1
|
Wang Y, Wang Z, Mao X, Zhang H, Zhang L, Yang Y, Liu B, Li X, Luo F, Sun H. Cutting-edge technologies illuminate the neural landscape of cancer: Insights into tumor development. Cancer Lett 2025; 619:217667. [PMID: 40127813 DOI: 10.1016/j.canlet.2025.217667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Neurogenesis constitutes a pivotal facet of malignant tumors, wherein cancer and its therapeutic interventions possess the ability to reconfigure the nervous system, establishing a pathologic feedback loop that exacerbates tumor progression. Recent strides in high-resolution imaging, single-cell analysis, multi-omics technologies, and experimental models have opened unprecedented avenues in cancer neuroscience. This comprehensive review summarizes the latest advancements of these emerging technologies in elucidating the biological mechanisms underlying tumor initiation, invasion, metastasis, and the dynamic heterogeneity of the tumor microenvironment(TME), with a specific focus on neuron-glial-tumor interactions in glioblastoma(GBM) and other neurophilic cancers. Moreover, we innovatively propose target screening processes based on sequencing technologies and database frameworks. It rigorously evaluates ongoing clinical trial drugs and efficacy while spotlighting characteristic cells in the central and peripheral TME, consolidating cancer biomarkers pivotal for future targeted therapies and management strategies. By integrating these cutting-edge findings, this review aims to offer fresh insights into tumor-nervous system interactions, establishing a robust foundation for forthcoming clinical advancements.
Collapse
Affiliation(s)
- Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojun Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Beibei Liu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxu Li
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyang Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Soler-Sáez I, Karz A, Hidalgo MR, Gómez-Cabañes B, López-Cerdán A, Català-Senent JF, Prutisto-Chang K, Eskow NM, Izar B, Redmer T, Kumar S, Davies MA, de la Iglesia-Vayá M, Hernando E, García-García F. Unveiling Common Transcriptomic Features between Melanoma Brain Metastases and Neurodegenerative Diseases. J Invest Dermatol 2025; 145:1135-1146. [PMID: 39326662 DOI: 10.1016/j.jid.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Melanoma represents a critical clinical challenge owing to its unfavorable outcomes. This type of skin cancer exhibits unique adaptability to the brain microenvironment, but its underlying molecular mechanisms are poorly understood. Recent findings have suggested that melanoma brain metastases may share biological processes similar to those found in various neurodegenerative diseases. To further characterize melanoma brain metastasis development, we explore the relationship between the transcriptional profiles of melanoma brain metastases and the neurodegenerative diseases Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We take an in silico approach to unveil a neurodegenerative signature of melanoma brain metastases compared with those of melanoma nonbrain metastasis (53 dysregulated genes were enriched in 11 functional terms, such as associated terms to the extracellular matrix and development) and with those of nontumor-bearing brain controls (195 dysregulated genes, mostly involved in development and cell differentiation, chromatin remodeling and nucleosome organization, and translation). Two genes, ITGA10 and DNAJC6, emerged as key potential markers being dysregulated in both scenarios. Finally, we developed an open-source, user-friendly web tool (https://bioinfo.cipf.es/metafun-mbm/) that allows interactive exploration of the complete results.
Collapse
Affiliation(s)
- Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Alcida Karz
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Borja Gómez-Cabañes
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - José F Català-Senent
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Kylie Prutisto-Chang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nicole M Eskow
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Benjamin Izar
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Swaminathan Kumar
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - María de la Iglesia-Vayá
- Biomedical Imaging Mixed Unit, FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA.
| | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain.
| |
Collapse
|
3
|
Kumar S, Pelster MS, Hasanov M, Guerrieri RA, Hudgens CW, Ledesma DA, Wang F, Fischer GM, Simon JM, Haydu LE, Katlowitz KV, Gopal YNV, McQuade JL, Kwong LN, Huse JT, Lazar AJ, Tetzlaff MT, Gershenwald JE, Joon AY, Chen K, Li Z, Ram PT, Ferguson SD, Davies MA. Integrated analysis of molecular and clinical features associated with overall survival in melanoma patients with brain metastasis. Acta Neuropathol Commun 2025; 13:75. [PMID: 40229864 PMCID: PMC11998309 DOI: 10.1186/s40478-025-01978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
Melanoma brain metastases (MBMs) are diagnosed in up to 60% of metastatic melanoma patients. Previous studies have identified clinical factors that correlate with overall survival (OS) after MBM diagnosis. However, molecular and immune features associated with OS are poorly understood. An improved understanding of the molecular and immune correlates of OS could provide insights into MBM patient outcomes and guide therapeutic development. Thus, we analyzed clinical features and outcomes of 74 melanoma patients who underwent surgical resection (via craniotomy) between 1991 and 2015 at our institution with RNA-seq data generated from their MBMs. The median post-operative OS was 8.6 months (range 0.6-146.9). On univariate analysis (UVA), the expression of multiple immune gene signatures was associated with improved OS, including IFN-γ Index, T cell-inflamed and the Expanded Immune Genes. The gene expression signatures of several immune cell types (i.e., T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, monocytes) positively correlated with OS, whereas higher neutrophil gene expression correlated with shorter OS. UVA of clinical features identified low Karnofsky performance score (KPS), elevated serum lactate dehydrogenase (LDH), presence of extracranial metastases (ECMs), and uncontrolled (versus controlled) ECMs as clinical predictors of shorter survival. Multivariate analyses (MVA) were performed with significant clinical factors and all immune features without any redundant highly correlated variables in the model. After backward selection, multivariable coxPH model identified low KPS, low T cell signature, and low monocytic lineage signature as independent predictors of shorter survival. Finally, comparative analysis of MBMs from patients with MBMs only showed that these tumors were characterized by decreased oxidative phosphorylation (OXPHOS) and increased immune infiltration signature versus MBMs from patients with concurrent ECMs. Together these results support the clinical significance of specific immune features of MBMs and suggest their potential use as prognostic biomarkers.
Collapse
Affiliation(s)
| | | | - Merve Hasanov
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | | | | | | | | | | | - Lauren E Haydu
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | | | | | | | - Aron Y Joon
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
4
|
Chen N, Zhang T, Yang X, Wang D, Yu S. Myeloid cells in the microenvironment of brain metastases. Biochim Biophys Acta Rev Cancer 2025; 1880:189311. [PMID: 40189115 DOI: 10.1016/j.bbcan.2025.189311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Brain metastasis (BrM) from peripheral solid tumors has a high mortality rate and remains a daunting clinical challenge. In addition to the targeting of tumor cells, studies have focused on the regulation of the tumor microenvironment (TME) for BrM treatment. Here, through a review of recent studies, we revealed that myeloid infiltration is a common feature of the TME in BrMs from different primary sites even though the brain is regarded as an immune-privileged site and is always in an immunosuppressive state. Tumor-educated bone marrow progenitors, especially mesenchymal stem cells (MSCs), may impact the brain tropism and and phenotypic switching of myeloid cells. Additionally, chronic inflammation may be key factors regulating the immunosuppressive TME and myeloid cell reprogramming. Here, the role of myeloid cells in the formation of the TME and strategies for targeting these cells before and after BrM are reviewed, emphasizing the potential for the use of myeloid cells in BrM treatment. However, the direct relationship between the neuronal system and myeloid cell filtration is still unclear and worthy of further study.
Collapse
Affiliation(s)
- Nian Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Xianyan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| |
Collapse
|
5
|
Rodriguez-Baena FJ, Marquez-Galera A, Ballesteros-Martinez P, Castillo A, Diaz E, Moreno-Bueno G, Lopez-Atalaya JP, Sanchez-Laorden B. Microglial reprogramming enhances antitumor immunity and immunotherapy response in melanoma brain metastases. Cancer Cell 2025; 43:413-427.e9. [PMID: 39919736 DOI: 10.1016/j.ccell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Melanoma is one of the tumor types with the highest risk of brain metastasis. However, the biology of melanoma brain metastasis and the role of the brain immune microenvironment in treatment responses are not yet fully understood. Using preclinical models and single-cell transcriptomics, we have identified a mechanism that enhances antitumor immunity in melanoma brain metastasis. We show that activation of the Rela/Nuclear Factor κB (NF-κB) pathway in microglia promotes melanoma brain metastasis. Targeting this pathway elicits microglia reprogramming toward a proinflammatory phenotype, which enhances antitumor immunity and reduces brain metastatic burden. Furthermore, we found that proinflammatory microglial markers in melanoma brain metastasis are associated with improved responses to immune checkpoint inhibitors in patients and targeting Rela/NF-κB pathway in mice improves responses to these therapies in the brain, suggesting a strategy to enhance antitumor immunity and responses to immune checkpoint inhibitors in patients with melanoma brain metastasis.
Collapse
Affiliation(s)
| | | | | | - Alba Castillo
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | - Eva Diaz
- MD Anderson Cancer Center International Foundation, Madrid, Spain
| | - Gema Moreno-Bueno
- MD Anderson Cancer Center International Foundation, Madrid, Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" CSIC-UAM, Madrid, Spain; CIBERONC Centro de Investigación Biomédica en Red de Cancer, ISCIII, Madrid, Spain; Translational Cancer Research Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | |
Collapse
|
6
|
Li J, Hu X, Tao X, Li Y, Jiang W, Zhao M, Ma Z, Chen B, Sheng S, Tong J, Zhang H, Shen B, Gao X. Deconstruct the link between gut microbiota and neurological diseases: application of Mendelian randomization analysis. Front Cell Infect Microbiol 2025; 15:1433131. [PMID: 40115072 PMCID: PMC11922733 DOI: 10.3389/fcimb.2025.1433131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/21/2025] [Indexed: 03/23/2025] Open
Abstract
Background Recent research on the gut-brain axis has deepened our understanding of the correlation between gut bacteria and the neurological system. The inflammatory response triggered by gut microbiota may be associated with neurodegenerative diseases. Additionally, the impact of gut microbiota on emotional state, known as the "Gut-mood" relationship, could play a role in depression and anxiety disorders. Results This review summarizes recent data on the role of gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including epilepsy, schizophrenia, Alzheimer's disease, brain cancer, Parkinson's disease, bipolar disorder and stroke. Also, we conducted a Mendelian randomization study on seven neurological disorders (Epilepsy, schizophrenia, Alzheimer's disease, brain cancer, Parkinson's disease, bipolar disorder and stroke). MR-Egger and MR-PRESSO tests confirmed the robustness of analysis against horizontal pleiotropy. Conclusions By comparing the protective and risk factors for neurological disorders found in our research and other researches, we can furtherly determine valuable indicators for disease evolution tracking and potential treatment targets. Future research should explore extensive microbiome genome-wide association study datasets using metagenomics sequencing techniques to deepen our understanding of connections and causality between neurological disorders.
Collapse
Affiliation(s)
- Jingqiu Li
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xinyang Hu
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xinyu Tao
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuming Li
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wan Jiang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingtao Zhao
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhehui Ma
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shuyan Sheng
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jiaye Tong
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Haibo Zhang
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaomei Gao
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Maurya SK, Jaramillo-Gómez JA, Rehman AU, Gautam SK, Fatima M, Khan MA, Zaidi MAA, Khan P, Anwar L, Alsafwani ZW, Kanchan RK, Mohiuddin S, Pothuraju R, Vengoji R, Venkata RC, Natarajan G, Bhatia R, Atri P, Perumal N, Chaudhary S, Lakshmanan I, Mahapatra S, Talmon GA, Cox JL, Smith LM, Santamaria-Barria JA, Ganti AK, Siddiqui JA, Cittelly DM, Batra SK, Nasser MW. Mucin 5AC Promotes Breast Cancer Brain Metastasis through cMET/CD44v6. Clin Cancer Res 2025; 31:921-935. [PMID: 39760691 PMCID: PMC11882111 DOI: 10.1158/1078-0432.ccr-24-1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE Breast cancer brain metastasis remains a significant clinical problem. Mucins have been implicated in metastasis; however, whether they are also involved in breast cancer brain metastasis remains unknown. We queried databases of patients with brain metastasis and found mucin 5AC (MUC5AC) to be upregulated and therefore sought to define the role of MUC5AC in breast cancer brain metastasis. EXPERIMENTAL DESIGN In silico dataset analysis, RNA-sequence profiling of patient samples and cell lines, analysis of patient serum samples, and in vitro/in vivo knockdown experiments were performed to determine the function of MUC5AC in breast cancer brain metastasis. Coimmunoprecipitation was used to unravel the interactions that can be therapeutically targeted. RESULTS Global in silico transcriptomic analysis showed that MUC5AC is significantly higher in patients with breast cancer brain metastasis. Analysis of archived breast cancer brain metastasis tissue further revealed significantly higher expression of MUC5AC in all breast cancer subtypes, and high MUC5AC expression predicted poor survival in HER2+ breast cancer brain metastasis. We validated these observations in breast cancer brain metastatic cell lines and tissue samples. Interestingly, elevated levels of MUC5AC were detected in the sera of patients with breast cancer brain metastasis. MUC5AC silencing in breast cancer brain metastatic cells reduced their migration and adhesion in vitro and in brain metastasis in the intracardiac injection mouse model. We found high expression of cMET and CD44v6 in breast cancer brain metastasis, which increased MUC5AC expression via hepatocyte growth factor signaling. In addition, MUC5AC interacts with cMET and CD44v6, suggesting that MUC5AC promotes breast cancer brain metastasis via the cMET/CD44v6 axis. Inhibition of the MUC5AC/cMET/CD44v6 axis with the blood-brain barrier-permeable cMET inhibitor bozitinib (PLB1001) effectively inhibits breast cancer brain metastasis. CONCLUSIONS Our study establishes that the MUC5AC/cMET/CD44v6 axis is critical for breast cancer brain metastasis, and blocking this axis will be a novel therapeutic approach for breast cancer brain metastasis.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jenny A Jaramillo-Gómez
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shailendra Kumar Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Laiba Anwar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa Wajih Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mohiuddin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - NaveenKumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, College of Public Health, Omaha, NE 68108, USA
| | | | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
| |
Collapse
|
8
|
Wen J, Li Y, Deng W, Li Z. Central nervous system and immune cells interactions in cancer: unveiling new therapeutic avenues. Front Immunol 2025; 16:1528363. [PMID: 40092993 PMCID: PMC11907007 DOI: 10.3389/fimmu.2025.1528363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide. Despite significant advancements in cancer research, our understanding of its complex developmental pathways remains inadequate. Recent research has clarified the intricate relationship between the central nervous system (CNS) and cancer, particularly how the CNS influences tumor growth and metastasis via regulating immune cell activity. The interactions between the central nervous system and immune cells regulate the tumor microenvironment via various signaling pathways, cytokines, neuropeptides, and neurotransmitters, while also incorporating processes that alter the tumor immunological landscape. Furthermore, therapeutic strategies targeting neuro-immune cell interactions, such as immune checkpoint inhibitors, alongside advanced technologies like brain-computer interfaces and nanodelivery systems, exhibit promise in improving treatment efficacy. This complex bidirectional regulatory network significantly affects tumor development, metastasis, patient immune status, and therapy responses. Therefore, understanding the mechanisms regulating CNS-immune cell interactions is crucial for developing innovative therapeutic strategies. This work consolidates advancements in CNS-immune cell interactions, evaluates their potential in cancer treatment strategies, and provides innovative insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Guerrieri RA, Fischer GM, Kircher DA, Joon AY, Cortez JR, Grossman AH, Hudgens CW, Ledesma DA, Lazcano R, Onana CY, Knighton BG, Kumar S, Hu Q, Gopal YNV, McQuade JL, Deng W, Haydu LE, Gershenwald JE, Lazar AJ, Tetzlaff MT, Holmen SL, Davies MA. Oxidative Phosphorylation (OXPHOS) Promotes the Formation and Growth of Melanoma Lung and Brain Metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.633049. [PMID: 39896644 PMCID: PMC11785201 DOI: 10.1101/2025.01.23.633049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Melanoma mortality is driven by the formation and growth of distant metastases. Here, we interrogated the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma. OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1α in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain. Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. STRUCTURED ABSTRACT Purpose: Melanoma mortality is driven by the formation and growth of distant metastases. However, the process and pathogenesis of melanoma metastasis remain poorly understood. Here, we interrogate the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma.Experimental Design: This study includes (1) new RNA-seq analysis of primary melanomas from patients characterized for distant metastasis events; (2) RNA-seq analysis and functional testing of genetic OXPHOS inhibition (PGC1α KO) the RCAS-TVA model, which is the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors; and (3) functional experiments of genetic OXPHOS inhibition (NDUFS4 KO) in the B16-F10 and D4M-UV2 murine melanoma cell lines, including evaluation of subcutaneous, lung, and brain metastatic site dependencies.Results: OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1a in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain.Conclusions: Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. TRANSLATIONAL RELEVANCE Melanoma is the most aggressive form of skin cancer. One hallmark of this disease is a high risk of distant metastasis formation. The process and pathogenesis of metastasis in this disease remain poorly understood and there is controversy regarding the role of oxidative phosphorylation (OXPHOS) in melanoma metastasis. This study incorporates RNAseq analysis of primary melanoma tumors from patients characterized for distant metastasis events, RNAseq analysis of the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors, and functional testing in multiple syngeneic models of melanoma at different tissue sites. This integrated analysis consistently demonstrates that melanoma OXPHOS promotes distant metastasis to the lungs and brain, two of the most common and clinically relevant sites of melanoma metastasis. This improved understanding of tumor OXPHOS may represent novel vulnerabilities for therapeutics development and surveillance/preventative strategies for melanoma metastasis.
Collapse
|
10
|
Peters JJ, Teng C, Peng K, Li X. Deciphering the Blood-Brain Barrier Paradox in Brain Metastasis Development and Therapy. Cancers (Basel) 2025; 17:298. [PMID: 39858080 PMCID: PMC11764143 DOI: 10.3390/cancers17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue. This dual role of the BBB-as both a protective system and a potential facilitator of metastatic cells-highlights its complexity. Even with metastasis therapy such as chemotherapy, BM usually recurs due to the BBB limiting the crossing of drugs via the efflux transporters; therefore, treatment efficacy is limited. The pathophysiology is also complex, and our understanding of the paradoxical interplay between the BBB components and metastatic cells still needs to be improved. However, advancements in clinical research are helping to bridge the knowledge gap, which is essential for developing effective metastasis therapy. By targeting the BBB neurovascular unit components such as the polarization of microglia, astrocytes, and pericytes, or by utilizing technological tools like focused ultrasound to transiently disrupt the BBB and therapeutic nanoparticles to improve drug delivery efficiency to BM tissue, we can better address this pathology. This narrative review delves into the latest literature to analyze the paradoxical role of the BBB components in the manifestation of BM and explores potential therapeutic avenues targeting the BBB-tumor cell interaction.
Collapse
Affiliation(s)
- Jens Jeshu Peters
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Schreurs LD, vom Stein AF, Jünger ST, Timmer M, Noh KW, Buettner R, Kashkar H, Neuschmelting V, Goldbrunner R, Nguyen PH. The immune landscape in brain metastasis. Neuro Oncol 2025; 27:50-62. [PMID: 39403738 PMCID: PMC11726252 DOI: 10.1093/neuonc/noae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
The prognosis for patients with brain metastasis remains dismal despite intensive therapy including surgical resection, radiotherapy, chemo-, targeted, and immunotherapy. Thus, there is a high medical need for new therapeutic options. Recent advances employing high-throughput and spatially resolved single-cell analyses have provided unprecedented insights into the composition and phenotypes of the diverse immune cells in the metastatic brain, revealing a unique immune landscape starkly different from that of primary brain tumors or other metastatic sites. This review summarizes the current evidence on the composition and phenotypes of the most prominent immune cells in the brain metastatic niche, along with their dynamic interactions with metastatic tumor cells and each other. As the most abundant immune cell types in this niche, we explore in detail the phenotypic heterogeneity and functional plasticity of tumor-associated macrophages, including both resident microglia and monocyte-derived macrophages, as well as the T-cell compartment. We also review preclinical and clinical trials evaluating the therapeutic potential of targeting the immune microenvironment in brain metastasis. Given the substantial evidence highlighting a significant role of the immune microenvironmental niche in brain metastasis pathogenesis, a comprehensive understanding of the key molecular and cellular factors within this niche holds great promise for developing novel therapeutic approaches as well as innovative combinatory treatment strategies for brain metastasis.
Collapse
Affiliation(s)
- Luca D Schreurs
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Alexander F vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Stephanie T Jünger
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Marco Timmer
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Ka-Won Noh
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, Cologne, Germany
| | - Reinhard Buettner
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, Cologne, Germany
| | - Hamid Kashkar
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, Cologne, Germany
- University of Cologne, Translational Research for Infectious Diseases and Oncology (TRIO), Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Volker Neuschmelting
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Roland Goldbrunner
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
12
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
14
|
Zhou L, Liu J, Yao P, Liu X, Chen F, Chen Y, Zhou L, Shen C, Zhou Y, Du X, Hu J. Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma. J Transl Med 2024; 22:1163. [PMID: 39741285 DOI: 10.1186/s12967-024-06011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue. METHODS Utilizing spatial transcriptomics (ST) sequencing technology, we conducted a study on FFPE (formalin-fixed paraffin-embedded) tumor samples from CSCC patients. Coupled with single-cell RNA sequencing (scRNA-seq) data after deconvolution, we described spatial distribution maps of tumor leading edge and core regions in detail. Tumor tissues were classified into hypermetabolic and hypometabolic regions to analyze the metabolism profiles and tumor differentiation degree across different spatial areas. We also employed The Cancer Genome Atlas (TCGA) database to examine the analysis results of ST data. RESULTS Our findings indicated a more complex tumor microenvironment in hypermetabolic regions. Cell-cell communication analysis showed that various cells in tumor microenvironment were influenced by the signalling molecule APP released by cancer cells and higher expression of APP was observed in hypermetabolic regions. Furthermore, our results revealed the correlation between APP and the transcription factor TRPS1. Both APP and TRPS1 demonstrated significant effects on cancer cell proliferation, migration, and invasion, potentially contributing to tumor progression. CONCLUSIONS Utilizing ST, scRNA-seq, and TCGA database, we examined the spatial metabolic profiles of CSCC tissues, including metabolism distribution, metabolic variations, and the relationship between metabolism and tumor differentiation degree. Additionally, potential cancer-promoting factors were proposed, offering a valuable foundation for the development of more effective treatment strategies for CSCC.
Collapse
Affiliation(s)
- Limin Zhou
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China
| | - Jiejie Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Peipei Yao
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Fei Chen
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, 430072, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Xin Du
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| | - Junbo Hu
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
15
|
Xia Y, Zou C, Kang W, Xu T, Shao R, Zeng P, Sun B, Chen J, Qi Y, Wang Z, Lin T, Zhu H, Shen Y, Wang X, Guo S, Cui D. Invasive metastatic tumor-camouflaged ROS responsive nanosystem for targeting therapeutic brain injury after cardiac arrest. Biomaterials 2024; 311:122678. [PMID: 38917705 DOI: 10.1016/j.biomaterials.2024.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Drug transmission through the blood-brain barrier (BBB) is considered an arduous challenge for brain injury treatment following the return of spontaneous circulation after cardiac arrest (CA-ROSC). Inspired by the propensity of melanoma metastasis to the brain, B16F10 cell membranes are camouflaged on 2-methoxyestradiol (2ME2)-loaded reactive oxygen species (ROS)-triggered "Padlock" nanoparticles that are constructed by phenylboronic acid pinacol esters conjugated D-a-tocopheryl polyethylene glycol succinate (TPGS-PBAP). The biomimetic nanoparticles (BM@TP/2ME2) can be internalized, mainly mediated by the mutual recognition and interaction between CD44v6 expressed on B16F10 cell membranes and hyaluronic acid on cerebral vascular endothelial cells, and they responsively release 2ME2 by the oxidative stress microenvironment. Notably, BM@TP/2ME2 can scavenge excessive ROS to reestablish redox balance, reverse neuroinflammation, and restore autophagic flux in damaged neurons, eventually exerting a remarkable neuroprotective effect after CA-ROSC in vitro and in vivo. This biomimetic drug delivery system is a novel and promising strategy for the treatment of cerebral ischemia-reperfusion injury after CA-ROSC.
Collapse
Affiliation(s)
- Yiyang Xia
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Chenming Zou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Weichao Kang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Tianhua Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Rongjiao Shao
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ping Zeng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Bixi Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jie Chen
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Yiming Qi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhaozhong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Tiancheng Lin
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Haichao Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xintao Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Derong Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
16
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Bibby C, Muller JT, Atri P, Seffar E, Chatila W, Karacay A, Chanda P, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Moss NS, Murali R, Pe'er D, Massagué J. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024; 42:1693-1712.e24. [PMID: 39270646 DOI: 10.1016/j.ccell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces, and autocrine programs. TNBC models tend to form perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC models tend to form compact spheroids driven by autonomous tenascin C production, segregating stromal cells to the periphery. Single-cell transcriptomics of the tumor microenvironment revealed that these architectures evoke differential Alzheimer's disease-associated microglia (DAM) responses and engagement of the GAS6 receptor AXL. The spatial features of the two modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Bibby
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Karacay
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pharto Chanda
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nelson S Moss
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Liu P, Lan S, Gao D, Hu D, Chen Z, Li Z, Jiang G, Sheng Z. Targeted blood-brain barrier penetration and precise imaging of infiltrative glioblastoma margins using hybrid cell membrane-coated ICG liposomes. J Nanobiotechnology 2024; 22:603. [PMID: 39367395 PMCID: PMC11452969 DOI: 10.1186/s12951-024-02870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Surgical resection remains the primary treatment modality for glioblastoma (GBM); however, the infiltrative nature of GBM margins complicates achieving complete tumor removal. Additionally, the blood-brain barrier (BBB) poses a formidable challenge to effective probe delivery, thereby hindering precise imaging-guided surgery. Here, we introduce hybrid cell membrane-coated indocyanine green (ICG) liposomes (HM-Lipo-ICG) as biomimetic near-infrared (NIR) fluorescent probes for targeted BBB penetration and accurate delineation of infiltrative GBM margins. HM-Lipo-ICG encapsulates clinically approved ICG within its core and utilizes a hybrid cell membrane exterior, enabling specific targeting and enhanced BBB permeation. Quantitative assessments demonstrate that HM-Lipo-ICG achieves BBB penetration efficiency 2.8 times higher than conventional ICG liposomes. Mechanistically, CD44 receptor-mediated endocytosis facilitates BBB translocation of HM-Lipo-ICG. Furthermore, HM-Lipo-ICG enables high-contrast NIR imaging, achieving a signal-to-background ratio of 6.5 in GBM regions of an orthotopic glioma mouse model, thereby improving tumor margin detection accuracy fourfold (84.4% vs. 22.7%) compared to conventional ICG liposomes. Application of HM-Lipo-ICG facilitates fluorescence-guided precision surgery, resulting in complete resection of GBM cells. This study underscores the potential of hybrid cell membrane-coated liposomal probes in precisely visualizing and treating infiltrative GBM margins.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, #466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, P. R. China
| | - Siyi Lan
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhen Chen
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ziyue Li
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, #466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, P. R. China.
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
18
|
Wang AL, Mishkit O, Mao H, Arivazhagan L, Dong T, Lee F, Bhattacharya A, Renfrew PD, Schmidt AM, Wadghiri YZ, Fisher EA, Montclare JK. Collagen-targeted protein nanomicelles for the imaging of non-alcoholic steatohepatitis. Acta Biomater 2024; 187:291-303. [PMID: 39236796 DOI: 10.1016/j.actbio.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity. For ex vivo visualization, Col1-TRAP is labeled with a near-infrared fluorescent dye (NIR-Col1-TRAP). Both Col1-TRAP and NIR-Col1-TRAP display approximately a 3.8-fold greater binding to type I collagen compared to TRAP when measured by surface plasmon resonance (SPR). We present a proof-of-concept study using NIR-Col1-TRAP to detect fibrotic type I collagen deposition ex vivo in the livers of mice with non-alcoholic steatohepatitis (NASH). We show that NIR-Col1-TRAP demonstrates significantly decreased plasma recirculation time as well as increased liver accumulation in the NASH mice compared to mice without disease over 4 hours. As a result, NIR-Col1-TRAP shows potential as an imaging probe for NASH with in vivo targeting performance after injection in mice. STATEMENT OF SIGNIFICANCE: Direct molecular imaging of fibrosis in NASH patients enables the diagnosis and monitoring of disease progression with greater specificity and resolution than do elastography-based methods or blood tests. In addition, protein-based imaging probes are more advantageous than alternatives due to their biodegradability and scalable biosynthesis. With the aid of computational modeling, we have designed a self-assembled protein micelle that binds to fibrillar and monomeric collagen in vitro. After the protein was labeled with near-infrared fluorescent dye, we injected the compound into mice fed on a NASH diet. NIR-Col1-TRAP clears from the serum faster in these mice compared to control mice, and accumulates significantly more in fibrotic livers.This work advances the development of targeted protein probes for in vivo fibrosis imaging.
Collapse
Affiliation(s)
- Andrew L Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Tony Dong
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Frances Lee
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Ann Marie Schmidt
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology and Cardiovascular Research Center, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
19
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
21
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Sampaio MCPD, Santos RVC, Albuquerque APDB, Soares AKDA, Cordeiro MF, da Rosa MM, Pereira MC, da Rocha Pitta MG, Rêgo MJBDM. Induction of SK-MEL-28 Invasion by Brain Cortical Cell-Conditioned Medium Through CXCL10 Signaling. J Interferon Cytokine Res 2024; 44:198-207. [PMID: 38512222 DOI: 10.1089/jir.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Clara Pinheiro Duarte Sampaio
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Amanda Pinheiro de Barros Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | | | - Marina Ferraz Cordeiro
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelle Melgarejo da Rosa
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
23
|
Agrawal P, Chen S, de Pablos A, Jame-Chenarboo F, Miera Saenz de Vega E, Darvishian F, Osman I, Lujambio A, Mahal LK, Hernando E. Integrated in vivo functional screens and multi-omics analyses identify α-2,3-sialylation as essential for melanoma maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584072. [PMID: 38559078 PMCID: PMC10979837 DOI: 10.1101/2024.03.08.584072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuhui Chen
- Department of Chemistry, New York University
| | - Ana de Pablos
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Dermatology, NYU Grossman School of Medicine, New York
| | | | - Lara K. Mahal
- Department of Chemistry, New York University
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
| |
Collapse
|
24
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
26
|
Feng Y, Hu X, Zhang Y, Wang Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024; 15:169-185. [PMID: 37307835 PMCID: PMC10796095 DOI: 10.14336/ad.2023.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/14/2023] [Indexed: 06/14/2023] Open
Abstract
Brain metastases and related complications are one of the major fatal factors in cancer. Patients with breast cancer, lung cancer, and melanoma are at a high risk of developing brain metastases. However, the mechanisms underlying the brain metastatic cascade remain poorly understood. Microglia, one of the major resident macrophages in the brain parenchyma, are involved in multiple processes associated with brain metastasis, including inflammation, angiogenesis, and immune modulation. They also closely interact with metastatic cancer cells, astrocytes, and other immune cells. Current therapeutic approaches against metastatic brain cancers, including small-molecule drugs, antibody-coupled drugs (ADCs), and immune-checkpoint inhibitors (ICIs), have compromised efficacy owing to the impermeability of the blood-brain barrier (BBB) and complex brain microenvironment. Targeting microglia is one of the strategies for treating metastatic brain cancer. In this review, we summarize the multifaceted roles of microglia in brain metastases and highlight them as potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Farris F, Elhagh A, Vigorito I, Alongi N, Pisati F, Giannattasio M, Casagrande F, Veghini L, Corbo V, Tripodo C, Di Napoli A, Matafora V, Bachi A. Unveiling the mechanistic link between extracellular amyloid fibrils, mechano-signaling and YAP activation in cancer. Cell Death Dis 2024; 15:28. [PMID: 38199984 PMCID: PMC10781709 DOI: 10.1038/s41419-024-06424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The tumor microenvironment is a complex ecosystem that plays a critical role in cancer progression and treatment response. Recently, extracellular amyloid fibrils have emerged as novel components of the tumor microenvironment; however, their function remains elusive. In this study, we establish a direct connection between the presence of amyloid fibrils in the secretome and the activation of YAP, a transcriptional co-activator involved in cancer proliferation and drug resistance. Furthermore, we uncover a shared mechano-signaling mechanism triggered by amyloid fibrils in both melanoma and pancreatic ductal adenocarcinoma cells. Our findings highlight the crucial role of the glycocalyx protein Agrin which binds to extracellular amyloid fibrils and acts as a necessary factor in driving amyloid-dependent YAP activation. Additionally, we reveal the involvement of the HIPPO pathway core kinase LATS1 in this signaling cascade. Finally, we demonstrate that extracellular amyloid fibrils enhance cancer cell migration and invasion. In conclusion, our research expands our knowledge of the tumor microenvironment by uncovering the role of extracellular amyloid fibrils in driving mechano-signaling and YAP activation. This knowledge opens up new avenues for developing innovative strategies to modulate YAP activation and mitigate its detrimental effects during cancer progression.
Collapse
Affiliation(s)
- Francesco Farris
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Alice Elhagh
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Ilaria Vigorito
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Nicoletta Alongi
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, 20139, Milan, Italy
| | - Michele Giannattasio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Francesca Casagrande
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Human Technopole, Milan, Italy
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, 37134, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, 37134, Verona, Italy
- ARC-Net Centre for Applied Research on Cancer, University of Verona, 37134, Verona, Italy
| | - Claudio Tripodo
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90133, Palermo, Italy
| | - Arianna Di Napoli
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00189, Rome, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
| |
Collapse
|
28
|
Greutter L, Miller-Michlits Y, Klotz S, Reimann R, Nenning KH, Platzek S, Krause E, Kiesel B, Widhalm G, Langs G, Baumann B, Woehrer A. Frequent Alzheimer's disease neuropathological change in patients with glioblastoma. Neurooncol Adv 2024; 6:vdae118. [PMID: 39220249 PMCID: PMC11362848 DOI: 10.1093/noajnl/vdae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background The incidence of brain cancer and neurodegenerative diseases is increasing with a demographic shift towards aging populations. Biological parallels have been observed between glioblastoma and Alzheimer's disease (AD), which converge on accelerated brain aging. Here, we aimed to map the cooccurrence of AD neuropathological change (ADNC) in the tumor-adjacent cortex of patients with glioblastoma. Methods Immunohistochemical screening of AD markers amyloid beta (Abeta), amyloid precursor protein (APP), and hyperphosphorylated tau (pTau) was conducted in 420 tumor samples of 205 patients. For each cortex area, we quantified ADNC, neurons, tumor cells, and microglia. Results Fifty-two percent of patients (N = 106/205) showed ADNC (Abeta and pTau, Abeta or pTau) in the tumor-adjacent cortex, with histological patterns widely consistent with AD. ADNC was positively correlated with patient age and varied spatially according to Thal phases and Braak stages. It decreased with increasing tumor cell infiltration (P < .0001) and was independent of frequent expression of APP in neuronal cell bodies (N = 182/205) and in tumor necrosis-related axonal spheroids (N = 195/205; P = .46). Microglia response was most present in tumor cell infiltration plus ADNC, being further modulated by patient age and sex. ADNC did not impact patient survival in the present cohort. Conclusions Our findings highlight the frequent presence of ADNC in the glioblastoma vicinity, which was linked to patient age and tumor location. The cooccurrence of AD and glioblastoma seemed stochastic without clear spatial relation. ADNC did not impact patient survival in our cohort.
Collapse
Affiliation(s)
- Lisa Greutter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Yelyzaveta Miller-Michlits
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Sigrid Klotz
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Regina Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Karl-Heinz Nenning
- Center for Biomedical Imaging & Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York City, New York, USA
| | - Stephan Platzek
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Elena Krause
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health – CNMH, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
30
|
Rather HA, Almousa S, Kumar A, Sharma M, Pennington I, Kim S, Su Y, He Y, Ghara AR, Sai KKS, Navone NM, Vander Griend DJ, Deep G. The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer. Cancers (Basel) 2023; 16:10. [PMID: 38201438 PMCID: PMC10778021 DOI: 10.3390/cancers16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1's usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aβ1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Hilal A. Rather
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Isabel Pennington
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yangen He
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Abdollah R. Ghara
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
31
|
Xia L, Feng M, Ren Y, Hao X, Jiao Q, Xu Q, Wang Y, Wang Q, Gong N. DSE inhibits melanoma progression by regulating tumor immune cell infiltration and VCAN. Cell Death Discov 2023; 9:373. [PMID: 37833287 PMCID: PMC10576081 DOI: 10.1038/s41420-023-01676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Dermatan sulfate epimerase (DSE) is a C5 epiminase that plays a key role in converting chondroitin sulfate into dermal sulfate. DSE is often upregulated during carcinogenesis of some types of cancer and can regulate growth factor signaling in cancer cells. However, the expression and function of DSE in human melanoma have not been reported. In this study, we investigated the influence of tumor-derived DSE in melanoma progression and the potential mechanism of their action. First, proteomic analysis of collected melanoma tissues revealed that DSE was significantly down-regulated in melanoma tissues. DSE silenced or overexpressed melanoma cells were constructed to detect the effect of DSE on melanoma cells, and it was found that the up-regulation of DSE significantly inhibited the proliferation, migration and invasion of melanoma cells. Data analysis and flow cytometry were used to evaluate the immune subpopulations in tumors, and it was found that the high expression of DSE was closely related to the invasion of killer immune cells. Mechanistically, DSE promoted the expression of VCAN, which inhibited the biological activity of melanoma cells. Together, these results suggest that DSE is downregulated in melanoma tissues, and that high expression of DSE can promote melanoma progression by inducing immune cell infiltration and VCAN expression.
Collapse
Affiliation(s)
- Lin Xia
- Department of Plastic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Ningji Gong
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
32
|
Adaku N, Ostendorf BN, Mei W, Tavazoie SF. Apolipoprotein E2 Stimulates Protein Synthesis and Promotes Melanoma Progression and Metastasis. Cancer Res 2023; 83:3013-3025. [PMID: 37335131 PMCID: PMC10740391 DOI: 10.1158/0008-5472.can-23-1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.
Collapse
Affiliation(s)
- Nneoma Adaku
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin N. Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
33
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Nowacka A, Fajkiel-Madajczyk A, Ohla J, Woźniak-Dąbrowska K, Liss S, Gryczka K, Smuczyński W, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. Current Treatment of Melanoma Brain Metastases. Cancers (Basel) 2023; 15:4088. [PMID: 37627116 PMCID: PMC10452790 DOI: 10.3390/cancers15164088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a type of skin cancer in which there is a strong correlation between its occurrence and exposure to ultraviolet radiation. Although it is not the most common skin cancer, it has the highest mortality rate of all skin cancers. The prognosis of patients is significantly worsened by melanoma metastasis to the brain, which often occurs in patients with advanced disease. The formation and development of melanoma metastases to the brain involve a very complex process, and their mechanisms are not fully understood. One of the ways for metastatic melanoma cells to survive and develop cancer in the brain environment is the presence of oncogenic BRAF mutation, which occurs in up to 50% of metastatic melanoma cases. Before discovering new methods of treating metastases, the overall survival of patients with this disease was 6 months. Currently, research is being conducted on new drugs using immunotherapy (immune checkpoint inhibitors: anti-PD-1, anti-CTLA-4) and targeted therapy (BRAF and MEK inhibitors) to improve the prognosis of patients. In this article, we summarize the current state of knowledge about the results of treating brain metastases with new systemic therapies.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Kamila Woźniak-Dąbrowska
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Sara Liss
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland;
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| |
Collapse
|
35
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
36
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
37
|
Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, Shepherd ST, Shum B, Byrne F, Goicoechea M, Piperni E, Au L, Edmonds K, Carlyle E, Hunter N, Renn A, Messiou C, Hughes P, Nobbs J, Foijer F, van den Bos H, Wardenaar R, Spierings DC, Spencer C, Schmitt AM, Tippu Z, Lingard K, Grostate L, Peat K, Kelly K, Sarker S, Vaughan S, Mangwende M, Terry L, Kelly D, Biano J, Murra A, Korteweg J, Lewis C, O'Flaherty M, Cattin AL, Emmerich M, Gerard CL, Pallikonda HA, Lynch J, Mason R, Rogiers A, Xu H, Huebner A, McGranahan N, Al Bakir M, Murai J, Naceur-Lombardelli C, Borg E, Mitchison M, Moore DA, Falzon M, Proctor I, Stamp GW, Nye EL, Young K, Furness AJ, Pickering L, Stewart R, Mahadeva U, Green A, Larkin J, Litchfield K, Swanton C, Jamal-Hanjani M, Turajlic S. Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways. Cancer Discov 2023; 13:1364-1385. [PMID: 36977461 PMCID: PMC10236155 DOI: 10.1158/2159-8290.cd-22-1427] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander Coulton
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Desiree Schnidrig
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Scott T.C. Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Goicoechea
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elisa Piperni
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Kim Edmonds
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Nikki Hunter
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | - Peta Hughes
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jaime Nobbs
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Charlotte Spencer
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Zayd Tippu
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Kema Peat
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Sarah Sarker
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | - Lauren Terry
- The Royal Marsden Hospital, London, United Kingdom
| | - Denise Kelly
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Aida Murra
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Anne-Laure Cattin
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Max Emmerich
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- St. John's Institute of Dermatology, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - Camille L. Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Precision Oncology Center, Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Joanna Lynch
- The Royal Marsden Hospital, London, United Kingdom
| | - Robert Mason
- Gold Coast University Hospital, Queensland, Australia
| | - Aljosja Rogiers
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Hang Xu
- The Francis Crick Institute, London, United Kingdom
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Jun Murai
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
- Drug Discovery Technology Laboratories, Ono Pharmaceutical Co., Ltd. Osaka, Japan
| | | | - Elaine Borg
- University College London Hospital, London, United Kingdom
| | | | - David A. Moore
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mary Falzon
- University College London Hospital, London, United Kingdom
| | - Ian Proctor
- University College London Hospital, London, United Kingdom
| | | | - Emma L. Nye
- The Francis Crick Institute, London, United Kingdom
| | - Kate Young
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew J.S. Furness
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | | | - Ruby Stewart
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ula Mahadeva
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Anna Green
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - James Larkin
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
38
|
Morikawa A, Li J, Ulintz P, Cheng X, Apfel A, Robinson D, Hopkins A, Kumar-Sinha C, Wu YM, Serhan H, Verbal K, Thomas D, Hayes DF, Chinnaiyan AM, Baladandayuthapani V, Heth J, Soellner MB, Merajver SD, Merrill N. Optimizing Precision Medicine for Breast Cancer Brain Metastases with Functional Drug Response Assessment. CANCER RESEARCH COMMUNICATIONS 2023; 3:1093-1103. [PMID: 37377606 PMCID: PMC10284082 DOI: 10.1158/2767-9764.crc-22-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets. We established six novel patient-derived xenograft (PDX) from BCBM from patients undergoing clinically indicated surgical resection of BCBM and used the PDXs as a drug screening platform to interrogate potential molecular targets. Many of the alterations were conserved in brain metastases compared with the matched primary. We observed differential expressions in the immune-related and metabolism pathways. The PDXs from BCBM captured the potentially targetable molecular alterations in the source brain metastases tumor. The alterations in the PI3K pathway were the most predictive for drug efficacy in the PDXs. The PDXs were also treated with a panel of over 350 drugs and demonstrated high sensitivity to histone deacetylase and proteasome inhibitors. Our study revealed significant differences between the paired BCBM and primary breast tumors with the pathways involved in metabolisms and immune functions. While molecular targeted drug therapy based on genomic profiling of tumors is currently evaluated in clinical trials for patients with brain metastases, a functional precision medicine strategy may complement such an approach by expanding potential therapeutic options, even for BCBM without known targetable molecular alterations. Significance Examining genomic alterations and differentially expressed pathways in brain metastases may inform future therapeutic strategies. This study supports genomically-guided therapy for BCBM and further investigation into incorporating real-time functional evaluation will increase confidence in efficacy estimations during drug development and predictive biomarker assessment for BCBM.
Collapse
Affiliation(s)
- Aki Morikawa
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jinju Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Peter Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xu Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Athena Apfel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dan Robinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Yi-Mi Wu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Habib Serhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kait Verbal
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel F. Hayes
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Jason Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | | | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nathan Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
39
|
Costas-Insua C, Seijo-Vila M, Blázquez C, Blasco-Benito S, Rodríguez-Baena FJ, Marsicano G, Pérez-Gómez E, Sánchez C, Sánchez-Laorden B, Guzmán M. Neuronal Cannabinoid CB 1 Receptors Suppress the Growth of Melanoma Brain Metastases by Inhibiting Glutamatergic Signalling. Cancers (Basel) 2023; 15:cancers15092439. [PMID: 37173906 PMCID: PMC10177062 DOI: 10.3390/cancers15092439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is one of the deadliest forms of cancer. Most melanoma deaths are caused by distant metastases in several organs, especially the brain, the so-called melanoma brain metastases (MBMs). However, the precise mechanisms that sustain the growth of MBMs remain elusive. Recently, the excitatory neurotransmitter glutamate has been proposed as a brain-specific, pro-tumorigenic signal for various types of cancers, but how neuronal glutamate shuttling onto metastases is regulated remains unknown. Here, we show that the cannabinoid CB1 receptor (CB1R), a master regulator of glutamate output from nerve terminals, controls MBM proliferation. First, in silico transcriptomic analysis of cancer-genome atlases indicated an aberrant expression of glutamate receptors in human metastatic melanoma samples. Second, in vitro experiments conducted on three different melanoma cell lines showed that the selective blockade of glutamatergic NMDA receptors, but not AMPA or metabotropic receptors, reduces cell proliferation. Third, in vivo grafting of melanoma cells in the brain of mice selectively devoid of CB1Rs in glutamatergic neurons increased tumour cell proliferation in concert with NMDA receptor activation, whereas melanoma cell growth in other tissue locations was not affected. Taken together, our findings demonstrate an unprecedented regulatory role of neuronal CB1Rs in the MBM tumour microenvironment.
Collapse
Affiliation(s)
- Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Marta Seijo-Vila
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Sandra Blasco-Benito
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Francisco Javier Rodríguez-Baena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Giovanni Marsicano
- Physiopathologie de la Plasticité Neuronale, NeuroCentre Magendie, U1215 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Neurocampus, University of Bordeaux, 33077 Bordeaux, France
| | - Eduardo Pérez-Gómez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH), 03550 San Juan de Alicante, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| |
Collapse
|
40
|
Liu Y, Meng Y, Zhou C, Yan J, Guo C, Dong W. Activation of the IL-17/TRAF6/NF-κB pathway is implicated in Aβ-induced neurotoxicity. BMC Neurosci 2023; 24:14. [PMID: 36823558 PMCID: PMC9951515 DOI: 10.1186/s12868-023-00782-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a critical role in Amyloid-β (Aβ) pathophysiology. The cytokine, interleukin-17A (IL-17) is involved in the learning and memory process in the central nervous system and its level was reported to be increased in Alzheimer's disease (AD) brain, while the effect of IL-17 on the course of Aβ has not been well defined. METHODS Here, we used APP/PS1 mice to detect the IL-17 expression level. Primary hippocampal neurons were treated with IL-17, and immunofluorescence was used to investigate whether IL-17 induced neuron damage. At the same time, male C57BL/6 mice were injected with Aβ42 to mimic the Aβ model. Then IL-17 neutralizing antibody (IL-17Ab) was used to inject into the lateral ventricle, and the Open field test, Novel Objective Recognition test, Fear condition test were used to detect cognitive function. LTP was used to assess synaptic plasticity, molecular biology technology was used to assess the IL-17/TRAF6/NF-κB pathway, and ELISA was used to detect inflammatory factors. RESULTS Altogether, we here found that IL-17 was increased in APP/PS1 mice, and it induced neural damage by the administration to primary hippocampal neurons. Interestingly, Using Aβ42 mice, the results showed that the level of IL-17 was increased in Aβ42 model mice, and IL-17Ab could ameliorate Aβ-induced neurotoxicity and cognitive decline in C57BL/6 mice by downregulation the TRAF6/NF-κB pathway. CONCLUSION These findings highlight the pathogenic role of IL-17 in Aβ induced-synaptic dysfunction and cognitive deficits. Inhibition of IL-17 could ameliorate Aβ-induced neurotoxicity and cognitive decline in C57BL/6 mice by downregulation of the TRAF6/NF-κB pathway, which provides new clues for the mechanism of Aβ-induced cognitive impairments, and a basis for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Meng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuiping Guo
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Muller JT, Atri P, Seffar E, Chatila W, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Pe'er D, Massagué J. Distinct tumor architectures for metastatic colonization of the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525190. [PMID: 37034672 PMCID: PMC10081170 DOI: 10.1101/2023.01.27.525190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Brain metastasis is a dismal cancer complication, hinging on the initial survival and outgrowth of disseminated cancer cells. To understand these crucial early stages of colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ breast cancer (HER2BC). We show that these tumor types colonize the brain aggressively, yet with distinct tumor architectures, stromal interfaces, and autocrine growth programs. TNBC forms perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC forms compact spheroids prompted by autonomous extracellular matrix components and segregating stromal cells to their periphery. Single-cell transcriptomic dissection reveals canonical Alzheimer's disease-associated microglia (DAM) responses. Differential engagement of tumor-DAM signaling through the receptor AXL suggests specific pro-metastatic functions of the tumor architecture in both TNBC perivascular and HER2BC spheroidal colonies. The distinct spatial features of these two highly efficient modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
42
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
43
|
Albrecht LJ, Höwner A, Griewank K, Lueong SS, von Neuhoff N, Horn PA, Sucker A, Paschen A, Livingstone E, Ugurel S, Zimmer L, Horn S, Siveke JT, Schadendorf D, Váraljai R, Roesch A. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clin Transl Med 2022; 12:e1090. [PMID: 36320118 PMCID: PMC9626658 DOI: 10.1002/ctm2.1090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.
Collapse
Affiliation(s)
- Lea Jessica Albrecht
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Anna Höwner
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Klaus Griewank
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Smiths S. Lueong
- Bridge Institute of Experimental Tumor TherapyWest German Cancer CenterUniversity Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research CenterDKFZHeidelbergGermany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and OncologyDepartment for Pediatrics IIIUniversity Hospital of EssenEssenGermany
| | - Peter A. Horn
- Institute for Transfusion MedicineUniversity Hospital of EssenEssenGermany
| | - Antje Sucker
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Annette Paschen
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Elisabeth Livingstone
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Selma Ugurel
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Lisa Zimmer
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Susanne Horn
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
- Faculty Rudolf‐Schönheimer‐Institute for BiochemistryUniversity of LeipzigLeipzigGermany
| | - Jens T. Siveke
- Bridge Institute of Experimental Tumor TherapyWest German Cancer CenterUniversity Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research CenterDKFZHeidelbergGermany
| | - Dirk Schadendorf
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Renáta Váraljai
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Alexander Roesch
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| |
Collapse
|
44
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
45
|
Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022; 12:996. [PMID: 35883551 PMCID: PMC9312829 DOI: 10.3390/biom12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. In the past decade, there has been a greater degree of investigation on therapeutic small peptides. This group of biomolecules have a profile of fundamentally sound characteristics which make them an intriguing area for drug development. Among these biomolecules, there are four modulatory mechanisms of interest in this review: alpha-, beta-, gamma-secretases, and amylin. These protease-based biomolecules all have a contributory role in the amyloid cascade hypothesis. Moreover, the involvement of various biochemical pathways intertwines these peptides to have shared regulators (i.e., retinoids). Further clinical and translational investigation must occur to gain a greater understanding of its potential application in patient care. The aim of this narrative review is to evaluate the contemporary literature on these protease biomolecule modulators and determine its utility in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA; (S.S.); (F.Y.); (A.S.); (V.C.)
| |
Collapse
|
46
|
Marin J, Journe F, Ghanem GE, Awada A, Kindt N. Cytokine Landscape in Central Nervous System Metastases. Biomedicines 2022; 10:biomedicines10071537. [PMID: 35884845 PMCID: PMC9313120 DOI: 10.3390/biomedicines10071537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed.
Collapse
Affiliation(s)
- Julie Marin
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Laboratory of Human Anatomy and Experimental Oncology, Institut Santé, Université de Mons (UMons), 7000 Mons, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Correspondence:
| |
Collapse
|
47
|
Mouillet-Richard S, Martin-Lannerée S, Le Corre D, Hirsch TZ, Ghazi A, Sroussi M, Pilati C, de Reyniès A, Djouadi F, Vodovar N, Launay JM, Laurent-Puig P. A proof of concept for targeting the PrP C - Amyloid β peptide interaction in basal prostate cancer and mesenchymal colon cancer. Oncogene 2022; 41:4397-4404. [PMID: 35962130 PMCID: PMC9481457 DOI: 10.1038/s41388-022-02430-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/29/2023]
Abstract
The cellular prion protein PrPC partners with caveolin-1 (CAV1) in neurodegenerative diseases but whether this interplay occurs in cancer has never been investigated. By leveraging patient and cell line datasets, we uncover a molecular link between PrPC and CAV1 across cancer. Using cell-based assays, we show that PrPC regulates the expression of and interacts with CAV1. PrPC additionally controls the expression of the amyloid precursor protein APP and of the Aβ generating enzyme BACE1, and regulates the levels of Aβ, whose accumulation is a central event in Alzheimer's disease. We further identify DKK1 and DKK3, involved in both Alzheimer's disease and cancer progression, as targets of the PrPC-dependent axis. Finally, we establish that antibody-mediated blocking of the Aβ-PrPC interaction delays the growth of prostate cancer cell line-derived xenografts and prevents the development of metastases. Our data additionally support an enrichment of the Aβ-PrPC-dependent pathway in the basal subtype of prostate cancer, associated with anti-hormonal therapy resistance, and in mesenchymal colon cancer, associated with poor prognosis. Thus, based on a parallel with neurodegenerative diseases, our results bring to light an Aβ-PrPC axis and support the potential of targeting this pathway in patients with selected subtypes of prostate and colon cancer.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Séverine Martin-Lannerée
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France ,grid.425132.3Present Address: IntegraGen SA Génopole Campus 1, Rue de Henri Desbruères, 91000 Evry, France
| | - Delphine Le Corre
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Théo Z. Hirsch
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Alexandre Ghazi
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Marine Sroussi
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France ,grid.15736.360000 0001 1882 0021Laboratoire de Biochimie, Ecole Supérieure de Physique et de Chimie Industrielle de la ville de Paris, Paris, 75005 France
| | - Camilla Pilati
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Aurélien de Reyniès
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Fatima Djouadi
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Nicolas Vodovar
- grid.508487.60000 0004 7885 7602Université Paris Cité and Inserm UMR-S942 MASCOT, Paris, France
| | - Jean-Marie Launay
- grid.508487.60000 0004 7885 7602Université Paris Cité and Inserm UMR-S942 MASCOT, Paris, France ,grid.417570.00000 0004 0374 1269Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Pierre Laurent-Puig
- grid.417925.cCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006 Paris, France ,grid.50550.350000 0001 2175 4109Institut du Cancer Paris CARPEM, AP-HP, Department of Biology Hôpital Européen Georges Pompidou, F-75015 Paris, France
| |
Collapse
|