1
|
de Souza S, Melo GA, Calôba C, Campos MCS, Pimenta JV, Dutra FF, Pereira RM, Echevarria-Lima J. HTLV-1-infected cells drive the differentiation of monocytes into macrophages in vitro. BMC Immunol 2025; 26:24. [PMID: 40114046 PMCID: PMC11927243 DOI: 10.1186/s12865-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/14/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic inflammatory neurodegenerative disease characterized by leukocyte infiltration in the spinal cord. T-lymphocytes are the most important targets of HTLV-1 infection, but monocytes are also infected. Monocytes from HTLV-1-infected individuals exhibit important functional differences compared to cells from uninfected donors. Here, we investigated the effects of cell-cell physical contact and/or secreted factors of HTLV-1-infected cells in monocyte activation and differentiation. METHODS The THP-1 human monocytic cell line was co-cultured with a human cell line transformed by HTLV-1 (MT-2) for 6 days. To determine the effects of co-culturing HTLV-1-infected cells in THP-1 monocytes cells were characterized by flow cytometry, immunofluorescence microscopy, and real-time PCR. Computational analysis of published transcriptomic datasets was realized to compare molecular profiles of macrophages and mononuclear cells from HTLV-1 carriers. RESULTS Co-culture of monocytes with HTLV-1-infected cells induced macrophage differentiation and upregulation of typical macrophages-associated molecules (HLA-DR, CD80, and CD86), increased cytokine (TNFα, IL-6, and IL-1β) levels and their coding genes expression. Consistently, published transcriptomic datasets showed changes in important genes associated with inflammation during HAM/TSP in patients. The presence of HTLV-1-infected cells in the culture also induced significant upregulation of Interferon Stimulated Genes (ISG), indicating viral infection. Monocyte activation and differentiation into pro-inflammatory macrophages occurred in a cell-to-cell contact-independent manner, suggesting the role of factors secreted by infected cells. CONCLUSIONS Together, our results indicated that HTLV-1-infected cells induced monocyte differentiation into macrophages inflammatory, predominantly.
Collapse
Affiliation(s)
- Sabrina de Souza
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Guilherme Affonso Melo
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Carolina Calôba
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Maria Clara Salgado Campos
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Juliana Vieira Pimenta
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Renata Meirelles Pereira
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil.
- Instituto de Microbiologia Paulo de Góes, CCS, Sala I-43, UFRJ, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
2
|
Hu KF, Shu CW, Chen CF, Lee CH, Kung HC, Chou YH, Chen CL, Liu PF. Regulation of Exosomal miR-320d/FAM49B Axis by Guanylate Binding Protein 5 Promotes Cell Growth and Tumor Progression in Oral Squamous Cell Carcinoma. J Oral Pathol Med 2025. [PMID: 40097332 DOI: 10.1111/jop.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Guanylate binding protein 5 (GBP5) and exosomal miRNAs are involved in tumor progression. While several studies reveal the connection between GBP5 and exosomes for immune response and infection, this relationship in cancer, particularly in oral squamous cell carcinoma (OSCC), remains unexplored. METHODS The exosomal miRNA extracted from the cells was analyzed using next-generation sequencing. Bioinformatic tools were used to predict exosomal miRNA target genes. OSCC cell growth was verified by colony formation, cell viability, and cell cycle analysis. The Cancer Genome Atlas database was used to inspect the prognosis of OSCC patients. RESULTS Our results showed that OSCC cells treated with exosomes from GBP5-silenced OSCC cells reduced colony formation. Also, 56 differentially expressed exosomal miRNAs were found in GBP5-silenced OSCC cells compared to scrambled OSCC cells. Among them, exosomal miR-320d exhibited the highest negative correlation with GBP5 in OSCC patients. High GBP5/low miR-320d co-expression was linked to reduced disease-free survival (DFS) in patients with OSCC. Interestingly, the inhibitory effect of GBP5-silenced exosomes on OSCC cell growth was reversed by miR-320d inhibitors. Moreover, five miR-320d target genes were predicted, and only Family with Sequence Similarity 49, Member B (FAM49B) showed a negative correlation with miR-320d. A decreased level of FAM49B was found in OSCC cells treated with exosomes derived from GBP5-silenced OSCC cells, while the decreased level of FAM49B was reversed by miR-320d inhibitors. Silencing FAM49B and GBP5-silenced exosomes enhanced the cytotoxicity of paclitaxel. FAM49B was abundantly expressed in tumor tissues, and high FAM49B/low miR-320d and high GBP5/high FAM49B co-expression were linked to reduced DFS of OSCC patients. CONCLUSION Our study suggests that GBP5 downregulated exosomal miR-320d may trigger FAM49B expression and facilitate OSCC tumor growth and progression.
Collapse
Affiliation(s)
- Kai-Fang Hu
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Innovation Center for Drug Development and Optimization, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Chien Kung
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsiang Chou
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Li Y, Tang J, Ma Y, Yan Y, Cheng F, Wang K. Clinical significance and pathogenesis of GBP5 in infectious mononucleosis associated liver injury. Ital J Pediatr 2025; 51:72. [PMID: 40075517 PMCID: PMC11905478 DOI: 10.1186/s13052-025-01907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Infectious mononucleosis (IM) is a common disease in children; however, liver injury is its most common complication. However, the pathogenesis of IM complicated with liver injury is ambiguous. Thus, this study aimed to explore the potential mechanism of IM-associated liver injury. METHODS This study was conducted at the Children's Hospital of Soochow University by collecting peripheral blood of 70 hospitalized children with IM. These patients were categorized into the liver injury (LIG, n = 35) and the non-liver injury groups (NLIG, n = 35), respectively. Subsequently, PBMCs and plasma were separated and obtained. PBMCs transcriptome sequencing was performed in two groups (5 cases in each group), and significantly differentially expressed genes (DEGs) were screened. Additionally, GO function enrichment, KEGG enrichment and GSEA analyses were performed. RT-PCR helped to detect the relative GBP5, NLRP3 and caspase-1 expressions in two groups (30 cases in each group) while the two groups' caspase-1, IL-1β and IL-18 in plasma levels were measured by ELISA. Thus, clinical and laboratory datas of 60 hospitalized children with IM were evaluated. RESULTS Transcriptome sequencing results showed that 171 DEGs were screened in the NLIG group, compared with the LIG. Among them, 154 DEGs were up-regulated, and 17 were down-regulated, respectively. KEGG and GSEA analyses showed that IM-associated liver injury is correlated with a NOD-like receptor signaling pathway. Statistically significant differences were observed in the white blood cell and lymphocyte counts, CD3+CD4+ T cells, CD3+CD8+T cells, alanine aminotransferase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) of the two groups (p < 0.05). Compared with NLIG, GBP5, NLRP3 and caspase-1 expressions in PBMCs, as well as the caspase-1, IL-1β and IL-18 in plasma levels, were significantly higher in LIG (p < 0.001). A correlation analysis revealed a positive correlation of GBP5 with LDH, ALT, AST, CD3+CD8+T cells and NLRP3 (p < 0.05). CONCLUSIONS Our findings demonstrate that GBP5 contributes to liver injury in IM children through the NLRP3-dependent pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Jiamei Tang
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yulan Ma
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yujuan Yan
- Department of Infectious Diseases, Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215000, China
| | - Fangfang Cheng
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China.
| | - Kun Wang
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Li Y, Wang W, Zhu R, Zhu X, Sun M, Huang Y, Chen W, Gao S, Jiao N, Lin X, Ke J, Xu T, Hou L, Lan P, Zhu L. STAT1 mediates the pro-inflammatory role of GBP5 in colitis. Commun Biol 2025; 8:385. [PMID: 40055493 PMCID: PMC11889220 DOI: 10.1038/s42003-025-07843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Previous studies establish guanylate binding protein 5 (GBP5) as a driver in the development of inflammatory bowel diseases (IBDs). Here, we aim to elucidate the mechanism underlying the pro-inflammatory role of GBP5. We observe that loss of Gbp5 causes reduced colonic inflammation and decreased numbers of innate lymphoid cells (ILCs) in colitis mice. The transcriptional alterations observed in GBP5-deficient THP-1 cells mirrored those triggered by STAT1 activation, leading to the findings that GBP5 is essential for the stimulated expression of STAT1 and its downstream effectors, including cytokines that drive the expansion of ILCs. Remarkably, over-expression of STAT1 reverses the reduced cytokine expression caused by GBP5 deficiency. While GBP5 does not directly drive gene transcription, it binds with STAT1 and facilitates its nuclear translocation, thereby enhancing the expression of STAT1 itself and its downstream effectors. Overall, GBP5 plays a pro-inflammatory role in IBD by enhancing the activity and expression of STAT1.
Collapse
Affiliation(s)
- Yichen Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Medical College, Jiaying University, Meizhou, China
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wanning Chen
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sheng Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na Jiao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Xutao Lin
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Ke
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Medical College, Jiaying University, Meizhou, China
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center; Department of General Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
5
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Veler H, Lun CM, Waheed AA, Freed EO. Guanylate-binding protein 5 antagonizes viral glycoproteins independently of furin processing. mBio 2024; 15:e0208624. [PMID: 39212413 PMCID: PMC11492990 DOI: 10.1128/mbio.02086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Guanylate-binding protein (GBP) 5 is an interferon-inducible cellular factor with broad anti-viral activity. Recently, GBP5 has been shown to antagonize the glycoproteins of a number of enveloped viruses, in part by disrupting the host enzyme furin. Here we show that GBP5 strongly impairs the infectivity of virus particles bearing not only viral glycoproteins that depend on furin cleavage for infectivity-the envelope (Env) glycoproteins of HIV-1 and murine leukemia virus and the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-but also viral glycoproteins that do not depend on furin cleavage: vesicular stomatitis virus glycoprotein and SARS-CoV S. We observe that GBP5 disrupts proper N-linked protein glycosylation and reduces the incorporation of viral glycoproteins into virus particles. The glycosylation of the cellular protein CD4 is also altered by GBP5 expression. Flow cytometry analysis shows that GBP5 expression reduces the cell-surface levels of HIV-1 Env and the S glycoproteins of SARS-CoV and SARS-CoV-2. Our data demonstrate that, under the experimental conditions used, inhibition of furin-mediated glycoprotein cleavage is not the primary anti-viral mechanism of action of GBP5. Rather, the antagonism appears to be related to impaired trafficking of glycoproteins to the plasma membrane. These results provide novel insights into the broad antagonism of viral glycoprotein function by the cellular host innate immune response. IMPORTANCE The surface of enveloped viruses contains viral envelope glycoproteins, an important structural component facilitating virus attachment and entry while also acting as targets for the host adaptive immune system. In this study, we show that expression of GBP5 in virus-producer cells alters the glycosylation, cell-surface expression, and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into the broad impact of the host cell anti-viral factor GBP5 on protein glycosylation and trafficking.
Collapse
Affiliation(s)
- Hana Veler
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Cheng Man Lun
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Abdul A. Waheed
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Eric O. Freed
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| |
Collapse
|
7
|
Kubo Y, Hans MB, Nakamura T, Hayashi H. The Furin Protease Dependence and Antiviral GBP2 Sensitivity of Murine Leukemia Virus Infection Are Determined by the Amino Acid Sequence at the Envelope Glycoprotein Cleavage Site. Int J Mol Sci 2024; 25:9987. [PMID: 39337476 PMCID: PMC11432233 DOI: 10.3390/ijms25189987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance. Consistent with the sensitivity to GBP2, the amino acid sequences of the sensitive Envs at the SU-TM cleavage site were similar, as were the sequences of the resistant Envs. SU-TM cleavage of the GBP2-sensitive Env protein was inhibited by furin silencing, whereas that of GBP2-resistant Env was not. The substitution of the ecotropic Moloney cleavage site sequence with that of XMRV conferred resistance to both GBP2 and furin silencing. Reciprocally, the substitution of the XMRV cleavage site sequence with that of the ecotropic sequence conferred sensitivity to GBP2 and furin silencing. According to the SU-TM cleavage site sequence, there were sensitive and resistant variants among ecotropic, polytropic, and xenotropic MLVs. This study found that the dependence of MLV Env proteins on furin cleavage and GBP2-mediated restriction is determined by the amino acid sequences at the SU-TM cleavage site.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| |
Collapse
|
8
|
Yu X, Tian J, Wang Y, Su N, Luo J, Duan M, Shi N. The pseudogene GBP1P1 suppresses influenza A virus replication by acting as a protein decoy for DHX9. J Virol 2024; 98:e0073824. [PMID: 38940585 PMCID: PMC11264600 DOI: 10.1128/jvi.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Recently, substantial evidence has demonstrated that pseudogene-derived long noncoding RNAs (lncRNAs) as regulatory RNAs have been implicated in basic physiological processes and disease development through multiple modes of functional interaction with DNA, RNA, and proteins. Here, we report an important role for GBP1P1, the pseudogene of guanylate-binding protein 1, in regulating influenza A virus (IAV) replication in A549 cells. GBP1P1 was dramatically upregulated after IAV infection, which is controlled by JAK/STAT signaling. Functionally, ectopic expression of GBP1P1 in A549 cells resulted in significant suppression of IAV replication. Conversely, silencing GBP1P1 facilitated IAV replication and virus production, suggesting that GBP1P1 is one of the interferon-inducible antiviral effectors. Mechanistically, GBP1P1 is localized in the cytoplasm and functions as a sponge to trap DHX9 (DExH-box helicase 9), which subsequently restricts IAV replication. Together, these studies demonstrate that GBP1P1 plays an important role in antagonizing IAV replication.IMPORTANCELong noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as regulators in various biological processes. A growing body of evidence suggests that host-encoded lncRNAs are important regulators involved in host-virus interactions. Here, we define a novel function of GBP1P1 as a decoy to compete with viral mRNAs for DHX9 binding. We demonstrate that GBP1P1 induction by IAV is mediated by JAK/STAT activation. In addition, GBP1P1 has the ability to inhibit IAV replication. Importantly, we reveal that GBP1P1 acts as a decoy to bind and titrate DHX9 away from viral mRNAs, thereby attenuating virus production. This study provides new insight into the role of a previously uncharacterized GBP1P1, a pseudogene-derived lncRNA, in the host antiviral process and a further understanding of the complex GBP network.
Collapse
Affiliation(s)
- Xiaohang Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Tian
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Yihe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Su
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Li Y, Wang W, Liu Y, Li S, Wang J, Hou L. Diminished Immune Response and Elevated Abundance in Gut Microbe Dubosiella in Mouse Models of Chronic Colitis with GBP5 Deficiency. Biomolecules 2024; 14:873. [PMID: 39062588 PMCID: PMC11274912 DOI: 10.3390/biom14070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Guanylate binding protein 5 (GBP5) is an emerging immune component that has been increasingly recognized for its involvement in autoimmune diseases, particularly inflammatory bowel disease (IBD). IBD is a complex disease involving inflammation of the gastrointestinal tract. Here, we explored the functional significance of GBP5 using Gbp5 knockout mice and wildtype mice exposed to dextran sulfate sodium (DSS) to generate chronic colitis model. We found that Gbp5 deficiency protected mice from DSS-induced chronic colitis. Transcriptome analysis of colon tissues showed reduced immune responses in Gbp5 knockout mice compared to those in corresponding wildtype mice. We further observed that after repeated DSS exposure, the gut microbiota was altered, both in wildtype mice and Gbp5 knockout mice; however, the gut microbiome health index was higher in the Gbp5 knockout mice. Notably, a probiotic murine commensal bacterium, Dubosiella, was predominantly enriched in these knockout mice. Our findings suggest that GBP5 plays an important role in promoting inflammation and dysbiosis in the intestine, the prevention of which might therefore be worth exploring in regards to IBD treatment.
Collapse
Affiliation(s)
- Yichen Li
- Medical College, Jiaying University, Meizhou 514031, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wenxia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Jingyu Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| |
Collapse
|
10
|
Gupta-Wright A, Ha H, Abdulgadar S, Crowder R, Emmanuel J, Mukwatamundu J, Marcelo D, Phillips PPJ, Christopher DJ, Nhung NV, Theron G, Yu C, Nahid P, Cattamanchi A, Worodria W, Denkinger CM. Evaluation of the Xpert MTB Host Response assay for the triage of patients with presumed pulmonary tuberculosis: a prospective diagnostic accuracy study in Viet Nam, India, the Philippines, Uganda, and South Africa. Lancet Glob Health 2024; 12:e226-e234. [PMID: 38245113 PMCID: PMC11046618 DOI: 10.1016/s2214-109x(23)00541-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Non-sputum-based triage tests for tuberculosis are a priority for ending tuberculosis. We aimed to evaluate the diagnostic accuracy of the late-prototype Xpert MTB Host Response (Xpert HR) blood-based assay. METHODS We conducted a prospective diagnostic accuracy study among outpatients with presumed tuberculosis in outpatient clinics in Viet Nam, India, the Philippines, Uganda, and South Africa. Eligible participants were aged 18 years or older and reported cough lasting at least 2 weeks. We excluded those receiving tuberculosis treatment in the preceding 12 months and those who were unwilling to consent. Xpert HR was performed on capillary or venous blood. Reference standard testing included sputum Xpert MTB/RIF Ultra and mycobacterial culture. We performed receiver operating characteristic (ROC) analysis to identify the optimal cutoff value for the Xpert HR to achieve the target sensitivity of 90% or more while maximising specificity, then calculated diagnostic accuracy using this cutoff value. This study was prospectively registered with ClinicalTrials.gov, NCT04923958. FINDINGS Between July 13, 2021, and Aug 15, 2022, 2046 adults with at least 2 weeks of cough were identified, of whom 1499 adults (686 [45·8%] females and 813 [54·2%] males) had valid Xpert HR and reference standard results. 329 (21·9%) had microbiologically confirmed tuberculosis. Xpert HR had an area under the ROC curve of 0·89 (95% CI 0·86-0·91). The optimal cutoff value was less than or equal to -1·25, giving a sensitivity of 90·3% (95% CI 86·5-93·3; 297 of 329) and a specificity of 62·6% (95% CI 59·7-65·3; 732 of 1170). Sensitivity was similar across countries, by sex, and by subgroups, although specificity was lower in people living with HIV (45·1%, 95% CI 37·8-52·6) than in those not living with HIV (65·9%, 62·8-68·8; difference of 20·8%, 95% CI 13·0-28·6; p<0·0001). Xpert HR had high negative predictive value (95·8%, 95% CI 94·1-97·1), but positive predictive value was only 40·1% (95% CI 36·8-44·1). Using the Xpert HR as a triage test would have reduced confirmatory sputum testing by 57·3% (95% CI 54·2-60·4). INTERPRETATION Xpert HR did not meet WHO minimum specificity targets for a non-sputum-based triage test for pulmonary tuberculosis. Despite promise as a rule-out test that could reduce confirmatory sputum testing, further cost-effectiveness modelling and data on acceptability and usability are needed to inform policy recommendations. FUNDING National Institute of Allergy and Infectious Diseases of the US National Institutes of Health. TRANSLATIONS For the Vietnamese and Tagalog translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Ankur Gupta-Wright
- Division of Infectious Disease and Tropical Medicine and German Centre for Infection Research, Heidelberg University Hospital, Heidelberg, Germany; Institute for Global Health, University College London, London, UK.
| | - Huy Ha
- Hanoi Lung Hospital, Hanoi, Viet Nam
| | - Shima Abdulgadar
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rebecca Crowder
- UCSF Center for Tuberculosis, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Jerusha Emmanuel
- Department of Pulmonary Medicine, Christian Medical College, Vellore, India
| | - Job Mukwatamundu
- World Alliance for Lung and Intensive Care Medicine in Uganda, Kampala, Uganda
| | - Danaida Marcelo
- De La Salle Medical Health Sciences Institute, Dasmariñas City, Cavite, Philippines
| | - Patrick P J Phillips
- UCSF Center for Tuberculosis, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Charles Yu
- De La Salle Medical Health Sciences Institute, Dasmariñas City, Cavite, Philippines
| | - Payam Nahid
- UCSF Center for Tuberculosis, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Adithya Cattamanchi
- UCSF Center for Tuberculosis, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA; Division of Pulmonary Diseases and Critical Care Medicine, University of California Irvine, Irvine, CA, USA
| | - William Worodria
- World Alliance for Lung and Intensive Care Medicine in Uganda, Kampala, Uganda; Division of Pulmonology, Mulago National Referral Hospital, Kampala, Uganda
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine and German Centre for Infection Research, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
12
|
Gornostaeva AN, Bobyleva PI, Andreeva ER, Gogiya BS, Buravkova LB. Alteration of PBMC transcriptome profile after interaction with multipotent mesenchymal stromal cells under "physiological" hypoxia. Immunobiology 2024; 229:152766. [PMID: 38091798 DOI: 10.1016/j.imbio.2023.152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have demonstrated a pronounced immunosuppressive activity, the manifestation of which depends on the microenvironmental factors, including O2 level. Here we examined the effects of MSCs on transcriptomic profile of allogeneic phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) after interaction at ambient (20%) or "physiological" hypoxia (5%) O2. As revealed with microarray analysis, PBMC transcriptome at 20% O2 was more affected, which was manifested as differential expression of more than 300 genes, whereas under 5% O2 220 genes were changed. Most of genes at 20% O2 were downregulated, while at hypoxia most of genes were upregulated. Altered gene patterns were only partly overlapped at different O2 levels. A set of altered genes at hypoxia only was of particular interest. According to Gene Ontology a part of above genes was responsible for adhesion, cell communication, and immune response. At both oxygen concentrations, MSCs demonstrated effective immunosuppression manifested as attenuation of T cell activation and proliferation as well as anti-inflammatory shift of cytokine profile. Thus, MSC-mediated immunosuppression is executed with greater efficacy at a "physiological" hypoxia, since the same result has been achieved through a change in the expression of a fewer genes in target PBMCs.
Collapse
Affiliation(s)
- A N Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia.
| | - P I Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - E R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - B Sh Gogiya
- Department of Herniology and Plastic Surgery, A. V. Vishnevsky Institute of Surgery, Bolshaya Serpukhovskaya Str, 27, 117997 Moscow, Russia
| | - L B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| |
Collapse
|
13
|
Wang Y, Pan J, An F, Chen K, Chen J, Nie H, Zhu Y, Qian Z, Zhan Q. GBP2 is a prognostic biomarker and associated with immunotherapeutic responses in gastric cancer. BMC Cancer 2023; 23:925. [PMID: 37784054 PMCID: PMC10544588 DOI: 10.1186/s12885-023-11308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The interferon-induced protein known as guanylate-binding protein 2 (GBP2) has been linked to multiple different cancer types as an oncogenic gene. Although the role of GBP2 in cancer has been preliminarily explored, it is unclear how this protein interacts with tumor immunity in gastric cancer. METHODS The expression, prognostic value, immune-correlations of GBP2 in gastric cancer was explored in multiple public and in-house cohorts. In addition, the pan-cancer analysis was performed to investigate the immunological role of GBP2 based on The Cancer Genome Atlas (TCGA) dataset, and the predictive value of GBP2 for immunotherapy was also examined in multiple public cohorts. RESULTS GBP2 was highly expressed in tumor tissues and associated with poor prognosis in gastric cancer. In addition, GBP2 was associated with the immune-hot phenotype. To be more specific, GBP2 was positively related to immuno-modulators, tumor-infiltrating immune cells (TIICs), immunotherapy biomarkers, and even well immunotherapeutic response. In addition to gastric cancer, GBP2 was expected to be an indicator of high immunogenicity in most cancer types. Importantly, GBP2 could predict the immunotherapeutic responses in at least four different cancer types, including melanoma, urothelial carcinoma, non-small cell lung cancer, and breast cancer. CONCLUSIONS To sum up, GBP2 expression is a promising pan-cancer biomarker for estimating the immunological characteristics of tumors and may be utilized to detect immuno-hot tumors in gastric cancer.
Collapse
Affiliation(s)
- Yunfei Wang
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Jiadong Pan
- Departments of Gastroenterology, The Third People's Hospital of Kunshan, Suzhou, 215300, China
| | - Fangmei An
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Ke Chen
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Jiawei Chen
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - He Nie
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yanping Zhu
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China.
| | - Qiang Zhan
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
14
|
Tessema MB, Tuipulotu DE, Oates CV, Brooks AG, Man SM, Londrigan SL, Reading PC. Mouse guanylate-binding protein 1 does not mediate antiviral activity against influenza virus in vitro or in vivo. Immunol Cell Biol 2023; 101:383-396. [PMID: 36744765 PMCID: PMC10952839 DOI: 10.1111/imcb.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Clare V Oates
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Andrew G Brooks
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Sarah L Londrigan
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Patrick C Reading
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
15
|
Schelle L, Côrte-Real JV, Esteves PJ, Abrantes J, Baldauf HM. Functional cross-species conservation of guanylate-binding proteins in innate immunity. Med Microbiol Immunol 2023; 212:141-152. [PMID: 35416510 PMCID: PMC9005921 DOI: 10.1007/s00430-022-00736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - João Vasco Côrte-Real
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- CITS-Center of Investigation in Health Technologies, CESPU, 4585-116, Gandra, Portugal
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| |
Collapse
|
16
|
Liu N, Gao Y, Liu Y, Liu D. GBP5 Inhibition Ameliorates the Progression of Lupus Nephritis by Suppressing NLRP3 Inflammasome Activation. Immunol Invest 2023; 52:52-66. [PMID: 36175170 DOI: 10.1080/08820139.2022.2122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The inflammatory response and NLRP3 inflammasome activation are typical characteristics of lupus nephritis (LN). Guanylate-binding protein 5 (GBP5) has effects on the release of proinflammatory cytokines and the activation of NLRP3 inflammasome. However, it is largely unknown whether and how GBP5 contributes to the progression of LN. METHODS To detect the role of GBP5 in LN, MRL/lpr mice were administrated with the lentiviral vectors that knockdown GBP5 via tail vein. Proximal tubular epithelial HK-2 cells were treated with LPS and ATP to mimic the inflammatory response of LN in vitro. RESULTS GBP5 expression was increased in the renal cortical tissues of LN mice. The in vivo results showed that GBP5 inhibition prevented the progression of LN, as evidenced by the decreased levels of 24-hour proteinuria, blood urea nitrogen and creatinine, accompanied by the ameliorated renal pathological damages. The increased mRNA and protein levels of proinflammatory factors (IL-6, TNF-α, iNOS and COX-2) in the renal cortex of LN mice were suppressed by GBP5 knockdown. In vitro, we demonstrated that the treatment of LPS combined with ATP induced an increase in GBP5 mRNA and protein expression in HK-2 cells. Mechanically, knockdown of GBP5 inhibited the activation of NLRP3 inflammasome and the secretion of IL-1β and IL-18 both in vivo and in vitro. CONCLUSION Our findings reveal that GBP5 inhibition prevents the progression of LN, most likely by suppressing NLRP3 inflammasome activation. It provides a novel insight into the therapeutic interventions for LN.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Gao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Gómez-Herranz M, Faktor J, Yébenes Mayordomo M, Pilch M, Nekulova M, Hernychova L, Ball KL, Vojtesek B, Hupp TR, Kote S. Emergent Role of IFITM1/3 towards Splicing Factor (SRSF1) and Antigen-Presenting Molecule (HLA-B) in Cervical Cancer. Biomolecules 2022; 12:1090. [PMID: 36008984 PMCID: PMC9405601 DOI: 10.3390/biom12081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.
Collapse
Affiliation(s)
- Maria Gómez-Herranz
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Marcos Yébenes Mayordomo
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Magdalena Pilch
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marta Nekulova
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Lenka Hernychova
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Kathryn L. Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Ted R. Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, 65653 Brno, Czech Republic
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
18
|
Sutherland JS, van der Spuy G, Gindeh A, Thuong NTT, Namuganga A, Owolabi O, Mayanja-Kizza H, Nsereko M, Thwaites G, Winter J, Dockrell HM, Scriba TJ, Geluk A, Corstjens P, Stanley K, Richardson T, Shaw JA, Smith B, Malherbe ST, Walzl G. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis 2022; 74:2136-2141. [PMID: 34550342 PMCID: PMC9258935 DOI: 10.1093/cid/ciab839] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The development of a fast and accurate, non-sputum-based point-of-care triage test for tuberculosis (TB) would have a major impact on combating the TB burden worldwide. A new fingerstick blood test has been developed by Cepheid (the Xpert MTB Host Response [MTB-HR] prototype), which generates a "TB score" based on messenger RNA (mRNA) expression of 3 genes. Here we describe the first prospective findings of the MTB-HR prototype. METHODS Fingerstick blood from adults presenting with symptoms compatible with TB in South Africa, The Gambia, Uganda, and Vietnam was analyzed using the Cepheid GeneXpert MTB-HR prototype. Accuracy of the Xpert MTB-HR cartridge was determined in relation to GeneXpert Ultra results and a composite microbiological score (GeneXpert Ultra and liquid culture) with patients classified as having TB or other respiratory diseases (ORD). RESULTS When data from all sites (n = 75 TB, 120 ORD) were analyzed, the TB score discriminated between TB and ORD with an area under the curve (AUC) of 0.94 (95% confidence interval [CI], .91-.97), sensitivity of 87% (95% CI, 77-93%) and specificity of 94% (88-97%). When sensitivity was set at 90% for a triage test, specificity was 86% (95% CI, 75-97%). These results were not influenced by human immunodeficiency virus (HIV) status or geographical location. When evaluated against a composite microbiological score (n = 80 TB, 111 ORD), the TB score was able to discriminate between TB and ORD with an AUC of 0.88 (95% CI, .83-.94), 80% sensitivity (95% CI, 76-85%) and 94% specificity (95% CI, 91-96%). CONCLUSIONS Our interim data indicate the Cepheid MTB-HR cartridge reaches the minimal target product profile for a point of care triage test for TB using fingerstick blood, regardless of geographic area or HIV infection status.
Collapse
Affiliation(s)
- Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Gian van der Spuy
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Awa Gindeh
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jill Winter
- Catalysis Foundation, Berkeley, California, USA
| | - Hazel M Dockrell
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paul Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Kim Stanley
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tracy Richardson
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jane A Shaw
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bronwyn Smith
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Department of Science and Technology National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Li Y, Lin X, Wang W, Wang W, Cheng S, Huang Y, Zou Y, Ke J, Zhu L. The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases. Front Microbiol 2022; 13:926915. [PMID: 35722277 PMCID: PMC9201962 DOI: 10.3389/fmicb.2022.926915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023] Open
Abstract
NLRP3 inflammasome is implicated in the pathogenesis of inflammatory bowel diseases (IBD). Since guanylate-binding protein 5 (GBP5) induces the NLRP3 inflammasome activity, we aim to investigate the potential role of GBP5 in IBD pathogenesis. The expression of GBP5, NLRP3 inflammasome, and related cytokines and chemokines was examined in two cohorts of IBD patients and healthy controls, by microarray transcriptome analysis and quantitative real-time PCR. Cellular localization of GBP5 in colonic biopsies was examined by immunohistochemistry and immunofluorescence with confocal microscopy. For functional studies, GBP5 was induced by interferon γ or silenced by siRNA or CRISPR/CAS9 technique, and inflammatory activities were evaluated at mRNA and protein levels. We found that the expression of GBP5 was elevated in colonic mucosa in two geographically and culturally distinct IBD cohorts. In colonic tissues of IBD patients, GBP5 expression was mainly confined to immune cells and the levels of GBP5 expression were correlated with those of the inflammatory cytokines and chemokines. In cultured T and macrophage cells, the expression of proinflammatory cytokines and chemokines was increased when GBP5 was induced, while GBP5 deficiency leads to decreased expression of proinflammatory mediators including gasdermin D, caspase 1, cytokines, and chemokines. We conclude that GBP5 is required in the expression of many proinflammatory cytokines and chemokines in intestinal immune cells. In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.
Collapse
Affiliation(s)
- Yichen Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Xutao Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yibo Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Zou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Jia Ke
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Lixin Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Bender Ignacio RA, Long J, Saha A, Nguyen FK, Joudeh L, Valinetz E, Mendelsohn SC, Scriba TJ, Hatherill M, Janes H, Churchyard G, Buchbinder S, Duerr A, Shah JA, Hawn TR. Mycobacterium tuberculosis infection, immune activation, and risk of HIV acquisition. PLoS One 2022; 17:e0267729. [PMID: 35503767 PMCID: PMC9064099 DOI: 10.1371/journal.pone.0267729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although immune activation is associated with HIV acquisition, the nature of inflammatory profiles that increase HIV risk, which may include responses to M. tuberculosis (Mtb) infection, are not well characterized. METHODS We conducted a nested case-control study using cryopreserved samples from persons who did and did not acquire HIV during the multinational Step clinical trial of the MRKAd5 HIV-1 vaccine. PBMCs from the last HIV-negative sample from incident HIV cases and controls were stimulated with Mtb-specific antigens (ESAT-6/CFP-10) and analyzed by flow cytometry with intracellular cytokine staining and scored with COMPASS. We measured inflammatory profiles with five Correlates of TB Risk (CoR) transcriptomic signatures. Our primary analysis examined the association of latent Mtb infection (LTBI; IFNγ+CD4+ T cell frequency) or RISK6 CoR signature with HIV acquisition. Conditional logistic regression analyses, adjusted for known predictors of HIV acquisition, were employed to assess whether TB-associated immune markers were associated with HIV acquisition. RESULTS Among 465 participants, LTBI prevalence (21.5% controls vs 19.1% cases, p = 0.51) and the RISK6 signature were not higher in those who acquired HIV. In exploratory analyses, Mtb antigen-specific polyfunctional CD4+ T cell COMPASS scores (aOR 0.96, 95% CI 0.77, 1.20) were not higher in those who acquired HIV. Two CoR signatures, Sweeney3 (aOR 1.38 (1.07, 1.78) per SD change) and RESPONSE5 (0.78 (0.61, 0.98)), were associated with HIV acquisition. The transcriptomic pattern used to differentiate active vs latent TB (Sweeney3) was most strongly associated with acquiring HIV. CONCLUSIONS LTBI, Mtb polyfunctional antigen-specific CD4+ T cell activation, and RISK6 were not identified as risks for HIV acquisition. In exploratory transcriptomic analyses, two CoR signatures were associated with HIV risk after adjustment for known behavioral and clinical risk factors. We identified host gene expression signatures associated with HIV acquisition, but the observed effects are likely not mediated through Mtb infection.
Collapse
Affiliation(s)
- Rachel A. Bender Ignacio
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- * E-mail:
| | - Jessica Long
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Aparajita Saha
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Felicia K. Nguyen
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Lara Joudeh
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Ethan Valinetz
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Simon C. Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Holly Janes
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Gavin Churchyard
- Aurum Institute, Parktown, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health and Departments of Medicine and Epidemiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ann Duerr
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Javeed A. Shah
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Veteran Affairs Puget Sound Healthcare System, Seattle, WA, United States of America
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
21
|
Feng Z, Xu L, Xie Z. Receptors for Respiratory Syncytial Virus Infection and Host Factors Regulating the Life Cycle of Respiratory Syncytial Virus. Front Cell Infect Microbiol 2022; 12:858629. [PMID: 35281439 PMCID: PMC8913501 DOI: 10.3389/fcimb.2022.858629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections and responsible for a large proportion of mortality in children and the elderly. There are no licensed vaccines available to date. Prophylaxis and therapeutic RSV-specific antibodies are limited to populations at high risk owing to high cost and uncertain clinical value. Receptors and host factors are two determinants important for virus entry and establishment of infection in vivo. The identification and understanding of viral receptors and host factors can help us to gain insight into the pathogenesis of RSV infection. Herein, we reviewed receptors and host factors that have been reported thus far. RSV could bind to CX3C chemokine receptor 1 and heparan sulfate proteoglycans via the G protein, and to nucleolin, insulin-like growth factor-1 receptor, epidermal growth factor, and intercellular adhesion molecule-1 via the F protein. Seven host restriction factors and 13 host factors essential for RSV infection were reviewed. We characterized the functions and their roles in the life cycle of RSV, trying to provide an update on the information of RSV-related receptors and host factors.
Collapse
Affiliation(s)
- Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
23
|
Zarei Ghobadi M, Mozhgani SH, Erfani Y. Identification of dysregulated pathways underlying HTLV-1-associated myelopathy/tropical spastic paraparesis through co-expression network analysis. J Neurovirol 2021; 27:820-830. [PMID: 33405203 DOI: 10.1007/s13365-020-00919-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Human T cell lymphotropic virus-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a pathogen-caused disease which is associated with the progressive neurological disorder. HAM/TSP affects the expression level of several proteins and dysregulates some biological pathways. To identify the interaction patterns among expressed genes in HAM/TSP patients, weighted gene co-expression network analysis (WGCNA) was applied. Three microarray datasets regarding HAM/TSP were merged, and the co-expression network was constructed among genes. A total of 38 modules were identified. Three preserved modules in HAM/TSP in comparison to the healthy subjects which also had the most connected proteins and enriched in the biological pathways were selected. These modules were enriched in pathways related to immune systems, cell cycle, viral infection, and neuronal systems. Moreover, the involvement of novel immunological-related proteins including C1QB, GBP5, PSME1, SERPING1, and UBE2C; neurological-related proteins including TUBA4A, TUBB8, and TP63; and also proteins including TRPC6, PRKG2, OPRD1, PRKACA, and TUBB4A involved in the cGMP-PKG signaling pathway, thyroid hormone synthesis, and recruitment of mitotic centrosome proteins and complexes were found. Therefore, tracing these proteins and the identified modules can shed light on the pathogenesis mechanism of HAM/TSP and help to find potential therapeutic targets. However, further experimental validation should be performed to confirm the proposed functional players.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Curty G, Iñiguez LP, Nixon DF, Soares MA, de Mulder Rougvie M. Hallmarks of Retroelement Expression in T-Cells Treated With HDAC Inhibitors. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.756635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A wide spectrum of drugs have been assessed as latency reversal agents (LRA) to reactivate HIV-1 from cellular reservoirs and aid in viral eradication strategies. Histone deacetylase inhibitors (HDACi) have been studied in vitro and in vivo as potential candidates for HIV-1 latency reversion. Suberoylanilide hydroxamic acid (SAHA) and romidepsin (RMD) are two HDACi able to reverse HIV latency, however studies of potential off-target effects on retroelement expression have been limited. Retroelements constitute a large portion of the human genome, and some are considered “fossil viruses” as they constitute remnants of ancient exogenous retroviruses infections. Retroelements are reactivated during certain disease conditions like cancer or during HIV-1 infection. In this study, we analyzed differential expression of retroelements using publicly available RNA-seq datasets (GSE102187 and GSE114883) obtained from uninfected CD4+, and HIV-1 latently infected CD4+ T-cells treated with HDACi (SAHA and RMD). We found a total of 712 and 1,380 differentially expressed retroelements in HIV-1 latently infected cells following a 24-h SAHA and RMD treatment, respectively. Furthermore, we found that 531 retroelement sequences (HERVs and L1) were differentially expressed under both HDACi treatments, while 1,030 HERV/L1 were exclusively regulated by each drug. Despite differences in specific HERV loci expression, the overall pattern at the HERV family level was similar for both treatments. We detected differential expression of full-length HERV families including HERV-K, HERV-W and HERV-H. Furthermore, we analyzed the link between differentially expressed retroelements and nearby immune genes. TRAF2 (TNF receptor) and GBP5 (inflammasome activator) were upregulated in HDACi treated samples and their expression was correlated with nearby HERV (MERV101_9q34.3) and L1 (L1FLnI_1p22.2k, L1FLnI_1p22.2j, L1FLnI_1p22.2i). Our findings suggest that HDACi have an off-target effect on the expression of retroelements and on the expression of immune associated genes in treated CD4+ T-cells. Furthermore, our data highlights the importance of exploring the interaction between HIV-1 and retroelement expression in LRA treated samples to understand their role and impact on “shock and kill” strategies and their potential use as reservoir biomarkers.
Collapse
|
25
|
Kutsch M, Coers J. Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 2021; 288:5826-5849. [PMID: 33314740 PMCID: PMC8196077 DOI: 10.1111/febs.15662] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Disease-causing microorganisms not only breach anatomical barriers and invade tissues but also frequently enter host cells, nutrient-enriched environments amenable to support parasitic microbial growth. Protection from many infectious diseases is therefore reliant on the ability of individual host cells to combat intracellular infections through the execution of cell-autonomous defense programs. Central players in human cell-autonomous immunity are members of the family of dynamin-related guanylate binding proteins (GBPs). The importance of these interferon-inducible GTPases in host defense to viral, bacterial, and protozoan pathogens has been established for some time; only recently, cell biological and biochemical studies that largely focused on the prenylated paralogs GBP1, GBP2, and GBP5 have provided us with robust molecular frameworks for GBP-mediated immunity. Specifically, the recent characterization of GBP1 as a bona fide pattern recognition receptor for bacterial lipopolysaccharide (LPS) disrupting the integrity of bacterial outer membranes through LPS aggregation, the discovery of a link between hydrolysis-induced GMP production by GBP1 and inflammasome activation, and the classification of GBP2 and GBP5 as inhibitors of viral envelope glycoprotein processing via suppression of the host endoprotease furin have paved the way for a vastly improved conceptual understanding of the molecular mechanisms by which GBP nanomachines execute cell-autonomous immunity. The herein discussed models incorporate our current knowledge of the antimicrobial, proinflammatory, and biochemical properties of human GBPs and thereby provide testable hypotheses that will guide future studies into the intricacies of GBP-controlled host defense and their role in human disease.
Collapse
Affiliation(s)
- Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 22710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 22710, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 22710, USA
| |
Collapse
|
26
|
TGF-β Increases MFGE8 Production in Myeloid-Derived Suppressor Cells to Promote B16F10 Melanoma Metastasis. Biomedicines 2021; 9:biomedicines9080896. [PMID: 34440100 PMCID: PMC8389657 DOI: 10.3390/biomedicines9080896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence that myeloid-derived suppressor cells (MDSCs) are directly involved in all stages leading to metastasis. Many mechanisms for this effect have been proposed, but mechanisms of coregulation between tumor cells and MDSCs remain poorly understood. In this study, we demonstrate that MDSCs are a source of milk fat globule-epidermal growth factor (EGF) factor 8 (MFGE8), which is known to be involved in tumor metastasis. Interestingly, TGF-β, an abundant cytokine in the tumor microenvironment (TME), increased MFGE8 production by MDSCs. In addition, co-culturing MDSCs with B16F10 melanoma cells increased B16F10 cell migration, while MFGE8 neutralization decreased their migration. Taken together, these findings suggest that MFGE8 is an important effector molecule through which MDSCs promote tumor metastasis, and the TME positively regulates MFGE8 production by MDSCs through TGF-β.
Collapse
|
27
|
Chelbi-Alix MK, Thibault P. Crosstalk Between SUMO and Ubiquitin-Like Proteins: Implication for Antiviral Defense. Front Cell Dev Biol 2021; 9:671067. [PMID: 33968942 PMCID: PMC8097047 DOI: 10.3389/fcell.2021.671067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Interferon (IFN) is a crucial first line of defense against viral infection. This cytokine induces the expression of several IFN-Stimulated Genes (ISGs), some of which act as restriction factors. Upon IFN stimulation, cells also express ISG15 and SUMO, two key ubiquitin-like (Ubl) modifiers that play important roles in the antiviral response. IFN itself increases the global cellular SUMOylation in a PML-dependent manner. Mass spectrometry-based proteomics enables the large-scale identification of Ubl protein conjugates to determine the sites of modification and the quantitative changes in protein abundance. Importantly, a key difference amongst SUMO paralogs is the ability of SUMO2/3 to form poly-SUMO chains that recruit SUMO ubiquitin ligases such RING finger protein RNF4 and RNF111, thus resulting in the proteasomal degradation of conjugated substrates. Crosstalk between poly-SUMOylation and ISG15 has been reported recently, where increased poly-SUMOylation in response to IFN enhances IFN-induced ISGylation, stabilizes several ISG products in a TRIM25-dependent fashion, and results in enhanced IFN-induced antiviral activities. This contribution will highlight the relevance of the global SUMO proteome and the crosstalk between SUMO, ubiquitin and ISG15 in controlling both the stability and function of specific restriction factors that mediate IFN antiviral defense.
Collapse
Affiliation(s)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Department of Chemistry, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
28
|
Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021; 60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Ruby J Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - David A Fox
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
29
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
30
|
Cheng SW, Chen PC, Ger TR, Chiu HW, Lin YF. GBP5 Serves as a Potential Marker to Predict a Favorable Response in Triple-Negative Breast Cancer Patients Receiving a Taxane-Based Chemotherapy. J Pers Med 2021; 11:jpm11030197. [PMID: 33809079 PMCID: PMC8001168 DOI: 10.3390/jpm11030197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pre-operative (neoadjuvant) or post-operative (adjuvant) taxane-based chemotherapy is still commonly used to treat patients with triple-negative breast cancer (TNBC). However, there are still no effective biomarkers used to predict the responsiveness and efficacy of taxane-based chemotherapy in TNBC patients. Here we find that guanylate-binding protein 5 (GBP5), compared to other GBPs, exhibits the strongest prognostic significance in predicting TNBC recurrence and progression. Whereas GBP5 upregulation showed no prognostic significance in non-TNBC patients, a higher GBP5 level predicted a favorable recurrence and progression-free condition in the TNBC cohort. Moreover, we found that GBP5 expression negatively correlated with the 50% inhibitory concentration (IC50) of paclitaxel in a panel of TNBC cell lines. The gene knockdown of GBP5 increased the IC50 of paclitaxel in the tested TNBC cells. In TNBC patients receiving neoadjuvant or adjuvant chemotherapy, a higher GBP5 level strongly predicted a good responsiveness. Computational simulation by the Gene Set Enrichment Analysis program and cell-based assays demonstrated that GBP5 probably enhances the cytotoxic effectiveness of paclitaxel via activating the Akt/mTOR signaling axis and suppressing autophagy formation in TNBC cells. These findings suggest that GBP5 could be a good biomarker to predict a favorable outcome in TNBC patients who decide to receive a taxane-based neoadjuvant or adjuvant therapy.
Collapse
Affiliation(s)
- Shun-Wen Cheng
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan; (S.-W.C.); (T.-R.G.)
| | - Po-Chih Chen
- Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan; (S.-W.C.); (T.-R.G.)
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (H.-W.C.); (Y.-F.L.); Tel.: +886-2-22490088 (ext. 8884) (H.-W.C.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.); Fax: +886-2-2739-0500 (H.-W.C. & Y.-F.L.)
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (H.-W.C.); (Y.-F.L.); Tel.: +886-2-22490088 (ext. 8884) (H.-W.C.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.); Fax: +886-2-2739-0500 (H.-W.C. & Y.-F.L.)
| |
Collapse
|
31
|
Zhang R, Li Z, Tang YD, Su C, Zheng C. When human guanylate-binding proteins meet viral infections. J Biomed Sci 2021; 28:17. [PMID: 33673837 PMCID: PMC7934404 DOI: 10.1186/s12929-021-00716-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the first line of host defense against viral infection. After invading into the cells, pathogen-associated-molecular-patterns derived from viruses are recognized by pattern recognition receptors to activate the downstream signaling pathways to induce the production of type I interferons (IFN-I) and inflammatory cytokines, which play critical functions in the host antiviral innate immune responses. Guanylate-binding proteins (GBPs) are IFN-inducible antiviral effectors belonging to the guanosine triphosphatases family. In addition to exerting direct antiviral functions against certain viruses, a few GBPs also exhibit regulatory roles on the host antiviral innate immunity. However, our understanding of the underlying molecular mechanisms of GBPs' roles in viral infection and host antiviral innate immune signaling is still very limited. Therefore, here we present an updated overview of the functions of GBPs during viral infection and in antiviral innate immunity, and highlight discrepancies in reported findings and current challenges for future studies, which will advance our understanding of the functions of GBPs and provide a scientific and theoretical basis for the regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhixin Li
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Inducible Guanylate-Binding Protein 7 Facilitates Influenza A Virus Replication by Suppressing Innate Immunity via NF-κB and JAK-STAT Signaling Pathways. J Virol 2021; 95:JVI.02038-20. [PMID: 33408175 DOI: 10.1128/jvi.02038-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly upregulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2; overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 serves as a therapeutic target for controlling IAV infection.IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly upregulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in the host immune system during IAV infection.
Collapse
|
33
|
Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. GENE REPORTS 2020; 21:100956. [PMID: 33553808 PMCID: PMC7854084 DOI: 10.1016/j.genrep.2020.100956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.
Collapse
Key Words
- Bioinformatics
- CBL, Cbl proto-oncogene
- DEGs, differentially expressed genes
- Diagnosis
- GO, Gene ontology
- ISG15, ISG15 ubiquitin like modifier
- Key genes
- NEDD4, NEDD4 E3 ubiquitin protein ligase
- PML, promyelocyticleukemia
- PPI, protein-protein interaction
- Pathways
- REL, REL proto-oncogene, NF-kB subunit
- ROC, receiver operating characteristic
- SARS-CoV-2 infection
- SARS-CoV-2, Severe acute respiratory syndrome corona virus 2
Collapse
|
34
|
Li Z, Qu X, Liu X, Huan C, Wang H, Zhao Z, Yang X, Hua S, Zhang W. GBP5 Is an Interferon-Induced Inhibitor of Respiratory Syncytial Virus. J Virol 2020; 94:e01407-20. [PMID: 32796072 PMCID: PMC7565618 DOI: 10.1128/jvi.01407-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
Guanylate binding protein 5 (GBP5) belongs to the GTPase subfamily, which is mainly induced by interferon gamma (IFN-γ) and is involved in many important cellular processes, including inflammasome activation and innate immunity against a wide variety of microbial pathogens. However, it is unknown whether GBP5 inhibits respiratory syncytial virus (RSV) infection. In this study, we identified GBP5 as an effector of the anti-RSV activity of IFN-γ and found that in children, the weaker immune response, especially the weaker IFN-γ response and the decreased GBP5 expression, leads to RSV susceptibility. Furthermore, we revealed that GBP5 reduced the cell-associated levels of the RSV small hydrophobic (SH) protein, which was identified as a viroporin. In contrast, overexpression of the SH protein rescued RSV replication in the presence of GBP5. The GBP5-induced decrease in intracellular SH protein levels is because GBP5 promotes the release of the SH protein into the cell culture. Moreover, the GBP5 C583A mutants with changes at the C terminus or the GBP5 ΔC mutant lacking the C-terminal region, which impairs GBP5 localization in the Golgi, could not inhibit RSV infection, whereas the GTPase-defective GBP5 maintained RSV inhibition, suggesting that Golgi localization but not the GTPase activity of GBP5 is required for RSV inhibition. Interestingly, we found that RSV infection or RSV G protein downregulates GBP5 expression by upregulating DZIP3, an E3 ligase, which induces GBP5 degradation through the K48 ubiquitination and proteasomal pathways. Thus, this study reveals a complicated interplay between host restrictive factor GBP5 and RSV infection and provides important information for understanding the pathogenesis of RSV.IMPORTANCE RSV is a highly contagious virus that causes multiple infections in infants within their first year of life. It can also easily cause infection in elderly or immunocompromised individuals, suggesting that individual differences in immunity play an important role in RSV infection. Therefore, exploring the pathogenic mechanisms of RSV and identifying essential genes which inhibit RSV infection are necessary to develop an effective strategy to control RSV infection. Here, we report that the IFN-inducible gene GBP5 potently inhibits RSV replication by reducing the cell-associated levels of the RSV small hydrophobic (SH) protein, which is a viroporin. In contrast, the RSV G protein was shown to upregulate the expression of the DZIP3 protein, an E3 ligase that degrades GBP5 through the proteasomal pathway. Our study provides important information for the understanding of the pathogenic mechanisms of RSV and host immunity as well as the complicated interplay between the virus and host.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xinglong Qu
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xin Liu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhilei Zhao
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xu Yang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shucheng Hua
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
35
|
Wu Y, Xia L, Zhao P, Deng Y, Guo Q, Zhu J, Chen X, Ju X, Wu X. Immune profiling reveals prognostic genes in high-grade serous ovarian cancer. Aging (Albany NY) 2020; 12:11398-11415. [PMID: 32544083 PMCID: PMC7343445 DOI: 10.18632/aging.103199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is a heterogeneous disease with diverse clinical outcomes, highlighting a need for prognostic biomarker identification. Here, we combined tumor microenvironment (TME) scores with HGSOC characteristics to identify immune-related prognostic genes through analysis of gene expression profiles and clinical patient data from The Cancer Genome Atlas and the International Cancer Genome Consortium public cohorts. We found that high TME scores (TMEscores) based on the fractions of immune cell types correlated with better overall survival. Furthermore, differential expression analysis revealed 329 differentially expressed genes between patients with high vs. low TMEscores. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that these genes participated mainly in immune-related functions and, among them, 48 TME-related genes predicted overall survival in HGSOC. Seven of those genes were associated with prognosis in an independent HGSOC database. Finally, the two genes with the lowest p-values in the prognostic analysis (GBP1, ETV7) were verified through in vitro experiments. These findings reveal specific TME-related genes that could serve as effective prognostic biomarkers for HGSOC.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Deng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Yu P, Li Y, Li Y, Miao Z, Peppelenbosch MP, Pan Q. Guanylate-binding protein 2 orchestrates innate immune responses against murine norovirus and is antagonized by the viral protein NS7. J Biol Chem 2020; 295:8036-8047. [PMID: 32354743 DOI: 10.1074/jbc.ra120.013544] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Noroviruses are the main causative agents of acute viral gastroenteritis, but the host factors that restrict their replication remain poorly identified. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPases that exert broad antiviral activity and are important mediators of host defenses against viral infections. Here, we show that both IFN-γ stimulation and murine norovirus (MNV) infection induce GBP2 expression in murine macrophages. Results from loss- and gain-of-function assays indicated that GBP2 is important for IFN-γ-dependent anti-MNV activity in murine macrophages. Ectopic expression of MNV receptor (CD300lf) in human HEK293T epithelial cells conferred susceptibility to MNV infection. Importantly, GBP2 potently inhibited MNV in these human epithelial cells. Results from mechanistic dissection experiments revealed that the N-terminal G domain of GBP2 mediates these anti-MNV effects. R48A and K51A substitutions in GBP2, associated with loss of GBP2 GTPase activity, attenuated the anti-MNV effects of GBP2. Finally, we found that nonstructural protein 7 (NS7) of MNV co-localizes with GBP2 and antagonizes the anti-MNV activity of GBP2. These findings reveal that GBP2 is an important mediator of host defenses against murine norovirus.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Khatun A, Nazki S, Jeong CG, Gu S, Mattoo SUS, Lee SI, Yang MS, Lim B, Kim KS, Kim B, Lee KT, Park CK, Lee SM, Kim WI. Effect of polymorphisms in porcine guanylate-binding proteins on host resistance to PRRSV infection in experimentally challenged pigs. Vet Res 2020; 51:14. [PMID: 32075688 PMCID: PMC7031929 DOI: 10.1186/s13567-020-00745-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Guanylate-binding proteins (GBP1 and GBP5) are known to be important for host resistance against porcine reproductive and respiratory syndrome virus (PRRSV) infection. In this study, the effects of polymorphisms in GBP1 (GBP1E2 and WUR) and GBP5 on host immune responses against PRRSV were investigated to elucidate the mechanisms governing increased resistance to this disease. Seventy-one pigs [pre-genotyped based on three SNP markers (GBP1E2, WUR, and GBP5)] were assigned to homozygous (n = 36) and heterozygous (n = 35) groups and challenged with the JA142 PRRSV strain. Another group of nineteen pigs was kept separately as a negative control group. Serum and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 7, 14, 21 and 28 days post-challenge (dpc). Viremia and weight gain were measured in all pigs at each time point, and a flow cytometry analysis of PBMCs was performed to evaluate T cell activation. In addition, 15 pigs (5 pigs per homozygous, heterozygous and negative groups) were sacrificed at 3, 14 and 28 dpc, and the local T cell responses were evaluated in the lungs, bronchoalveolar lavage cells (BALc), lymph nodes and tonsils. The heterozygous pigs showed lower viral loads in the serum and lungs and higher weight gains than the homozygous pigs based on the area under the curve calculation. Consistently, compared with the homozygous pigs, the heterozygous pigs exhibited significantly higher levels of IFN-α in the serum, proliferation of various T cells (γδT, Th1, and Th17) in PBMCs and tissues, and cytotoxic T cells in the lungs and BALc. These results indicate that the higher resistance in the pigs heterozygous for the GBP1E2, WUR and GBP5 markers could be mediated by increased antiviral cytokine (IFN-α) production and T cell activation.
Collapse
Affiliation(s)
- Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sameer Ul Salam Mattoo
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Myun-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Byeonghwi Lim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Kwan-Suk Kim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Kyoung-Tae Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyoungpook National University, Daegu, South Korea
| | - Sang-Myeong Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| |
Collapse
|
38
|
Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2019; 139:103919. [PMID: 31830579 DOI: 10.1016/j.micpath.2019.103919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause mild to severe infections in animals and humans worldwide with significant morbidity and mortality. Infection of eukaryotic cells with influenza A viruses triggers the induction of innate immune system through the interaction between pattern recognition receptors (PRRs) and pathogen associated molecular patterns (PAMPs), which culminate in the induction of interferons (IFNs). Consequently, IFNs bind to their cognate receptors on the cellular membrane and activate the signaling pathway for transcriptional regulation of interferon-stimulated genes (ISGs) through Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Cumulative actions of these ISGs establish an antiviral state of the host. Several ISGs have been described, which play critical roles to inhibit the infection and replication of influenza A viruses at multiple steps of virus life cycle. In this review, the dynamics and redundancy of these ISGs against influenza A viruses are discussed. Additionally, current understanding and molecular mechanisms that are underlying the roles of ISGs in pathogenesis of influenza virus are critically reviewed.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| | | | - Nelam Sajjad
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faisal Rasheed Anjum
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Irfan Sakhawat
- School of Science and Technology, Orebro University, SE-70182, Orebro, Sweden
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| |
Collapse
|
39
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
40
|
Gu T, Yu D, Fan Y, Wu Y, Yao YL, Xu L, Yao YG. Molecular identification and antiviral function of the guanylate-binding protein (GBP) genes in the Chinese tree shrew (Tupaia belangeri chinesis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:27-36. [PMID: 30817937 DOI: 10.1016/j.dci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Following viral detection and interferons (IFNs) production, several hundreds of IFN-stimulated genes (ISGs) are subsequently induced to act as direct antiviral effectors or regulators of the IFN signaling. The guanylate-binding protein (GBP) family belongs to IFN-inducible GTPases defending the host against a diverse group of invading pathogens such as parasites, bacteria and viruses. The Chinese tree shrew (Tupaia belangeri chinese) has been increasingly used as an alternative experimental animal to primates in studying viral infectious diseases. Hitherto, the tree shrew GBP family has not been characterized. In this study, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5 and tGBP7) and characterized their antiviral activities. All these tGBPs were ubiquitously expressed in heart, spleen, intestines, kidney, liver, lung and brain tissues of the tree shrew. IFN-γ treatment of tree shrew primary renal cells (TSPRCs) significantly induced the mRNA expression of tGBPs. Infections with Newcastle disease virus (NDV), encephalomyocarditis virus (EMCV) and type 1 herpes simplex virus (HSV-1) enhanced tGBPs mRNA expression in TSPRCs, but had no effect on the localization of tGBP proteins in the cytoplasm. tGBP1, but not the other four tGBPs, showed antiviral activity against vesicular stomatitis virus (VSV) and HSV-1 infections. Taken together, this study provided the first-hand information of the GBP family members in the Chinese tree shrew, which might assist the development of tree shrew animal model for infectious diseases.
Collapse
Affiliation(s)
- Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
41
|
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33:8782-8798. [PMID: 31063705 DOI: 10.1096/fj.201900092r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Lamas JR, Fernandez-Gutierrez B, Mucientes A, Marco F, Lopiz Y, Jover JA, Abasolo L, Rodríguez-Rodríguez L. RNA sequencing of mesenchymal stem cells reveals a blocking of differentiation and immunomodulatory activities under inflammatory conditions in rheumatoid arthritis patients. Arthritis Res Ther 2019; 21:112. [PMID: 31060598 PMCID: PMC6501285 DOI: 10.1186/s13075-019-1894-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have the ability to differentiate into different types of cells of the mesenchymal lineage, such as osteocytes, chondrocytes, and adipocytes. It is also known that under inflammatory stimuli or in the appropriate experimental conditions, they can also act as regulators of inflammation. Thus, in addition to their regenerating potential, their interest has been extended to their possible use in cell therapy strategies for treatment of immune disorders. Objective To analyze, by RNA-seq analysis, the transcriptome profiling of allogenic MSCs under RA lymphocyte activation. Methods We identified the differentially expressed genes in bone marrow mesenchymal stem cells after exposure to an inflammatory environment. The transcriptome profiling was evaluated by means of the precise measurement of transcripts provided by the RNA-Seq technology. Results Our results evidenced the existence of blocking of both regenerative (differentiation) and immunomodulatory phenotypes under inflammatory conditions characterized by an upregulation of genes involved in immune processes and a simultaneous downregulation of genes mainly involved in regenerative or cell differentiation functions. Conclusions We conclude that the two main functions of MSCs (immunomodulation and differentiation) are blocked, at least while the inflammation is being resolved. Inflammation, at least partially mediated by gamma-interferon, drives MSCs to a cellular distress adopting a defensive state. This knowledge could be of particular interest in cases where the damage to be repaired has an important immune-mediated component. Electronic supplementary material The online version of this article (10.1186/s13075-019-1894-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose Ramon Lamas
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Benjamin Fernandez-Gutierrez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain.
| | - Arkaitz Mucientes
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Fernando Marco
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Traumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Yaiza Lopiz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Traumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Angel Jover
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Lydia Abasolo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain
| | - Luis Rodríguez-Rodríguez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), UGC de Reumatología, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
43
|
Egesten A, Herwald H. Catch Me if You Can or Actors on the Run. J Innate Immun 2018; 11:1-2. [PMID: 30537715 DOI: 10.1159/000495685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Wen F, Guo J, Li Z, Huang S. Sex-specific patterns of gene expression following influenza vaccination. Sci Rep 2018; 8:13517. [PMID: 30202120 PMCID: PMC6131249 DOI: 10.1038/s41598-018-31999-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Sex-based variations in the immune response to the influenza vaccines was reported, however, the genetic basis responsible for the sex variations in the immune response toward the influenza vaccines remains unclear. Here, the genes responsible for sex-specific responses after vaccination with trivalent inactivated influenza virus were identified. These genes were enriched in virus response pathways, especially interferon signaling. A list of genes showing different responses to the vaccine between females and males were obtained next. Our results demonstrated that females generate stronger immune responses to seasonal influenza vaccines within 24 hours than males. However, most of these genes with variability between sexes had the opposite expression levels after three days, suggesting that males retained the immune responses longer than female. To summary, our study identified genes responsible for the sex variations toward influenza vaccination. Our findings might provide insights into the development of the sex-dependent influenza vaccines.
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
45
|
Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Funct Integr Genomics 2018; 18:559-567. [PMID: 29737453 DOI: 10.1007/s10142-018-0613-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 02/03/2023]
Abstract
Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.
Collapse
|
46
|
Lusk R, Saba LM, Vanderlinden LA, Zidek V, Silhavy J, Pravenec M, Hoffman PL, Tabakoff B. Unsupervised, Statistically Based Systems Biology Approach for Unraveling the Genetics of Complex Traits: A Demonstration with Ethanol Metabolism. Alcohol Clin Exp Res 2018; 42:1177-1191. [PMID: 29689131 DOI: 10.1111/acer.13763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the curve in a recombinant inbred (RI) (HXB/BXH) rat panel. The approach was also used to provide an indication of how EtOH metabolism can impact the normal function of the identified networks. METHODS RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH RI rats. The reconstructed transcripts were quantitated, and data were used to construct gene coexpression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with EtOH (2 g/kg) for measurement of blood EtOH and acetate levels. These data were used for quantitative trait loci (QTL) analysis of the rate of EtOH disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with EtOH metabolism rates and acetate levels across the rat strains, and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. RESULTS Of the 658 transcript coexpression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained 2 alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. CONCLUSIONS We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for coexpression module components.
Collapse
Affiliation(s)
- Ryan Lusk
- Department of Pharmaceutical Sciences , Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Laura M Saba
- Department of Pharmaceutical Sciences , Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics , Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | - Vaclav Zidek
- Department of Model Diseases , Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhavy
- Department of Model Diseases , Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Department of Model Diseases , Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Paula L Hoffman
- Department of Pharmaceutical Sciences , Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, Colorado.,Department of Pharmacology School of Medicine, University of Colorado, Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences , Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| |
Collapse
|
47
|
Kutsch M, Ince S, Herrmann C. Homo and hetero dimerisation of the human guanylate-binding proteins hGBP-1 and hGBP-5 characterised by affinities and kinetics. FEBS J 2018; 285:2019-2036. [PMID: 29618166 DOI: 10.1111/febs.14459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
The human guanylate-binding proteins (hGBPs) exhibit diverse antipathogenic and tumour-related functions which make them key players in the innate immune response. The isoforms hGBP-1 to hGBP-5 form homomeric complexes and localise to specific cellular compartments. Upon heteromeric interactions, hGBPs are able to guide each other to their specific compartments. Thus, homo- and heteromeric interactions allow the hGBPs to build a network within the cell which might be important for their diverse biological functions. We characterised homomeric complexes of hGBPs in vitro and presented most recently that nonprenylated hGBP-1 and hGBP-5 form dimers as highest oligomeric species while farnesylated hGBP-1 is able to form polymers. We continued to work on the biochemical characterisation of the heteromeric interactions between hGBPs and present here results for nonprenylated hGBP-1 and hGBP-5. Multiangle light scattering identified the GTP-dependent heteromeric complex as dimer. Also hGBP-5's tumour-associated splice variant (hGBP-5ta) was able to form a hetero dimer with hGBP-1. Intriguingly, both hGBP-5 splice variants were able to induce domain rearrangements within hGBP-1. We further characterised the homo and hetero dimers with Förster resonance energy transfer-based experiments. This allowed us to obtain affinities and kinetics of the homo and hetero dimer formation. Furthermore, we identified that the LG domains of hGBP-1 and hGBP-5 build an interaction site within the hetero dimer. Our in vitro study provides mechanistic insights into the homomeric and heteromeric interactions of hGBP-1 and hGBP-5 and present useful strategies to characterise the hGBP network further.
Collapse
Affiliation(s)
- Miriam Kutsch
- Physical Chemistry I, Ruhr-University Bochum, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr-University Bochum, Germany
| | | |
Collapse
|
48
|
Full Complement. J Innate Immun 2018; 10:83-84. [PMID: 29510384 DOI: 10.1159/000487341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Villalón-Letelier F, Brooks AG, Saunders PM, Londrigan SL, Reading PC. Host Cell Restriction Factors that Limit Influenza A Infection. Viruses 2017; 9:v9120376. [PMID: 29215570 PMCID: PMC5744151 DOI: 10.3390/v9120376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs) and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors”) can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Fernando Villalón-Letelier
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
50
|
Praefcke GJK. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol 2017; 308:237-245. [PMID: 29174633 DOI: 10.1016/j.ijmm.2017.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Division of Haematology / Transfusion Medicine, Paul-Ehrlich-Institut, Langen, Germany; Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|