1
|
Ersoy E, Boga M, Kaplan A, Mataraci Kara E, Eroglu Ozkan E, Demirci Kayiran S. LC-HRMS Profiling of Phytochemicals with Assessment of Antioxidant, Anticholinesterase, and Antimicrobial Potentials of Astragalus Brachystachys DC. Chem Biodivers 2025; 22:e202401853. [PMID: 39400994 DOI: 10.1002/cbdv.202401853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Astragalus species are ubiquitous in the pharmacopeia of numerous countries, signifying their widespread medicinal applications. Türkiye is esteemed as one of the principal epicenters of diversity for this genus with 483 taxa, and many of these plants have been traditionally utilized for diseases including coughing, diabetes, cardiovascular disorders, and aches. Although there is a considerable body of chemical and biological research available on several Astragalus species, studies focusing on Astragalus brachystachys DC are exceedingly rare. In this context, This study provides the first comprehensive report on this medicinal plant the chemical constituents and biological activities of an important medicinal plant, Astragalus brachystachys DC. The aerial part samples were collected from Adana, Türkiye, and an ethanol extract was prepared with these parts. The secondary metabolites of the extract were determined by an LC-HRMS analysis. The LC-HRMS analysis showed the presence of 39 different constituents, hyperoside (303.419±10.50 μg/g extract), p-coumaric acid (256.975±8.51 μg/g extract), and rutin (72.684±2.23 μg/g extract) were determined as major compounds in the aerial parts ethanol extract. Attributed to its high total phenolic (58.53±1.30 μg PEs/mg extract) and total flavonoid content (29.98±0.83 μg QEs/mg extract), the extract demonstrated strong antioxidant activity according to three different assays namely DPPH free (IC50: 33.08±0.61 μg/mL), and ABTS cation radical scavenging (IC50: 15.39±0.72 μg/mL) and CUPRAC activity (A0.5: 36.25±0.28 μg/mL) methods. In vitro assays showed that cholinesterase inhibitory activity results were found to be exceptional with 85.95±0.52 % inhibition on acetylcholinesterase and 66.32±1.33 % inhibition on butyrylcholinesterase at 200 μg/mL. Regarding antimicrobial properties, Astragalus brachystachys DC extract was found to be effective against Enterococcus faecalis with a MIC value of 39.06 μg/mL.
Collapse
Affiliation(s)
- Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Topkapı, Istanbul, 34010, Türkiye
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, 21280, Sur, Türkiye
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman, 72060, Türkiye
| | - Emel Mataraci Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Beyazıt, Türkiye
| | - Esra Eroglu Ozkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Beyazit, Türkiye
| | - Serpil Demirci Kayiran
- Cukurova University, Faculty of Pharmacy, Pharmaceutical Botany Department, Adana, Türkiye
| |
Collapse
|
2
|
Balkrishna A, Katiyar P, Upreti J, Chauhan M, Sharma D, Kumar S, Arya V. Investigating Ayurvedic Strategies: An In-Depth Examination of Managing Diabetes across Different Types. Curr Diabetes Rev 2025; 21:79-93. [PMID: 38468519 DOI: 10.2174/0115733998284193240227041720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
In light of the escalating global concern surrounding diabetes mellitus, contemporary medical practices predominantly hinge on pharmaceutical interventions, accompanied by inherent side effects and enduring limitations. This investigation accentuates a discernible research void regarding the amalgamation of Ayurvedic principles an age-old traditional medical system with prevalent approaches to diabetes management. Despite Ayurveda's promising potential in furnishing a comprehensive and personalized strategy for diabetes treatment, the imperative for further research and collaboration between Ayurvedic practitioners and contemporary healthcare professionals becomes evident. Existing scholarly works underscore the potential advantages of Ayurveda in delivering holistic diabetes care, encompassing not only glycemic control but also fostering overall well-being. Nevertheless, a closer examination reveals specific limitations, challenges, and gaps in current research, necessitating targeted efforts to enable a more exhaustive exploration of Ayurvedic interventions within diabetes management. This comprehensive review scrutinizes Ayurvedic recommendations pertaining to dietary practices, lifestyle adjustments, and herbal therapeutics, shedding light on their plausible efficacy. It serves as a clarion call for heightened research endeavors, aiming to bridge existing gaps and carve a pathway toward an integrated, patientcentric paradigm in diabetes care. In summary, as diabetes prevalence continues to rise globally, the study underscores the limitations of current pharmaceutical-centric approaches and highlights the need for extensive research and collaboration to unlock the full potential of Ayurvedic principles in providing a more holistic and personalized framework for diabetes management. The review navigates through Ayurvedic recommendations, emphasizing the urgency for intensified research efforts to fill existing gaps and pave the way for a seamlessly integrated, patient-focused approach to diabetes care.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- Department of Applied and Allied Sciences, University of Patanjali, Haridwar, 249405, Uttarakhand, India
| | - Prashant Katiyar
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Jaya Upreti
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Muskan Chauhan
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Dushyant Sharma
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Sandeep Kumar
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Vedpriya Arya
- Herbal Research Division, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- Department of Applied and Allied Sciences, University of Patanjali, Haridwar, 249405, Uttarakhand, India
| |
Collapse
|
3
|
Du R, Xu F, Wei D, Wei Y, Wang Z, Wang Z. Pharmacokinetics of two triterpenoid saponins and three flavonoids in Astragalus membranaceus leaves by UHPLC-MS/MS. J Pharm Biomed Anal 2024; 251:116419. [PMID: 39154580 DOI: 10.1016/j.jpba.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Astragalus membranaceus (A. membranaceus) leaves can be used both as a medicine and food material. Their main chemical components are flavonoids and triterpenoid saponins. The pharmacokinetics of A. membranaceus leaves are rarely reported in the literature. This study aimed to investigate the pharmacokinetics of five major bioactive components of A. membranaceus leaves [rhamnocitrin 3-glucoside (RCG), tiliroside (TIL), rhamnocitrin 3-neohesperidoside (RNH), huangqiyenin R (HuR), and huangqiyenin I (HuI)]. Simultaneously using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The extract of A. membranaceus leaves was administered orally to rats, and the rat plasma was subjected to a fast, sensitive, and specific UHPLC-MS/MS method. Butylparaben served as the internal standard. The plasma samples were pretreated using isopropanol/ethyl acetate (1:1, v/v) liquid-liquid extraction. Chromatographic separations were performed at a flow rate of 0.3 mL/min on a Waters ACQUITY HSS T3 Column (2.1 mm × 100 mm, 1.8 μm) using mobile phases of 0.1 % formic acid/water and 0.1 % formic acid/acetonitrile. Mass spectrometry detection was performed using an electrospray ionization ion source in the negative-ion mode and the multiple reaction monitoring mode. All analytes had an intraday and interday relative standard deviation of less than 14.10 %. The range of accuracy was -11.94-6.920 % and -15.22-5.800 %. The lower limits of quantification for RCG, TIL, RNH, HuR, HuI was 10.24, 10.27, 10.12, 5.137, and 5.841 ng/mL, respectively. The criteria were met by stability, matrix effects, and extraction recovery. The pharmacokinetic parameters of A. membranaceus leaf extract were ultimately obtained using this analytical method. The study provides a theoretical basis for future pharmacological research, clinical application, and development of healthy food from A. membranaceus leaves.
Collapse
Affiliation(s)
- Ruitong Du
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Xu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Deshu Wei
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuxin Wei
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
4
|
Xu Y, Xu C, Huang J, Xu C, Xiong Y. Astragalus polysaccharide attenuates diabetic nephropathy by reducing apoptosis and enhancing autophagy through activation of Sirt1/FoxO1 pathway. Int Urol Nephrol 2024; 56:3067-3078. [PMID: 38653852 DOI: 10.1007/s11255-024-04038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetic patients. Astragalus polysaccharide (APS) is a natural active ingredient in Astragalus membranaceus with anti-hypertensive and anti-oxidative properties. This study aimed to explore the protective roles of APS and its underlying mechanisms in DN. METHODS After the establishment of a rat model of DN by a high-fat diet and treatment with 30 mg/kg streptozotocin (STZ), the effects of 100 mg/kg APS on the levels of serum creatinine, blood urea nitrogen, blood glucose, and urinary albumin-to-creatinine ratio were measured. Histopathological alterations in renal tissues, renal cell apoptosis, renal inflammation, and oxidative stress were examined. The impacts of 0-200 μg/mL APS on the viability and apoptosis in high glucose (HG)-stimulated podocytes were measured by Cell Counting Kit-8 assays and flow cytometry, respectively. The expression of genes was tested by immunoblotting, quantitative real-time PCR, and immunofluorescence staining. RESULTS APS enhanced the expression of podocin and nephrin, increased viability, and reduced apoptosis in HG-induced podocytes. APS treatment abrogated high glucose-mediate suppression of autophagy in podocytes by activating the Sirt1/FoxO1 pathway. The Sirt1 inhibitor EX-527 eliminated the ameliorative effects of APS on renal dysfunction and renal tissue damage, as well as the inhibitory effects of APS on oxidative stress, inflammation, and apoptosis in DN rats. Moreover, EX-527 inhibited APS-induced autophagy activation in DN rats. CONCLUSION APS mitigated DN under hyperglycemic conditions by activating the Sirt1/FoxO1 autophagy pathway, suggesting that APS is a promising agent for DN treatment.
Collapse
Affiliation(s)
- Yanmei Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chen Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jie Huang
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chuanwen Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yan Xiong
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Lin X, Bao M, Zhang X, Qirula S, Jiao C, Zhang D, Han J. Study on the bioactive ingredients and mechanism of Huangqi against diabetic retinopathy based on network pharmacology and experimental verification. J Chin Med Assoc 2024; 87:789-798. [PMID: 38780966 DOI: 10.1097/jcma.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most well-known microvascular complications of diabetes mellitus. As a traditional Chinese medicine, Huangqi (HQ), has been used for treating DR for a long time. However, its anti-DR active ingredients and mechanism are still unknown. Therefore, we designed this study to explore the active components and mechanism of HQ against DR via network pharmacology analysis. METHODS The ingredients of HQ, and potential targets of HQ and DR were obtained from public databases. We used the protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment, and Gene Ontology (GO) analysis to identify core targets and pathways of HQ against DR. Finally, molecular docking and vitro experiments were applied to validate our results. RESULTS A total of 34 potential targets of HQ against DR were obtained. Based on PPI network, VEGFA, PTGS2, Interleukin-6 (IL-6), and CCL2 were considered as core targets. GO analysis involved 692 biological processes, 21 cellular components, and 35 molecular functions. KEGG enrichment analysis manifested that the anti-DR effect of HQ was mainly mediated via the AGE-RAGE signaling pathway in diabetic complications. The molecular docking results indicated that kaempferol had higher affinity with CCL2, IL-6, VEGFA, and PTGS2. The vitro experiments showed that the mRNA expressions of CCL2, IL-6, VEGFA, and PTGS2 in ARPE-19 cells were differentially decreased after kaempferol treatment. CONCLUSION This study preliminarily unveiled that the therapeutic efficacy of HQ against DR might be attributed to the reduced expression of CCL2, IL-6, VEGFA, and PTGS2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu N, Yin Z, Wang M, Kui H, Yuan Z, Tian Y, Liu C, Huang J. Pharmacodynamic and targeted amino acid metabolomics researches on the improvement of diabetic retinopathy with Fufang Xueshuantong component compatibility. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124194. [PMID: 38924945 DOI: 10.1016/j.jchromb.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The Fufang Xueshuantong capsule (FXT) has significant preventive and therapeutic effects on diabetic retinopathy(DR), but the compatibility of its active components remains to be thoroughly explored. In this study, a zebrafish diabetic retinopathy model was established using high-mixed sugars, and the optimal ratios of notoginseng total saponins, total salvianolic acid, astragaloside, and harpagide were selected through orthogonal experiments. Furthermore, we used UPLC-QqQ/MS to detect the changes in amino acid content of DR zebrafish tissues after administration of FXT and its compatible formula to analyze the effects of FXT and its compatible formula on amino acid metabolites. The results showed that the final compatibility ratios of the components were 8: 5: 1: 6.6 by comprehensive evaluation of the indicators. FXT and its compatibility formula had beneficial effects on retinal vasodilatation, lipid accumulation in the liver, total glucose, and VEGF levels in DR zebrafish, and all of them could call back some amino acid levels in DR zebrafish. In this research, we determined the compatible formulation of the active ingredients in the FXT and investigated their efficacy in DR zebrafish for further clinical applications.
Collapse
Affiliation(s)
- Ning Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqiang Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshuang Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
7
|
Huang Y, Chu C, Mai Y, Zhao Y, Cao L, Ji S, Zhu B, Shen Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front Pharmacol 2024; 15:1347234. [PMID: 38835665 PMCID: PMC11148558 DOI: 10.3389/fphar.2024.1347234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-β. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.
Collapse
Affiliation(s)
- Ying Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chenling Chu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Clinical Medicine and Stomatology, School of Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Mai
- Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Luxi Cao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuiyu Ji
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quanquan Shen
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
| |
Collapse
|
8
|
Chu Y, Gui S, Zheng Y, Zhao J, Zhao Y, Li Y, Chen X. The natural compounds, Magnolol or Honokiol, promote adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur J Pharmacol 2024; 969:176438. [PMID: 38402928 DOI: 10.1016/j.ejphar.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with the body's energy metabolism. A potential strategy to regulate energy metabolism, combat obesity, and reduce NAFLD is by enhancing adipocyte thermogenesis and increasing energy expenditure. In this study, our objective was to examine the effects of phenolic extracts derived from Magnolia officinalis on the regulation of NAFLD. Specifically, we investigated the impact of Magnolol or Honokiol treatment on high-fat diet (HFD)-induced obese C57BL6/J male mice. Firstly, we monitored energy metabolism, dissected tissues, and analyzed tissue sections. Additionally, we conducted experiments on HepG2 and primary adipocytes to gain insights into the roles of Magnolol or Honokiol. To further understand the effects of these compounds on related signaling pathways and marker genes, we performed molecular docking, dual-luciferase assays, and interfered with target genes. Our findings revealed that Magnolol or Honokiol activate the peroxisome proliferator activated receptor alpha (PPARα) signaling pathway, leading to the alleviation of NAFLD. This activation promotes fatty acid oxidation, reduces lipogenesis, and enhances the expression and secretion of FGF21. Notably, Fibroblast growth factor 21 (FGF21), secreted by the liver, plays a crucial role in improving communication between the liver and adipocytes while also promoting the browning of adipose tissue. Additionally, Magnolol or Honokiol activate the peroxisome proliferator activated receptor gamma (PPARγ) signaling pathway, resulting in increased uncoupling protein 1 (UCP1) expression, heightened heat production in adipose tissue, and anti-obesity. Therefore, Magnolol or Honokiol alleviate NAFLD, promote adipose tissue browning and resist obesity through dual activation of PPARα/γ.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Lai HC, Cheng JC, Yip HT, Jeng LB, Huang ST. Chinese herbal medicine decreases incidence of hepatocellular carcinoma in diabetes mellitus patients with regular insulin management. World J Gastrointest Oncol 2024; 16:716-731. [PMID: 38577471 PMCID: PMC10989382 DOI: 10.4251/wjgo.v16.i3.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is an independent risk factor for hepatocellular carcinoma (HCC), while insulin is a potent mitogen. Identifying a new therapeutic modality for preventing insulin users from developing HCC is a critical goal for researchers. AIM To investigate whether regular herbal medicine use can decrease HCC risk in DM patients with regular insulin control. METHODS We used data acquired from the Taiwanese National Health Insurance research database between 2000 and 2017. We identified patients with DM who were prescribed insulin for > 3 months. The herb user group was further defined as patients prescribed herbal medication for DM for > 3 months per annum during follow-up. We matched the herb users to nonusers at a 1:3 ratio according to age, sex, comorbidities and index year by propensity score matching. We analyzed HCC incidence, HCC survival rates, and the herbal prescriptions involved. RESULTS We initially enrolled 657144 DM patients with regular insulin use from 2000 to 2017. Among these, 46849 patients had used a herbal treatment for DM, and 140547 patients were included as the matched control group. The baseline variables were similar between the herb users and nonusers. DM patients with regular herb use had a 12% decreased risk of HCC compared with the control group [adjusted hazard ratio (aHR) = 0.88, 95%CI = 0.80-0.97]. The cumulative incidence of HCC in the herb users was significantly lower than that of the nonusers. Patients with a herb use of > 5 years cumulatively exhibited a protective effect against development of HCC (aHR = 0.82, P < 0.05). Of patients who developed HCC, herb users exhibited a longer survival time than nonusers (aHR = 0.78, P = 0.0001). Additionally, we report the top 10 herbs and formulas in prescriptions and summarize the potential pharmacological effects of the constituents. Our analysis indicated that Astragalus propinquus (Huang Qi) plus Salvia miltiorrhiza Bunge (Dan Shen), and Astragalus propinquus (Huang Qi) plus Trichosanthes kirilowii Maxim. (Tian Hua Fen) were the most frequent combination of single herbs. Meanwhile, Ji Sheng Shen Qi Wan plus Dan Shen was the most frequent combination of herbs and formulas. CONCLUSION This large-scale retrospective cohort study reveals that herbal medicine may decrease HCC risk by 12% in DM patients with regular insulin use.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung 404327, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital; School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
10
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
11
|
Hong KF, Liu PY, Zhang W, Gui DK, Xu YH. The Efficacy and Safety of Astragalus as an Adjuvant Treatment for Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:11-24. [PMID: 37433206 DOI: 10.1089/jicm.2022.0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Objective: This meta-analysis evaluated the beneficial and potential adverse effects of Astragalus in the treatment of patients with type 2 diabetes mellitus (T2DM). Methods: The authors searched for randomized controlled trials of Astragalus treatment for patients with T2DM in the following databases: PubMed, Embase, Cochrane Library, China Knowledge Resource Integrated Database (CNKI), Wanfang Data, China Science and Technology Journal Database (CQVIP), and SinoMed. Two reviewers conducted independent selection of studies, data extraction, and coding, as well as the assessment of risk of bias in the studies included. Standard meta-analysis and, if appropriate, meta-regression were performed using the STATA, v.15.1, software. Results: This meta-analysis encompasses 20 studies and a total of 953 participants. Compared to the control group (CG), the observation group (OG) decreased fasting plasma glucose (FPG) (WMD = -0.67, 95% CI: -1.13∼-0.20, P = 0.005), 2 hours postprandial plasma glucose (2hPG) (WMD = -0.67 (95% CI: -1.13∼-0.20, P=0.005), glycated hemoglobin A1C (HbA1c) (WMD = -0.93, 95% CI: -1.22∼-0.64, P = 0.000), homeostatic model assessment for insulin resistance (HOMA-IR) (WMD = -0.45, 95% CI: -0.99∼0.99, P = 0.104), insulin sensitive index (WMD = 0.42, 95% CI: 0.13-0.72, P = 0.004). The total effective ratio of the OG is more effective than CG (RR = 1.33, 95% CI: 1.26-1.40, P = 0.000), the significant effective ratio (RR = 1.69, 95% CI: 1.48-1.93, P = 0.000). Conclusions: Astragalus may provide specific benefits for T2DM patients as an adjuvant treatment. Nonetheless, the certainty of the evidence and risk of bias fell short of optimal performance, indicating the need for additional clinical research to ascertain potential effects. PROSPERO REGISTRATION NUMBER CRD42022338491.
Collapse
Affiliation(s)
- Kin-Fong Hong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Pei-Yu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Wei Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ding-Kun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Hua Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
12
|
Dutta B, Loo S, Kam A, Tam JP. Plant-derived cell-penetrating microprotein α-astratide aM1 targets Akt signaling and alleviates insulin resistance. Cell Mol Life Sci 2023; 80:293. [PMID: 37715850 PMCID: PMC10505102 DOI: 10.1007/s00018-023-04937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Insulin-resistant diabetes is a common metabolic disease with serious complications. Treatments directly addressing the underlying molecular mechanisms involving insulin resistance would be desirable. Our laboratory recently identified a proteolytic-resistant cystine-dense microprotein from huáng qí (Astragalus membranaceus) called α-astratide aM1, which shares high sequence homology to leginsulins. Here we show that aM1 is a cell-penetrating insulin mimetic, enters cells by endocytosis, and activates the PI3K/Akt signaling pathway independent of the insulin receptor leading to translocation of glucose transporter GLUT4 to the cell surface to promote glucose uptake. We also showed that aM1 alters gene expression, suppresses lipid synthesis and uptake, and inhibits intracellular lipid accumulation in myotubes and adipocytes. By reducing intracellular lipid accumulation and preventing lipid-induced, PKCθ-mediated degradation of IRS1/2, aM1 restores glucose uptake to overcome insulin resistance. These findings highlight the potential of aM1 as a lead for developing orally bioavailable insulin mimetics to expand options for treating diabetes.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
13
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
14
|
Sun S, Yang S, Zhang N, Yu C, Liu J, Feng W, Xu W, Mao Y. Astragalus polysaccharides alleviates cardiac hypertrophy in diabetic cardiomyopathy via inhibiting the BMP10-mediated signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154543. [PMID: 36610158 DOI: 10.1016/j.phymed.2022.154543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cardiac hypertrophy can lead to cardiac dysfunction and is closely associated with mortality in diabetic cardiomyopathy (DCM). Astragalus polysaccharides (APS) is the main component extracted from Astragalus membranaceus (Fisch.) Bunge (AM), which exhibits anti-hypertrophic effects on cardiomyocytes in various diseases. However, whether APS exerts anti-hypertrophic effects in DCM remains unclear. PURPOSE To investigate whether APS can attenuate cardiac hypertrophy in DCM and exert anti-hypertrophic effects by inhibiting the bone morphogenetic protein 10 (BMP10) pathway. METHODS The anti-hypertrophic effects of APS were studied in high-glucose (HG)-stimulated H9c2 cardiomyocytes and streptozotocin (STZ)-induced DCM rats. BMP10 siRNA was used to inhibit BMP10 expression in H9c2 cardiomyocytes. Cardiac function was assessed by echocardiography. Cardiac hypertrophy was evaluated using heart weight/body weight (HW/BW), RT-PCR, hematoxylin-eosin (HE), and rhodamine phalloidin staining. Changes in hypertrophic components, including BMP10 and downstream factors, were measured using western blotting. RESULTS In vitro, HG treatment increased the relative cell surface area of H9c2 cardiomyocytes, whereas BMP10 siRNA transfection or APS treatment alleviated the increase induced by HG. APS treatment improved the general condition, increased cardiac function, and decreased the HW/BW ratio, ANP mRNA level, and cardiomyocyte cross-sectional area of DCM rats in vivo. Molecular experiments demonstrated that APS downregulated the levels of the pro-hypertrophic protein BMP10 and its downstream proteins ALK3, BMPRII, and p-Smad1/5/8 without affecting the level of total Smad1/5/8. CONCLUSIONS Our study demonstrates that APS can alleviate cardiac hypertrophy and protect against DCM by inhibiting activation of the BMP10 pathway. APS is a promising candidate for DCM treatment.
Collapse
Affiliation(s)
- Shuqin Sun
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shuo Yang
- Department of Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Nannan Zhang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chunpeng Yu
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Junjun Liu
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjing Feng
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wanqun Xu
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yongjun Mao
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
15
|
Astragalus Polysaccharides Promote Wound Healing in Diabetic Rats by Upregulating PETN and Inhibiting the mTOR Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3459102. [PMID: 36277005 PMCID: PMC9586772 DOI: 10.1155/2022/3459102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
Objective. Presently, astragalus polysaccharide (APS) is being investigated for its therapeutic potential in various diseases; however, its underlying mechanism has not yet been clarified. This study was aimed at observing the effects of APS on wound healing in diabetic rats and at exploring its underlying mechanism. Methods. Streptozotocin was injected into the tail vein of SD rats to induce diabetic animal models, in which an incision on the back was made. Rats were treated with different dosages of APS to observe their wound healing. Additionally, RT-qPCR and Western blot assay were conducted to observe the expression levels of PTEN and mTOR pathway-associated factors. Results. Diabetic rats had a prolonged wound healing process, fewer blood vessels, and increased inflammatory response, in which decreased PTEN and elevated mTOR phosphorylation were also identified. APS effectively improved wound healing in a dose-dependent manner by inhibiting the release of inflammatory mediators and attenuating endothelial injuries. Suppression of PTEN could effectively increase the phosphorylation of mTOR and diminish the therapeutic functions of APS on wound healing in diabetic rats. Conclusion. This study highlighted that APS could promote wound healing in diabetic rats by upregulating PTEN and suppressing the mTOR pathway activation.
Collapse
|
16
|
Ultrasound-Assisted Extraction, LC-MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies. Antioxidants (Basel) 2022; 11:antiox11102000. [PMID: 36290723 PMCID: PMC9598503 DOI: 10.3390/antiox11102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022] Open
Abstract
The Astragalus armatus Willd. plant’s phenolic constituent extraction and identification were optimized using the ultrasound-assisted extraction (UAE) method and the LC–MS/MS analysis, respectively. Additionally, cupric reducing antioxidant capacity (CUPRAC), beta carotene, reducing power, DMSO alcalin, silver nanoparticle (SNP)-based method, phenanthroline, and hydroxyl radical tests were utilized to assess the extract’s antioxidant capacity, while the neuroprotective effect was examined in vitro against acetylcholinesterase enzyme. This study accurately estimated the chemical bonding between the identified phenolic molecules derived from LC–MS/MS and the AChE. The extract was found to contain sixteen phenolic substances, and rosmarinic, protocatechuic, and chlorogenic acids, as well as 4-hydroxybenzoic, hyperoside, and hesperidin, were the most abundant substances in the extract. In all antioxidant experiments, the plant extract demonstrated strong antioxidant activity and a significant inhibitory impact against AChE (40.25 ± 1.41 μg/mL). According to molecular docking affinity to the enzyme AChE, the top-five molecules were found to be luteolin, quercetin, naringenin, rosmarinic acid, and kaempferol. Furthermore, these tested polyphenols satisfy the essential requirements for drug-like characteristics and Lipinski’s rule of five. These results highlight the significance of the A. armatus plant in cosmetics, as food additives, and in the pharmaceutical industry due to its rosmarinic and chlorogenic acid content.
Collapse
|
17
|
Shen HS, Hsu CY, Yip HT, Lin IH. Lower risk of ischemic stroke among patients with chronic kidney disease using chinese herbal medicine as add-on therapy: A real-world nationwide cohort study. Front Pharmacol 2022; 13:883148. [PMID: 36034816 PMCID: PMC9403506 DOI: 10.3389/fphar.2022.883148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The incidence of ischemic stroke (IS) is much higher among patients with chronic kidney disease (CKD) compared to the general population. Few studies have evaluated the association between the risk of IS and the use of Chinese herbal medicine (CHM) in patients with CKD. We aimed to investigate the risk of IS among patients with CKD using CHM as add-on therapy.Methods: We conducted a retrospective cohort study based on Taiwan’s National Health Insurance Research Database to assess 21,641 patients with newly diagnosed CKD between 2003 and 2012. Patients were classified as either the CHM (n = 3,149) or the non-CHM group (n = 3,149) based on whether they used CHM after first diagnosis of CKD. We used the proportional subdistribution hazards model of Fine and Gray to examine the hazard ratio (HR) of IS in propensity-score matched samples at a ratio of 1:1 for two groups.Results: The risk of IS was significantly reduced in the CHM group (adjusted HR [aHR]: 0.58, 95% confidence interval [CI]: 0.48–0.70) compared with the non-CHM group. Those who used CHM for >180 days had an even lower risk of IS than those in the non-CHM group (aHR: 0.51, 95% CI: 0.41–0.63). Additionally, frequently prescribed formulae, such as Ji-Sheng-Shen-Qi-Wan, Liu-Wei-Di-Huang-Wan, and Zhen-Wu-Tang were associated with a 30%–50% reduced risk of IS.Conclusion: Our results suggest that patients with CKD who used CHM as add-on therapy had a lower hazard of IS than those in the non-CHM group, especially for patients taking CHM for >180 days. Further experimental studies are required to clarify the causal relationship.
Collapse
Affiliation(s)
- Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Sports Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yi Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- *Correspondence: I-Hsin Lin,
| |
Collapse
|
18
|
Liang Q, Bai Z, Xie T, Lu H, Xiang L, Ma K, Liu T, Guo T, Chen L, Zhao X, Xiao Y. Deciphering the Pharmacological Mechanisms of Qidan Dihuang Decoction in Ameliorating Renal Fibrosis in Diabetic Nephropathy through Experimental Validation In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4137578. [PMID: 36091599 PMCID: PMC9463013 DOI: 10.1155/2022/4137578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE QiDan DiHuang decoction (QDD) has been proven to have good efficacy in decreasing albuminuria levels, improving renal function, and inhibiting renal fibrosis in diabetic nephropathy (DN). However, the potential mechanism remains unclear. The purpose of this study was to explore the underlying mechanism of QDD for treating DN in vitro and in vivo. METHODS Db/db mice were treated with QDD or saline intragastrically for 12 weeks. Non-diabetic db/m mice were used as controls. Rat renal tubular epithelial cells (NRK-52E) were cultured in high glucose conditions. ATF4 siRNA was transfected into NRK-52E cells. Different indicators were detected via UPLC, RT-PCR, western blotting, cell viability assays and apoptosis, transmission electron microscopy, histology, and immunofluorescence staining. RESULTS Db/db mice experienced severe kidney damage and fibrosis, increased levels of PERK, eIF2α, and ATF4, and suppression of renal autophagy compared with db/m mice. The results showed a significant improvement in glucose intolerance, blood urea nitrogen, urine albumin, serum creatinine, and renal fibrosis in db/db mice with QDD treatment. Meanwhile, the application of QDD resulted in the downregulation of PERK, eIF2α, and ATF4 and the upregulation of autophagy in diabetic kidneys. In vitro, the exposure of NRK-52E cells to high glucose resulted in downregulation of the ratio of LC3-II/LC3-I and upregulation of P62, a reduction in the number of autophagosomes and upregulation of fibronectin (FN), collagen IV and TGF-β1 protein, which was reversed by QDD treatment through inhibiting ATF4 expression. CONCLUSIONS Taken together, our results suggest that QDD effectively alleviates diabetic renal injuries and fibrosis by inhibiting the PERK-eIF2α-ATF4 pathway and promoting autophagy in diabetic nephropathy.
Collapse
Affiliation(s)
- Qiuer Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hanqi Lu
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan, China
| | - Lei Xiang
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Ma
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Liguo Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Cheng WJ, Chiang CC, Lin CY, Chen YL, Leu YL, Sie JY, Chen WL, Hsu CY, Kuo JJ, Hwang TL. Astragalus mongholicus Bunge Water Extract Exhibits Anti-inflammatory Effects in Human Neutrophils and Alleviates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Front Pharmacol 2021; 12:762829. [PMID: 34955833 PMCID: PMC8707293 DOI: 10.3389/fphar.2021.762829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are the primary immune cells in innate immunity, which are related to various inflammatory diseases. Astragalus mongholicus Bunge is a Chinese medicinal herb used to treat various oxidative stress-related inflammatory diseases. However, there are limited studies that elucidate the effects of Astragalus mongholicus Bunge in human neutrophils. In this study, we used isolated human neutrophils activated by various stimulants to investigate the anti-inflammatory effects of Astragalus mongholicus Bunge water extract (AWE). Cell-free assays were used to examine free radicals scavenging capabilities on superoxide anion, reactive oxygen species (ROS), and nitrogen-centered radicals. Imiquimod (IMQ) induced psoriasis-like skin inflammation mouse model was used for investigating anti-psoriatic effects. We found that AWE inhibited superoxide anion production, ROS generation, and elastase release in human neutrophils, which exhibiting a direct anti-neutrophil effect. Moreover, AWE exerted a ROS scavenging ability in the 2,2’-Azobis (2-amidinopropane) dihydrochloride assay, but not superoxide anion in the xanthine/xanthine oxidase assay, suggesting that AWE exhibited anti-oxidation and anti-inflammatory capabilities by both scavenging ROS and by directly inhibiting neutrophil activation. AWE also reduced CD11b expression and adhesion to endothelial cells in activated human neutrophils. Meanwhile, in mice with psoriasis-like skin inflammation, administration of topical AWE reduced both the affected area and the severity index score. It inhibited neutrophil infiltration, myeloperoxidase release, ROS-induced damage, and skin proliferation. In summary, AWE exhibited direct anti-inflammatory effects by inhibiting neutrophil activation and anti-psoriatic effects in mice with IMQ-induced psoriasis-like skin inflammation. Therefore, AWE could potentially be a pharmaceutical Chinese herbal medicine to inhibit neutrophilic inflammation for anti-psoriasis.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Yu Sie
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ling Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yuan Hsu
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
20
|
Zhang S, Song P, Chen X, Wang Y, Gao X, Liang L, Zhao J. Astragalus polysaccharide regulates brown adipocytes differentiation by miR-6911 targeting Prdm16. Lipids 2021; 57:45-55. [PMID: 34738642 DOI: 10.1002/lipd.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023]
Abstract
Brown adipose tissue (BAT) is a specialized tissue in mammals related to thermogenesis. The Astragalus polysaccharide (APS) is the major natural active component of Astragalus membranaceus, which has been recognized as one of the most popular herbal medicines worldwide. The role and possible mechanisms of APS on brown adipocytes differentiation is not well defined. Here, we explored the effect of APS on the differentiation of brown adipocytes in C3H10T 1/2 cells. The results showed that APS promoted the differentiation of brown adipocytes and improved insulin sensitivity along with significant increases in the expression of brown adipogenic marker proteins (C/EBPα, C/EBPβ, and PPARγ), thermogenesis marker proteins (UCP1, PRDM16, and PGC-1α), and insulin sensitivity marker protein (GLUT4). Meanwhile, the results showed that the amount of the phosphorylation of insulin receptor substrate 1 (p-IRS1) and phospho-AKT (p-AKT) which are critical factors in the insulin signaling pathway was increased without changing the total amount of IRS and AKT. Furthermore, the results of RNA-seq showed that APS altered the expression profiles of various miRNAs, and among which the expression of miR-6911 as a universal regulatory factor was significantly decreased. Importantly, we found that miR-6911 regulated the differentiation of brown adipocytes by targeting PR domain-containing 16 (Prdm16). In addition, after transfection of miR-6911 mimics, compared with the control and inhibitor group, PRDM16 protein expression significantly decreased, which was accompanied by the decrease of PPARγ, UCP1, and PGC-1α. Collectively, our results indicated that APS regulated brown adipocytes differentiation in C3H10T 1/2 cells via miRNA-6911 targeting Prdm16.
Collapse
Affiliation(s)
- Shihe Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Pengkang Song
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiaoyou Chen
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yu Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xuyang Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Lin Liang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
21
|
Samuel AO, Huang BT, Chen Y, Guo FX, Yang DD, Jin JQ. Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. Sci Rep 2021; 11:19625. [PMID: 34608170 PMCID: PMC8490359 DOI: 10.1038/s41598-021-97109-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
Used as traditional Chinese medicine, Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) roots are also used as tonic food material in a wide range of applications, while the leaves are left in the field, unused. Therefore, comprehensively exploring and utilizing the leaves will inevitably reduce the associated resource waste and environment pollution. In this study, the plant leaves were processed into tea using green tea processing technology. Bioactive components, antioxidant and antibacterial activities of the Leaf Tea (LT) and Dry Leaves (DL) were studied, and compared to that of the Dry Roots (DR). The results showed that the polysaccharides content (POL) in the DR (20.44%) was twice as high as the DL (10.18%) and LT (8.68%). However, the DL contained 36.85% more water-soluble extracts (WSE), 35.09% more ethanol-soluble extracts (ESE), 409.63% more total flavonoid content (TFC), 221.01% more total phenolic content (TPC) and 94.34% more proteins, and the LT contained 26.21% more WSE, 40.64% more ESE, 326.93% more TFC, 191.90% more TPC and 37.71% more proteins. The total amino acid (AA) content in the DR was 8.89%, while in that of the DL and LT were 24.18% and 28.96% respectively, nearly 3-times higher than that of the DR. The antioxidant activity of DR was much lower than those of DL and LT, both of which had antioxidant activity closer to that of Vitamin C (VC) and the antioxidant activities were even stronger when the optimal concentration was reached. Except for Aspergillus niger and Staphylococcus aureus, the DL and DR exhibited inhibition activities to Salmonella, Bacillus subtilis, Escherichia coli and yeast, while the LT had antimicrobial activities against all the strains except for A. niger. In summary, compared with the most commonly used DR, the DL and LT from A. membranaceus contained higher bioactive components, and stronger antioxidant and antimicrobial activities. Producing leaf tea may be an appropriate way to economically and reasonably utilize the plant leaves which are by-products.
Collapse
Affiliation(s)
- Anim Okyere Samuel
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China
- CSIR-Oil Palm Research Institute, P.O BOX 74, Kusi, Ghana
| | - Bao-Ting Huang
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuan Chen
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Feng-Xia Guo
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Dou-Dou Yang
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jian-Qin Jin
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Aridland Crop Science, Gansu Key Lab of Crop Genetic Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
22
|
Wang L, Xiong F, Yang L, Xiao Y, Zhou G. A Seasonal Change of Active Ingredients and Mineral Elements in Root of Astragalus membranaceus in the Qinghai-Tibet Plateau. Biol Trace Elem Res 2021; 199:3950-3959. [PMID: 33241436 DOI: 10.1007/s12011-020-02486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Astragalus membranaceus is an important traditional Chinese herb whose roots have been used for medicinal purposes for more than 2000 years. Because of excessive exploitation, the wild resources are currently almost exhausted, and therefore, artificial planting of Astragalus membranaceus has been increasingly important. But to date, few studies have focused on the active ingredients and mineral element of Astragalus membranaceus in the Qinghai-Tibet Plateau.In this study, five density gradients (M1: 10 cm × 25 cm, M2: 15 cm × 25 cm, M3: 20 cm × 25 cm, M4: 25 cm × 25 cm and M5: 30 cm × 25 cm) were assessed to evaluate the effects of various planting densities on the mineral element and secondary metabolite content of Astragalus membranaceus roots in different months. It was found that the content of calycosin-7-O-β-D-glucoside and astragaloside IV reached its highest in October. Ononin content increased month by month, while formononetin content decreased during months. Calycosin content did not show significant changes during seasons. Taken together, these results suggest that the optimal planting density is 15 cm × 25 cm (D2) and the optimal harvest period is October. According to the results, the Cu content in all samples did not exceed the limit (20 mg/kg). Principal component analysis (PCA) revealed that Na, P, K Al, Ba, Ca, Fe, Li, and Mn were selected as characteristic elements of Astragalus membranaceus. The results also showed a high correlation between elements and active ingredients. Ba and Co had extremely significant associations with astragaloside IV.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lucun Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
| | - Yuanming Xiao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining, 810008, China.
| |
Collapse
|
23
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
24
|
Li T, Li H, Wu Y, Wu Q, Zhao G, Cai Z, Pu F, Li B. Efficacy and safety of Shenqi Jiangtang Granules plus oral hypoglycemic agent in patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis of 15 RCTs. Medicine (Baltimore) 2021; 100:e23578. [PMID: 33592826 PMCID: PMC7870258 DOI: 10.1097/md.0000000000023578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Shenqi Jiangtang Granules (SQJTG) has been widely used to treat patients with type 2 diabetes mellitus (T2DM). But whether there exists sufficient evidence on the efficacy of SQJTG in the treatment of T2DM is unclear. In order to assess the effects of SQJTG for T2DM, a systematic review and meta-analysis of randomized controlled trials (RCTs) were carried out. METHODS Eight databases, namely, PubMed, The Cochrane Library, EMBASE, Web of Science, Chinese National Knowledge Infrastructure, Chinese Scientific Journals Full-Text Database, CBM, and Wanfang database were searched up to May 2020. According to the Cochrane standards, the selection of study, the extraction of data, the assessment of study quality, and the analyses of data were carried out strictly. Then a fixed or random effects model was applied to analyze the outcomes. RESULTS Fifteen studies (N = 1392) in total conformed the inclusion criteria to this meta-analysis. Two subgroups were identified, based on different dose of SQJTG: oral hypoglycemic agent (OHA) vs OHA plus SQJTG (1 g); OHA vs. OHA plus SQJTG (1.5-3 g). The pooled results showed that, in comparison with OHA, OHA plus SQJTG significantly reduced fasting plasma glucose in both 1 g subgroup and 1.5-3 g subgroup; 2-hour post-meal blood glucose was also greatly reduced in the SQJTG 1 g subgroup and the SQJTG 1.5-3 g subgroup. Compared with OHA, SQJTG 1 g subgroup significantly reduced levels of glycated hemoglobin A1c, as well as the SQJTG 1.5-3 g subgroup. Homeostasis model-insulin resistance index was also reduced in both SQJTG 1 g subgroup and SQJTG 1.5-3 g subgroup; SQJTG group can also significantly reduce the total adverse events especially in reducing the incidence of hypoglycemia. CONCLUSIONS SQJTG is an effective and safe complementary treatment for T2DM patients. This meta-analysis provides an evidence for the treatment in patients with T2DM. While owing to the high heterogeneity and the trials' small sample size, it's crucial to perform large-scale and strict designed studies.
Collapse
Affiliation(s)
- Tianli Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Hongzheng Li
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Yang Wu
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Qian Wu
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Guozhen Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
| | - Zhaolun Cai
- Department of Gastroenterology, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenglan Pu
- Beijing University of Chinese medicine, Chaoyang District
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
| |
Collapse
|
25
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
26
|
Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells. Biosci Rep 2020; 40:221735. [PMID: 31894851 PMCID: PMC6974424 DOI: 10.1042/bsr20192121] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background: ‘Metabolic memory’ of early hyperglycaemic environment has been frequently suggested in the progression of diabetic retinopathy (DR). Retinal pigment epithelial (RPE) cells are crucial targets for DR initiation following hyperglycaemia. Astragalus polysaccharides (APS) has been long used as a traditional Chinese medicine in treating diabetes. In the present study, the preventive effects and mechanisms of APS on metabolic memory-induced RPE cell death were investigated. Methods: The expressions of miR-204 and SIRT1 were determined by reverse transcription quantitative PCR (RT-qPCR). Dual luciferase assay was applied to detect the potential targeting effects of miR-204 on SIRT1. SIRT1, ER stress and apoptosis related proteins were monitored using Western blotting. Apoptosis was assessed by TUNEL assay and Annexin V/PI staining followed by flow cytometry analysis. MiR-204 mimics and shSIRT1 were applied for miR-204 overexpression and SIRT1 knockdown, respectively. Results: High glucose exposure induced metabolic memory, which was accompanied with sustained dysregulation of miR-204/SIRT1 axis, high level of ER stress and activation of apoptotic pathway even after replacement with normal glucose. Pre-treatment with APS concentration-dependently reversed miR-204 expression, leading to disinhibition of SIRT1 and alleviation of ER stress-induced apoptosis indicated by decreased levels of p-PERK, p-IRE-1, cleaved-ATF6, Bax, cleaved caspase-12, -9, -3, and increased levels of Bcl-2 and unleaved PARP. The effects of APS on RPE cells were reversed by either miR-204 overexpression or SIRT1 knockdown. Conclusions: We concluded that APS inhibited ER stress and subsequent apoptosis via regulating miR-204/SIRT1 axis in metabolic memory model of RPE cells.
Collapse
|
27
|
Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, Nawi MSM, Khatib A, Siddiqui MJ, Umar A, Alhassan AM. Medicinal Potential of Isoflavonoids: Polyphenols That May Cure Diabetes. Molecules 2020; 25:molecules25235491. [PMID: 33255206 PMCID: PMC7727648 DOI: 10.3390/molecules25235491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
Collapse
Affiliation(s)
- Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
- Correspondence: (Q.U.A.); (S.M.)
| | - Abdul Hasib Mohd Ali
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
- Correspondence: (Q.U.A.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Awis Sukarni Mohmad Sabere
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohamed Sufian Mohd. Nawi
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Abdulrashid Umar
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| |
Collapse
|
28
|
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020; 12:E3085. [PMID: 33050561 PMCID: PMC7601163 DOI: 10.3390/nu12103085] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, one of the most important research directions that concerns the scientific world is to exploit the earth's resources in a sustainable way. Considering the increasing interest in finding new sources of bioactive molecules and functional products, many research studies focused their interest on demonstrating the sustainability of exploiting marine macroalgal biomass as feedstock for wastewater treatment and natural fertilizer, conversion into green biofuels, active ingredients in pharmaceutical and nutraceutical products, or even for the production of functional ingredients and integration in the human food chain. The objective of the present paper was to provide an overview on the recent progress in the exploitation of different macroalgae species as a source of bioactive compounds, mainly emphasizing the latter published data regarding their potential bioactivities, health benefits, and industrial applications.
Collapse
Affiliation(s)
- Elena-Suzana Biris-Dorhoi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Delia Michiu
- Department of Food Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Ancuta M. Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Maria Tofana
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Anca C. Farcas
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| |
Collapse
|
29
|
Xiao LM, Cao PH, Luo ZH, Bao XF, Zhou ZQ, Li S, Zhao SS, Zheng JX, Gao H, Zhi H. Cycloartane-type triterpenoids from the root of Astragalus membranaceus var. mongholicus. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:905-913. [PMID: 32654511 DOI: 10.1080/10286020.2020.1787994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Three new (1-3) and 11 known (4-14) cycloartane-type triterpenoids were isolated from the root of Astragalus membranaceus var. mongholicus. Their structures were determined by spectroscopic analyses and chemical methods. Cycloartane-type triterpenoids are a class of major bioactive constituents in the root of A. membranaceus var. mongholicus, and the discovery of compounds 1-3 added new members of this kind of natural product. [Formula: see text].
Collapse
Affiliation(s)
- Luo-Min Xiao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pei-Hong Cao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Shuang Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen-Sen Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Gao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
30
|
Oladele JO, Ajayi EI, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 2020; 6:e04897. [PMID: 32929412 PMCID: PMC7480258 DOI: 10.1016/j.heliyon.2020.e04897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite the frightening mortality rate associated with COVID-19, there is no known approved drug to effectively combat the pandemic. COVID-19 clinical manifestations include fever, fatigue, cough, shortness of breath, and other complications. At present, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical intervention for COVID-19 is only palliative and limited to support. Thus, there is an exigent need for effective and non-invasive treatment. This article evaluates the possible mechanism of actions of SARS-CoV-2 and present Nigeria based medicinal plants which have pharmacological and biological activities that can mitigate the hallmarks of the pathogenesis of COVID-19. SARS-CoV-2 mode of actions includes hyper-inflammation characterized by a severe and fatal hyper-cytokinaemia with multi-organ failure; immunosuppression; reduction of angiotensin-converting enzyme 2 (ACE2) to enhance pulmonary vascular permeability causing damage to the alveoli; and further activated by open reading frame (ORF)3a, ORF3b, and ORF7a via c-Jun N- terminal kinase (JNK) pathway which induces lung damage. These mechanisms of action of SARS-CoV-2 can be mitigated by a combination therapy of medicinal herbs based on their pharmacological activities. Since the clinical manifestations of COVID-19 are multifactorial with co-morbidities, we strongly recommend the use of combined therapy such that two or more herbs with specific therapeutic actions are administered to combat the mediators of the disease.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Ebenezer I. Ajayi
- Membrane Biophysics and Nanotechnology Laboratories, Mercedes and Martin Ferreyra Institute of Medicine, IMMF-INIMEC-CONICET-UNC, Cordoba, Argentina
- Diabesity Complications & Other Neglected Infectious Diseases Group, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Oyedotun M. Oyeleke
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Oluwaseun T. Oladele
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Boyede D. Olowookere
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Boluwaji M. Adeniyi
- Centre of Excellence for Food Technology and Research -Benue State University, Nigerian Stored Products Research Institute, Ibadan, Nigeria
| | - Olu I. Oyewole
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | |
Collapse
|
31
|
Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 2020; 24:279-299. [PMID: 30349977 DOI: 10.1007/s10741-018-9749-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTARCT Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.
Collapse
|
32
|
Chikari F, Han J, Wang Y, Luo P, He X, Kwaw E, Otu P. Dual‐frequency ultrasound‐assisted alcohol/salt aqueous two‐phase extraction and purification of
Astragalus
polysaccharides. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fadzai Chikari
- School of Food & Biological EngineeringJiangsu University Zhenjiang China
| | - Juan Han
- School of Food & Biological EngineeringJiangsu University Zhenjiang China
| | - Yun Wang
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Peng Luo
- School of Food & Biological EngineeringJiangsu University Zhenjiang China
| | - Xingcheng He
- School of Food & Biological EngineeringJiangsu University Zhenjiang China
| | - Emmanuel Kwaw
- School of Applied Sciences and ArtsCape Coast Technical University Cape Coast Ghana
| | - Phyllis Otu
- School of Food & Biological EngineeringJiangsu University Zhenjiang China
| |
Collapse
|
33
|
Ghasemian-Yadegari J, Hamedeyazdan S, Nazemiyeh H, Fathiazad F. Evaluation of Phytochemical, Antioxidant and Antibacterial Activity on Astragalus Chrysostachys Boiss. Roots. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1902-1911. [PMID: 32184856 PMCID: PMC7059049 DOI: 10.22037/ijpr.2019.1100855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Astragalus is a well-known genus in Leguminosae family that represented more than 800 species growing in Iran. Nevertheless, there are a few reports on Astragalus plants endemic to Iran. The roots of Astragalus plants are rich in saponins, flavonoids and polysaccharides that possess various pharmacological activities. In the present study, chemical components, antioxidant and antibacterial activity of Astragalus chrysostachys Boiss. roots were evaluated. For determination of phytochemicals in Astragalus chrysostachys Boiss. roots, total hydroalcoholic extract was fractionated with ethyl acetate and n-butanol. Ethyl acetate extract as a flavonoid rich extract was analyzed using vacuum liquid chromatography and preparative TLC and consequently a major flavonoid was isolated. The structure of the obtained compound was elucidated with 1D and 2D NMR experiments. Additionally, the essential oil of the roots was analyzed by GC-MS. Antioxidant activity of all extracts was evaluated by different assays. Moreover, antibacterial activities of the extracts were also investigated against 2 Gram-positive and 2 Gram-negative bacteria using Micro-dilution Broth method. Apigenin-6, 8-di-C-glucoside was detected in ethyl acetate extract for the first time in genus Astragalus. In addition, m-tolualdehyde, acetophenone, croweacin were found to be characteristics of the volatile oil of roots. Ethyl acetate extracts revealed notable antioxidant activity in DPPH scavenging assay with IC50 value of 14.6 µg/mL. Evaluation of antibacterial activity on the tested extracts showed mild activity against Gram-positive bacteria. Since there have been no reports on Astragalus chrysostachys Boiss. to date, the present data might be promising for application of this plant derivatives in phytotherapeutic practice.
Collapse
Affiliation(s)
- Javad Ghasemian-Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Fathiazad
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Liang Y, Zhang Q, Zhang L, Wang R, Xu X, Hu X. Astragalus Membranaceus Treatment Protects Raw264.7 Cells from Influenza Virus by Regulating G1 Phase and the TLR3-Mediated Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2971604. [PMID: 31975996 PMCID: PMC6955127 DOI: 10.1155/2019/2971604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
Abstract
Influenza is an acute respiratory infection disease caused by the influenza virus. At present, due to the high mutation rate of influenza virus, it is difficult for the existing antiviral drugs to play an effective antiviral effect continually, so it is urgent to develop a new anti-influenza drug. Recently, more and more studies have been conducted on the antiviral activity of Astragalus membranaceus, but the specific antiviral mechanism of this traditional Chinese medicine is not clear. In this study, the results proved that the Astragalus membranaceus injection showed obvious anti-influenza virus activity. It could improve the survival rate of Raw264.7 cells which were infected with influenza virus, while it improved the blocking effect of influenza virus on cell cycle after infection, increased the SOD activity, and reduced the MDA content. At the same time, the innate immunity was affected by regulating the expression of TLR3, TAK1, TBK1, IRF3, and IFN-β in the TLR3-mediated signaling pathway, thus exerting its antiviral effect in vitro.
Collapse
Affiliation(s)
- Yuxi Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Linjing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Lee D, Lee DH, Choi S, Lee JS, Jang DS, Kang KS. Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism. Biomolecules 2019; 9:E618. [PMID: 31627434 PMCID: PMC6843762 DOI: 10.3390/biom9100618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
In type 2 diabetes (T2D), insufficient secretion of insulin from the pancreatic β-cells contributes to high blood glucose levels, associated with metabolic dysregulation. Interest in natural products to complement or replace existing antidiabetic medications has increased. In this study, we examined the effect of Astragalus membranaceus extract (ASME) and its compounds 1-9 on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. ASME and compounds 1-9 isolated from A. membranaceus stimulated insulin secretion in INS-1 cells without inducing cytotoxicity. A further experiment showed that compounds 2, 3, and 5 enhanced the phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ), which are associated with β-cell function and insulin secretion. The data suggest that two isoflavonoids (2 and 3) and a nucleoside (compound 5), isolated from the roots of A. membranaceus, have the potential to improve insulin secretion in β-cells, representing the first step towards the development of potent antidiabetic drugs.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Da Hye Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Jin Su Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
36
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
37
|
Nie Q, Zhu L, Zhang L, Leng B, Wang H. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. Life Sci 2019; 232:116662. [PMID: 31323271 DOI: 10.1016/j.lfs.2019.116662] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
AIMS Vascular endothelial cells act as a selective barrier between circulating blood and vessel wall and play an important role in the occurrence and development of cardiovascular diseases. Astragaloside IV (As-IV) has a protective effect on vascular endothelial cells, but its underlying mechanism remains unclear. This study is aimed at investigating the effect of As-IV on endothelial dysfunction (ED). METHODS Male Sprague-Dawley (SD) were injected intraperitoneally with 65 mg/kg streptozotocin (STZ) to induce diabetes and then administered orally with As-IV (40, 80 mg/kg) for 8 weeks. Vascular function was evaluated by vascular reactivity in vivo and in vitro. The expression of calpain-1 and eNOS in the aorta of diabetic rats was examined by western blot. NO production was measured using nitrate reductase method. Oxidative stress was determined by measuring SOD, GSH-px and ROS. RESULTS Our results showed that As-IV administration significantly improved diabetes associated ED in vivo, and both NAC (an antioxidant) and MDL-28170 (calpain-1 inhibitor) significantly attenuated hyperglycemia-induced ED in vitro. Meanwhile, pretreatment with the inhibitor l-NAME nearly abolished vasodilation to ACh in all groups of rats. Furthermore, As-IV increased NO production and the expression of eNOS in the thoracic aorta of diabetic rats. In addition, the levels of ROS were significantly increased, and the activity of SOD and GSH-px were decreased in diabetic rats, while As-IV administration reversed this change in a concentration-dependent manner. CONCLUSION These results suggest that As-IV improves endothelial dysfunction in thoracic aortas from diabetic rats by reducing oxidative stress and calpain-1.
Collapse
Affiliation(s)
- Qu Nie
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China; The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Liping Zhu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Lijie Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Bin Leng
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
38
|
Zhang Y, Chen C, Zhang J. Effects and significance of formononetin on expression levels of HIF-1α and VEGF in mouse cervical cancer tissue. Oncol Lett 2019; 18:2248-2253. [PMID: 31452725 PMCID: PMC6676657 DOI: 10.3892/ol.2019.10567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Effects and significance of formononetin on the expression levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in mouse cervical cancer tissue were investigated. The animal models of Balb/c nude mice with cervical cancer were established by the inoculation of HeLa cells, and randomly divided into positive control (n=10), cisplatin (n=15) and formononetin group (n=15). Mice were all sacrificed on the 31st day after administration, and their tumors were excised and weighed to calculate tumor inhibition rate. At the same time, their cancer tissues were obtained. RT-qPCR was used for detecting the mRNA expression levels of HIF-1α and VEGF, and western blotting for detecting the protein expression levels. During the medication intervention, mice in the formononetin group had no obvious adverse reactions, and were in good condition, whereas mice in the cisplatin group had poor appetite, drooping spirits and decreased activity. Mice in the cisplatin and the formononetin groups had significantly lower tumor mass and volume than those in the positive control group (P<0.05). The tumor inhibition rate of mice was 56.24% in the cisplatin group, and 50.17% in the formononetin group. Cervical cancer mice in the formononetin and the cisplatin groups had significantly lower mRNA and protein expression levels of HIF-1α and VEGF in tissues than those in the positive control group (P<0.05). Formononetin can inhibit the growth of cervical cancer and reduce the mRNA and protein expression levels of HIF-1α and VEGF in mouse cervical cancer. Formononetin has an inhibitory effect on cervical cancer tumors similar to that of cisplatin, but the former has smaller side effects, providing data for the clinical use in cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Chen Chen
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jun Zhang
- Department of Gynaecology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
39
|
Rao T, Gong YF, Peng JB, Wang YC, He K, Zhou HH, Tan ZR, Lv LZ. Comparative pharmacokinetic study on three formulations of Astragali Radix by an LC-MS/MS method for determination of formononetin in human plasma. Biomed Chromatogr 2019; 33:e4563. [PMID: 31025385 DOI: 10.1002/bmc.4563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
Astragali Radix (AR) is a widely used traditional Chinese medicine for healing the cardiovascular, liver and immune systems. Recently, superfine pulverizing technology has been applied to developing novel formulations to improve bioavailability of the active constituents in herbs, such as ultrafine granular powder of AR. In this study, a universal and sensitive quantitative method based on LC-MS/MS was employed for determining formononetin, the main flavonoid in AR, in human plasma for comparative pharmacokinetics of three oral formulations of AR. Formononetin and IS (quercetin) were extracted by ethyl acetate from human plasma and were separated on a C18 column with a mobile phase consisting of acetonitrile and 0.1% formic acid. Positive-ion electrospray-ionization mode was applied in mass spectrometric detection. The quantitative method was validated with regards to selectivity, linearity, accuracy and precision, matrix effect, extraction recovery and stability, and was applied to comparing the pharmacokinetics of ultrafine granular powder (UGP), ultrafine powder (UP) and traditional decoction pieces (TDP) of AR after oral administration. The peak concentration and areas under the concentration-time curve of formononetin in UGP and UP were significantly higher than those of TDP. UGP and UP could significantly improve the bioavailability of AR in human compared with TDP after oral administration.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yu-Feng Gong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jing-Bo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yi-Cheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Li-Zhi Lv
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Effects of active ingredients from traditional Chinese medicines on glycogen molecular structure in diabetic mice. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Huang J, Wong KH, Tay SV, Serra A, Sze SK, Tam JP. Astratides: Insulin-Modulating, Insecticidal, and Antifungal Cysteine-Rich Peptides from Astragalus membranaceus. JOURNAL OF NATURAL PRODUCTS 2019; 82:194-204. [PMID: 30758201 DOI: 10.1021/acs.jnatprod.8b00521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Astragalus membranaceus root, Huang Qi in Chinese, is a popular medicinal herb traditionally used to regulate blood glucose. Herein, the identification and characterization of two families of cysteine-rich peptides (CRPs), designated α- and β-astratides, from A. membranaceus roots are reported. Proteomic analysis showed that α-astratide aM1 and β-astratide bM1 belong to two distinct CRP families. The six-cysteine-containing and proline-rich α-astratide aM1 displayed high sequence identity to Pea Albumin 1 Subunit b (PA1b), while the eight-cysteine-containing β-astratide bM1 showed sequence similarity to plant defensins. An antifungal assay revealed that bM1 possessed potent antifungal activity. In contrast, aM1 showed a cytotoxic effect against insect Sf9 cells. More importantly, aM1 decreased insulin secretion in mouse pancreatic β cells, suggesting it could interfere in glucose homeostasis, which accounts for the adaptogenic property of A. membranaceus. Phylogenetic clustering analysis suggested that the proline-rich aM1 is a putative prolyl oligopeptidase inhibitor and belongs to a novel subfamily of PA1b-like peptides, while bM1 belongs to a new subfamily of plant defensins. Together, the study reveals that astratides are multifunctional CRPs in plants, which expand the existing library of PA1b-like peptides and plant defensins and further our understanding of their roles in host-defense system and leads as peptidyl therapeutics.
Collapse
Affiliation(s)
- Jiayi Huang
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Ka H Wong
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Stephanie V Tay
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Aida Serra
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Siu Kuan Sze
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - James P Tam
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| |
Collapse
|
42
|
Nutraceuticals Inspiring the Current Therapy for Lifestyle Diseases. Adv Pharmacol Sci 2019; 2019:6908716. [PMID: 30755770 PMCID: PMC6348880 DOI: 10.1155/2019/6908716] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/16/2018] [Indexed: 12/17/2022] Open
Abstract
Nutraceuticals are the pharmaceutically blended products that possess both nutritional as well as the medicinal value. Such a product is designed to improve the physical health, fight against day-to-day challenges such as stress, increase longevity, etc. Nowadays, emphasis is given to those herbs which are used as food and medicine due to its greater acceptance. Due to dynamic action, the popularity of nutraceuticals among people as well as healthcare providers has been increased over medicines and health supplements. This review documents herbs with a wide variety of therapeutic values such as immunity booster, antidiabetic, anticancer, antimicrobial, and gastroprotective. These herbs could be better options to formulate as nutraceuticals. Several nutraceuticals are described based on their availability as food, chemical nature, and mechanism of action.
Collapse
|
43
|
Zhang G, Fang H, Li Y, Xu J, Zhang D, Sun Y, Zhou L, Zhang H. Neuroprotective Effect of Astragalus Polysacharin on Streptozotocin (STZ)-Induced Diabetic Rats. Med Sci Monit 2019; 25:135-141. [PMID: 30610831 PMCID: PMC6330021 DOI: 10.12659/msm.912213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the recent years, there has been increasing interest in traditional Chinese medicine as a neuroprotective nutrient in the management of chronic neurodegenerative disease, such as diabetic cognitive decline. Astragalus polysacharin (APS), a Chinese herb extract, is a biologically active treatment for neurodegenerative diseases. Therefore, in the present study, we investigated the neuroprotective effects of APS (20 mg/kg) on diabetes-induced memory impairments in Sprague-Dawley (SD) rats and explored its underlying mechanisms of action. MATERIAL AND METHODS Thirty SD rats were randomly divided into a control group (CON group, n=10), a diabetic model (DM) group (n=10), and an APS group (n=10). We administered 55 mg/kg streptozotocin (STZ, Sigma) by intraperitoneal injection to induce a diabetic model. Food and water intake, body weight, and blood fasting plasma glucose (FPG) were measured. The Morris water maze test (MWM) was used to assess learning and memory ability, and we measured levels of N-methyl-D-aspartate receptor (NMDA), calcium/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB) in the hippocampus. RESULTS APS (20 mg/kg) administration decreased the rats' fasting plasma glucose (FPG) levels and body weight. APS (20 mg/kg) administration improved the cognitive performance of diabetes-induced rats in the Morris water maze test. APS (20 mg/kg) administration reduced the number of dead cells in the CA1 region of the hippocampus. Furthermore, APS (20 mg/kg) administration obviously upregulated the phosphorylation levels CREB, NMDA, and CaMK II. CONCLUSIONS These results suggest that APS has the neuroprotective effects, and it may be a candidate for treatment of neurodegenerative diseases such as diabetic cognitive impairment.
Collapse
Affiliation(s)
- Guyue Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Hui Fang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Yukai Li
- Department of Endocrinology, Wuhan Puai Hospital, Wuhan, Hubei, P.R. China
| | - Jing Xu
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Dandan Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Yanan Sun
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Lei Zhou
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - He Zhang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| |
Collapse
|
44
|
Park B, You S, Cho WCS, Choi JY, Lee MS. A systematic review of herbal medicines for the treatment of cancer cachexia in animal models. J Zhejiang Univ Sci B 2019; 20:9-22. [PMID: 30614226 PMCID: PMC6331334 DOI: 10.1631/jzus.b1800171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study is to summarize preclinical studies on herbal medicines used to treat cancer cachexia and its underlying mechanisms. METHODS We searched four representing databases, including PubMed, EMBASE, the Allied and Complementary Medicine Database, and the Web of Science up to December 2016. Randomized animal studies were included if the effects of any herbal medicine were tested on cancer cachexia. The methodological quality was evaluated by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADE) checklist. RESULTS A total of fourteen herbal medicines and their compounds were identified, including Coptidis Rhizoma, berberine, Bing De Ling, curcumin, Qing-Shu-Yi-Qi-Tang, Scutellaria baicalensis, Hochuekkito, Rikkunshito, hesperidin, atractylodin, Sipjeondaebo-tang, Sosiho-tang, Anemarrhena Rhizoma, and Phellodendri Cortex. All the herbal medicines, except curcumin, have been shown to ameliorate the symptoms of cancer cachexia through anti-inflammation, regulation of the neuroendocrine pathway, and modulation of the ubiquitin proteasome system or protein synthesis. CONCLUSIONS This study showed that herbal medicines might be a useful approach for treating cancer cachexia. However, more detailed experimental studies on the molecular mechanisms and active compounds are needed.
Collapse
Affiliation(s)
- Bongki Park
- Liver and Immunology Research Center, Oriental College, Daejeon University, Daejeon 34020, Republic of Korea
| | - Sooseong You
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Jun-Yong Choi
- Department of Korean Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Myeong Soo Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
45
|
Zhang J, Liu L, Wang J, Ren B, Zhang L, Li W. Formononetin, an isoflavone from Astragalus membranaceus inhibits proliferation and metastasis of ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:91-99. [PMID: 29660466 DOI: 10.1016/j.jep.2018.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus which was originally described in the Shennong's Classic of Materia Medica, the earliest complete Pharmacopoeia of China written from the Warring States Period to Han Dynasty, has been widely used in Chinese medicine for > 2000 years, especially in the prescription of curing cancer. A. membranaceus has various bioactivities, such as anti-tumor, anti-viral, anti-oxidant, anti-diabetes, anti-inflammation, anti-atherosclerosis, immunomodulation, hepatoprotection, hematopoiesis, neuroprotection and so on. As an important component of A. membranaceus, whether formononetin has a close relationship with its tumor-inhibiting effect on ovarian cancer cell has been investigated. AIM OF STUDY The present study aimed to demonstrate the anti-proliferation, anti- migration and invasion effects of formononetin on ovarian cancer cells and further explore the underlying molecular mechanisms associated with apoptosis, migration and invasion. MATERIALS AND METHODS MTT assay was performed to detect the viability of ovarian cancer cells. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential detected the apoptosis of ovarian cancer cells treated by formononetin. The migration and invasion of ovarian cancer cells which exposed to formononetin were detected by scratch assay and transwell assay. Meanwhile, the protein-level changes of in ovarian cancer cells treated by formononetin were assessed by western blot analysis. RESULTS MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with formononetin. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential suggested that formononetin suppressed cells proliferation by inducing apoptosis. We detected the expression of apoptosis-related proteins in ovarian cancer cells after treatment with formononetin and found the expression of caspase 3/9 proteins and the ratio of Bax/Bcl-2 were increased in a dose-dependent manner. In addition, wound healing and transwell chamber assays showed that formononetin suppressed the migration and invasion of ovarian cancer cells. And formononetin decreased expression of MMP-2/9 proteins and phosphorylation level of ERK. CONCLUSIONS The present results demonstrated that formononetin have potential effects on induction of apoptosis and suppression of migration and invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jing Wang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Lin Zhang
- Department of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
46
|
Gong AGW, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK, Chan K. Evaluation of the Pharmaceutical Properties and Value of Astragali Radix. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E46. [PMID: 29883402 PMCID: PMC6023478 DOI: 10.3390/medicines5020046] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Astragali Radix (AR), a Chinese materia medica (CMM) known as Huangqi, is an important medicine prescribed in herbal composite formulae (Fufang) by Traditional Chinese medicine (TCM) practitioners for thousands of years. According to the literature, AR is suggested for patients suffering from “Qi”- and “Blood”-deficiencies, and its clinical effects are reported to be related to anti-cancer cell proliferation, anti-oxidation, relief of complications in cardiovascular diseases, etc. The underlying cell signaling pathways involved in the regulation of these various diseases are presented here to support the mechanisms of action of AR. There are two botanical sources recorded in China Pharmacopoeia (CP, 2015): Astragalus membranaceus (Fisch.) Bge. Var. mongohlicus, (Bge.) Hsiao, and Astragalus membranaceus (Fisch.) Bge. (Fam. Leguminosae), whose extracts of dried roots are processed via homogenization-assisted negative pressure cavitation extraction. Geographic factors and extraction methods have impacts on the pharmaceutical and chemical profiles of AR. Therefore, the levels of the major bioactive constituents of AR, including polysaccharides, saponins, and flavonoids, may not be consistent in different batches of extract, and the pharmaceutical efficacy of these bioactive ingredients may vary depending on the source. Therefore, the present review mainly focuses on the consistency of the available sources of AR and extracts and on the investigation of the biological functions and mechanisms of action of AR and of its major bioactive constituents. Furthermore, it will also include a discussion of the most popular AR composite formulae to further elucidate their chemical and biological profiles and understand the pharmaceutical value of AR.
Collapse
Affiliation(s)
- Amy G W Gong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China.
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Huai Y Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Xiang P Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Kelvin Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3 AF, UK.
- National Institute of Complementary Medicine, Western Sydney University, Sydney, NSW 2560, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
47
|
Nie T, Zhao S, Mao L, Yang Y, Sun W, Lin X, Liu S, Li K, Sun Y, Li P, Zhou Z, Lin S, Hui X, Xu A, Ma CW, Xu Y, Wang C, Dunbar PR, Wu D. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARγ activity. Br J Pharmacol 2018; 175:1439-1450. [PMID: 29315511 PMCID: PMC5900995 DOI: 10.1111/bph.14139] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/26/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing energy expenditure through adipocyte thermogenesis is generally accepted as a promising strategy to mitigate obesity and its related diseases. However, few clinically effective and safe agents are known to promote adipocyte thermogenesis. In this study, 20 traditional Chinese herbal medicines were screened to examine whether they induced adipocyte thermogenesis. EXPERIMENTAL APPROACH The effects of Chinese herbal medicines or components isolated from extracts of A. membranaceus, on adipocyte thermogenesis were analysed by assessing expression of uncoupling protein 1 (UCP1) by qPCR. Eight-week-old C57BL6/J male mice were fed a high-fat diet for 8 weeks and then randomized to two groups treated with vehicle or formononetin for another 8 weeks. Glucose tolerance tests and staining of adipose tissue with haematoxylin and eosin were carried out. Whole-body oxygen consumption was measured with an open-circuit indirect calorimetry system. KEY RESULTS Extracts of A. membranaceus increased expression of Ucp1 in primary cultures of mouse adipocytes. Formononetin was the only known component of A. membranaceus extracts to increase adipocyte Ucp1 expression. Diet-induced obese mice treated with formononetin gained less weight and showed higher energy expenditure than untreated mice. In addition, formononetin binds directly with PPARγ. CONCLUSIONS AND IMPLICATION Taken together, our study demonstrates that the Chinese herbal medicine from A. membranaceus and its constituent formononetin have the potential to reduce obesity and associated metabolic disorders. Our results suggest that formononetin regulates adipocyte thermogenesis as a non-classical PPARγ agonist.
Collapse
Affiliation(s)
- Tao Nie
- Central Laboratory of the First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Liufeng Mao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | | | - Wei Sun
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Xiaoliang Lin
- Research and Development CentreInfinitus (China) Company Ltd.GuangzhouChina
| | - Shuo Liu
- Research and Development CentreInfinitus (China) Company Ltd.GuangzhouChina
| | - Kuai Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Yirong Sun
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Peng Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Shaoqiang Lin
- Central Laboratory of the First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongHong Kong
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongHong Kong
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - Chung Wah Ma
- Research and Development CentreInfinitus (China) Company Ltd.GuangzhouChina
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
| | - Cunchuan Wang
- Central Laboratory of the First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - P Rod Dunbar
- School of Biological Sciences and Maurice Wilkins CentreUniversity of AucklandAucklandNew Zealand
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Guangzhou Medical UniversityGuangzhouChina
- GUANGZHOU Regenerative Medicine and Health LaboratoryGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| |
Collapse
|
48
|
Wang N, Siu F, Zhang Y. Effect of astragaloside IV on diabetic gastric mucosa in vivo and in vitro. Am J Transl Res 2017; 9:4902-4913. [PMID: 29218088 PMCID: PMC5714774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effects of AS-IV on high glucose induced-gastric mucosal lesions compared to the effects of the Bu-zhong-yi-qi pill and the Xiaoke pill, which are already in clinical use. STZ-induced diabetic SD rats were treated with drugs for 12 weeks. Diabetes serum (DS) was used to mimic high glucose conditions in GES-1 cells in vitro at different concentrations and time points. The drugs were set at three concentration gradients for 24, 48 and 72 h before being added to DS-induced GES-1 cells. The proliferation activity and inhibition ratio of cells were measured by the CCK-8 assay. Gastric tissues were examined by H&E staining. Cell morphology was observed by inverted phase contrast microscopy. Apoptosis of cells was detected by annexin V-FITC/PI. In addition, expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and mucin1 (MUC1) were measured by Western blots. We found that the drugs significantly alleviated the pathological damage in STZ-induced gastric mucosal lesions. DS inhibited the viability of the cells in a dose and time-dependent manner, while pretreatment with drugs reversed these effects. Pretreatment with drugs also ameliorated the changes in cell morphology and inhibited cell apoptosis. Furthermore, the drugs decreased the expression levels of iNOS, COX-2 and MUC1. AS-IV showed the most beneficial effect compared with buzhong and xiaoke. These results suggest that AS-IV had a significant effect on high glucose-induce gastric mucosal lesions compares with buzhong and xiaoke. We speculate that this is in part through restoring the balance of iNOS, COX-2 and MUC1 expressions. Thus, AS-IV may be a potential antioxidant drug for treating diabetic gastropathy.
Collapse
Affiliation(s)
- Ningding Wang
- Laboratory Animal Center, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Frederick Siu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Yongbin Zhang
- Laboratory Animal Center, Guangzhou University of Chinese MedicineGuangzhou, China
| |
Collapse
|
49
|
Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. Cell Discov 2017; 3:17031. [PMID: 28861277 PMCID: PMC5573880 DOI: 10.1038/celldisc.2017.31] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
Astragalus membranaceus, also known as Huangqi in China, is one of the most widely used medicinal herbs in Traditional Chinese Medicine. Traditional Chinese Medicine formulations from Astragalus membranaceus have been used to treat a wide range of illnesses, such as cardiovascular disease, type 2 diabetes, nephritis and cancers. Pharmacological studies have shown that immunomodulating, anti-hyperglycemic, anti-inflammatory, antioxidant and antiviral activities exist in the extract of Astragalus membranaceus. Therefore, characterising the biosynthesis of bioactive compounds in Astragalus membranaceus, such as Astragalosides, Calycosin and Calycosin-7-O-β-d-glucoside, is of particular importance for further genetic studies of Astragalus membranaceus. In this study, we reconstructed the Astragalus membranaceus full-length transcriptomes from leaf and root tissues using PacBio Iso-Seq long reads. We identified 27 975 and 22 343 full-length unique transcript models in each tissue respectively. Compared with previous studies that used short read sequencing, our reconstructed transcripts are longer, and are more likely to be full-length and include numerous transcript variants. Moreover, we also re-characterised and identified potential transcript variants of genes involved in Astragalosides, Calycosin and Calycosin-7-O-β-d-glucoside biosynthesis. In conclusion, our study provides a practical pipeline to characterise the full-length transcriptome for species without a reference genome and a useful genomic resource for exploring the biosynthesis of active compounds in Astragalus membranaceus.
Collapse
|
50
|
Elekofehinti OO, Ejelonu OC, Kamdem JP, Akinlosotu OB, Adanlawo IG. Saponins as adipokines modulator: A possible therapeutic intervention for type 2 diabetes. World J Diabetes 2017; 8:337-345. [PMID: 28751956 PMCID: PMC5507830 DOI: 10.4239/wjd.v8.i7.337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/03/2017] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Development of type 2 diabetes has been linked to β-cell failure coupled with insulin resistance and obesity. Adipose tissue, known as the fat store, secretes a number of hormones and proteins collectively termed adipokines some of which regulate insulin sensitivity. Dysregulation in the secretion of adipokines has been linked to insulin resistance and type 2 diabetes. In this review, we summarized evidence of the role of adipokines with focus on leptin, adiponectin, adipsin, visfatin and apelin in the pathogenesis of type 2 diabetes and discussed the potential of saponins to modify the ill-regulated adipokines secretions, which could promote the use of this class of phytochemicals as potential antidiabetics agents.
Collapse
|