1
|
Shirkhan F, Mirdamadi S, Mirzaei M, Akbari-adergani B, Nasoohi N. In-vitro investigation of antidiabetic and antioxidants properties of major prebiotics and plant based dietary fibers. J Diabetes Metab Disord 2025; 24:105. [PMID: 40248820 PMCID: PMC11999920 DOI: 10.1007/s40200-025-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
Objectives Consuming prebiotics and plant-based dietary fibers are important as an emerging approach to diabetes and oxidative stress control. In this study, the functional properties of major prebiotics and dietary fibers were evaluated. Methods The hypoglycemic properties were analyzed by inhibiting α-amylase and α-glucosidase, glucose adsorption capacity, and glucose diffusion. Antioxidant capacity, total phenolic (TP), and flavonoid (TF) content were also measured. Results The results showed that among prebiotics, isomaltulose and pectin had antidiabetic activity by α-amylase (IC50 = 11.36 mg/mL) and α-glucosidase (IC50 = 2.38 mg/mL) inhibition. Isomaltulose and pectin exhibited the ability to adsorb glucose capacity. Inulin HP showed the ability to inhibit glucose diffusion. The results also showed that all prebiotics impart antioxidant activity and TP, and TF content in a dose-dependent manner (p < 0.05). Pectin showed a higher ability to scavenge 1,1-diphenyl-2 picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sul-fonate (ABTS) radicals with higher phenolic compound (p < 0.05). Therefore, it seems that pectin was able to reduce the rate of glucose adsorption, regulate glucose adsorption by enzyme activity inhibition, and increase antioxidant capacity. Conclusion The results revealed that the prebiotics were efficient in their antidiabetic potential and could act as bio-functional materials. Using prebiotics in functional foods and nutraceutical medicines is strongly recommended.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881 Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685 Iran
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000 Belgium
| | - Behrouz Akbari-adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, 11136-15911 Iran
| | - Nikoo Nasoohi
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 19396-77511 Iran
| |
Collapse
|
2
|
Zhou P, Li T, Zhao J, Al-Ansi W, Fan M, Qian H, Li Y, Wang L. Grain bound polyphenols: Molecular interactions, release characteristics, and regulation mechanisms of postprandial hyperglycemia. Food Res Int 2025; 208:116291. [PMID: 40263868 DOI: 10.1016/j.foodres.2025.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Frequent postprandial hyperglycemia causes many chronic diseases. Grain polyphenols are widely recognized as natural active ingredients with high potential to treat chronic diseases due to their excellent postprandial hyperglycemic regulating effects. However, previous studies on polyphenols in grains mainly focused on the functional properties of free polyphenols and the extraction and physicochemical properties of bound polyphenols, ignoring the functional properties of bound polyphenols. Comprehensively understanding the binding properties of grain bound polyphenols (GBPs) and their mechanisms in regulating blood glucose levels is essential for developing and applying grain resources. This review summarizes the molecular interactions between GBPs and grain components and their effects on release characteristics and bioavailability at various stages. Meanwhile, the review focuses on elucidating the regulatory mechanism of post-release GBPs on postprandial hyperglycemia levels, incorporating insights from molecular docking, the gastrointestinal-brain axis, and gut flora. GBPs slow food digestion by occupying the active site of digestive enzymes and altering the secondary structure of enzymes and the hydrophobic environment of amino acid residues to inhibit enzyme activity. They modulate intestinal epithelial transport proteins (SGLT1, GLUT2, and GLUT4) to limit glucose absorption and increase glucose consumption. They also stimulate the release of short-term satiety hormones (CKK, GLP-1, and PYY) through the gastrointestinal-brain axis to decrease post-meal food intake. Furthermore, they optimize gut microbiota composition, promoting short-chain fatty acid production and bile acid metabolism. Therefore, developing functional foods with glucose-modulating properties based on GBPs is crucial for obesity prevention, diabetes management, and low-GI food development.
Collapse
Affiliation(s)
- Peng Zhou
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Waleed Al-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Kaulpiboon J, Rudeekulthamrong P. Maltotriosyl-erythritol, a transglycosylation product of erythritol by Thermus sp. amylomaltase and its application to prebiotic. Food Chem 2025; 472:142937. [PMID: 39827568 DOI: 10.1016/j.foodchem.2025.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
In this study, maltotriosyl-erythritol (EG3) was synthesized as a novel prebiotic candidate via transglycosylation using recombinant amylomaltase (AMase) from Thermus sp. Tapioca starch served as the glucosyl donor, and erythritol as the acceptor. High-performance liquid chromatography (HPLC) revealed an EG3 yield of 14.0 % with a concentration of 2.8 mg/mL. Mass spectrometry confirmed the molecular weight of EG3 as 608 Da, and its strucopture was verified by 1H and 13C NMR analysis. EG3 exhibited greater resistance to acid, heat, and digestive enzymes compared to erythritol glucosides (EG1-2) and significantly promoted the growth of Lactobacillus casei BCC36987. Fermentation of EG3 resulted in the highest levels of lactic acid and total short-chain fatty acids, which may contribute to reduced pH levels. These findings suggest that erythritol-receptor products formed via AMase-catalyzed reactions, particularly EG3, are promising prebiotic ingredients, with the prebiotic activity of erythritol derivatives being influenced by the length of the carbohydrate chain.
Collapse
Affiliation(s)
- Jarunee Kaulpiboon
- Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prakarn Rudeekulthamrong
- Department of Biochemistry, Phramongkutklao College of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Moreira FD, Mendes GF, Nascimento GDM, Reis CEG, Gallassi AD, Welker AF. Postprandial hyperglycemia in patients with type 2 diabetes is reduced by raw insoluble fiber: A randomized trial. Nutr Metab Cardiovasc Dis 2024; 34:2673-2679. [PMID: 39306541 DOI: 10.1016/j.numecd.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND AIMS A lower risk of type 2 diabetes mellitus (T2DM) is associated with the intake of insoluble fiber. This contradicts the postulate that insoluble fibers do not decrease postprandial glycemic response and that only viscous gel-forming soluble fibers would do this. This study aimed to investigate the effect of a dose of insoluble fibers that meets dietary recommendations on postprandial hyperglycemia in T2DM patients. METHODS AND RESULTS This is a randomized crossover clinical trial. Nineteen T2DM men randomly ate a balanced breakfast either without (Control) or with prior consumption of insoluble fibers (5.8 g) in the form of 15 g of raw wheat bran (RWB). Glycemia was measured at fasting and 15, 30, 45, 60, 90, and 120 min postprandially. Markers of taste intensity and palatability were assessed after breakfast intake. The glucose peak rise of 87 mg/dL and the incremental area under the curve (AUC) elicited by the breakfast were decreased by RWB (15.80 % and 23.14 %, respectively). Time-to-glucose-peak did not differ between groups. The addition of the RWB to the meal decreased its level of creaminess and tasty and increased the sourness and bitterness. CONCLUSIONS The postprandial hyperglycemia in T2DM patients in response to complex carbohydrates was decreased by prior intake of a recommended dose of raw insoluble fibers. This antihyperglycemic effect is in accordance with the acarbose-like property of raw insoluble fibres, but not of heated ones (e.g., bread and pasta), to inhibit the activities of the carbohydrate-digesting enzymes alpha-glucosidase/alpha-amylase. REGISTRATION NUMBER FOR CLINICAL TRIALS RBR-98tx28b (https://ensaiosclinicos.gov.br/rg/RBR-98tx28b).
Collapse
|
5
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Dar MI, Gulya A, Abass S, Dev K, Parveen R, Ahmad S, Qureshi MI. Hallmarks of diabetes mellitus and insights into the therapeutic potential of synergy-based combinations of phytochemicals in reducing oxidative stress-induced diabetic complications. Nat Prod Res 2024:1-15. [PMID: 39290074 DOI: 10.1080/14786419.2024.2402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Diabetes mellitus (DM) is a serious health issue and is still one of the major causes of mortality around the globe. Natural products have progressively integrated into modern, advanced medical practices. Phytoconstituents from some medicinal plants have demonstrated therapeutic activity in treating different metabolic disorders and have been used to treat DM and its severe complications. The present review provides details of the major anti-diabetic targets identified in the literature and also provides comprehensive information regarding the therapeutic role of a synergy-based combination of phytoconstituents that functions by controlling specific molecular pathways synchronously by inhibiting certain key regulators involved in the development and progression of DM. The review also implicated the role of oxidative stress in diabetic complications and presented scientific validations of phytochemicals and their synergy-based combination using in vitro and or in vivo approaches.
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | - Anu Gulya
- All India Institute of Medical Science, New Delhi, India
| | - Sageer Abass
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rabea Parveen
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | | |
Collapse
|
7
|
Chen Z, Mense AL, Brewer LR, Shi YC. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr Rev Food Sci Food Saf 2024; 23:e13366. [PMID: 38775125 DOI: 10.1111/1541-4337.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.
Collapse
Affiliation(s)
- Zhongwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Andrew L Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Wheat Marketing Center, Portland, Oregon, USA
| | - Lauren R Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
8
|
Ly HT, Pham KD, Le PH, Do THT, Nguyen TTH, Le VM. Pharmacological properties of Ensete glaucum seed extract: Novel insights for antidiabetic effects via modulation of oxidative stress, inflammation, apoptosis and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117427. [PMID: 37992883 DOI: 10.1016/j.jep.2023.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Medicinal plants are increasingly making important contributions to diabetic treatment. Ensete glaucum seeds have been widely used in folk medicine to treat diabetes. AIM OF THE STUDY The study was aimed to investigate the protective effect and active mechanisms of E. glaucum seed extract (EGSE) against streptozotocin (STZ)-induced hyperglycemia. MATERIALS AND METHODS Hyperglycemic mice were treated with EGSE (25 and 50 mg/kg) or glibenclamide (5 mg/kg) once daily for 7 d. The effects of these treatments on changes in blood biochemical parameters, pancreatic, liver, and kidney histopathology, oxidative stress and inflammatory marker levels in pancreatic, hepatic, and renal tissues were assessed. Expression of several proteins in MAPK signaling pathway related to apoptosis in pancreatic tissue were investigated. Furthermore, ex vivo, in vitro, and in silico biological activities of EGSE and its compounds were also examined. RESULTS EGSE and glibenclamide increased notably insulin, reduced significantly glucose, AST, ALT, BUN and creatinine levels in blood. Pancreatic islets, hepatic and renal tissue structure were restored by EGSE or glibenclamide. EGSE showed significant anti-oxidative stress and anti-inflammatory effects by enhancing GSH level and dropping MDA, NF-κB, TNF-α and IL-6 levels in these tissues. Particularly, EGSE exhibited pancreatic protective effect against STZ-induced apoptosis through the MAPK signaling pathway by down-regulation of p-p38 MAPK, ERK1/2, JNK1, p-AMPK, Bax, Bax/Bcl-2, cytochrome c, cleaved-caspase 3 and PARP expression, and slight up-regulation of Bcl-2 expression. Moreover, EGSE inhibited intestinal glucose absorption, PTP1B, α-amylase, and α-glucosidase activities. Its isolated compounds (Afzelechin and coniferaldehyde) showed PTP1B and α-glucosidase inhibitory activities, and potent structure-activity relationships. CONCLUSION These findings indicated the hypoglycemic and protective effects of E. glaucum seed extract against the STZ diabetogenic action. E. glaucum seed is a potential candidate for further studies to confirm its activities as a therapeutic agent for diabetic patients.
Collapse
Affiliation(s)
- Hai Trieu Ly
- National Institute of Medicinal Materials (NIMM), Hanoi, 100000, Viet Nam; Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, 700000, Viet Nam.
| | - Khuong Duy Pham
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, 700000, Viet Nam.
| | - Phung Hien Le
- College of Science and Engineering, Flinders University, Sturt Rd, Bedford Park, South Australia, 5042, Australia.
| | - Thi Hong Tuoi Do
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi Thu Huong Nguyen
- Faculty of Pharmacy, Hong Bang International University (HIU), Ho Chi Minh City, 700000, Viet Nam.
| | - Van Minh Le
- National Institute of Medicinal Materials (NIMM), Hanoi, 100000, Viet Nam; Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
9
|
Hu Y, Meng Z, Wang W, Hao X, Wang Y, Qi J. Carcase traits, meat quality, and lipogenic gene expression in muscle of lambs fed wheat bran feruloyl oligosaccharides. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2181107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Yuchao Hu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Ziqi Meng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Animal Nutrition and Feed in Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Xiran Hao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| |
Collapse
|
10
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
11
|
Nag S, Majumder S. Starch, gallic acid, their inclusion complex and their effects in diabetes and other diseases-A review. Food Sci Nutr 2023; 11:1612-1621. [PMID: 37051339 PMCID: PMC10084954 DOI: 10.1002/fsn3.3208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Starch is the most important energy-providing component of food. It is useful for maintaining the structural and rheological consistency of food, ad thus, in turn, is responsible for maintaining the freshness of food. Polyphenols are present in plant products in huge amounts as secondary metabolites. Gallic acid, one of the potent plant polyphenols, has been reported to have excellent anti-inflammatory, antioxidative, anticarcinogenic, microbicidal, and antidiabetic properties. Till date, very few articles on the starch-polyphenol inclusion complex are present. Quite a few hypotheses have been proposed as to how the formation of an inclusion complex of starch with polyphenol can slower the digestion or the hydrolysis of starch. The efficient qualities of starch-polyphenol systems, such as reduced starch digestion, lower blood glucose and preserving food freshness, have formed a necessity for investigation in this area. The focus of this review centers on the recent research on starch-polyphenol interactions and starch-gallic acid inclusion complexes in native and extruded food systems, as well as how the production of these complexes can aid in the treatment of diseases, particularly diabetes mellitus.
Collapse
Affiliation(s)
- Sayoni Nag
- Department of BiotechnologyBrainware UniversityBarasatIndia
| | - Suman Majumder
- Department of BiotechnologyBrainware UniversityBarasatIndia
| |
Collapse
|
12
|
Kim KJ, Park SY, Kim JT, Lee HJ, Jung SK, Kim YJ, Lee CH, Byun S, Kim JY. In vitro and in vivo postprandial hypoglycemic effects and comprehensive metabolite profiling of dangjo chili pepper (Capsicum annuum L. cv. dangjo). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
The Effect of Ferulic Acid-Grafted Chitosan (FA-g-CS) on the Transmembrane Transport of Anthocyanins by sGLT1 and GLUT2. Foods 2022; 11:3299. [PMCID: PMC9601927 DOI: 10.3390/foods11203299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work aims to evaluate the effect of ferulic acid-grafted chitosan (FA-g-CS) on the interaction between anthocyanin (ANC) and sGLT1/GLUT2 and their functions in ANC transmembrane transport using Caco-2 cells. The transmembrane transport experiments of ANC showed its low transport efficiency (Papp < 10−6 cm/s), whereas the phenomenon of a significantly rise in anthocyanins transport efficiency was observed with the incubation of FA-g-CS (p < 0.05). In order to investigate the mechanism of FA-g-CS improving ANC transmembrane transport, Caco-2 cells were transfected with small interfering RNA (siRNA) specific for transporters sGLT1 and GLUT2, and incubated with ANC, FA-g-CS, or their combination. Subsequently, Western blot analyses and immunofluorescence staining were carried out to monitor the intracellular sGLT1 and GLUT2 levels. These siRNA-transfected cells, incubated with compounds, indicate that sGLT1 and GLUT2 participated in the ANC transmembrane transport and that FA-g-CS, ANC, or their combination enhance sGLT1/GLUT2 expression. In particular, Caco-2 cells incubated with both FA-g-CS and ANC show significantly increased sGLT1 or GLUT2 expression (>80%) compared with exclusively using FA-g-CS or ANC (<60%). Molecular docking results demonstrate that there is a good binding between FA-g-CS/ANC and sGLT1 or GLUT2. These results highlight that FA-g-CS promotes the transmembrane transport of ANC by influencing the interaction between ANC and sGLT1/GLUT2; the interaction between FA-g-CS and ANC could be another key factor that improves the bioavailability of ANC.
Collapse
|
14
|
Othman NS, Che Roos NA, Aminuddin A, Murthy JK, A. Hamid A, Ugusman A. Effects of Piper sarmentosum Roxb. on hypertension and diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol 2022; 13:976247. [PMID: 36091787 PMCID: PMC9453491 DOI: 10.3389/fphar.2022.976247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 12/09/2022] Open
Abstract
Hypertension and diabetes mellitus are among the most prevalent diseases affecting people from all walks of life. Medicinal herbs have garnered interest as potential agents for the prevention and treatment of diabetes mellitus and hypertension due to their multiple beneficial effects. Piper sarmentosum Roxb. (PS) is an edible medicinal plant that has been traditionally used in Asia for treating hypertension and diabetes mellitus. This review is aimed to provide comprehensive information from the literature on the effects of PS on hypertension and diabetes mellitus. A computerized database search was performed on Scopus, PubMed and Web of Science databases with the following set of keywords: Piper sarmentosum AND diabetes mellitus OR diabetic OR diabetes OR hyperglyc*emia OR blood glucose OR HbA1c OR glycated h*emoglobin OR h*emoglobin A1c OR hyperten* OR blood pressure. A total of 47 articles were screened and 14 articles published between the years 1998 until 2021 were included for data extraction, comprising of six articles on antihypertensive and eight articles on antidiabetic effects of PS. These studies consist of two in vitro studies and eleven in vivo animal studies. Meta-analysis of three studies on hypertension showed that PS versus no treatment significantly lowered the systolic blood pressure with mean difference (MD) -39.84 mmHg (95% confidence interval (CI) -45.05, -34.62; p < 0.01), diastolic blood pressure with MD -26.68 mmHg (95% CI -31.48, -21.88; p < 0.01), and mean arterial pressure with MD -30.56 mmHg (95% CI -34.49, -26.63; p < 0.01). Most of the studies revealed positive effects of PS against hypertension and diabetes mellitus, suggesting the potential of PS as a natural source of antidiabetic and antihypertensive agents.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
In Vitro Digestibility and Bioaccessibility of Nutrients and Non-Nutrients Composing Extruded Brewers' Spent Grain. Nutrients 2022; 14:nu14173480. [PMID: 36079739 PMCID: PMC9459946 DOI: 10.3390/nu14173480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effect of the extrusion process on the bioaccessibility of brewers’ spent grain (BSG) nutrients (carbohydrates and proteins) and non-nutrients (bioactive compounds). BSG and extruded BSG (EBSG) were digested in vitro simulating human oral-gastro-intestinal digestion and colonic fermentation. The duodenal bioaccessibility of glucose, amino acids and phenolic compounds was analyzed. The fermentability of the dietary fiber was assessed by analysis of short-chain fatty acids. Additionally, assessment of the bioaccessibility of phenolic compounds after colonic fermentation was undertaken. The antioxidant, anti-inflammatory and antidiabetic properties of the bioaccessible compounds were studied. Extrusion caused no change in the digestibility of gluten and glucose bioaccessibility (p > 0.05). Moreover, the bioaccessibility of amino acids and phenolic compounds significantly increased (p < 0.05) due to extrusion. However, higher short-chain fatty acid content was formed in colonic fermentation of BSG (p < 0.05) compared to EBSG. The latter inhibited intracellular ROS formation in IEC-6 cells and showed anti-inflammatory properties in RAW264.7 cells. With respect to antidiabetic properties, glucose absorption was lower, and the inhibition of carbohydrases higher (p < 0.05), in the presence of EBSG compared to BSG. The effects of EBSG and BSG digests on glucose transporters were not significantly different (p > 0.05). In conclusion, extrusion positively affected the nutritional value and health-promoting properties of BSG.
Collapse
|
16
|
Zhouyao H, Malunga LN, Chu YF, Eck P, Ames N, Thandapilly SJ. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J Food Biochem 2022; 46:e14324. [PMID: 35892210 DOI: 10.1111/jfbc.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Avenanthramides are phenolic compounds unique to oats and may contribute to health-promoting properties associated with oat consumption. This study used Xenopus laevis oocytes expressing the glucose transporters, glucose transporter 2 (GLUT2) or sodium-glucose transport protein 1 (SGLT1) and human Caco-2 cells models to investigate the effect of oat avenanthramides on human intestinal glucose transporters. The presence of avenanthramide reduced the glucose uptake in a dose-dependent manner in Caco-2 cells. Glucose uptake in oocytes expressing either GLUT2 or SGLT1 was nullified by oat avenanthramide. There was no significant difference between the inhibition potencies of avenanthramides C and B. Thus, our results suggest that avenanthramides may contribute to the antidiabetic properties of oats. PRACTICAL APPLICATIONS: The present research focus on the antidiabetic properties of avenanthramides, which are unique phenolic compounds found in oats. Inhibiting the activities of the glucose transport proteins expressed in the small intestine is a known strategy to improve the control of postprandial glucose level. We therefore examined the inhibitory effects of avenanthramides on two glucose transporters, glucose transporter 2 and sodium-glucose transport protein 1, predominantly found in the small intestine using the human small intestinal cell model Caco-2 cell line and by heterologously expressing these two transporters in the Xenopus laevis oocytes. Based on our results, we have confirmed for the first time that the glucose uptake is indeed inhibited by the presence of avenanthramides, suggesting the possibility of incorporating avenanthramides in foods to enhance postprandial glucose response, and ultimately improve the management of diabetes. Therefore, future research could consider utilizing this evidence in the development of diabetic-friendly functional foods or nutraceuticals containing avenanthramides.
Collapse
Affiliation(s)
- Haonan Zhouyao
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lovemore Nkhata Malunga
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yi Fang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, Illinois, USA
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Ames
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sijo Joseph Thandapilly
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Chemical Characterization, Antioxidant, and Antihyperglycemic Capacity of Ferulated Arabinoxylan Extracted from “Chicha de Jora” Bagasse: An Ancestral Fermented Beverage from Zea mays L. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4015886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bagasse is a byproduct generated during the process of making the traditional Andean drink named “chicha de jora” in Peru, which is a potential source for the extraction of ferulated arabinoxylan (FAX). The aim of this study was to extract and characterize the FAX from bagasse and determine its antioxidant and antihyperglycemic capacity in vitro. As a result, FAX of molecular weight ≥3.5 kDa presented moisture content, pH, total ash, proteins, and total phenolic content with values of 8.00%, 5.81, 2.68%, 3.78%, and 5.72 mg EAG/g, respectively. Thin-layer chromatography identified the monosaccharides L-arabinose and D-xylose. HPLC-MS/MS analysis of FAX confirmed the presence of methyl-pentofuranosides or methyl-pentopyranosides. The FT-IR spectrum presented characteristic bands of FAX. The FAX showed antioxidant capacity determined by the DPPH assay (IC50 = 6.59 mg/mL and TEAC = 7.7844 μmol/g sample), ABTS (IC50 = 6.50 mg/mL and TEAC 35.34 μmol/g sample), and FRAP (14.08 μmol AA/g and 36.63 μmol FeSO4/g). On the other hand, FAX showed glucose adsorption capacity, inhibition of glucose diffusion, and inhibition of the enzyme α-amylase (IC50 = 4.73 mg/mL). The results showed that the FAX extracted from the bagasse generated during the production of the “chicha de jora” has in vitro antioxidant and antihyperglycemic capacity.
Collapse
|
18
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
19
|
Hahm TH, Tanaka M, Matsui T. Current Knowledge on Intestinal Absorption of Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2501-2509. [PMID: 35179384 DOI: 10.1021/acs.jafc.1c08207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthocyanins are flavonoid compounds that are natural color pigments occurring in various colored plants, such as berry fruits, vegetables, and grapes. With the elucidation of their various physiological effects, anthocyanins have been identified as promising functional food ingredients. However, findings on the bioavailability of anthocyanins, which are present in various chemical structures in foods, are limited; their intestinal absorption behaviors, including their transport route(s), have not been fully explained. This perspective overviews the current knowledge and issues and discusses advanced techniques, such as in situ matrix-assisted laser desorption/ionization mass spectrometry imaging, and future perspectives on the study of the bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Tae Hun Hahm
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Song YB, Lamothe LM, Esmeralda Nava Rodriguez N, Rose DR, Lee BH. New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels. Food Chem 2022; 383:132456. [PMID: 35182873 DOI: 10.1016/j.foodchem.2022.132456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Isomaltooligosaccharides (IMOs) have been characterized as dietary fibers that resist digestion in the small intestine; however, previous studies suggested that various α-glycosidic linkages in IMOs were hydrolyzed by mammalian α-glucosidases. This study investigated the hydrolysis of IMOs by small intestinal α-glucosidases from rat and human recombinant sucrase-isomaltase complex compared to commonly used fungal amyloglucosidase (AMG) in vitro. Interestingly, mammalian α-glucosidases fully hydrolyzed various IMOs to glucose at a slow rate compared with linear maltooligosaccharides, whereas AMG could not fully hydrolyze IMOs because of its very low hydrolytic activity on α-1,6 linkages. This suggests that IMOs have been misjudged as prebiotic ingredients that bypass the small intestine due to the nature of the assay used. Instead, IMOs can be applied in the food industry as slowly digestible materials to regulate the glycemic response and energy delivery in the mammalian digestive system, rather than as dietary fibers.
Collapse
Affiliation(s)
- Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Lisa M Lamothe
- Nestlé Research, Vers chez les Blanc, CP44, 1000 Lausanne 26, Switzerland
| | | | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
21
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
22
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
23
|
Bioactive feruloylated xylooligosaccharides derived from Pearl millet (Pennisetum glaucum) bran with antiglycation and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Effect of drying method and process conditions on physicochemical and rheological properties of arabinoxylans extracted from corn-lime-cooking-liquor on a pilot plant scale. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Rice Compounds with Impact on Diabetes Control. Foods 2021; 10:foods10091992. [PMID: 34574099 PMCID: PMC8467539 DOI: 10.3390/foods10091992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023] Open
Abstract
Rice is one of the most cultivated and consumed cereals worldwide. It is composed of starch, which is an important source of diet energy, hypoallergenic proteins, and other bioactive compounds with known nutritional functionalities. Noteworthy is that the rice bran (outer layer of rice grains), a side-stream product of the rice milling process, has a higher content of bioactive compounds than white rice (polished rice grains). Bran functional ingredients such as γ-oryzanol, phytic acid, ferulic acid, γ-aminobutyric acid, tocopherols, and tocotrienols (vitamin E) have been linked to several health benefits. In this study, we reviewed the effects of rice glycemic index, macronutrients, and bioactive compounds on the pathological mechanisms associated with diabetes, identifying the rice compounds potentially exerting protective activities towards disease control. The effects of starch, proteins, and bran bioactive compounds for diabetic control were reviewed and provide important insights about the nutritional quality of rice-based foods.
Collapse
|
26
|
Ontawong A, Duangjai A, Srimaroeng C. Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco-2 cells. Biomed Rep 2021; 15:73. [PMID: 34405045 PMCID: PMC8329997 DOI: 10.3892/br.2021.1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
The major constituents of Coffea arabica (coffee), including caffeine, chlorogenic acid and caffeic acid, exhibit antihyperglycemic properties in in vitro and in vivo models. However, whether Coffea arabica bean extract (CBE) regulates glucose uptake activity and the underlying mechanisms involved remain unclear. The aim of the present study was to examine the effects of CBE on glucose absorption and identify the mechanisms involved using an in vitro model. The uptake of a fluorescent glucose analog into Caco-2 colorectal adenocarcinoma cells was determined. The expression levels of sodium glucose co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated. In addition, glycoside hydrolase enzyme activity was investigated. It was observed that CBE inhibited disaccharidase enzyme activity. Furthermore, CBE exerted an inhibitory effect on intestinal glucose absorption by downregulating SGLT1- and GLUT2-mediated 5' AMP-activated protein kinase phosphorylation and suppressing hepatocyte nuclear factor 1α expression. These data suggest that CBE may attenuate glucose absorption and may have potentially beneficial antihyperglycemic effects in the body; however, the mechanisms underlying the effects of CBE must be elucidated through further investigation.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand
| |
Collapse
|
27
|
|
28
|
Hinkaew J, Aursalung A, Sahasakul Y, Tangsuphoom N, Suttisansanee U. A Comparison of the Nutritional and Biochemical Quality of Date Palm Fruits Obtained Using Different Planting Techniques. Molecules 2021; 26:molecules26082245. [PMID: 33924574 PMCID: PMC8069938 DOI: 10.3390/molecules26082245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera L.) is commonly consumed around the world and has recently become an economical crop in Eastern Thailand, especially the Barhi cultivar that can be consumed as fresh fruit. To maintain genetic qualities, date palm is populated through cell culture. This leads to high production costs, while access to this technique is limited. Increasing date palm population by simple seed planting is currently of interest as an alternative for local farmers. Nevertheless, information on nutritive values, bioactive compounds, and health-promoting bioactivities of seed originating from date palm fruit is unavailable. Effects of different planting origins (cell culture origin (CO) and seed origin (SO)) of date palm fruits at the Khalal stage of Barhi cultivar were investigated for nutritive values, bioactive compounds, and in vitro health-promoting properties via key enzyme inhibitions against obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Waste seeds as a by-product from date palm production were also examined regarding these properties to increase seed marketing opportunities for future food applications and other health-related products. CO and SO exhibited insignificant differences in energy, fat, and carbohydrate contents. SO had higher protein, dietary fiber, vitamin A, vitamin E, and calcium contents than CO, while CO contained higher contents of fructose, glucose and maltose. Higher phenolic contents in SO led to greater enzyme inhibitory activities than CO. Interestingly, seeds of date palm fruits mostly contained higher nutritive values than the flesh. No carotenoids were detected in seeds but higher phenolic contents resulted in greater enzyme inhibitory activities than recorded for fruit flesh. Results suggest that appropriate planting of date palm can support the development of novel date palm fruit products, leading to expansion of economic opportunities and investment in date palm fruit agriculture.
Collapse
Affiliation(s)
- Jeerawan Hinkaew
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Nattapol Tangsuphoom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
29
|
Cao RA, Ji R, Tabarsa M, Palanisamy S, Talapphet N, Yelithao K, Wang C, You S. Extraction, structural elucidation and immunostimulating properties of water-soluble polysaccharides from wheat bran. J Food Biochem 2020; 44:e13364. [PMID: 32643784 DOI: 10.1111/jfbc.13364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
A water-soluble polysaccharide was extracted from wheat bran (WBP) and investigate their structural characteristics and immunostimulatory activities. The chemical composition of WBP and purified fraction (WBP-F) mainly consists of neutral sugars (91.2 ± 1.2 and 98.7 ± 1.2%), proteins (8.6 ± 0.3 and 0.2 ± 0.1%) and uronic acids (0.7 ± 0.1 and 0.6 ± 0.1%). The molecular weight (Mw ) of WBP and WBP-F was calculated as 911.7 and 510.2 × 103 g/mol, respectively. The WBP-F stimulates the RAW264.7 cells through the production of nitric oxide and various cytokines. The treatment of WBP-F facilitated the phosphorylation of P38, JNK, ERK, and NF-ƘB in RAW264.7 cells suggesting that they might stimulate RAW264.7 cells through the activation of NF-ƙB and MAPKs pathways. Furthermore, the structural details of WBP-F were studied by GC-MS and NMR spectrum, which confirms that the main backbone consists of 4-α-D-linked glucopyranosyl residues with branching points at C-6. PRACTICAL APPLICATIONS: Wheat bran is a potential source of health-promoting compounds. It has been reported that polysaccharides of wheat bran containing numerous beneficial activities. In this study, the wheat bran polysaccharide was extracted, fractionated and investigated their immunostimulatory activities. The results found in this study revealed that the purified polysaccharide from wheat bran potentially enhanced the RAW264.7 cells activation. Hence, these polysaccharides could be utilized as a potent immunity-enhancing agent in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rong-An Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - RuiXue Ji
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea.,East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Khamphone Yelithao
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - ChangYuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea.,East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon, Republic of Korea
| |
Collapse
|
30
|
In vitro anti-hyperglycemic, antioxidant activities and intestinal glucose uptake evaluation of Endiandra kingiana extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Abbasi Parizad P, Marengo M, Bonomi F, Scarafoni A, Cecchini C, Pagani MA, Marti A, Iametti S. Bio-Functional and Structural Properties of Pasta Enriched with a Debranning Fraction from Purple Wheat. Foods 2020; 9:foods9020163. [PMID: 32046313 PMCID: PMC7073741 DOI: 10.3390/foods9020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
A colored and fiber-rich fraction from the debranning of purple wheat was incorporated at 25% into semolina- and flour-based pasta produced on a pilot-plant scale, with the aim of increasing anthocyanin and total phenolic content with respect to pasta obtained from whole pigmented grains. The debranning fraction impaired the formation of disulfide-stabilized protein networks in semolina-based systems. Recovery of phenolics was impaired by the pasta making process, and cooking decreased the phenolic content in both enriched samples. Cooking-related losses in anthocyanins and total phenolics were similar, but anthocyanins in the cooked semolina-based pasta were around 20% of what was expected from the formulation. HPLC (High Performance Liquid Chromatography) profiling of phenolics was carried out on extracts from either type of enriched pasta both before and after cooking and indicate possible preferential retention of specific compounds in each type of enriched pasta. Extracts from cooked samples of either enriched pasta were tested as inhibitors of enzymes involved in glucose metabolism and uptake, as well as for their capacity of suppressing the response to inflammatory stimuli. Results of both biological tests indicate that the phenolics in extracts from both cooked pasta samples had inhibitory capacities higher than extracts of the original debranning fraction at identical concentrations of total bioactives.
Collapse
Affiliation(s)
- Parisa Abbasi Parizad
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
| | - Mauro Marengo
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
| | - Francesco Bonomi
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
| | - Alessio Scarafoni
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
| | - Cristina Cecchini
- Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana 30, 00189 Roma, Italy;
| | - Maria Ambrogina Pagani
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
| | - Alessandra Marti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
- Correspondence: (A.M.); (S.I.); Tel.: +39-02-5031-6656 (A.M.); +39-02-5031-6819 (S.I.)
| | - Stefania Iametti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (P.A.P.); (M.M.); (F.B.); (A.S.); (M.A.P.)
- Correspondence: (A.M.); (S.I.); Tel.: +39-02-5031-6656 (A.M.); +39-02-5031-6819 (S.I.)
| |
Collapse
|
32
|
Russo M, Marquez A, Herrera H, Abeijon-Mukdsi C, Saavedra L, Hebert E, Gauffin-Cano P, Medina R. Oral administration of Lactobacillus fermentum CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food Funct 2020; 11:3879-3894. [DOI: 10.1039/d0fo00730g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work evaluated the effect of oral administration of Lactobacillus fermentum CRL1446, feruloyl esterase producing, on metabolic biomarkers and intestinal microbiota of high fat diet-induced metabolic syndrome mice and supplemented with wheat bran.
Collapse
Affiliation(s)
- M. Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - A. Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - H. Herrera
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
- San Miguel de Tucumán
- Argentina
| | - C. Abeijon-Mukdsi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - L. Saavedra
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - E. Hebert
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - P. Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - R. Medina
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
- Facultad de Agronomía y Zootecnia
- Universidad Nacional de Tucumán
| |
Collapse
|
33
|
Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, Jang S. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. PLANTS 2019; 9:plants9010002. [PMID: 31861279 PMCID: PMC7020213 DOI: 10.3390/plants9010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023]
Abstract
Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore, the development of inhibitors from natural products offers an alternative option for the control of hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases inhibitors from natural sources such as plants, and many candidates have transpired to be secondary metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production of improved vegetable crops with higher content of the inhibitors are also described.
Collapse
Affiliation(s)
- Samuel Tilahun Assefa
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Eun-Young Yang
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Soo-Young Chae
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Mihye Song
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea;
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Myeong-Cheoul Cho
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (S.T.A.); (E.-Y.Y.); (S.-Y.C.); (M.-C.C.)
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea;
- Correspondence: ; Tel.: +82-63-238-6677
| |
Collapse
|
34
|
Chen H, Chen Z, Fu Y, Liu J, Lin S, Zhang Q, Liu Y, Wu D, Lin D, Han G, Wang L, Qin W. Structure, Antioxidant, and Hypoglycemic Activities of Arabinoxylans Extracted by Multiple Methods from Triticale. Antioxidants (Basel) 2019; 8:antiox8120584. [PMID: 31775251 PMCID: PMC6943583 DOI: 10.3390/antiox8120584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022] Open
Abstract
Different methods of isolating arabinoxylans (AXs) from triticale were performed to investigate the extraction methods’ effects on the physiological functions of the AXs. Structural, antioxidant, and hypoglycemic activities were determined. The molecular weights (MWs) of enzyme- or water-extracted AXs were lower than those of alkali-extracted AXs. Opposite trends were shown by the arabinose–xylose ratio. Enzyme-extracted AXs exhibited higher glucose adsorption capacity and hydroxyl radical-scavenging efficiency than alkali-extracted AXs. The α-amylase inhibition ability, DPPH radical-scavenging capacity, and metal-chelating activity of alkali-extracted AXs were higher than those of enzyme-extracted AXs. Water-extracted AXs had the highest glucose dialysis retardation index. In conclusion, extraction methods can influence the physiological function of AXs through their structural features. AXs with higher MWs and esterified ferulic acid (FA) levels had higher antioxidant ability, whereas AXs with higher solubility and free FA level exhibited higher hypoglycemic activity.
Collapse
Affiliation(s)
- Hong Chen
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Zhuoyun Chen
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Yuanfang Fu
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Jiao Liu
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Siying Lin
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Qing Zhang
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Yuntao Liu
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Dingtao Wu
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Derong Lin
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Guoquan Han
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
| | - Lina Wang
- Department of Food Quality and Safety, Institute of Food and Drug Inspection, Chengdu 610000, Sichuan, China;
| | - Wen Qin
- Department of Food Quality and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China; (H.C.); (Z.C.); (Y.F.); (J.L.); (S.L.); (Q.Z.); (Y.L.); (D.W.); (D.L.); (G.H.)
- Correspondence: ; Tel.: +86-0835-2882576
| |
Collapse
|
35
|
Anti-Oxidant and Anti-Diabetes Potential of Water-Soluble Chitosan-Glucose Derivatives Produced by Maillard Reaction. Polymers (Basel) 2019; 11:polym11101714. [PMID: 31635395 PMCID: PMC6836137 DOI: 10.3390/polym11101714] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
Chitosan-sugar derivatives demonstrate some useful biology activities (for example anti-oxidant and anti-microbial activities). In this study, water-soluble chitosan–glucose derivatives (WSCGDs) were produced from a water-soluble chitosan hydrochloride (WSC) with 12.5 kDa of molecular weight and 24.05% of degree of acetylation (DA) via Maillard reaction with the heating temperatures of 100 °C and 121 °C. The Maillard reaction between WSC and glucose was investigated by measuring the absorbances at 420 nm and 294 nm, indicating that the reaction took place more effectively at 121 °C. All WSCGDs exhibited higher anti-oxidant activity than WSC, in which WSCGDs obtained at the treatment 121 °C for 2 h, 3 h, and 4 h expressed the highest ability (IC50 range from 1.90–1.05 mg/mL). Increased anti-α-amylase and anti-α-glucosidase activities were also observed in WSCGDs from the treatment at 121 °C. In detail, the highest IC50 values of anti-α-amylase activity were 18.02 mg/mL (121 °C, 3 h) and 18.37 mg/mL (121 °C, 4 h), whereas the highest IC50 values of anti-α-glucosidase activity were in range of 7.09–5.72 mg/mL (121 °C, for 1–4 h). According to the results, WSCGD obtained from 121 °C for 3 h was selected for further characterizing by high performance liquid chromatography size exclusion chromatography (HPLC SEC), colloid titration, FTIR, as well as 1H-NMR, indicating that the derivative of WSC and glucose was successfully synthesized with a molecular weight of 15.1 kDa and degree of substitution (DS) of 34.62 ± 2.78%. By expressing the excellent anti-oxidant and anti-diabetes activities, WSCGDs may have potential use in health food or medicine applications.
Collapse
|
36
|
Xia X, Zhu L, Lei Z, Song Y, Tang F, Yin Z, Wang J, Huang J. Feruloylated Oligosaccharides Alleviate Dextran Sulfate Sodium-Induced Colitis in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9522-9531. [PMID: 31379161 DOI: 10.1021/acs.jafc.9b03647] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The imbalance of T lymphocyte subsets substantially conduces to disturbed intestinal immune system and succeeding colonic tissue damage in inflammatory bowel diseases. It is considered that regulation of phytochemicals on cytokine production potentially provides a broad prospect for the exploitation of immunomodulatory agents. Here, we reported that oral administration of feruloylated oligosaccharides (FOs) effectively alleviated mice colitis disease induced by dextran sulfate sodium (DSS). FOs decreased the percentage of T helper (Th)17 cells and downregulated the production of Th17-specific cytokines. In contrast, FOs increased the percentage of regulatory T (Treg) cells and elevated the production of Treg-specific cytokines in colons of DSS-challenged mice. These results indicated that FOs restored the immunologic equilibrium of Th17 and Treg subsets, hereby ameliorating the deterioration of colitis. Furthermore, FOs diminished the secretion of interleukin (IL)-23 and IL-6 but enhanced the transforming growth factor-β1 (TGF-β1) in dendritic cells in vitro and in vivo, which contributed to the restoration of Th17 and Treg cells immune balance. The mechanistic analysis showed that the regulation of FOs on IL-23 and IL-6 was associated with the nuclear factor-κ-gene binding signaling pathway and TGF-β1 with mitogen-activated protein kinase-activator protein 1 signaling pathway. Taken together, oral administration of FOs exerted potent immunomodulatory effects against mice colitis via restoring the immune balance of Th17 and Treg cells.
Collapse
Affiliation(s)
- Xichun Xia
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Leqing Zhu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhiwei Lei
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
- Department of Basic Medical Research , The Sixth Affiliated Hospital of Guangzhou Medical University, Qing Yuan People's Hospital , Qingyuan , Guangdong 511518 , China
| | - Yueqi Song
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Fen Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhao Yin
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Jing Wang
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology and Business University , Beijing 100048 , China
| | - Junqing Huang
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
37
|
Chen Z, Li S, Fu Y, Li C, Chen D, Chen H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Parizad PA, Capraro J, Scarafoni A, Bonomi F, Blandino M, Marengo M, Giordano D, Carpen A, Iametti S. The Bio-Functional Properties of Pigmented Cereals may Involve Synergies among Different Bioactive Species. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:128-134. [PMID: 30661219 DOI: 10.1007/s11130-019-0715-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was aimed at characterizing the anthocyanins and phenolics profile in different varieties of pigmented corn and wheat and in some of their milling fractions. Acid/ethanol extracts were used to assess total anthocyanins, overall antioxidant activity, the overall polyphenol profile, and for evaluating the inhibition of pancreatic α-amylase and of intestinal α-glucosidase. Both enzymes were inhibited in a dose-dependent manner by all extracts, but individual extracts had specific effects on each enzyme. Anti-inflammatory response was evaluated by using acid-free extracts and Caco-2 cells transiently transfected with a luciferase reporter gene responding to cytokine stimulation. The immune response of interleukin-stimulated cells decreased significantly in a dose-dependent manner in the presence of 20-50 μM/l anthocyanins from all grains extracts, again with a different efficiency. The inhibitory ability and the anti-inflammatory capability of these extracts are in most cases higher than in similar extracts from other sources, suggesting that activities in each extract may imply specific synergies between anthocyanins and other phenolics.
Collapse
Affiliation(s)
- Parisa Abbasi Parizad
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Debora Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Aristodemo Carpen
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
39
|
Doan CT, Tran TN, Nguyen MT, Nguyen VB, Nguyen AD, Wang SL. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules 2019; 24:molecules24040691. [PMID: 30769933 PMCID: PMC6412742 DOI: 10.3390/molecules24040691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 11/25/2022] Open
Abstract
Anti-α-glucosidase (AAG) compounds have received great attention due to their potential use in treating diabetes. In this study, Bacillus licheniformis TKU004, an isolated bacterial strain from Taiwanese soil, produced AAG activity in the culture supernatant when squid pens were used as the sole carbon/nitrogen (C/N) source. The protein TKU004P, which was isolated from B. licheniformis TKU004, showed stronger AAG activity than acarbose, a commercial anti-diabetic drug (IC50 = 0.1 mg/mL and 2.02 mg/mL, respectively). The molecular weight of TKU004P, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was 29 kDa. High-performance liquid chromatography (HPLC) analysis showed that TKU004P may be a protease that demonstrates AAG activity by degrading yeast α-glucosidase. Among the four chitinous sources of C/N, TKU004P produced the highest AAG activity in the culture supernatant when shrimp head powder was used as the sole source (470.66 U/mL). For comparison, 16 proteases, were investigated for AAG activity but TKU004P produced the highest levels. Overall, the findings suggest that TKU004P could have applications in the biochemical and medicinal fields thanks to its ability to control the activity of α-glucosidase.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
40
|
Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells. Molecules 2018; 23:molecules23102544. [PMID: 30301205 PMCID: PMC6222386 DOI: 10.3390/molecules23102544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated long-chain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.
Collapse
|
41
|
Malunga LN, Joseph Thandapilly S, Ames N. Cereal‐derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. J Food Biochem 2018. [DOI: 10.1111/jfbc.12635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lovemore Nkhata Malunga
- Agriculture and Agri‐Food Canada Richardson Centre for Functional Foods and Nutraceuticals Winnipeg Manitoba Canada
| | - Sijo Joseph Thandapilly
- Agriculture and Agri‐Food Canada Richardson Centre for Functional Foods and Nutraceuticals Winnipeg Manitoba Canada
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Nancy Ames
- Agriculture and Agri‐Food Canada Richardson Centre for Functional Foods and Nutraceuticals Winnipeg Manitoba Canada
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
42
|
Bader Ul Ain H, Saeed F, Ahmad N, Imran A, Niaz B, Afzaal M, Imran M, Tufail T, Javed A. Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1489837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huma Bader Ul Ain
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
43
|
Inhibition of Intestinal Cellular Glucose Uptake by Phenolics Extracted from Whole Wheat Grown at Different Locations. J Nutr Metab 2018; 2018:5421714. [PMID: 29744225 PMCID: PMC5878878 DOI: 10.1155/2018/5421714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
Whole grain consumption is associated with reduced risk of type 2 diabetes, and the underlying mechanism might be related to the actions of polyphenols. Dietary polyphenols contribute to low glycemic indices through inhibition of intestinal glucose transport proteins. This study has two objectives: (1) to evaluate how the contents of phenolic acids in wheat vary by genetic background and growth condition and (2) to evaluate how these changes translate into physiologic relevance by investigating cellular glucose transporter inhibitions. Phenolic acids were extracted from wheat varieties grown at different locations over two crop years. The degree of inhibition of glucose uptake into human Caco-2E cells was determined. Free and bound phenolic acid extracts of all wheat genotypes inhibited glucose uptake. Degree of glucose uptake inhibitions positively correlated with the contents of free and bound phenolic acids, and the correlation coefficients were R2=0.91 and R2=0.89, respectively. Genotype and environment influenced the content of free and bound phenolic acids which linearly translated to the degree of glucose uptake inhibition in a model of intestinal absorption (P < 0.05). Results of this work mechanistically support the hypothesis that dietary phenols positively influence the glycemic index and therefore the health properties of whole grain consumption.
Collapse
|
44
|
Li K, Yao F, Du J, Deng X, Li C. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1629-1637. [PMID: 29388426 DOI: 10.1021/acs.jafc.7b05833] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin-starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC50 values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose.
Collapse
Affiliation(s)
- Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, China
| | - Fen Yao
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, China
| | - Jing Du
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, China
| | - Xiangyi Deng
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University , Wuhan, 430070, China
| |
Collapse
|
45
|
Marmouzi I, Karym EM, Saidi N, Meddah B, Kharbach M, Masrar A, Bouabdellah M, Chabraoui L, El Allali K, Cherrah Y, Faouzi MEA. In Vitro and In Vivo Antioxidant and Anti-Hyperglycemic Activities of Moroccan Oat Cultivars. Antioxidants (Basel) 2017; 6:antiox6040102. [PMID: 29211033 PMCID: PMC5745512 DOI: 10.3390/antiox6040102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible mechanisms of antidiabetic activity by digestive enzyme inhibition. Eight phenolic acids were quantified in our samples including ferulic, p-hydroxybenzoic, caffeic, salicylic, syringic, sinapic, p-coumaric and chlorogenic acids. The Oat extract (2000 mg/kg) ameliorated the glucose tolerance, decreased Fasting Blood Glucose (FBG) and oxidative stress markers, including Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione (GSH) and Malondialdehyde (MDA) in rat liver and kidney. Furthermore, Metformin and Oat intake prevented anxiety, hypercholesterolemia and atherosclerosis in diabetic rats. In vivo anti-hyperglycemic effect of Oat extracts has been confirmed by their inhibitory activities on α-amylase (723.91 μg/mL and 1027.14 μg/mL) and α-glucosidase (1548.12 μg/mL & 1803.52 μg/mL) enzymes by mean of a mixed inhibition.
Collapse
Affiliation(s)
- Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - El Mostafa Karym
- Laboratoire de Biochimie et Neurosciences, FST, Université Hassan I, BP 577, Settat 26000, Morocco.
| | - Nezha Saidi
- Regional Office of Rabat, National Institute for Agricultural Research, P.O. Box 6570, Rabat Institutes, Rabat 10101, Morocco.
| | - Bouchra Meddah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Mourad Kharbach
- Pharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10100, Morocco.
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Azlarab Masrar
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Mounya Bouabdellah
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Layachi Chabraoui
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Khalid El Allali
- Comparative Anatomy Unit-URAC-49, Hassan II Agronomy and Veterinary Institute, Rabat 10101, Morocco.
| | - Yahia Cherrah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - My El Abbes Faouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| |
Collapse
|
46
|
Fadel A, Mahmoud AM, Ashworth JJ, Li W, Ng YL, Plunkett A. Health-related effects and improving extractability of cereal arabinoxylans. Int J Biol Macromol 2017; 109:819-831. [PMID: 29133103 DOI: 10.1016/j.ijbiomac.2017.11.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 02/08/2023]
Abstract
Arabinoxylans (AXs) are major dietary fibers. They are composed of backbone chains of β-(1-4)-linked xylose residues to which α-l-arabinose are linked in the second and/or third carbon positions. Recently, AXs have attracted a great deal of attention because of their biological activities such as their immunomodulatory potential. Extraction of AXs has some difficulties; therefore, various methods have been used to increase the extractability of AXs with varying degrees of success, such as alkaline, enzymatic, mechanical extraction. However, some of these treatments have been reported to be either expensive, such as enzymatic treatments, or produce hazardous wastes and are non-environmentally friendly, such as alkaline treatments. On the other hand, mechanical assisted extraction, especially extrusion cooking, is an innovative pre-treatment that has been used to increase the solubility of AXs. The aim of the current review article is to point out the health-related effects and to discuss the current research on the extraction methods of AXs.
Collapse
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| | - Jason J Ashworth
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation, University of Chester, Chester, United Kingdom
| | - Yu Lam Ng
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
47
|
Beerens K, De Winter K, Van de Walle D, Grootaert C, Kamiloglu S, Miclotte L, Van de Wiele T, Van Camp J, Dewettinck K, Desmet T. Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6030-6041. [PMID: 28664731 DOI: 10.1021/acs.jafc.7b02258] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C. Process optimization allowed kojibiose production at the kilogram scale, and simple but efficient downstream processing, using a yeast treatment and crystallization, resulted in more than 3 kg of highly pure crystalline kojibiose (99.8%). These amounts allowed a deeper characterization of its potential in food applications. It was found to have possible beneficial health effects, including delayed glucose release and potential to trigger SCFA production. Finally, we compared the bulk functionality of highly pure kojibiose to that of sucrose, hereby mapping its potential as a new sweetener in confectionery products.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa Miclotte
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, Ghent B-9000, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, Ghent B-9000, Belgium
| | | | | | | |
Collapse
|
48
|
Abstract
The studies on the effects of arabinoxylan (AX) polysaccharides on postprandial glucose response have resulted in contrasting results owing to the diversity in AX structures. Four water extractable AX (WEAX) extracts obtained from wheat aleurone and bran were used to investigate (a) the effect of AX on activities of α-amylase and α-glucosidase, (b) influence of AX chemical composition on their inhibition potency, and (c) kinetics of enzyme inhibition. α-Amylase activity was not significantly affected by the presence WEAX fractions regardless of type or concentration. WEAX inhibited α-glucosidase activity only when maltose was used as a substrate but not sucrose. The IC50 values of WEAX (4.88 ± 0.3-10.14 ± 0.5 mg/mL) were highly correlated to ferulic acid content (R = -0.89), arabinose to xylose ratio (R = -0.67), and relative proportions of xylose being unsubstituted (R = 0.69), disubstituted (R = -0.63), and monosubstituted (R = -0.76). The Lineweaver-Burk plot suggested an uncompetitive enzyme inhibition mode. Thus, our results suggest that antiglycemic properties of WEAX may be derived from direct inhibition of α-glucosidase activity.
Collapse
|
49
|
Adisakwattana S. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications. Nutrients 2017; 9:nu9020163. [PMID: 28230764 PMCID: PMC5331594 DOI: 10.3390/nu9020163] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
With recent insight into the development of dietary supplements and functional foods, search of effective phytochemical compounds and their mechanisms involved in prevention and management of diabetes and its complications are now being assessed. Cinnamic acid and its derivatives occur naturally in high levels of plant-based foods. Among various biological activities, cinnamic acid and its derivatives are associated with a beneficial influence on diabetes and its complications. The aim of the review is to summarize the potential mechanisms of these compounds for prevention and management of diabetes and its complications. Based on several in vitro studies and animal models, cinnamic acid and its derivatives act on different mechanism of actions, including stimulation of insulin secretion, improvement of pancreatic β-cell functionality, inhibition of hepatic gluconeogenesis, enhanced glucose uptake, increased insulin signaling pathway, delay of carbohydrate digestion and glucose absorption, and inhibition of protein glycation and insulin fibrillation. However, due to the limited intestinal absorption being a result of low bioavailability of cinnamic acid and its derivatives, current improvement efforts with entrapping into solid and liquid particles are highlighted. Further human clinical studies are needed to clarify the effects of cinnamic acid and its derivatives in diabetic patients.
Collapse
Affiliation(s)
- Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
50
|
Bresciani L, Scazzina F, Leonardi R, Dall'Aglio E, Newell M, Dall'Asta M, Melegari C, Ray S, Brighenti F, Del Rio D. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone-rich wheat bread. Mol Nutr Food Res 2016; 60:2343-2354. [DOI: 10.1002/mnfr.201600238] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
| | - Francesca Scazzina
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
| | - Roberto Leonardi
- Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
- Department of Nutritional Rehabilitation; Ponte San Pietro (Bergamo); Gruppo San Donato (GSD); Policlinico San Pietro; Italy
| | | | - Michael Newell
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
- Medical Research Council (MRC) Human Nutrition Research (HNR); Cambridge
| | - Margherita Dall'Asta
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
| | | | - Sumantra Ray
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
- Medical Research Council (MRC) Human Nutrition Research (HNR); Cambridge
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology; Human Nutrition Unit; Department of Food Science; University of Parma; Parma Italy
- LS9 Bioactives and Health; Interlab Group; Department of Food Science; University of Parma; Parma Italy
- The Need for Nutrition Education/Innovation Programme (NNEdPro); University of Cambridge
| |
Collapse
|