10, 23845 Borstel, Germany;
| | - Satoshi Fukuoka
- National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan;
| | - Karl Mauss
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
- Sylter Klinik Karl Mauss, Dr.-Nicolas-Strasse 3, 25980 Westerland (Sylt), Germany
| | - Günther Weindl
- Pharmazeutisches Institut, Abteilung Pharmakologie und Toxikologie, Universität Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany;
| | - Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
18
|
Silvestrini A, Giordani C, Bonacci S, Giuliani A, Ramini D, Matacchione G, Sabbatinelli J, Di Valerio S, Pacetti D, Procopio AD, Procopio A, Rippo MR. Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants (Basel) 2023; 12:1509. [PMID: 37627504 PMCID: PMC10451521 DOI: 10.3390/antiox12081509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Olive tree by-products have been deeply studied as an invaluable source of bioactive compounds. Several in vitro and in vivo studies showed that olive leaf extract (OLE) has anti-inflammatory and antioxidant properties. Here, we wanted to assess the valuable benefits of two less-studied OLE components-3,4-DHPEA-EDA (Oleacin, OC) and 3,4-DHPEA-EA (Oleuropein-Aglycone, OA)-directly purified from OLE using a cost-effective and environmentally sustainable method, in line with the principles of circular economy. OLE, OC and OA were then tested in human cellular models involved in acute and chronic inflammation and in the pathogenesis of viral infections, i.e., lipopolysaccharide (LPS)-treated monocyte/macrophages (THP-1) and endothelial cells (HUVECs), senescent HUVECs and Poly(I:C)-treated small airway epithelial cells (hSAECs). Results showed that OC and OA are efficient in ameliorating almost all of the pro-inflammatory readouts (IL-1β, TNF-α, IL-8, ICAM, VCAM) and reducing the release of IL-6 in all the cellular models. In hSAECs, they also modulate the expression of SOD2, NF-kB and also ACE2 and TMPRSS2, whose expression is required for SARS-CoV-2 virus entry. Overall, these data suggest the usefulness of OLE, OC and OA in controlling or preventing inflammatory responses, in particular those associated with viral respiratory infections and aging.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS—National Institute for the Care of the Elderly (INRCA), 60121 Ancona, Italy;
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
- Clinic of Laboratory and Precision Medicine, IRCCS—National Institute for the Care of the Elderly (INRCA), 60121 Ancona, Italy;
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy (J.S.)
| |
Collapse
|
19
|
Sano H, Kratz A, Nishino T, Imamura H, Yoshida Y, Shimizu N, Kitano H, Yachie A. Nicotinamide mononucleotide (NMN) alleviates the poly(I:C)-induced inflammatory response in human primary cell cultures. Sci Rep 2023; 13:11765. [PMID: 37474783 PMCID: PMC10359400 DOI: 10.1038/s41598-023-38762-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
NMN is the direct precursor of nicotinamide adenine dinucleotide (NAD+) and is considered as a key factor for increasing NAD+ levels and mitochondrial activity in cells. In this study, based on transcriptome analysis, we showed that NMN alleviates the poly(I:C)-induced inflammatory response in cultures of two types of human primary cells, human pulmonary microvascular endothelial cells (HPMECs) and human coronary artery endothelial cells (HCAECs). Major inflammatory mediators, including IL6 and PARP family members, were grouped into coexpressed gene modules and significantly downregulated under NMN exposure in poly(I:C)-activated conditions in both cell types. The Bayesian network analysis of module hub genes predicted common genes, including eukaryotic translation initiation factor 4B (EIF4B), and distinct genes, such as platelet-derived growth factor binding molecules, in HCAECs, which potentially regulate the identified inflammation modules. These results suggest a robust regulatory mechanism by which NMN alleviates inflammatory pathway activation, which may open up the possibility of a new role for NMN replenishment in the treatment of chronic or acute inflammation.
Collapse
Affiliation(s)
- Hitomi Sano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Anton Kratz
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Taiko Nishino
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Haruna Imamura
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Yuki Yoshida
- Ginza Research Center, Mirailab Bioscience Inc., 6F Prairie Ginza Bldg., 1-14-4, Ginza, Chuo-ku, Tokyo, 104-0061, Japan
| | - Noriaki Shimizu
- Ginza Research Center, Mirailab Bioscience Inc., 6F Prairie Ginza Bldg., 1-14-4, Ginza, Chuo-ku, Tokyo, 104-0061, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.
- SBX BioSciences, Inc., 1600 - 925 West Georgia Street, Vancouver, BC, V6C 3L2, Canada.
| |
Collapse
|
20
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Edemann-Callesen H, Bernhardt N, Hlusicka EB, Hintz F, Habelt B, Winter R, Neubert I, Pelz M, Filla A, Soto-Montenegro ML, Winter C, Hadar R. Supplement Treatment with NAC and Omega-3 Polyunsaturated Fatty Acids during Pregnancy Partially Prevents Schizophrenia-Related Outcomes in the Poly I:C Rat Model. Antioxidants (Basel) 2023; 12:antiox12051068. [PMID: 37237933 DOI: 10.3390/antiox12051068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Heightened levels of inflammation and oxidative stress are thought to be involved in the pathophysiology of schizophrenia. We aimed to assess whether intake of anti-inflammatory and anti-oxidant drugs during pregnancy prevents later schizophrenia-related outcomes in a neurodevelopmental rat model of this disorder. METHODS Pregnant Wistar rats were injected with polyriboinosinic-polyribocytidilic acid (Poly I:C) or saline and subsequently treated with either N-acetyl cysteine (NAC) or omega-3 polyunsaturated fatty acids (PUFAs) until delivery. Controls rats received no treatment. In the offspring, neuroinflammation and anti-oxidant enzyme activity were assessed on postnatal day (PND) 21, 33, 48, and 90. Behavioral testing was performed at PND 90, followed by post-mortem neurochemical assessment and ex vivo MRI. RESULTS The supplement treatment led to a quicker restoration of the wellbeing of dams. In the adolescent Poly I:C offspring, the supplement treatment prevented an increase in microglial activity and partially prevented a deregulation in the anti-oxidant defense system. In the adult Poly I:C offspring, supplement treatment partially prevented dopamine deficits, which was paralleled by some changes in behavior. Exposure to omega-3 PUFAs prevented the enlargement of lateral ventricles. CONCLUSION Intake of over-the-counter supplements may assist in especially targeting the inflammatory response related to schizophrenia pathophysiology, aiding in diminishing later disease severity in the offspring.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Elizabeth Barroeta Hlusicka
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Franziska Hintz
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Rebecca Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Isabell Neubert
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Meike Pelz
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Alexandra Filla
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Maria Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Christine Winter
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
22
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
23
|
Rieger NS, Ng AJ, Lee S, Brady BH, Christianson JP. Maternal immune activation alters social affective behavior and sensitivity to corticotropin releasing factor in male but not female rats. Horm Behav 2023; 149:105313. [PMID: 36706685 PMCID: PMC9974777 DOI: 10.1016/j.yhbeh.2023.105313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Prenatal infection increases risk for neurodevelopmental disorders such as autism in offspring. In rodents, prenatal administration of the viral mimic Polyinosinic: polycytidylic acid (Poly I: C) allows for investigation of developmental consequences of gestational sickness on offspring social behavior and neural circuit function. Because maternal immune activation (MIA) disrupts cortical development and sociability, we examined approach and avoidance in a rat social affective preference (SAP) task. Following maternal Poly I:C (0.5 mg/kg) injection on gestational day 12.5, male adult offspring (PN 60-64) exhibited atypical social interactions with stressed conspecifics whereas female SAP behavior was unaffected by maternal Poly I:C. Social responses to stressed conspecifics depend upon the insular cortex where corticotropin releasing factor (CRF) modulates synaptic transmission and SAP behavior. We characterized insular field excitatory postsynaptic potentials (fEPSP) in adult offspring of Poly I:C or control treated dams. Male MIA offspring showed decreased sensitivity to CRF (300 nM) while female MIA offspring showed greater sensitivity to CRF compared to sham offspring. These sex specific effects appear to be behaviorally relevant as CRF injected into the insula of male and female rats prior to social exploration testing had no effect in MIA male offspring but increased social interaction in female MIA offspring. We examined the cellular distribution of CRF receptor mRNA but found no effect of maternal Poly I:C in the insula. Together, these experiments reveal sex specific effects of prenatal infection on offspring responses to social affective stimuli and identify insular CRF signaling as a novel neurobiological substrate for autism risk.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Alexandra J Ng
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Shanon Lee
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Bridget H Brady
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
24
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Jung S, Kim MJ, Lim C, Elvitigala DAS, Lee J. Molecular insights into two ferritin subunits from red-lip mullet (Liza haematocheila): Detectable antibacterial activity with its expressional response against immune stimulants. Gene X 2023; 851:146923. [DOI: 10.1016/j.gene.2022.146923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/08/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
|
26
|
Choi S, Kim EM, Kim SY, Choi Y, Choi S, Cho N, Park HJ, Kim KK. Particulate matter exposure exacerbates cellular damage by increasing stress granule formation in respiratory syncytial virus-infected human lung organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120439. [PMID: 36257563 DOI: 10.1016/j.envpol.2022.120439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Exposure to atmospheric particulate matter (PM) increases morbidity and mortality in respiratory diseases by causing various adverse health effects; however, the effects of PM exposure on cellular stress under virus-infected conditions remain unclear. The effects of PM under 10 μm (PM10) and diesel PM (DPM) on respiratory syncytial virus (RSV) infection were investigated in human two-dimensional lung epithelial cells and human three-dimensional lung organoids mimicking the lung tissue. We evaluated the formation of stress granules, which are important in cellular adaptation to various stress conditions. Furthermore, we investigated the effects of repeated exposure to PM10 and DPM on DNA damage and cell death during viral infection. PM10 and DPM did not cause stress granule formation in the absence of RSV infection but drastically increased stress granule formation and signal transduction during RSV infection in human lung epithelial cells and human lung organoids. Further, repeated exposure to PM10 and DPM caused cell death by severely damaging DNA under RSV infection conditions. Thus, PM10 and DPM induce severe lung toxicity under stress conditions, such as viral infection, suggesting that the effects of PMs under various stressful conditions should be examined to accurately predict the lung toxicity of PM.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yeongsoo Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
27
|
Guan Y, Yang X, Zhao R, Li B, Yang Z, Gao M, Cao X, Jiang C. Characteristics of cathepsin members and expression responses to poly I:C challenge in Pacific cod (Gadus macrocephalus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:484-493. [PMID: 35985629 DOI: 10.1016/j.fsi.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.
Collapse
Affiliation(s)
- Yude Guan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Nankai University, Tianjin, 300000, China
| | - Xu Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Ruihu Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boyan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Minghong Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xinyu Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
28
|
Lian J, Han M, Su Y, Hodgson J, Deng C. The long-lasting effects of early antipsychotic exposure during juvenile period on adult behaviours - A study in a poly I:C rat model. Pharmacol Biochem Behav 2022; 219:173453. [PMID: 36029928 DOI: 10.1016/j.pbb.2022.173453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/16/2022]
Abstract
Second generation antipsychotic drugs including aripiprazole, olanzapine and risperidone are prescribed increasingly (mostly off-label) to treat various mental disorders in children and adolescents. Early treatment with antipsychotics during this period may have long-lasting behavioural impacts, but to date there have been only limited investigations. Maternal infection could be implicated in the aetiology of various mental disorders including schizophrenia. Exposure of pregnant rodents to polyriboinosinic-polyribocytidylic acid (Poly I:C) causes schizophrenia-like behavioural abnormalities and neurodevelopmental conditions such as autism spectrum disorders in offspring. This study, using a Poly I:C rat model, investigated the long-lasting effects of early aripiprazole, olanzapine and risperidone treatment in the childhood/adolescent period (postnatal day 22-50) on adult behaviours of male rats. The study showed that early treatment with three antipsychotics had different effects on long-term behavioural changes in adults. Prenatal Poly I:C exposure (5 mg/kg) at gestation day 15 caused deficits in pre-pulse inhibition and social interaction, as well as cognitive impairments, that could be partially improved by early antipsychotic treatment in the juvenile period. Early antipsychotic treatment during the childhood-adolescent period resulted in similar long-lasting effects on pre-pulse inhibition, anxiety- and depressive-related behaviours in both Poly I:C and healthy (control) male rats. Overall, these results suggest that both prenatal Poly I:C exposure and early antipsychotic treatment in the childhood/adolescent period had long-lasting effects on adult behaviours of male rats, while early antipsychotic treatment could partly prevent the onset of behavioural abnormalities resulting from prenatal insult.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Yueqing Su
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| |
Collapse
|
29
|
Zhang K, Sun Q, Liu P, Bai X, Gao X, Liu K, Li A, LYu Z, Li Q. Studies on chitosan-. Aust J Chem 2022. [DOI: 10.1071/ch22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PolyI:C is an immunomodulatory agent that can be used in immunotherapy, but its transportation in the body is hindered. In this study, a chitosan (CS)-graft-polyethyleneimine (PEI) copolymer (C-g-P) is prepared by an N,N′-carbonyl diimidazole (CDI) coupling method as a drug carrier for PolyI:C and simulated antigen ovalbumin (OVA). The results of FT-IR, 1H NMR, elemental analysis and cytotoxicity studies show that PEI is successfully grafted onto CS, and a low cytotoxicity of C-g-P-x (x = 1, 2, 3) with different PEI grafting rates are obtained. C-g-P-x-PolyI:C/OVA (C-g-P-x-PO) (x = 1, 2, 3) nanoparticles are prepared by combining C-g-P-x (x = 1, 2, 3), PolyI:C and OVA by electrostatic self-assembly. The results of agarose gel electrophoresis show that PolyI:C is well coated by the graft copolymer and protected from nuclease degradation. The results show that C-g-P-1-PO nanoparticles with graft copolymer to PolyI:C (N/P) ratios of 80:1 have the best solution stability, and the OVA encapsulation efficiency is 60.6%. The nanoparticles also have a suitable size and regular shape to be absorbed by cells. In vitro immunoassay results show that PolyI:C and OVA-loaded nanoparticles promote the secretion of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ). CS-g-PEI is a reliable drug carrier for the delivery of PolyI:C and OVA, and it also provides the possibility to carry other drugs.
Collapse
|
30
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Xiao W, Qin G, Zhang Y, Zhang B, Li T, Chen Z, Lin Q. Secretory phospholipase A2 group XIIBs play potential roles in intestine antibacterial responses in seahorse. JOURNAL OF FISH DISEASES 2022; 45:1059-1063. [PMID: 35352834 DOI: 10.1111/jfd.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Sanya Institute of Oceanology, SCSIO, Sanya, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Sanya Institute of Oceanology, SCSIO, Sanya, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Sanya Institute of Oceanology, SCSIO, Sanya, China
| |
Collapse
|
32
|
Li Q, Zhang T, Wang Y, Yang S, Luo J, Fang F, Liao J, Wen W, Cui H, Shang H. Qing-Wen-Jie-Re Mixture Ameliorates Poly (I:C)-Induced Viral Pneumonia Through Regulating the Inflammatory Response and Serum Metabolism. Front Pharmacol 2022; 13:891851. [PMID: 35784698 PMCID: PMC9240632 DOI: 10.3389/fphar.2022.891851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Qing-Wen-Jie-Re mixture (QWJR) has been used in the treatment of the coronavirus disease 2019 (COVID-19) in China. However, the protective mechanisms of QWJR on viral pneumonia remain unclear. In the present study, we first investigated the therapeutic effects of QWJR on a rat viral pneumonia model established by using polyinosinic-polycytidylic acid (poly (I:C)). The results indicated that QWJR could relieve the destruction of alveolar-capillary barrier in viral pneumonia rats, as represented by the decreased wet/dry weight (W/D) ratio in lung, total cell count and total protein concentration in bronchoalveolar lavage fluid (BALF). Besides, QWJR could also down-regulate the expression of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. More M1-type macrophage polarization was detected by calculating CD86+ cells and CD206+ cells and validated by the decline of inducible nitric oxide synthase (iNOS) and elevated arginase-1 (Arg-1) in lung. Finally, serum untargeted metabolomics analysis demonstrated that QWJR might take effect through regulating arginine metabolism, arachidonic acid (AA) metabolism, tricarboxylic acid (TCA) cycle, nicotinate and nicotinamide metabolism processes.
Collapse
Affiliation(s)
- Qin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tingrui Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuming Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shangsong Yang
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junyu Luo
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fang Fang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Weibo Wen
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huantian Cui
- School of Life Sciences, Shandong University, Qingdao, China
| | - Hongcai Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Player JK, Riordan SM, Duncan RS, Koulen P. Analysis of Glaucoma Associated Genes in Response to Inflammation, an Examination of a Public Data Set Derived from Peripheral Blood from Patients with Hepatitis C. Clin Ophthalmol 2022; 16:2093-2103. [PMID: 35770250 PMCID: PMC9236525 DOI: 10.2147/opth.s364739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/02/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Glaucoma is the second leading cause of blindness worldwide and despite its prevalence, there are still many unanswered questions related to its pathogenesis. There is evidence that oxidative stress and inflammation play a major role in disease progression. Glaucoma patients from several studies showed altered gene expression in leukocytes, revealing the possibility of using peripheral biomarkers to diagnose or stage glaucoma. The fact that glaucoma is associated with gene expression changes in tissues distant from the retina underscores the possible involvement of systemic oxidative stress and inflammation as potential contributing or compounding factors in glaucoma. Methods We assembled a list of oxidative stress and inflammatory markers related to glaucoma based on a review of the literature. In addition, we utilized publicly available data sets of gene expression values collected from peripheral blood mononuclear cells and macrophages from two patient groups: those chronically infected by the hepatitis C virus and those who have cleared it. Activation of the innate immune response can render cells or tissues more responsive to a second delayed proinflammatory stimulus. Additional gene expression data from these cells after subsequent polyinosinic:polycytidylic acid treatment, used to elicit an acute inflammatory response, allowed for the investigation of the acute inflammatory response in these groups. We used fold-change comparison values between the two patient groups to identify genes of interest. Results A comparison analysis identified 17 glaucoma biomarkers that were differentially expressed in response to HCV-mediated inflammation. Of these 17, six had significant p-values in the baseline vs treated values. Expression data of these genes were compared between patients who had cleared the Hepatitis C virus versus those who had not and identified three genes of interest for further study. Discussion These results support our hypothesis that inflammation secondary to Hepatitis C virus infection affects the expression of glaucoma biomarker genes related to the antioxidant response and inflammation. In addition, they provide several potential targets for further research into understanding the relationship between innate responses to viral infection and inflammatory aspects of glaucoma and for potential use as a predictive biomarker or pharmacological intervention in glaucoma.
Collapse
Affiliation(s)
- Jacob K Player
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - Sean M Riordan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - R Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
- Correspondence: Peter Koulen, Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA, Tel +1 816-235-6773, Email
| |
Collapse
|
34
|
eIF2α Phosphorylation in Response to Nutritional Deficiency and Stressors in the Aquaculture Fish, Rachycentron canadum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates the response of the marine fish cobia, Rachycentron canadum, to stressors as measured by phosphorylation of the α-subunit of the translational initiation factor, eIF2. eIF2α is the target of phosphorylation by a family of kinases that respond to a range of physiological stressors. Phosphorylation of eIF2α inhibits overall protein synthesis, but also facilitates the reprogramming of gene expression to adapt to, and recover from, stress. The deduced coding sequence of cobia eIF2α has 94% identity to both zebrafish (Danio rerio) and human eIF2α sequences with identical phosphorylation and kinase docking sites. Here we use cobia larvae and a cobia cell line derived from muscle (Cm cells) to investigate the response of cobia eIF2α to various stressors. In Cm cells, phosphorylation of eIF2α is increased by nutrient deficiency and endoplasmic reticulum stress (ER stress), consistent with the activation of the eIF2 kinases, GCN2, and PERK. In cobia juveniles, diet and water temperature affect the phosphorylation state of eIF2α. We conclude that evaluation of eIF2α phosphorylation could function as an early marker to evaluate diet, environmental stressors, and disease in cobia and may be of particular use in optimizing conditions for rearing cobia larvae and juveniles.
Collapse
|
35
|
Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet 2022; 38:662-675. [PMID: 35410793 PMCID: PMC8992946 DOI: 10.1016/j.tig.2022.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Maternal immune activation (MIA) and infection during pregnancy are known to reprogramme offspring phenotypes. However, the epigenetic effects of preconceptual paternal infection and paternal immune activation (PIA) are not currently well understood. Recent reports show that paternal infection and immune activation can affect offspring phenotypes, particularly brain function, behaviour, and immune system functioning, across multiple generations without re-exposure to infection. Evidence from other environmental exposures indicates that epigenetic inheritance also occurs in humans. Given the growing impact of the coronavirus disease 2019 (COVID-19) pandemic, it is imperative that we investigate all of the potential epigenetic mechanisms and multigenerational phenotypes that may arise from both maternal and paternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as associated MIA, PIA, and inflammation. This will allow us to understand and, if necessary, mitigate any potential changes in disease susceptibility in the children, and grandchildren, of affected parents.
Collapse
|
36
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
37
|
Sandoval KC, Thackray SE, Wong A, Niewinski N, Chipak C, Rehal S, Dyck RH. Lack of Vesicular Zinc Does Not Affect the Behavioral Phenotype of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation Mice. Front Behav Neurosci 2022; 16:769322. [PMID: 35273483 PMCID: PMC8902171 DOI: 10.3389/fnbeh.2022.769322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother’s immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60–75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.
Collapse
Affiliation(s)
- Katy Celina Sandoval
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sarah E. Thackray
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Alison Wong
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Nicole Niewinski
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Colten Chipak
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Suhkjinder Rehal
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Richard H. Dyck
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- *Correspondence: Richard H. Dyck,
| |
Collapse
|
38
|
Rieger NS, Worley NB, Ng AJ, Christianson JP. Insular cortex modulates social avoidance of sick rats. Behav Brain Res 2022; 416:113541. [PMID: 34425184 PMCID: PMC8492531 DOI: 10.1016/j.bbr.2021.113541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Avoidance of sick individuals is vital to the preservation of one's health and preventing transmission of communicable diseases. To do this successfully, one must identify social cues for sickness, which include sickness behaviors and chemosignals, and use this information to orchestrate social interactions. While many social species are highly capable with this process, the neural mechanisms that provide for social responses to sick individuals are only partially understood. To this end, we used a task in which experimental rats were allowed to investigate two conspecifics, one healthy and one sick. To imitate sickness, one conspecific received the viral mimic Polyinosinic:polycytidylic acid (Poly I:C) and the other saline. In a 5-minute social preference test, experimental male and female adult rats avoided Poly I:C treated adult conspecifics but did not adjust social interaction in response to Poly I:C treated juvenile conspecifics. Seeking a neural locus of this behavior, we inhibited the insular cortex, a region necessary for social behaviors directed toward conspecifics in distress. Insular cortex inactivation via administration of the GABAA agonist muscimol to experimental rats prior to social preference tests eliminated the preference to avoid sick adult conspecifics. These results suggest that some aspect of conspecific illness may be encoded in the insular cortex which is anatomically positioned to coordinate a situationally appropriate social response.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Nicholas B Worley
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - Alexandra J Ng
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467 USA.
| |
Collapse
|
39
|
Liyanage DS, Omeka WKM, Sandamalika WMG, Udayantha HMV, Jeong T, Lee S, Lee J. PDI family thioredoxin from disk abalone (Haliotis discus discus): Responses to stimulants (PAMPs, bacteria, and viral) and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2022; 120:261-270. [PMID: 34848304 DOI: 10.1016/j.fsi.2021.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxin, a highly conserved class of proteins involved in redox signaling, is found in a range of organisms from bacteria to higher-level eukaryotes. Thioredoxin acts as an active regulatory enzyme to eliminate excessive reactive oxygen species, thereby preventing cellular damage. In this study, the cDNA sequence of thioredoxin domain-containing 5 (AbTXNDC5) from the disk abalone transcriptomic database was characterized. An in silico analysis of AbTXNDC5 was performed, and its spatial and temporal expression patterns in hemocytes and gills in response to bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), viral hemorrhagic septicemia virus, and pathogen-associated molecular pattern molecules were observed. Furthermore, AbTXNDC5 expression was examined in different developmental stages. Functional assays to explore insulin disulfide reduction, anti-apoptotic activity, and protection against hypoxic cell death of AbTXNDC5 were conducted through recombinant proteins or overexpression in cells. AbTXNDC5 contains a 1179-bp open reading frame coding for 392 amino acids. Conserved thiol-disulfide cysteine residues within two Cys-X-X-Cys motifs were found in AbTXNDC5. Quantitative real-time polymerase chain reaction indicated that healthy digestive tract and hemocyte tissues expressed high levels of AbTXNDC5 mRNA, which may protect the host from invading pathogens. Immune-challenged abalone hemocytes and gills exhibited upregulated expression of AbTXNDC5 at different time points. rAbTXNDC5 also exhibited a functional insulin disulfide reductase activity. AbTXNDC5 conferred protection to cultured cells from apoptosis and hypoxia-induced stress, compared to the pcDNA3.1(+) transfected control cells. Therefore, AbTXNDC5 can be considered an important gene in abalones in relation to the primary immune system and regulation of redox homeostasis and confers protection from stress.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
40
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
41
|
Cardiorespiratory alterations in a newborn ovine model of systemic viral inflammation. Pediatr Res 2022; 92:1288-1298. [PMID: 35110682 PMCID: PMC8809061 DOI: 10.1038/s41390-022-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Respiratory viruses can be responsible for severe apneas and bradycardias in newborn infants. The link between systemic inflammation with viral sepsis and cardiorespiratory alterations remains poorly understood. We aimed to characterize these alterations by setting up a full-term newborn lamb model of systemic inflammation using polyinosinic:polycytidylic acid (Poly I:C). METHODS Two 6-h polysomnographic recordings were carried out in eight lambs on two consecutive days, first after an IV saline injection, then after an IV injection of 300 μg/kg Poly I:C. RESULTS Poly I:C injection decreased locomotor activity and increased NREM sleep. It also led to a biphasic increase in rectal temperature and heart rate. The latter was associated with an overall decrease in heart-rate variability, with no change in respiratory-rate variability. Lastly, brainstem inflammation was found in the areas of the cardiorespiratory control centers 6 h after Poly I:C injection. CONCLUSIONS The alterations in heart-rate variability induced by Poly I:C injection may be, at least partly, of central origin. Meanwhile, the absence of alterations in respiratory-rate variability is intriguing and noteworthy. Although further studies are obviously needed, this might be a way to differentiate bacterial from viral sepsis in the neonatal period. IMPACT Provides unique observations on the cardiorespiratory consequences of injecting Poly I:C in a full-term newborn lamb to mimic a systemic inflammation secondary to a viral sepsis. Poly I:C injection led to a biphasic increase in rectal temperature and heart rate associated with an overall decrease in heart-rate variability, with no change in respiratory-rate variability. Brainstem inflammation was found in the areas of the cardiorespiratory control centers.
Collapse
|
42
|
Evaluation of 2-[ 18F]-Fluorodeoxysorbitol PET Imaging in Preclinical Models of Aspergillus Infection. J Fungi (Basel) 2021; 8:jof8010025. [PMID: 35049965 PMCID: PMC8780649 DOI: 10.3390/jof8010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Despite increasing associated mortality and morbidity, the diagnosis of fungal infections, especially with Aspergillus fumigatus (A. fumigatus), remains challenging. Based on known ability of Aspergillus species to utilize sorbitol, we evaluated 2-[18F]-fluorodeoxysorbitol (FDS), a recently described Enterobacterales imaging ligand, in animal models of A. fumigatus infection, in comparison with 2-[18F]-fluorodeoxyglucose (FDG). In vitro assays showed slightly higher 3H-sorbitol uptake by live compared with heat-killed A. fumigatus. However, this was 10.6-fold lower than E. coli uptake. FDS positron emission tomography (PET) imaging of A. fumigatus pneumonia showed low uptake in infected lungs compared with FDG (0.290 ± 0.030 vs. 8.416 ± 0.964 %ID/mL). This uptake was higher than controls (0.098 ± 0.008 %ID/mL) and minimally higher than lung inflammation (0.167 ± 0.007 %ID/mL). In the myositis models, FDS uptake was highest in live E. coli infections. Uptake was low in A. fumigatus myositis model and only slightly higher in live compared with the heat-killed side. In conclusion, we found low uptake of 3H-sorbitol and FDS by A. fumigatus cultures and infection models compared with E. coli, likely due to the need for induction of sorbitol dehydrogenase by sorbitol. Our findings do not support FDS as an Aspergillus imaging agent. At this point, FDS remains more selective for imaging Gram-negative Enterobacterales.
Collapse
|
43
|
Activation of Innate Immunity by Therapeutic Nucleic Acids. Int J Mol Sci 2021; 22:ijms222413360. [PMID: 34948156 PMCID: PMC8704878 DOI: 10.3390/ijms222413360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid-based therapeutics have gained increased attention during recent decades because of their wide range of application prospects. Immunostimulatory nucleic acids represent a promising class of potential drugs for the treatment of tumoral and viral diseases due to their low toxicity and stimulation of the body’s own innate immunity by acting on the natural mechanisms of its activation. The repertoire of nucleic acids that directly interact with the components of the immune system is expanding with the improvement of both analytical methods and methods for the synthesis of nucleic acids and their derivatives. Despite the obvious progress in this area, the problem of delivering therapeutic acids to target cells as well as the unresolved issue of achieving a specific therapeutic effect based on activating the mechanism of interferon and anti-inflammatory cytokine synthesis. Minimizing the undesirable effects of excessive secretion of inflammatory cytokines remains an unsolved task. This review examines recent data on the types of immunostimulatory nucleic acids, the receptors interacting with them, and the mechanisms of immunity activation under the action of these molecules. Finally, data on immunostimulatory nucleic acids in ongoing and completed clinical trials will be summarized.
Collapse
|
44
|
Madushani KP, Shanaka KASN, Madusanka RK, Lee J. Molecular characterization and expressional analysis of two poly (ADP-ribose) polymerase (PARP) domain-containing Gig2 isoforms in rockfish (Sebastes schlegelii) and their antiviral activity against viral hemorrhagic septicemia virus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:219-227. [PMID: 34509626 DOI: 10.1016/j.fsi.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Remedies toward sustainable aquaculture rely upon research that unveils the molecular mechanisms behind host immunity and their interactions with pathogens. Antiviral defense is a major innate immune response in fish. The antiviral protein GCHV-induced gene-2 (Gig2), a member of the interferon-stimulated gene (ISG), was identified and characterized from rockfish (Sebastes schlegelii). Gig2 exists in two isoforms, namely, SsGig2-I1 and SsGig2-I2, in rockfish with lengths of 163 and 223 bp, respectively. Bioinformatic analysis indicated the availability of poly (ADP-ribose) polymerase domain in both proteins, and 51.3% identity and 71.3% similarity between both isoforms were observed. The basal expression pattern revealed the highest tissue-specific expression in rockfish gills for both isoforms. The immune challenge experiment disclosed a distinctive and strong expression of each transcript in the presence of poly I:C. Both isoforms are localized in the endoplasmic reticulum. Interferon (IFN) pathway gene analysis revealed no significant upregulation of IFN related genes. Viral hemorrhagic septicemia virus (VHSV) gene expression analysis revealed strong downregulation of viral transcripts after 48 h of infection in the presence of Gig2 isoforms. Collectively, these results indicate the protective role of Gig2 in rockfish against VHSV infection and help broaden our understanding of the innate immunity of fish.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
45
|
Segatori VI, Garona J, Caligiuri LG, Bizzotto J, Lavignolle R, Toro A, Sanchis P, Spitzer E, Krolewiecki A, Gueron G, Alonso DF. Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients. Viruses 2021; 13:2084. [PMID: 34696514 PMCID: PMC8537229 DOI: 10.3390/v13102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.
Collapse
Affiliation(s)
- Valeria Inés Segatori
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
- Centro de Medicina Traslacional, Hospital El Cruce, Florencio Varela B1888AAE, Argentina
| | - Lorena Grisel Caligiuri
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ayelén Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Eduardo Spitzer
- Laboratorio Elea-Phoenix, Los Polvorines B1613AUE, Argentina;
| | - Alejandro Krolewiecki
- Instituto de Investigaciones de Enfermedades Tropicales (IIET-CONICET), Sede Regional Orán, Universidad Nacional de Salta, Orán A4530ANQ, Argentina;
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Daniel Fernando Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| |
Collapse
|
46
|
Ding J, Aldo P, Roberts CM, Stabach P, Liu H, You Y, Qiu X, Jeong J, Maxwell A, Lindenbach B, Braddock D, Liao A, Mor G. Placenta-derived interferon-stimulated gene 20 controls ZIKA virus infection. EMBO Rep 2021; 22:e52450. [PMID: 34405956 PMCID: PMC8490983 DOI: 10.15252/embr.202152450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Zika virus is a positive-sense single-stranded RNA virus, which can be transmitted across the placenta and has adverse effects on fetal development during pregnancy. The severity of these complications highlights the importance of prevention and treatment. However, no vaccines or drugs are currently available. In this study, we characterize the IFNβ-mediated anti-viral response in trophoblast cells in order to identify critical components that are necessary for the successful control of viral replication and determine whether components of the IFN-induced response can be used as a replacement therapy for ZIKA virus infection during pregnancy. We identify and characterize interferon-stimulated gene 20 (ISG20) as playing a central role in controlling Zika virus infection in trophoblast cells and successfully establish a recombinant ISG20-Fc protein that effectively decreases viral titers in vitro and in vivo by maintaining its exonuclease activity and displaying potential immune modulatory functions. Recombinant ISG20-Fc has thus the potential to be further developed as an anti-viral treatment against ZIKA viral infection in high-risk populations, particularly in pregnant women.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Cai M Roberts
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Paul Stabach
- Department of PathologyYale University School of MedicineNew HavenCTUSA
| | - Hong Liu
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan You
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jiwon Jeong
- Massachusetts College of Pharmacy and Health SciencesBostonMAUSA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| | - Brett Lindenbach
- Department of Microbial PathogenesisYale University School of MedicineNew HavenCTUSA
| | | | - Aihua Liao
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gil Mor
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| |
Collapse
|
47
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|
48
|
Madhuranga WSP, Tharuka MDN, Harasgama JC, Kwon H, Wan Q, Lee J. Immune responses, subcellular localization, and antiviral activity of interferon-induced protein 35 (IFP35) in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104142. [PMID: 34044039 DOI: 10.1016/j.dci.2021.104142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Interferon-induced protein 35 kDa (IFP35) has been demonstrated to play important roles in antiviral defense, inflammatory response and cancer progression. However, its precise function in teleost fish remains to be elucidated. Herein, we functionally characterized the rock bream (Oplegnathus fasciatus) IFP35 (OfIFP35) to understand its expression pattern, subcellular localization, antiviral activity, and regulation of downstream genes. OfIFP35 consists of an 1107 bp open reading frame encoding 368 amino acids, including two N-myc-interactor (Nmi)/IFP35 domains (NIDs). The predicted molecular weight of OfIFP35 was 42 kDa, with a theoretical isoelectric point (pI) of 5.10. Evolutionary conservation of IFP35 was analyzed using multiple, pairwise alignments and phylogenetic tree analysis. OfIFP35 in rock bream was found to be highest expressed in the gills. Immune challenges with iridovirus, polyinosinic:polycytidylic acid, lipopolysaccharide, and live bacteria (Streptococcus iniae and Edwardsiella tarda) significantly upregulated its mRNA expression in gill and liver tissues of the rock bream. GFP-tagged OfIFP35 was localized in the cytoplasm of FHM cells, and its overexpression significantly suppressed VHSV transcription in vitro. Moreover, the analysis of downstream gene expression revealed that OfIFP35 could activate the type I interferon pathway. Collectively, these findings indicate that OfIFP35 is important for the immune system of rock bream as it promotes defense responses during viral infections.
Collapse
Affiliation(s)
- W S P Madhuranga
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
49
|
Chung SA, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cytokine Expression by Reducing Reactive Oxygen Species in Pancreatic Stellate Cells. J Cancer Prev 2021; 26:195-206. [PMID: 34703822 PMCID: PMC8511577 DOI: 10.15430/jcp.2021.26.3.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.
Collapse
Affiliation(s)
- Sun Ah Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyong Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
50
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|