1
|
Collantes-Fernández E, Horcajo P, Benavides J, Sánchez-Sánchez R, Blanco-Murcia J, Montaner-Da Torre S, Hecker YP, Ortega-Mora LM, Pastor-Fernández I. Evaluating the suitability of placental bovine explants for ex vivo modelling of host-pathogen interactions in Neospora caninum infections. Theriogenology 2024; 230:305-313. [PMID: 39368452 DOI: 10.1016/j.theriogenology.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Bovine abortions, often caused by infectious agents like Neospora caninum, inflict substantial economic losses. Studying host-pathogen interactions in pregnant cows is challenging, and existing cell cultures lack the intricate complexity of real tissues. To bridge the gap between in vitro and in vivo models, we explored the use of cryopreserved bovine placental explants. Building upon our successful development of protocols for obtaining, culturing, and cryopreserving sheep placental explants, we applied these methods to bovine tissues. Here, we compared fresh and cryopreserved bovine explants, evaluating their integrity and functionality over culture time. Additionally, we investigated their susceptibility to N. caninum infection. Our findings revealed that bovine explants deteriorate faster in culture compared to sheep explants, exhibiting diminished viability and function. Cryopreservation further exacerbated this deterioration. While fresh explants were successfully infected with N. caninum, parasite replication was limited. Notably, cryopreservation reduced infection efficiency. This pioneering work paves the way for developing ex vivo models to study reproductive pathogens in cattle. However, further optimization of the model is essential. These improved models will have the potential to significantly reduce the reliance on animals in research.
Collapse
Affiliation(s)
- Esther Collantes-Fernández
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Pilar Horcajo
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | | | - Roberto Sánchez-Sánchez
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Javier Blanco-Murcia
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain; Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Sandra Montaner-Da Torre
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Yanina P Hecker
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Iván Pastor-Fernández
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain; Parasitology Unit, Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| |
Collapse
|
2
|
Stapleton PA. The Application of Engineered Nanomaterials in Perinatal Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303072. [PMID: 37438678 PMCID: PMC10784409 DOI: 10.1002/smll.202303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Pregnancy is a vulnerable life stage for the mother and developing fetus. Because of this dual concern, approved therapeutic options for pre-existing conditions or pregnancy-induced pathologies, placental deformities, or fetal concerns are extremely limited. These cases often leave patients and clinicians having to choose between maternal health and fetal development. Recent advancements in nanomedicine and nanotherapeutic devices have made the development of perinatal therapeutics an attractive objective. However, perinatal medicine requires a multifaceted approach given the interactions between maternal, placental, and fetal physiology. Maternal-fetal interactions are centralized to the placenta, a specialized transient barrier organ, to allow for nutrient and waste exchange. Perinatal nanotherapeutics must be designed for placental avoidance or uptake. In this review, pregnancy-related conditions, experimental models, and modes of drug delivery during pregnancy are discussed.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ, 08854, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Portillo R, Abad C, Synova T, Kastner P, Heblik D, Kucera R, Karahoda R, Staud F. Cannabidiol disrupts tryptophan metabolism in the human term placenta. Toxicology 2024; 505:153813. [PMID: 38663822 DOI: 10.1016/j.tox.2024.153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
The increasing use of cannabis during pregnancy raises concerns about its impact on fetal development. While cannabidiol (CBD) shows therapeutic promise, its effects during pregnancy remain uncertain. We investigated CBD's influence on tryptophan (TRP) metabolism in the human placenta. TRP is an essential amino acid that is metabolized via the serotonin and kynurenine (KYN) pathways, which are critical for fetal neurodevelopment. We used human term villous placental explants, an advanced ex vivo model, to study CBD's impact on key TRP metabolic enzymes. In addition, vesicles isolated from the microvillous membrane (MVM) of the human placenta were used to assess CBD's effect on placental serotonin uptake. Explants were exposed to CBD at therapeutic (0.1, 1, 2.5 μg/ml) and non-therapeutic (20 and 40 μg/ml) concentrations to determine its effects on the gene and protein expression of key enzymes in TRP metabolism and metabolite release. CBD upregulated TRP hydroxylase (TPH) and downregulated monoamine oxidase (MAO-A), resulting in reduced levels of 5-hydroxyindoleacetic acid (HIAA). It also downregulated serotonin transporter expression and inhibited serotonin transport across the MVM by up to 60% while simultaneously enhancing TRP metabolism via the kynurenine pathway by upregulating indoleamine-pyrrole 2,3-dioxygenase (IDO-1). Among kynurenine pathway enzymes, kynurenine 3 monooxygenase (KMO) was upregulated while kynurenine aminotransferase 1 (KAT-1) was downregulated; the former is associated with neurotoxic metabolite production, while the latter is linked to reduced neuroprotective metabolite levels. Overall, these results indicate that CBD modulates TRP catabolism in the human placenta, potentially disrupting the tightly regulated homeostasis of the serotonin and KYN pathways.
Collapse
Affiliation(s)
- Ramon Portillo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Tetiana Synova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Daniel Heblik
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
López-Guzmán C, García AM, Ramirez JD, Aliaga TT, Fernández-Moya A, Kemmerling U, Vásquez AM. Plasmodium falciparum alters the trophoblastic barrier and stroma villi organization of human placental villi explants. Malar J 2024; 23:130. [PMID: 38693572 PMCID: PMC11064279 DOI: 10.1186/s12936-024-04960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The sequestration of Plasmodium falciparum infected erythrocytes in the placenta, and the resulting inflammatory response affects maternal and child health. Despite existing information, little is known about the direct impact of P. falciparum on the placental barrier formed by trophoblast and villous stroma. This study aimed to assess placental tissue damage caused by P. falciparum in human placental explants (HPEs). METHODS HPEs from chorionic villi obtained of human term placentas (n = 9) from normal pregnancies were exposed to P. falciparum-infected erythrocytes (IE) for 24 h. HPEs were embedded in paraffin blocks and used to study tissue damage through histopathological and histochemical analysis and apoptosis using TUNEL staining. Culture supernatants were collected to measure cytokine and angiogenic factors and to determine LDH activity as a marker of cytotoxicity. A subset of archived human term placenta paraffin-embedded blocks from pregnant women with malaria were used to confirm ex vivo findings. RESULTS Plasmodium falciparum-IE significantly damages the trophoblast layer and the villous stroma of the chorionic villi. The increased LDH activity and pathological findings such as syncytial knots, fibrin deposits, infarction, trophoblast detachment, and collagen disorganization supported these findings. The specific damage to the trophoblast and the thickening of the subjacent basal lamina were more pronounced in the ex vivo infection. In contrast, apoptosis was higher in the in vivo infection. This disparity could be attributed to the duration of exposure to the infection, which significantly varied between individuals naturally exposed over time and the 24-h exposure in the ex vivo HPE model. CONCLUSION Exposure to P. falciparum-IE induces a detachment of the syncytiotrophoblast, disorganization of the stroma villi, and an increase in apoptosis, alterations that may be associated with adverse results such as intrauterine growth restriction and low birth weight.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Ana María García
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Juan Diego Ramirez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Trinidad Torres Aliaga
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alejandro Fernández-Moya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ana María Vásquez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia.
- Escuela de Microbiología, Universidad de Antioquia, Calle 67 # 53-108, Bloque 5, Oficina 5-135, Medellín, Colombia.
| |
Collapse
|
5
|
López-Guzmán C, García AM, Marín P, Vásquez AM. Assessment of the Integrity and Function of Human Term Placental Explants in Short-Term Culture. Methods Protoc 2024; 7:16. [PMID: 38392690 PMCID: PMC10892929 DOI: 10.3390/mps7010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024] Open
Abstract
Human placental explants (HPEs) culture has generated significant interest as a valuable in vitro model for studying tissue functions in response to adverse conditions, such as fluctuations in oxygen levels, nutrient availability, exposure to pathogenic microorganisms, and toxic compounds. HPEs offers the advantage of replicating the intricate microenvironment and cell-to-cell communication involved in this critical and transient organ. Although HPEs culture conditions have been extensively discussed, a protocol for assessing the viability and function of HPEs during short-term culture has not been previously outlined. In this study, we have developed a short-term HPEs culture protocol, specifically up to 72 h, and have employed quantitative, semi-quantitative, and qualitative analyses to evaluate tissue viability and function over time. Under our standardized conditions, placental villi explants began to regain their structural properties (the integrity of the trophoblast and villous stroma) and the functionality of the HPEs (production of angiogenic, endocrine, and immunological factors) starting from 48 h of culture. This restoration ensures a suitable environment for several applications. The data presented here can be highly valuable for laboratories aiming to implement an HPEs model, whether in the process of standardization or seeking to enhance and optimize working conditions and timing with placental tissue.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Calle 62 # 52-59 Torre 1 Laboratorio 610, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (C.L.-G.); (A.M.G.); (P.M.)
| | - Ana María García
- Grupo Malaria, Calle 62 # 52-59 Torre 1 Laboratorio 610, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (C.L.-G.); (A.M.G.); (P.M.)
| | - Paula Marín
- Grupo Malaria, Calle 62 # 52-59 Torre 1 Laboratorio 610, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (C.L.-G.); (A.M.G.); (P.M.)
| | - Ana María Vásquez
- Grupo Malaria, Calle 62 # 52-59 Torre 1 Laboratorio 610, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (C.L.-G.); (A.M.G.); (P.M.)
- Escuela de Microbiologia, Calle 67 # 53-108, Bloque 5, Oficina 5-135, Universidad de Antioquia, Medellín 050001, Colombia
| |
Collapse
|
6
|
Horcajo P, Ortega-Mora LM, Benavides J, Sánchez-Sánchez R, Amieva R, Collantes-Fernández E, Pastor-Fernández I. Ovine placental explants: A new ex vivo model to study host‒pathogen interactions in reproductive pathogens. Theriogenology 2023; 212:157-171. [PMID: 37729817 DOI: 10.1016/j.theriogenology.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Reproductive failure is one of the main performance constraints in ruminant livestock. Transmissible agents such as Toxoplasma gondii and Neospora caninum are commonly involved in the occurrence of abortion in ruminants, but little is known about the mechanisms involved. While in vivo models are optimal for the study of abortion pathogenesis, they have a high economic cost and come with ethical concerns. Unfortunately, alternative in vitro models fail to replicate the complex in vivo placental structure. To overcome the limitations of currently available models, we developed an ex vivo model based on the cultivation of fresh and cryopreserved sheep placental explants, enabling the biobanking of tissues. Reproducible and simple markers of tissue integrity (histology, RNA concentrations), viability (resazurin reduction), and functionality (synthesis of steroid hormones) were also investigated, allowing a clear quality assessment of the model. This work shows that, similar to fresh explants, tissues cryopreserved in ethylene glycol using slow freezing rates maintain not only their structure and function but also their receptivity to T. gondii and N. caninum infection. In addition, the findings demonstrate that explant lifespan is mainly limited by the culture method, with protocols requiring improvements to extend it beyond 2 days. These findings suggest that cryopreserved tissues can be exploited to study the initial host‒pathogen interactions taking place in the placenta, thus deepening the knowledge of the specific mechanisms that trigger reproductive failure in sheep. Importantly, this work paves the way for the development of similar models in related species and contributes to the reduction of experimental animal use in the future.
Collapse
Affiliation(s)
- Pilar Horcajo
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-ULE), Grulleros, León, 24346, Spain.
| | - Roberto Sánchez-Sánchez
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Rafael Amieva
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Esther Collantes-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Iván Pastor-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
7
|
Liu X, Wang G, Huang H, Lv X, Si Y, Bai L, Wang G, Li Q, Yang W. Exploring maternal-fetal interface with in vitro placental and trophoblastic models. Front Cell Dev Biol 2023; 11:1279227. [PMID: 38033854 PMCID: PMC10682727 DOI: 10.3389/fcell.2023.1279227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.
Collapse
Affiliation(s)
- Xinlu Liu
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Gang Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haiqin Huang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Xin Lv
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Yanru Si
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Lixia Bai
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Guohui Wang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Weiwei Yang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
Tekkatte C, Lindsay SA, Duggan E, Castro-Martínez A, Hakim A, Saldana I, Zhang Y, Zhou J, Sebastian R, Liu Y, Pontigon DS, Meads M, Liu TN, Pizzo DP, Nolan J, Parast MM, Laurent LC. Identification of optimal conditions for human placental explant culture and extracellular vesicle release. iScience 2023; 26:108046. [PMID: 37829201 PMCID: PMC10565782 DOI: 10.1016/j.isci.2023.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/17/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Extracellular vesicles (EVs) can mediate intercellular communication, including signaling between the placenta and maternal tissues. Human placental explant culture is a versatile in vitro model system to investigate placental function. We performed systematic studies in different tissue culture media types and oxygen tensions to identify a defined serum-free culture condition that supports high trophoblast viability and metabolism, as well as the release of similar populations of EVs, compared to traditional undefined conditions that contain media additives potentially contaminated with exogenous EVs. We also determined the time frame in which trophoblast viability and functionality remain optimal. Multiplex vesicle flow cytometry with classical EV and placenta-specific markers revealed three separate populations of explant-derived EVs: small CD63+ EVs; large PLAP+ EVs; and CD63-/PLAP- EVs. These culture and analytical approaches will enable in vitro modeling of short-term effects of environmental perturbations associated with pregnancy complications on placental function and EV release.
Collapse
Affiliation(s)
- Chandana Tekkatte
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Scott A. Lindsay
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Erika Duggan
- Scintillon Institute, San Diego, CA 92121, USA
- Cellarcus Biosciences Inc, La Jolla, CA 92037, USA
| | - Anelizze Castro-Martínez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Abbas Hakim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Isabella Saldana
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yan Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jun Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rachel Sebastian
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yukun Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Obstetrics and Gynecology, SUN Yat-sen Memorial Hospital, SUN Yat-sen University, Guangzhou, Guangdong, China
| | - Devin S. Pontigon
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Morgan Meads
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Tzu Ning Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Donald P. Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - John Nolan
- Scintillon Institute, San Diego, CA 92121, USA
- Cellarcus Biosciences Inc, La Jolla, CA 92037, USA
| | - Mana M. Parast
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
10
|
Huang L, Tu Z, Wei L, Sun W, Wang Y, Bi S, He F, Du L, Chen J, Kzhyshkowska J, Wang H, Chen D, Zhang S. Generating Functional Multicellular Organoids from Human Placenta Villi. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301565. [PMID: 37438660 PMCID: PMC10502861 DOI: 10.1002/advs.202301565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Indexed: 07/14/2023]
Abstract
The interaction between trophoblasts, stroma cells, and immune cells at the maternal-fetal interface constitutes the functional units of the placenta, which is crucial for successful pregnancy outcomes. However, the investigation of this intricate interplay is restricted due to the absence of efficient experimental models. To address this challenge, a robust, reliable methodology for generating placenta villi organoids (PVOs) from early, late, or diseased pregnancies using air-liquid surface culture is developed. PVOs contain cytotrophoblasts that can self-renew and differentiate directly, along with stromal elements that retain native immune cells. Analysis of scRNA sequencing and WES data reveals that PVOs faithfully recapitulate the cellular components and genetic alterations of the corresponding source tissue. Additionally, PVOs derived from patients with preeclampsia exhibit specific pathological features such as inflammation, antiangiogenic imbalance, and decreased syncytin expression. The PVO-based propagation of primary placenta villi should enable a deeper investigation of placenta development and exploration of the underlying pathogenesis and therapeutics of placenta-originated diseases.
Collapse
Affiliation(s)
- Lijun Huang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Zhaowei Tu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Liudan Wei
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Wei Sun
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yifan Wang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Shilei Bi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Fang He
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Lili Du
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Jingsi Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and ImmunologyMedical Faculty MannheimUniversity of Heidelberg68167MannheimGermany
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health ResearchDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamen361005China
| | - Dunjin Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
- Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhou510150China
- Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineGuangzhou510150China
- Guangdong Engineering and Technology Research Center of Maternal‐Fetal MedicineGuangzhou510150China
| | - Shuang Zhang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| |
Collapse
|
11
|
Rasool A, Mahmoud T, O’Tierney-Ginn P. Lipid Aldehydes 4-Hydroxynonenal and 4-Hydroxyhexenal Exposure Differentially Impact Lipogenic Pathways in Human Placenta. BIOLOGY 2023; 12:527. [PMID: 37106728 PMCID: PMC10135722 DOI: 10.3390/biology12040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Long chain polyunsaturated fatty acids (LCPUFAs), such as the omega-6 (n-6) arachidonic acid (AA) and n-3 docosahexanoic acid (DHA), have a vital role in normal fetal development and placental function. Optimal supply of these LCPUFAs to the fetus is critical for improving birth outcomes and preventing programming of metabolic diseases in later life. Although not explicitly required/recommended, many pregnant women take n-3 LCPUFA supplements. Oxidative stress can cause these LCPUFAs to undergo lipid peroxidation, creating toxic compounds called lipid aldehydes. These by-products can lead to an inflammatory state and negatively impact tissue function, though little is known about their effects on the placenta. Placental exposure to two major lipid aldehydes, 4-hydroxynonenal (4-HNE) and 4-hydroxyhexenal (4-HHE), caused by peroxidation of the AA and DHA, respectively, was examined in the context of lipid metabolism. We assessed the impact of exposure to 25 μM, 50 μM and 100 μM of 4-HNE or 4-HHE on 40 lipid metabolism genes in full-term human placenta. 4-HNE increased gene expression associated with lipogenesis and lipid uptake (ACC, FASN, ACAT1, FATP4), and 4-HHE decreased gene expression associated with lipogenesis and lipid uptake (SREBP1, SREBP2, LDLR, SCD1, MFSD2a). These results demonstrate that these lipid aldehydes differentially affect expression of placental FA metabolism genes in the human placenta and may have implications for the impact of LCPUFA supplementation in environments of oxidative stress.
Collapse
|
12
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Luconi M, Sogorb MA, Markert UR, Benfenati E, May T, Wolbank S, Roncaglioni A, Schmidt A, Straccia M, Tait S. Human-Based New Approach Methodologies in Developmental Toxicity Testing: A Step Ahead from the State of the Art with a Feto-Placental Organ-on-Chip Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15828. [PMID: 36497907 PMCID: PMC9737555 DOI: 10.3390/ijerph192315828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Developmental toxicity testing urgently requires the implementation of human-relevant new approach methodologies (NAMs) that better recapitulate the peculiar nature of human physiology during pregnancy, especially the placenta and the maternal/fetal interface, which represent a key stage for human lifelong health. Fit-for-purpose NAMs for the placental-fetal interface are desirable to improve the biological knowledge of environmental exposure at the molecular level and to reduce the high cost, time and ethical impact of animal studies. This article reviews the state of the art on the available in vitro (placental, fetal and amniotic cell-based systems) and in silico NAMs of human relevance for developmental toxicity testing purposes; in addition, we considered available Adverse Outcome Pathways related to developmental toxicity. The OECD TG 414 for the identification and assessment of deleterious effects of prenatal exposure to chemicals on developing organisms will be discussed to delineate the regulatory context and to better debate what is missing and needed in the context of the Developmental Origins of Health and Disease hypothesis to significantly improve this sector. Starting from this analysis, the development of a novel human feto-placental organ-on-chip platform will be introduced as an innovative future alternative tool for developmental toxicity testing, considering possible implementation and validation strategies to overcome the limitation of the current animal studies and NAMs available in regulatory toxicology and in the biomedical field.
Collapse
Affiliation(s)
- Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| | - Miguel A. Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Wolbank
- Ludwig Boltzmann Institut for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Alessandra Roncaglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Marco Straccia
- FRESCI by Science&Strategy SL, C/Roure Monjo 33, Vacarisses, 08233 Barcelona, Spain
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
14
|
Fakhr Y, Koshti S, Habibyan YB, Webster K, Hemmings DG. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int J Mol Sci 2022; 23:ijms23073750. [PMID: 35409108 PMCID: PMC8998215 DOI: 10.3390/ijms23073750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Saloni Koshti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Yasaman Bahojb Habibyan
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kirsten Webster
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Denise G. Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-2098
| |
Collapse
|
15
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
16
|
Targeted Delivery of Epidermal Growth Factor to the Human Placenta to Treat Fetal Growth Restriction. Pharmaceutics 2021; 13:pharmaceutics13111778. [PMID: 34834193 PMCID: PMC8618188 DOI: 10.3390/pharmaceutics13111778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
Placental dysfunction is the underlying cause of pregnancy complications such as fetal growth restriction (FGR) and pre-eclampsia. No therapies are available to treat a poorly functioning placenta, primarily due to the risks of adverse side effects in both the mother and the fetus resulting from systemic drug delivery. The use of targeted liposomes to selectively deliver payloads to the placenta has the potential to overcome these issues. In this study, we assessed the safety and efficacy of epidermal growth factor (EGF)-loaded, peptide-decorated liposomes to improve different aspects of placental function, using tissue from healthy control pregnancies at term, and pregnancies complicated by FGR. Phage screening identified a peptide sequence, CGPSARAPC (GPS), which selectively homed to mouse placentas in vivo, and bound to the outer syncytiotrophoblast layer of human placental explants ex vivo. GPS-decorated liposomes were prepared containing PBS or EGF (50–100 ng/mL), and placental explants were cultured with liposomes for up to 48 h. Undecorated and GPS-decorated liposomes containing PBS did not affect the basal rate of amino acid transport, human chorionic gonadotropin (hCG) release or cell turnover in placental explants from healthy controls. GPS-decorated liposomes containing EGF significantly increased amino acid transporter activity in healthy control explants, but not in placental explants from women with FGR. hCG secretion and cell turnover were unaffected by EGF delivery; however, differential activation of downstream protein kinases was observed when EGF was delivered via GPS-decorated vs. undecorated liposomes. These data indicate that targeted liposomes represent a safe and useful tool for the development of new therapies for placental dysfunction, recapitulating the effects of free EGF.
Collapse
|
17
|
Kupper N, Pritz E, Siwetz M, Guettler J, Huppertz B. Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. Int J Mol Sci 2021; 22:ijms22147464. [PMID: 34299084 PMCID: PMC8308011 DOI: 10.3390/ijms22147464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
During pregnancy, freely floating placental villi are adapted to fluid shear stress due to placental perfusion with maternal plasma and blood. In vitro culture of placental villous explants is widely performed under static conditions, hoping the conditions may represent the in utero environment. However, static placental villous explant culture dramatically differs from the in vivo situation. Thus, we established a flow culture system for placental villous explants and compared commonly used static cultured tissue to flow cultured tissue using transmission and scanning electron microscopy, immunohistochemistry, and lactate dehydrogenase (LDH) and human chorionic gonadotropin (hCG) measurements. The data revealed a better structural and biochemical integrity of flow cultured tissue compared to static cultured tissue. Thus, this new flow system can be used to simulate the blood flow from the mother to the placenta and back in the most native-like in vitro system so far and thus can enable novel study designs.
Collapse
|
18
|
Aplin JD, Jones CJP. Cell dynamics in human villous trophoblast. Hum Reprod Update 2021; 27:904-922. [PMID: 34125187 DOI: 10.1093/humupd/dmab015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Villous cytotrophoblast (vCTB) is a precursor cell population that supports the development of syncytiotrophoblast (vSTB), the high surface area barrier epithelium of the placental villus, and the primary interface between maternal and fetal tissue. In light of increasing evidence that the placenta can adapt to changing maternal environments or, under stress, can trigger maternal disease, we consider what properties of these cells empower them to exert a controlling influence on pregnancy progression and outcome. OBJECTIVE AND RATIONALE How are cytotrophoblast proliferation and differentiation regulated in the human placental villus to allow for the increasing demands of the fetal and environmental challenges and stresses that may arise during pregnancy? SEARCH METHODS PubMed was interrogated using relevant keywords and word roots combining trophoblast, villus/villous, syncytio/syncytium, placenta, stem, transcription factor (and the individual genes), signalling, apoptosis, autophagy (and the respective genes) from 1960 to the present. Since removal of trophoblast from its tissue environment is known to fundamentally change cell growth and differentiation kinetics, research that relied exclusively on cell culture has not been the main focus of this review, though it is mentioned where appropriate. Work on non-human placenta is not systematically covered, though mention is made where relevant hypotheses have emerged. OUTCOMES The synthesis of data from the literature has led to a new hypothesis for vCTB dynamics. We propose that a reversible transition can occur from a reserve population in G0 to a mitotically active state. Cells from the in-cycle population can then differentiate irreversibly to intermediate cells that leave the cycle and turn on genes that confer the capacity to fuse with the overlying vSTB as well as other functions associated with syncytial barrier and transport function. We speculate that alterations in the rate of entry to the cell cycle, or return of cells in the mitotic fraction to G0, can occur in response to environmental challenge. We also review evidence on the life cycle of trophoblast from the time that fusion occurs, and point to gaps in knowledge of how large quantities of fetal DNA arrive in maternal circulation. We critique historical methodology and make a case for research to re-address questions about trophoblast lifecycle and dynamics in normal pregnancy and the common diseases of pre-eclampsia and fetal growth restriction, where altered trophoblast kinetics have long been postulated. WIDER IMPLICATIONS The hypothesis requires experimental testing, moving research away from currently accepted methodology towards a new standard that includes representative cell and tissue sampling, assessment of cell cycle and differentiation parameters, and robust classification of cell subpopulations in villous trophoblast, with due attention to gestational age, maternal and fetal phenotype, disease and outcome.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
19
|
Schmidt S. BPS and Cell Fusion in the Human Placenta: A Separate Mechanism of Action? ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:64003. [PMID: 34184920 PMCID: PMC8240719 DOI: 10.1289/ehp9248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
|
20
|
Hypoxia and oxidative stress induce sterile placental inflammation in vitro. Sci Rep 2021; 11:7281. [PMID: 33790316 PMCID: PMC8012380 DOI: 10.1038/s41598-021-86268-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) and stillbirth are associated with placental dysfunction and inflammation and hypoxia, oxidative and nitrative stress are implicated in placental damage. Damage-associated molecular patterns (DAMPs) are elevated in pregnancies at increased risk of FGR and stillbirth and are associated with increase in pro-inflammatory placental cytokines. We hypothesised that placental insults lead to release of DAMPs, promoting placental inflammation. Placental tissue from uncomplicated pregnancies was exposed in vitro to hypoxia, oxidative or nitrative stress. Tissue production and release of DAMPs and cytokines was determined. Oxidative stress and hypoxia caused differential release of DAMPs including uric acid, HMGB1, S100A8, cell-free fetal DNA, S100A12 and HSP70. After oxidative stress pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, TNFα, CCL2) were increased both within explants and in conditioned culture medium. Hypoxia increased tissue IL-1α/β, IL-6, IL-8 and TNFα levels, and release of IL-1α, IL-6 and IL-8, whereas CCL2 and IL-10 were reduced. IL1 receptor antagonist (IL1Ra) treatment prevented hypoxia- and oxidative stress-induced IL-6 and IL-8 release. These findings provide evidence that relevant stressors induce a sterile inflammatory profile in placental tissue which can be partially blocked by IL1Ra suggesting this agent has translational potential to prevent placental inflammation evident in FGR and stillbirth.
Collapse
|
21
|
Kudo Y, Koh I, Sugimoto J. Localization of Indoleamine 2,3-Dioxygenase-1 and Indoleamine 2,3-Dioxygenase-2 at the Human Maternal-Fetal Interface. Int J Tryptophan Res 2020; 13:1178646920984163. [PMID: 33447047 PMCID: PMC7780199 DOI: 10.1177/1178646920984163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/01/2020] [Indexed: 02/03/2023] Open
Abstract
Immunohistochemical localization of indoleamine 2,3-dioxygenase-1 and indoleamine 2,3-dioxygenase-2, the first and rate-limiting enzyme in tryptophan metabolism along the kynurenine pathway, has been studied in order to better understand the physiological significance of these enzymes at the maternal-fetal interface of human pregnancy with a gestational age of 7 weeks (n = 1) and term placentas (37-40 weeks of gestation, n = 5). Indoleamine 2,3-dioxygenase-1 protein immunoreactivity was found in glandular epithelium of the decidua and the endothelium of the fetal blood vessels in the villous stroma with some additional positive cells in the villous core and in the decidua. The syncytiotrophoblast stained strongly for indoleamine 2,3-dioxygenase-2. Immunoreactivity of kynurenine, the immediate downstream product of indoleamine 2,3-dioxygenase-mediated tryptophan metabolism, showed the same localization as that of indoleamine 2,3-dioxygenase-1 and indoleamine 2,3-dioxygenase-2, suggesting these are functional enzymes. Interferon-γ added to placental villous explant culture markedly stimulated expression level of both mRNA and immunoreactivity of indoleamine 2,3-dioxygenase-1. The different cellular expression and interferon-γ sensitivity of these enzymes at the maternal-fetal interface suggests distinct physiological roles for each enzyme in normal human viviparity.
Collapse
Affiliation(s)
- Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Iemasa Koh
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
22
|
Zabel RR, Bär C, Ji J, Schultz R, Hammer M, Groten T, Schleussner E, Morales-Prieto DM, Markert UR, Favaro RR. Enrichment and characterization of extracellular vesicles from ex vivo one-sided human placenta perfusion. Am J Reprod Immunol 2020; 86:e13377. [PMID: 33175429 DOI: 10.1111/aji.13377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Extracellular vesicles (EVs) released by the placenta are packed with biological information and play a major role in fetomaternal communication. Here, we describe a comprehensive set-up for the enrichment and characterization of EVs from human placenta perfusion and their application in further assays. METHOD OF STUDY Human term placentas were used for 3 h ex vivo one-sided perfusions to simulate the intervillous circulation. Thereafter, populations of small (sEVs) and large EV (lEVs) were enriched from placental perfusate via serial ultracentrifugation. Following, EV populations were characterized regarding their size, protein concentration, RNA levels, expression of surface markers as well as their uptake and miRNA transfer to recipient cells. RESULTS The sEV and lEV fractions from an entire perfusate yielded, respectively, 294 ± 32 µg and 525 ± 96 µg of protein equivalents and 2.6 ± 0.5 µg and 3.6 ± 0.9 µg of RNA. The sEV fraction had a mean diameter of 117 ± 47 nm, and the lEV fraction presented 236 ± 54 nm. CD63 was strongly detected by dot blot in sEVs, whereas only traces of this marker were found in lEVs. Both EV fractions were positive for the trophoblast marker PLAP (placental alkaline phosphatase) and annexin A1. EV internalization in immune cells was visualized by confocal microscopy, and the transfer of placental miRNAs was detected by quantitative real-time PCR (qPCR). CONCLUSIONS Enriched EV populations showed characteristic features of sEVs and lEVs. EV uptake and transfer of miRNAs to recipient cells demonstrated their functional integrity. Therefore, we advocate the ex vivo one-sided placenta perfusion as a robust approach for the collection of placental EVs.
Collapse
Affiliation(s)
- Rachel R Zabel
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Christin Bär
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Jinlu Ji
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Tanja Groten
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | | | - Udo R Markert
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Rodolfo R Favaro
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Eliesen GAM, van Hove H, Meijer MH, van den Broek PHH, Pertijs J, Roeleveld N, van Drongelen J, Russel FGM, Greupink R. Toxicity of anticancer drugs in human placental tissue explants and trophoblast cell lines. Arch Toxicol 2020; 95:557-571. [PMID: 33083868 PMCID: PMC7870638 DOI: 10.1007/s00204-020-02925-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
The application of anticancer drugs during pregnancy is associated with placenta-related adverse pregnancy outcomes. Therefore, it is important to study placental toxicity of anticancer drugs. The aim of this study was to compare effects on viability and steroidogenesis in placental tissue explants and trophoblast cell lines. Third trimester placental tissue explants were exposed for 72 h (culture day 4–7) to a concentration range of doxorubicin, paclitaxel, cisplatin, carboplatin, crizotinib, gefitinib, imatinib, or sunitinib. JEG-3, undifferentiated BeWo, and syncytialised BeWo cells were exposed for 48 h to the same drugs and concentrations. After exposure, tissue and cell viability were assessed and progesterone and estrone levels were quantified in culture medium. Apart from paclitaxel, all compounds affected both cell and tissue viability at clinically relevant concentrations. Paclitaxel affected explant viability moderately, while it reduced cell viability by 50% or more in all cell lines, at 3–10 nM. Doxorubicin (1 µM) reduced viability in explants to 83 ± 7% of control values, whereas it fully inhibited viability in all cell types. Interference with steroid release in explants was difficult to study due to large variability in measurements, but syncytialised BeWo cells proved suitable for this purpose. We found that 1 µM sunitinib reduced progesterone release to 76 ± 6% of control values, without affecting cell viability. While we observed differences between the models for paclitaxel and doxorubicin, most anticancer drugs affected viability significantly in both placental explants and trophoblast cell lines. Taken together, the placenta should be recognized as a potential target organ for toxicity of anticancer drugs.
Collapse
Affiliation(s)
- Gaby A M Eliesen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Hedwig van Hove
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maartje H Meijer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jeanne Pertijs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Joris van Drongelen
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, (Route 137), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Peñaranda DS, Bäuerl C, Tomás-Vidal A, Jover-Cerdá M, Estruch G, Pérez Martínez G, Martínez Llorens S. Intestinal Explant Cultures from Gilthead Seabream ( Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet. Int J Mol Sci 2020; 21:ijms21207584. [PMID: 33066515 PMCID: PMC7588912 DOI: 10.3390/ijms21207584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023] Open
Abstract
The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1β (IL1-β), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).
Collapse
Affiliation(s)
- David Sánchez Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
- Correspondence: ; Tel.: +34-9638-79434
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas (CSIC) (Spanish National Research Council), 46980 Paterna, Valencia, Spain; (C.B.); (G.P.M.)
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| | - Gaspar Pérez Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Consejo Superior de Investigaciones Científicas (CSIC) (Spanish National Research Council), 46980 Paterna, Valencia, Spain; (C.B.); (G.P.M.)
| | - Silvia Martínez Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain; (A.T.-V.); (M.J.-C.); (G.E.); (S.M.L.)
| |
Collapse
|
25
|
Gorczyca L, Du J, Bircsak KM, Wen X, Vetrano AM, Aleksunes LM. Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters. FEBS Lett 2020; 595:811-827. [PMID: 32978975 DOI: 10.1002/1873-3468.13937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023]
Abstract
Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1. Similar upregulation of MRP1 and downregulation of MRP5 and BCRP were observed in explants, whereas uptake transporters were decreased or unchanged. Furthermore, a screening of transcriptional regulators of transporters revealed that hypoxia leads to a decrease in the mRNA levels of aryl hydrocarbon receptor, nuclear factor erythroid 2-related factor 2, and retinoid x receptor alpha in both human placental models. These data suggest that transporter expression is differentially regulated by oxygen concentration across experimental human placental models.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Jianyao Du
- China Pharmaceutical University, Nanjing, China
| | - Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anna M Vetrano
- Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
26
|
Xiao X, Tang Y, Wooff Y, Su C, Kang M, O'Carroll SJ, Chen Q, Chamley L. Upregulation of pannexin-1 hemichannels explains the apparent death of the syncytiotrophoblast during human placental explant culture. Placenta 2020; 94:1-12. [PMID: 32217265 DOI: 10.1016/j.placenta.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND It has been reported that during the culture of human placental explants, the syncytiotrophoblast dies between 3 and 24 h and is then replaced within 48 h by a new syncytiotrophoblast layer formed by the fusion of underlying cytotrophoblasts. Most frequently the death of the syncytiotrophoblast is indicated by the uptake of nuclear stains such as propidium iodide (PI). This process is reportedly similar in both early and late gestation placental explants. METHODS We cultured first trimester placental explants for up to 48 h and tested membrane intactness by exposure to PI. Connexin and pannexin mRNAs were quantified by RT-PCR and protein levels determined by immunofluorescence. The syncytiotrophoblast membrane leak was determined by culturing explants in the presence of hemichannel blockers. Extrusion of extracellular vesicles from the syncytiotrophoblast was quantified. RESULTS Nuclei of the syncytiotrophoblast were stained with PI following approximately 4 h of culture and this was prevented by culturing the explants with pannexin-1 blockers. Expression of pannexin-1 hemichannels increased during explant culture (p = 0.0027). Extracellular vesicles were most abundantly extruded from the explants during the first 3 h of culture and the temporal pattern of extrusion was unaltered by blocking hemichannels. DISCUSSION We show the mechanism of uptake of nuclear non-viability stains into the syncytiotrophoblast during explant culture is via upregulation of pannexin 1 hemichannels. Contrary to suggestions by some, the production of extracellular vesicles from cultured placental explants is not an in vitro artefact resulting from the apparent death of the syncytiotrophoblast in explant cultures.
Collapse
Affiliation(s)
- Xirong Xiao
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Yunhui Tang
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Yvette Wooff
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Chunlin Su
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Matt Kang
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Larry Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| |
Collapse
|
27
|
Wilson RL, Owens K, Sumser EK, Fry MV, Stephens KK, Chuecos M, Carrillo M, Schlabritz-Loutsevitch N, Jones HN. Nanoparticle mediated increased insulin-like growth factor 1 expression enhances human placenta syncytium function. Placenta 2020; 93:1-7. [PMID: 32090963 DOI: 10.1016/j.placenta.2020.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Placental dysfunction is an underlying cause of many major obstetric diseases and treatment options for complications like fetal growth restriction (FGR) are limited .We previously demonstrated nanoparticle delivery of the human insulin-like growth factor 1 (hIGF1) transgene under control of the trophoblast-specific PLAC1 promoter maintains normal fetal growth in a surgically-induced FGR mouse model. However, uptake by human placental syncytiotrophoblast has yet to be determined. METHODS An ex vivo human placenta perfusion model, term placenta villous fragments, and other in vitro syncytiotrophoblast models were used to determine nanoparticle uptake, transgene expression, and functional responses under oxidative stress conditions. RESULTS In the ex vivo perfusion, fluorescence from a Texas-Red conjugated nanoparticle increased in maternal perfusate upon nanoparticle addition and declined by the conclusion of the experiment (P < 0.001. Fluorescent histology confirmed localization in the syncytiotrophoblasts. No Texas-Red fluorescence was detected in the fetal perfusate. Transgene expression of hIGF1 in differentiated BeWo cells, isolated primary trophoblasts and fragments was increased compared to untreated (55,000-fold, P = 0.0003; 95-fold, P = 0.003; 400-fold, P < 0.001, respectively). Functionally, increased hIGF1 expression in villous fragments resulted in translocation of glucose transporter 1 to the syncytiotrophoblast cell membrane and under conditions of oxidative stress in BeWo cells, protected against increased cell death (P < 0.01) and decreased mitochondrial activity (P < 0.01). CONCLUSION The current study confirms that our nanoparticle is capable of uptake in human placental syncytium which results in enhanced transgene expression, functional changes to cellular activity and protection against increased oxidative stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229.
| | - Kathryn Owens
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Emily K Sumser
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Matthew V Fry
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Kendal K Stephens
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| | - Marcel Chuecos
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA, 79763
| | - Maira Carrillo
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA, 79763
| | | | - Helen N Jones
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA, 45229
| |
Collapse
|
28
|
Ding H, Illsley NP, Chang RC. 3D Bioprinted GelMA Based Models for the Study of Trophoblast Cell Invasion. Sci Rep 2019; 9:18854. [PMID: 31827129 PMCID: PMC6906490 DOI: 10.1038/s41598-019-55052-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Bioprinting is an emerging and promising technique for fabricating 3D cell-laden constructs for various biomedical applications. In this paper, we employed 3D bioprinted GelMA-based models to investigate the trophoblast cell invasion phenomenon, enabling studies of key placental functions. Initially, a set of optimized material and process parameters including GelMA concentration, UV crosslinking time and printing configuration were identified by systematic, parametric study. Following this, a multiple-ring model (2D multi-ring model) was tested with the HTR-8/SVneo trophoblast cell line to measure cell movement under the influence of EGF (chemoattractant) gradients. In the multi-ring model, the cell front used as a cell invasion indicator moves at a rate of 85 ± 33 µm/day with an EGF gradient of 16 µM. However, the rate was dramatically reduced to 13 ± 5 µm/day, when the multi-ring model was covered with a GelMA layer to constrain cells within the 3D environment (3D multi-ring model). Due to the geometric and the functional limitations of multi-ring model, a multi-strip model (2D multi-strip model) was developed to investigate cell movement in the presence and absence of the EGF chemoattractant. The results show that in the absence of an overlying cell-free layer of GelMA, movement of the cell front shows no significant differences between control and EGF-stimulated rates, due to the combination of migration and proliferation at high cell density (6 × 106 cells/ml) near the GelMA surface. When the model was covered by a layer of GelMA (3D multi-strip model) and migration was excluded, EGF-stimulated cells showed an invasion rate of 21 ± 3 µm/day compared to the rate for unstimulated cells, of 5 ± 4 µm/day. The novel features described in this report advance the use of the 3D bioprinted placental model as a practical tool for not only measurement of trophoblast invasion but also the interaction of invading cells with other tissue elements.
Collapse
Affiliation(s)
- Houzhu Ding
- Stevens Institute of Technology, Department of Mechanical Engineering, Hoboken, NJ, 07030, USA
| | - Nicholas P Illsley
- Hackensack University Medical Center, Department of Obstetrics and Gynecology, Hackensack, NJ, 07601, USA
| | - Robert C Chang
- Stevens Institute of Technology, Department of Mechanical Engineering, Hoboken, NJ, 07030, USA.
| |
Collapse
|
29
|
The effect of high glucose on lipid metabolism in the human placenta. Sci Rep 2019; 9:14114. [PMID: 31575970 PMCID: PMC6773712 DOI: 10.1038/s41598-019-50626-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) during pregnancy can result in fetal overgrowth, likely due to placental dysfunction, which has health consequences for the infant. Here we test our prediction from previous work using a placental cell line that high glucose concentrations affect placental lipid metabolism. Placentas from women with type 1 (n = 13), type 2 (n = 6) or gestational (n = 12) DM, BMI-matched to mothers without DM (n = 18), were analysed for lipase and fatty acid transport proteins and fatty acid and triglyceride content. Explants from uncomplicated pregnancies (n = 6) cultured in physiological or high glucose were similarly analysed. High glucose levels did not alter placental lipase or transporter expression or the profile and abundance of fatty acids, but triglyceride levels were higher (p < 0.05), suggesting reduced β- oxidation. DM did not affect placental protein expression or fatty acid profile. Triglyceride levels of placentas from mothers with pre-existing DM were similar to controls, but higher in obese women with gestational DM. Maternal hyperglycemia may not affect placental fatty acid uptake and transport. However, placental β-oxidation is affected by high glucose and reduced in a subset of women with DM. Abnormal placental lipid metabolism could contribute to increased maternal-fetal lipid transfer and excess fetal growth in some DM pregnancies.
Collapse
|
30
|
Scott RE, Greenwood SL, Hayes DJL, Baker BC, Jones RL, Heazell AEP. Effects of hydroxychloroquine on the human placenta-Findings from in vitro experimental data and a systematic review. Reprod Toxicol 2019; 87:50-59. [PMID: 31082466 DOI: 10.1016/j.reprotox.2019.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Hydroxychloroquine (HCQ), a toll like receptor (TLR) 7 and 9 antagonist, is used during pregnancy for inflammatory conditions with limited understanding of its placental toxicology. We hypothesized that HCQ does not have toxic effects on the placenta and can modulate cytokine release in response to TLR7/9 activation. A systematic review was conducted and no studies of HCQ on multicellular human placental tissue were identified. Accordingly, placental villous explants were cultured for 7 days with HCQ +/- TLR7/9 agonists. HCQ did not affect cell turnover, nutrient transport or cytokine release but increased IL-10 (anti-inflammatory) secretion and promoted syncytiotrophoblast regeneration. Cytokine release stimulated by TLR7/9 agonists was unaffected by HCQ. In conclusion, HCQ did not adversely affect placental tissue and may have a protective anti-inflammatory function. Further research is needed to determine the mechanisms of HCQ actions on human placenta and whether they could be utilized to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Rebecca E Scott
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom. beckyscott-@hotmail.co.uk
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Dexter J L Hayes
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Bernadette C Baker
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| |
Collapse
|
31
|
Duval C, Brien ME, Gaudreault V, Boufaied I, Baker B, Jones RL, Girard S. Differential effect of LPS and IL-1β in term placental explants. Placenta 2018; 75:9-15. [PMID: 30712669 DOI: 10.1016/j.placenta.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Inflammation is an important cause of placental dysfunction often associated with pregnancy complications. One well-known cause of inflammation is infection, through conserved "pathogen-associated molecular patterns" (PAMPs). Endogenous inducers of inflammation, known as "damage-associated molecular patterns" (DAMPs), have also been associated with pathological pregnancies and could contribute to the observed placental inflammation. Although both stimuli (i.e. PAMPs/DAMPs) can induce inflammation, they have yet to be studied together to compare their inflammatory effects on the placenta. METHODS We used a model of term placental explants to compare the effects of a classical PAMP, bacterial lipopolysaccharide (LPS), and a DAMP, the pro-inflammatory cytokine interleukin (IL)-1. Gene and protein expression of several cytokines were analysed by qPCR and ELISAs and immunohistochemistry performed to study placental resident immune cells and apoptosis. RESULTS LPS induced pro-inflammatory mediators (IL-6, IL-1β/α, TNF-α) whereas IL-1β induced only IL-6. Furthermore, LPS but not IL-1 exposure, led to elevated IL-10 and IL-1Ra secretion. Blocking the IL-1 signalling pathway abrogated the pro-inflammatory actions of LPS, whilst anti-inflammatory effects were preserved. The number of CD45 + immune cells was elevated in explants treated with LPS only. A subpopulation of CD45 + cells were positive for PCNA indicating proliferation of tissue resident macrophages. DISCUSSION We conclude that LPS, a classical PAMP, and IL-1, a DAMP, have shared and distinct actions with pro-inflammatory effects mediated through IL-1 but anti-inflammatory actions having a distinct pathway. Identification of an inflammatory mediator (i.e. IL-1) common to multiple stimuli could be a therapeutic target to preserve the placenta.
Collapse
Affiliation(s)
- Cyntia Duval
- Ste-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Universite de Montreal, 3175, chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada; Department of Pharmacology and Physiology, Universite de Montreal, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada
| | - Marie-Eve Brien
- Ste-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Universite de Montreal, 3175, chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada; Department of Microbiology, Infectiology, and Immunology, Universite de Montreal, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada
| | - Virginie Gaudreault
- Ste-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Universite de Montreal, 3175, chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada; Department of Pharmacology and Physiology, Universite de Montreal, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada
| | - Ines Boufaied
- Ste-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Universite de Montreal, 3175, chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada
| | - Bernadette Baker
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Oxford Road, Manchester, M13 9WL, United Kingdom
| | - Sylvie Girard
- Ste-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Universite de Montreal, 3175, chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada; Department of Pharmacology and Physiology, Universite de Montreal, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada; Department of Microbiology, Infectiology, and Immunology, Universite de Montreal, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada.
| |
Collapse
|
32
|
Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors. Am J Reprod Immunol 2018; 80:e12860. [PMID: 29726582 PMCID: PMC6021205 DOI: 10.1111/aji.12860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To study the mechanisms of placenta function and the role of extracellular vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that retains placental cytoarchitecture and the primary metabolic aspects, in particular the release of EVs and soluble factors. Here, we developed such a system and investigated the pattern of secretion of cytokines, growth factors, and extracellular vesicles by placental villous and amnion tissues ex vivo. METHODS OF STUDY Placental villous and amnion explants were cultured for 2 weeks at the air/liquid interface and their morphology and the released cytokines and EVs were analyzed. Cytokines were analyzed with multiplexed bead assays, and individual EVs were analyzed with recently developed techniques that involved EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow cytometry. RESULTS Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) maintained secretion of cytokines and growth factors; (iii) released EVs of syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and growth factors. CONCLUSION A system of ex vivo placental villous and amnion tissues can be used as an adequate model to study placenta metabolic activity in normal and complicated pregnancies, in particular to characterize EVs by their surface markers and by encapsulated proteins. Establishment and benchmarking the placenta ex vivo system may provide new insight in the functional status of this organ in various placental disorders, particularly regarding the release of EVs and cytokines. Such EVs may have a prognostic value for pregnancy complications.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
33
|
Hulme CH, Stevens A, Dunn W, Heazell AEP, Hollywood K, Begley P, Westwood M, Myers JE. Identification of the functional pathways altered by placental cell exposure to high glucose: lessons from the transcript and metabolite interactome. Sci Rep 2018; 8:5270. [PMID: 29588451 PMCID: PMC5869594 DOI: 10.1038/s41598-018-22535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
The specific consequences of hyperglycaemia on placental metabolism and function are incompletely understood but likely contribute to poor pregnancy outcomes associated with diabetes mellitus (DM). This study aimed to identify the functional biochemical pathways perturbed by placental exposure to high glucose levels through integrative analysis of the trophoblast transcriptome and metabolome. The human trophoblast cell line, BeWo, was cultured in 5 or 25 mM glucose, as a model of the placenta in DM. Transcriptomic analysis using microarrays, demonstrated 5632 differentially expressed gene transcripts (≥± 1.3 fold change (FC)) following exposure to high glucose. These genes were used to generate interactome models of transcript response using BioGRID (non-inferred network: 2500 nodes (genes) and 10541 protein-protein interactions). Ultra performance-liquid chromatography-mass spectrometry (MS) and gas chromatography-MS analysis of intracellular extracts and culture medium were used to assess the response of metabolite profiles to high glucose concentration. The interactions of altered genes and metabolites were assessed using the MetScape interactome database, resulting in an integrated model of systemic transcriptome (2969 genes) and metabolome (41 metabolites) response within placental cells exposed to high glucose. The functional pathways which demonstrated significant change in response to high glucose included fatty acid β-oxidation, phospholipid metabolism and phosphatidylinositol phosphate signalling.
Collapse
Affiliation(s)
- C H Hulme
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - A Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine & Health University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - W Dunn
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,School of Biosciences, Phenome Centre Birmingham and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - A E P Heazell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - K Hollywood
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - P Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK
| | - M Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - J E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK. .,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK.
| |
Collapse
|
34
|
Desforges M, Rogue A, Pearson N, Rossi C, Olearo E, Forster R, Lees M, Sebire NJ, Greenwood SL, Sibley CP, David AL, Brownbill P. In Vitro Human Placental Studies to Support Adenovirus-Mediated VEGF-D ΔNΔC Maternal Gene Therapy for the Treatment of Severe Early-Onset Fetal Growth Restriction. HUM GENE THER CL DEV 2018; 29:10-23. [PMID: 29228803 DOI: 10.1089/humc.2017.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe fetal growth restriction (FGR) affects 1 in 500 pregnancies, is untreatable, and causes serious neonatal morbidity and death. Reduced uterine blood flow (UBF) is one cause. Transduction of uterine arteries in normal and FGR animal models using an adenovirus (Ad) encoding VEGF isoforms increases UBF and improves fetal growth in utero. Understanding potential adverse consequences of this therapy before first-in-woman clinical application is essential. The aims of this study were to determine whether Ad.VEGF-DΔNΔC (1) transfers across the human placental barrier and (2) affects human placental morphology, permeability and primary indicators of placental function, and trophoblast integrity. Villous explants from normal term human placentas were treated with Ad.VEGF-DΔNΔC (5 × 107-10 virus particles [vp]/mL), or virus formulation buffer (FB). Villous structural integrity (hematoxylin and eosin staining) and tissue accessibility (LacZ immunostaining) were determined. Markers of endocrine function (human chorionic gonadotropin [hCG] secretion) and cell death (lactate dehydrogenase [LDH] release) were assayed. Lobules from normal and FGR pregnancies underwent ex vivo dual perfusion with exposure to 5 × 1010 vp/mL Ad.VEGF-DΔNΔC or FB. Perfusion resistance, para-cellular permeability, hCG, alkaline phosphatase, and LDH release were measured. Ad.VEGF-DΔNΔC transfer across the placental barrier was assessed by quantitative polymerase chain reaction in DNA extracted from fetal-side venous perfusate, and by immunohistochemistry in fixed tissue. Villous explant structural integrity and hCG secretion was maintained at all Ad.VEGF-DΔNΔC doses. Ad.VEGF-DΔNΔC perfusion revealed no effect on placental permeability, fetoplacental vascular resistance, hCG secretion, or alkaline phosphatase release, but there was a minor elevation in maternal-side LDH release. Viral vector tissue access in both explant and perfused models was minimal, and the vector was rarely detected in the fetal venous perfusate and at low titer. Ad.VEGF-DΔNΔC did not markedly affect human placental integrity and function in vitro. There was limited tissue access and transfer of vector across the placental barrier. Except for a minor elevation in LDH release, these test data did not reveal any toxic effects of Ad.VEGF-DΔNΔC on the human placenta.
Collapse
Affiliation(s)
- Michelle Desforges
- 1 Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester , Manchester, United Kingdom .,2 St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Nick Pearson
- 4 Pharmaceutical Sciences, pRED, F Hoffmann-La Roche , Basel, Switzerland
| | - Carlo Rossi
- 5 Magnus Growth , London, United Kingdom .,6 Institute for Women's Health, University College London (UCL) , London, United Kingdom
| | - Elena Olearo
- 6 Institute for Women's Health, University College London (UCL) , London, United Kingdom
| | | | - Mark Lees
- 5 Magnus Growth , London, United Kingdom
| | - Neil J Sebire
- 7 Institute of Child Health, University College London (UCL) , London, United Kingdom
| | - Susan L Greenwood
- 1 Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester , Manchester, United Kingdom .,2 St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin P Sibley
- 1 Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester , Manchester, United Kingdom .,2 St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anna L David
- 6 Institute for Women's Health, University College London (UCL) , London, United Kingdom
| | - Paul Brownbill
- 1 Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester , Manchester, United Kingdom .,2 St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
35
|
Hayward CE, Cowley EJ, Sibley CP, Myers JE, Wareing M. Exposure to omentum adipose tissue conditioned medium from obese pregnant women promotes myometrial artery dysfunction. J Obstet Gynaecol Res 2017; 44:124-133. [PMID: 29027317 PMCID: PMC5813134 DOI: 10.1111/jog.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
Aim Underlying mechanisms of poor pregnancy outcome in obese (OB) mothers (body mass index [BMI] ≥ 30 kg/m2) are unknown. Our studies demonstrate that OB pregnant women have altered myometrial artery (MA) function related to the thromboxane and nitric oxide pathways. In obesity, increased central fat mass is associated with an altered endocrine milieu. We tested the hypothesis that in OB pregnant women the omentum, a central fat store, releases factors that promote dysfunction in normal MAs. Methods Myometrial and omental adipose tissue biopsies were obtained from women with uncomplicated term pregnancies. Omental adipose tissue explants from six normal weight (NW; BMI 18.5–24.9 kg/m2) and six OB (BMI ≥ 30 kg/m2) women were cultured and the conditioned medium collected and pooled to produce NW medium and OB medium. Adipokine concentrations were measured using enzyme‐linked immunosorbent assays. Wire myography was used to assess the effect of conditioned medium (NW or OB; N = 7) or leptin (100 nM; N = 5) exposure on MA responses to U46619 (thromboxane‐mimetic) and bradykinin (endothelial‐dependent vasodilator). Results OB medium had higher leptin and lower adiponectin levels than NW medium. U46619 and bradykinin concentration response curves shifted upwards in MAs exposed to OB medium but were unaffected by leptin. Conclusions Omental adipose tissue from OB pregnant women produced altered concentrations of adipokines. Acute OB medium exposure induced MA dysfunction, an effect not mirrored by exposure to leptin. These data suggest that an aberrant endocrine environment created by increased central adiposity in OB pregnant women induces vascular endothelial dysregulation, which may predispose them to a poor pregnancy outcome.
Collapse
Affiliation(s)
- Christina E Hayward
- Maternal and Fetal Health Research Centre, Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth J Cowley
- Maternal and Fetal Health Research Centre, Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jenny E Myers
- Maternal and Fetal Health Research Centre, Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
36
|
Abstract
Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta - effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta.
Collapse
Affiliation(s)
- Colin P Sibley
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
37
|
Kolahi KS, Valent AM, Thornburg KL. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci Rep 2017; 7:42941. [PMID: 28230167 PMCID: PMC5322316 DOI: 10.1038/srep42941] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
The syncytiotrophoblast (SCT) at the maternal-fetal interface has been presumed to be the primary driver of placental metabolism, and the underlying progenitor cytotrophoblast cells (CTB) an insignificant contributor to placental metabolic activity. However, we now show that the metabolic rate of CTB is much greater than the SCT. The oxygen consumption and extracellular acidification rate, a measure of glycolysis, are both greater in CTB than in SCT in vitro (CTB: 96 ± 16 vs SCT: 46 ± 14 pmol O2 × min−1 × 100 ng DNA−1, p < 0.001) and (CTB: 43 ± 6.7 vs SCT 1.4 ± 1.0 ∆mpH × min−1 × 100 ng DNA−1, p < 0.0001). Mitochondrial activity, as determined by using the mitochondrial activity-dependent dye Mitotracker CM-H2TMRosa, is higher in CTB than in SCT in culture and living explants. These data cast doubt on the previous supposition that the metabolic rate of the placenta is dominated by the SCT contribution. Moreover, differentiation into SCT leads to metabolic suppression. The normal suppression of metabolic activity during CTB differentiation to SCT is prevented with a p38 MAPK signaling inhibitor and epidermal growth factor co-treatment. We conclude that the undifferentiated CTB, in contrast to the SCT, is highly metabolically active, has a high level of fuel flexibility, and contributes substantially to global metabolism in the late gestation human placenta.
Collapse
Affiliation(s)
- Kevin S Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA
| | - Amy M Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Kent L Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
38
|
Brien ME, Duval C, Palacios J, Boufaied I, Hudon-Thibeault AA, Nadeau-Vallée M, Vaillancourt C, Sibley CP, Abrahams VM, Jones RL, Girard S. Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction. THE JOURNAL OF IMMUNOLOGY 2016; 198:443-451. [PMID: 27903743 DOI: 10.4049/jimmunol.1601179] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins. One of these damage-associated molecular patterns, uric acid, is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However, its effects within the placenta and on pregnancy outcomes remain largely unknown. We found that uric acid (monosodium urate [MSU]) crystals induce a proinflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1β and IL-6, a result confirmed in human term placental explants. The proinflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The proinflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialization. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active proinflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of noninfectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.
Collapse
Affiliation(s)
- Marie-Eve Brien
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Microbiology, Virology and Immunology, University of Montreal, Montreal, Quebec H3T 1C5, Canada
| | - Cyntia Duval
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec H3T 1C5, Canada
| | - Julia Palacios
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec H3T 1C5, Canada
| | - Ines Boufaied
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec H3T 1C5, Canada
| | | | - Mathieu Nadeau-Vallée
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University de Montreal, Montreal H3T 1C5, Canada
| | - Cathy Vaillancourt
- Institut de la Recherche Scientifique, Centre Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom; and
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, CT 06510
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom; and
| | - Sylvie Girard
- Ste-Justine Hospital Research Centre, Feto-Maternal and Neonatal Pathologies Research Axis, University of Montreal, Montreal, Quebec H3T 1C5, Canada; .,Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Microbiology, Virology and Immunology, University of Montreal, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University de Montreal, Montreal H3T 1C5, Canada
| |
Collapse
|
39
|
Brew O, Nikolopoulou E, Hughes A, Christian M, Lee Y, Oduwole O, Sullivan M, Woodman A. Quality of placental RNA: Effects of explant size and culture duration. Placenta 2016; 46:45-48. [DOI: 10.1016/j.placenta.2016.08.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
40
|
Merchant SJ, Crocker IP, Baker PN, Tansinda D, Davidge ST, Guilbert LJ. Matrix Metalloproteinase Release From Placental Explants of Pregnancies Complicated by Intrauterine Growth Restriction. ACTA ACUST UNITED AC 2016; 11:97-103. [PMID: 14980311 DOI: 10.1016/j.jsgi.2003.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE There is evidence of impaired placental development in intrauterine growth restriction (IUGR). Matrix metalloproteinases (MMPs) are extracellular matrix-degrading enzymes that are released by placental cells during tissue remodeling processes. We hypothesized 1) that release of MMP-2 and -9 is decreased and/or release of tissue inhibitors of metalloproteinases (TIMPs) is increased from placental explants in pregnancies complicated by IUGR and 2) that oxygen levels affect such release. METHODS Placental villous explants from normal (n = 7) and IUGR (n = 7) pregnancies were cultured at high (20%) and low (3%) oxygen levels for 24 hours. Supernatants were analyzed for MMP-2 and MMP-9 by zymography and for TIMP-1 and -2 by western blot analysis. RESULTS : At 20% oxygen there was significantly reduced MMP-2 (P < .05) and TIMP-1 (P < .01) release and a trend for decreased MMP-9 release (P = .07) in explants from IUGR pregnancies compared with normal pregnancies; however, there were no differences at 3% oxygen. TIMP-2 was below detectable levels in all samples. Although MMP-2 and TIMP-1 release was significantly reduced at 3% compared with 20% oxygen in explants from both normal (P < .001; P < .05) and IUGR (P < .05) pregnancies, MMP-2 release changed less in IUGR compared with normal explant cultures. There were no significant effects of oxygen on MMP-9 release. CONCLUSION Placental explants from IUGR pregnancies demonstrated reduced MMP-2, MMP-9, and TIMP-1 release compared with explants from normal pregnancies at high (20%) but not low (3%) oxygen.
Collapse
Affiliation(s)
- S J Merchant
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVE To review the role of oxidative stress in two common placental-related disorders of pregnancy, miscarriage and preeclampsia. METHODS Review of published literature. RESULTS Miscarriage and preeclampsia manifest at contrasting stages of pregnancy, yet both have their roots in deficient trophoblast invasion during early gestation. Early after implantation, endovascular trophoblast cells migrate down the lumens of spiral arteries, and are associated with their physiological conversion into flaccid conduits. Initially these cells occlude the arteries, limiting maternal blood flow into the placenta. The embryo therefore develops in a low oxygen environment, protecting differentiating cells from damaging free radicals. Once embryogenesis is complete, the maternal intervillous circulation becomes fully established, and intraplacental oxygen concentration rises threefold. Onset of the circulation is normally a progressive periphery-center phenomenon, and high levels of oxidative stress in the periphery may induce formation of the chorion laeve. If trophoblast invasion is severely impaired, plugging of the spiral arteries is incomplete, and onset of the maternal intervillous circulation is premature and widespread throughout the placenta. Syncytiotrophoblastic oxidative damage is extensive, and likely a major contributory factor to miscarriage. Between these two extremes will be found differing degrees of trophoblast invasion compatible with ongoing pregnancy but resulting in deficient conversion of the spiral arteries and an ischemia-reperfusion-type phenomenon. Placental perfusion will be impaired to a greater or lesser extent, generating commensurate placental oxidative stress that is a major contributory factor to preeclampsia. CONCLUSION Miscarriage, missed miscarriage, and early- and late-onset preeclampsia represent a spectrum of disorders secondary to deficient trophoblast invasion.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Anatomy, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
42
|
Chen B, Longtine MS, Costa ML, Nelson DM. Punicalagin promotes human villous trophoblast differentiation. Placenta 2016; 44:80-2. [DOI: 10.1016/j.placenta.2016.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
|
43
|
Brownbill P, Chernyavsky I, Bottalico B, Desoye G, Hansson S, Kenna G, Knudsen LE, Markert UR, Powles-Glover N, Schneider H, Leach L. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 2016; 64:191-202. [PMID: 27327413 DOI: 10.1016/j.reprotox.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.
Collapse
Affiliation(s)
- Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Igor Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.
| | - Barbara Bottalico
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Stefan Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | | | - Lisbeth E Knudsen
- Department of Public Health, Faculty Of Health Sciences, University of Copenhagen, Denmark.
| | - Udo R Markert
- Placenta-Labor Laboratory, Department of Obstetrics, Friedrich Schiller University, D-07740, Jena, Germany.
| | - Nicola Powles-Glover
- Reproductive, Development and Paediatric Centre of Excellence, AstraZeneca, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK.
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland.
| | - Lopa Leach
- Molecular Cell Biology & Development, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
| |
Collapse
|
44
|
Yabe S, Alexenko AP, Amita M, Yang Y, Schust DJ, Sadovsky Y, Ezashi T, Roberts RM. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc Natl Acad Sci U S A 2016; 113:E2598-607. [PMID: 27051068 PMCID: PMC4868474 DOI: 10.1073/pnas.1601630113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
Collapse
Affiliation(s)
- Shinichiro Yabe
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211
| | - Andrei P Alexenko
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Mitsuyoshi Amita
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Ying Yang
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Danny J Schust
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Toshihiko Ezashi
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
45
|
Bircsak KM, Gupta V, Yuen PYS, Gorczyca L, Weinberger BI, Vetrano AM, Aleksunes LM. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter. J Pharmacol Exp Ther 2016; 357:103-13. [PMID: 26850786 PMCID: PMC4809313 DOI: 10.1124/jpet.115.230185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of (3)H-glyburide 30%-70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Vivek Gupta
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Poi Yu Sofia Yuen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Barry I Weinberger
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Anna M Vetrano
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| |
Collapse
|
46
|
Calvert SJ, Longtine MS, Cotter S, Jones CJP, Sibley CP, Aplin JD, Nelson DM, Heazell AEP. Studies of the dynamics of nuclear clustering in human syncytiotrophoblast. Reproduction 2016; 151:657-71. [PMID: 27002000 PMCID: PMC4911178 DOI: 10.1530/rep-15-0544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Syncytial nuclear aggregates (SNAs), clusters of nuclei in the syncytiotrophoblast of
the human placenta, are increased as gestation advances and in pregnancy pathologies.
The origins of increased SNAs are unclear; however, a better appreciation of the
mechanism may give insight into placental ageing and factors underpinning
dysfunction. We developed three models to investigate whether SNA formation results
from a dynamic process of nuclear movement and to generate alternative hypotheses.
SNA count and size were measured in placental explants cultured over 16 days and
particles released into culture medium were quantified. Primary trophoblasts were
cultured for 6 days. Explants and trophoblasts were cultured with and without
cytoskeletal inhibitors. An in silico model was developed to examine
the effects of modulating nuclear behaviour on clustering. In explants, neither
median SNA number (108 SNA/mm2 villous area) nor size (283
μm2) changed over time. Subcellular particles from conditioned
culture medium showed a wide range of sizes that overlapped with those of SNAs.
Nuclei in primary trophoblasts did not change position relative to other nuclei;
apparent movement was associated with positional changes of the syncytial cell
membrane. In both models, SNAs and nuclear clusters were stable despite
pharmacological disruption of cytoskeletal activity. In silico,
increased nuclear movement, adhesiveness and sites of cytotrophoblast fusion were
related to nuclear clustering. The prominence of SNAs in pregnancy disorders may not
result from an active process involving cytoskeleton-mediated rearrangement of
syncytial nuclei. Further insights into the mechanism(s) of SNA formation will aid
understanding of their increased presence in pregnancy pathologies.
Collapse
Affiliation(s)
- S J Calvert
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M S Longtine
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - S Cotter
- School of MathematicsAlan Turing Building, University of Manchester, Manchester, UK
| | - C J P Jones
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C P Sibley
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J D Aplin
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D M Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - A E P Heazell
- Maternal and Fetal Health Research CentreInstitute of Human Development, School of Medicine, University of Manchester, Manchester, UK St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
47
|
Díaz P, Sibley CP, Greenwood SL. Oxygen-Sensitive K+ Channels Modulate Human Chorionic Gonadotropin Secretion from Human Placental Trophoblast. PLoS One 2016; 11:e0149021. [PMID: 26863525 PMCID: PMC4749290 DOI: 10.1371/journal.pone.0149021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a key autocrine/paracrine regulator of placental syncytiotrophoblast, the transport epithelium of the human placenta. Syncytiotrophoblast hCG secretion is modulated by the partial pressure of oxygen (pO2), reactive oxygen species (ROS) and potassium (K+) channels. Here we test the hypothesis that K+ channels mediate the effects of pO2 and ROS on hCG secretion. Placental villous explants from normal term pregnancies were cultured for 6 days at 6% (normoxia), 21% (hyperoxia) or 1% (hypoxia) pO2. On days 3–5, explants were treated with 5mM 4-aminopyridine (4-AP) or tetraethylammonium (TEA), blockers of pO2-sensitive voltage-gated K+ (KV) channels, or ROS (10–1000μM H2O2). hCG secretion and lactate dehydrogenase (LDH) release, a marker of necrosis, were determined daily. At day 6, hCG and LDH were measured in tissue lysate and 86Rb (K+) efflux assessed to estimate syncytiotrophoblast K+ permeability. hCG secretion and 86Rb efflux were significantly greater in explants maintained in 21% pO2 than normoxia. 4-AP/TEA inhibited hCG secretion to a greater extent at 21% than 6% and 1% pO2, and reduced 86Rb efflux at 21% but not 6% pO2. LDH release and tissue LDH/hCG were similar in 6%, 21% and 1% pO2 and unaffected by 4-AP/TEA. H2O2 stimulated 86Rb efflux and hCG secretion at normoxia but decreased 86Rb efflux, without affecting hCG secretion, at 21% pO2. 4-AP/TEA-sensitive K+ channels participate in pO2-sensitive hCG secretion from syncytiotrophoblast. ROS effects on both hCG secretion and 86Rb efflux are pO2-dependent but causal links between the two remain to be established.
Collapse
Affiliation(s)
- Paula Díaz
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- * E-mail:
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
48
|
Abstract
Placental explant culture, and cellular cytolysis and cellular differentiation have been previously studied. However, oxidative stress and nitric oxide profiles have not been evaluated in these systems. The aim of this study was to determine the release of lipid peroxidation and nitric oxide from placental explants cultured over a seven day period. Placental explants were maintained for seven days in culture and the medium was changed every 24 hours. The response was assessed in terms of syncytiotrophoblast differentiation (human chorionic gonadotropin, hCG), cellular cytolysis (lactate dehydrogenase, LDH), oxidative stress (thiobarbituric acid reactive substances, TBARS), and nitric oxide (NO). Levels of hCG increased progressively from day two to attain its highest level on days four and five after which it decreased gradually. In contrast, the levels of LDH, TBARS, and NO were elevated in the early days of placental culture when new syncytiotrophoblast from cytotrophoblast were forming and also in the last days of culture when tissue was declining. In conclusion, the levels of NO and lipid peroxidation follow a pattern similar to LDH and contrary to hCG. Future placental explant studies to evaluate oxidative stress and NO should consider the physiological changes inherent during the time of culture.
Collapse
Affiliation(s)
- Juvic M Goncalves
- a Facultad de Medicina , Universidad Central de Venezuela , Caracas , Venezuela and.,b Departamento de Biología de Organismos , Universidad Simón Bolívar , Baruta , Venezuela
| | - Ysabel C Casart
- a Facultad de Medicina , Universidad Central de Venezuela , Caracas , Venezuela and
| | - María I Camejo
- b Departamento de Biología de Organismos , Universidad Simón Bolívar , Baruta , Venezuela
| |
Collapse
|
49
|
Ultrastructure of Placenta of Gravidas with Gestational Diabetes Mellitus. Obstet Gynecol Int 2015; 2015:283124. [PMID: 26379710 PMCID: PMC4561319 DOI: 10.1155/2015/283124] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/15/2015] [Indexed: 12/03/2022] Open
Abstract
Objectives. Gestational diabetes mellitus (GDM) leads to an abnormal placental environment which may cause some structural alterations of placenta and affect placental development and function. In this study, the ultrastructural appearances of term placentas from women with GDM and normal pregnancy were meticulously compared. Materials and Methods. The placenta tissues of term birth from 10 women with GDM and 10 women with normal pregnancy were applied with the signed informed consent. The morphology of fetomaternal interface of placenta was examined using light microscopy (LM) and transmission electron microscopy (TEM). Results. On LM, the following morphological changes in villous tissues were found in the GDM placentas when compared with the control placentas: edematous stroma, apparent increase in the number of syncytial knots, and perivillous fibrin deposition. On TEM, the distinct ultrastructural alterations indicating the degeneration of terminal villi were found in the GDM placentas as follows: thickening of the basal membrane (BM) of vasculosyncytial membrane (VSM) and the VSM itself, significantly fewer or even absent syncytiotrophoblastic microvilli, swollen or completely destroyed mitochondria and endoplasmic reticulum, and syncytiotrophoblasts with multiple vacuoles. Conclusion. Ultrastructural differences exist between GDM and control placentas. The differences of placenta ultrastructure are likely responsible for the impairment of placental barrier and function in GDM.
Collapse
|
50
|
Higgins LE, Rey de Castro N, Addo N, Wareing M, Greenwood SL, Jones RL, Sibley CP, Johnstone ED, Heazell AEP. Placental Features of Late-Onset Adverse Pregnancy Outcome. PLoS One 2015; 10:e0129117. [PMID: 26120838 PMCID: PMC4488264 DOI: 10.1371/journal.pone.0129117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
Objective Currently, no investigations reliably identify placental dysfunction in late pregnancy. To facilitate the development of such investigations we aimed to identify placental features that differ between normal and adverse outcome in late pregnancy in a group of pregnancies with reduced fetal movement. Methods Following third trimester presentation with reduced fetal movement (N = 100), placental structure ex vivo was measured. Placental function was then assessed in terms of (i) chorionic plate artery agonist responses and length-tension characteristics using wire myography and (ii) production and release of placentally derived hormones (by quantitative polymerase chain reaction and enzyme linked immunosorbant assay of villous tissue and explant conditioned culture medium). Results Placentas from pregnancies ending in adverse outcome (N = 23) were ~25% smaller in weight, volume, length, width and disc area (all p<0.0001) compared with those from normal outcome pregnancies. Villous and trophoblast areas were unchanged, but villous vascularity was reduced (median (interquartile range): adverse outcome 10 (10–12) vessels/mm2 vs. normal outcome 13 (12–15), p = 0.002). Adverse outcome pregnancy placental arteries were relatively insensitive to nitric oxide donated by sodium nitroprusside compared to normal outcome pregnancy placental arteries (50% Effective Concentration 30 (19–50) nM vs. 12 (6–24), p = 0.02). Adverse outcome pregnancy placental tissue contained less human chorionic gonadotrophin (20 (11–50) vs. 55 (24–102) mIU/mg, p = 0.007) and human placental lactogen (11 (6–14) vs. 27 (9–50) mg/mg, p = 0.006) and released more soluble fms-like tyrosine kinase-1 (21 (13–29) vs. 5 (2–15) ng/mg, p = 0.01) compared with normal outcome pregnancy placental tissue. Conclusion These data provide a description of the placental phenotype of adverse outcome in late pregnancy. Antenatal tests that accurately reflect elements of this phenotype may improve its prediction.
Collapse
Affiliation(s)
- Lucy E. Higgins
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
- * E-mail:
| | - Nicolas Rey de Castro
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Naa Addo
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Rebecca L. Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Edward D. Johnstone
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Alexander E. P. Heazell
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, M13 9WL, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| |
Collapse
|