1
|
Shu F, Lu J, Zhang W, Huang H, Lin J, Jiang L, Liu W, Liu T, Xiao S, Zheng Y, Xia Z. JAM-A Overexpression in Human Umbilical Cord-Derived Mesenchymal Stem Cells Accelerated the Angiogenesis of Diabetic Wound By Enhancing Both Paracrine Function and Survival of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1554-1575. [PMID: 37060532 DOI: 10.1007/s12015-023-10518-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Mesenchymal stem cells (MSCs) is promising in promoting wound healing mainly due to their paracrine function. Nonetheless, the transplanted MSCs presented poor survival with cell dysfunction and paracrine problem in diabetic environment, thus limiting their therapeutic efficacy and clinical application. JAM-A, an adhesion molecule, has been reported to play multi-functional roles in diverse cells. We therefore investigated the potential effect of JAM-A on MSCs under diabetic environment and explored the underlying mechanism. Indeed, high-glucose condition inhibited MSCs viability and JAM-A expression. However, JAM-A abnormality was rescued by lentivirus transfection and JAM-A overexpression promoted MSCs proliferation, migration and adhesion under hyperglycemia. Moreover, JAM-A overexpression attenuated high-glucose-induced ROS production and MSCs apoptosis. The bio-effects of JAM-A on MSCs under hyperglycemia were confirmed by RNA-seq with enrichment analyses. Moreover, Luminex chip results showed JAM-A overexpression dramatically upregulated PDGF-BB and VEGF in the supernatant of MSCs, which was verified by RT-qPCR and western blotting. The supernatant was further found to facilitate HUVECs proliferation, migration and angiogenesis under hyperglycemia. In vivo experiments revealed JAM-A overexpression significantly enhanced MSCs survival, promoted wound angiogenesis, and thus accelerated diabetic wound closure, partially by enhancing PDGF-BB and VEGF expression. This study firstly demonstrated that JAM-A expression of MSCs was inhibited upon high-glucose stimulation. JAM-A overexpression alleviated high-glucose-induced MSCs dysfunction, enhanced their anti-oxidative capability, protected MSCs from hyperglycemia-induced apoptosis and improved their survival, thus strengthening MSCs paracrine function to promote angiogenesis and significantly accelerating diabetic wound healing, which offers a promising strategy to maximize MSCs-based therapy in diabetic wound.
Collapse
Affiliation(s)
- Futing Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jianyu Lu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hongchao Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jiezhi Lin
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wenzhang Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Yamaga S, Tanigaki K, Nakamura E, Sasaki N, Kato Y, Kuboniwa M, Matsusaki M, Amano A, Takeuchi H. Cigarette smoke extract impairs gingival epithelial barrier function. Sci Rep 2023; 13:9228. [PMID: 37286570 PMCID: PMC10244868 DOI: 10.1038/s41598-023-36366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
We previously showed that junctional adhesion molecule 1 (JAM1) and coxsackievirus and adenovirus receptor (CXADR), tight junction-associated proteins, have important roles to maintain epithelial barrier function in gingival tissues. Smoking is considered to be a significant risk factor for periodontal disease. The present study was conducted to examine the effects of cigarette smoke extract (CSE) on JAM1 and CXADR in human gingival epithelial cells. CSE was found to cause translocation of JAM1 from the cellular surface to EGFR-positive endosomes, whereas CXADR did not. Using a three-dimensional multilayered gingival epithelial tissue model, CSE administration was found to increase permeability to lipopolysaccharide and peptidoglycan, whereas overexpression of JAM1 in the tissue model prevented penetration by those substrates. Furthermore, vitamin C increased JAM1 expression, and inhibited penetration of LPS and PGN induced by CSE. These findings strongly suggest that CSE disrupts gingival barrier function via dislocation of JAM1, thus allowing bacterial virulence factors to penetrate into subepithelial tissues. Furthermore, they indicate that vitamin C increases JAM1 expression and prevents disruption of gingival barrier function by CSE.
Collapse
Affiliation(s)
- Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Keita Tanigaki
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Yuta Kato
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita-Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
5
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
6
|
Thölmann S, Seebach J, Otani T, Florin L, Schnittler H, Gerke V, Furuse M, Ebnet K. JAM-A interacts with α3β1 integrin and tetraspanins CD151 and CD9 to regulate collective cell migration of polarized epithelial cells. Cell Mol Life Sci 2022; 79:88. [PMID: 35067832 PMCID: PMC8784505 DOI: 10.1007/s00018-022-04140-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023]
Abstract
AbstractJunctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell–cell contacts with enrichment at the tight junctions. Its role during cell–cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3β1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3β1 integrin and regulate α3β1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3β1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3β1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3β1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.
Collapse
Affiliation(s)
- Sonja Thölmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
7
|
Lampis A, Hahne JC, Gasparini P, Cascione L, Hedayat S, Vlachogiannis G, Murgia C, Fontana E, Edwards J, Horgan PG, Terracciano L, Sansom OJ, Martins CD, Kramer-Marek G, Croce CM, Braconi C, Fassan M, Valeri N. MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death Differ 2021; 28:2970-2982. [PMID: 34226680 PMCID: PMC8481293 DOI: 10.1038/s41418-021-00820-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
Junctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947). We show that JAM-A downregulation is observed in ~60% of CRC and correlates with poor outcome in four cohorts of stages II and III CRC (n = 1098). Using JAM-A knockdown, re-expression and rescue experiments in cell line monolayers, 3D spheroids, patient-derived organoids and xenotransplants, we demonstrate that JAM-A silencing promotes proliferation and migration in 2D and 3D cell models and increases tumour volume and metastases in vivo. Using gene-expression and proteomic analyses, we show that JAM-A downregulation results in the activation of ERK, AKT and ROCK pathways and leads to decreased bone morphogenetic protein 7 expression. We identify MIR21 upregulation as the cause of JAM-A downregulation and show that JAM-A rescue mitigates the effects of MIR21 overexpression on cancer phenotype. Our results identify a novel molecular loop involving MIR21 dysregulation, JAM-A silencing and activation of multiple oncogenic pathways in promoting invasiveness and metastasis in CRC.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research (IOR), Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Somaieh Hedayat
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Georgios Vlachogiannis
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Elisa Fontana
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul G Horgan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Matteo Fassan
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Department of Medicine, The Royal Marsden Hospital, London, UK.
- Division of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
8
|
Mohapatra S, Calin G. JAM-ming miR-21. Cell Death Differ 2021; 28:2837-2839. [PMID: 34226679 DOI: 10.1038/s41418-021-00825-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - George Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Turaga SM, Silver DJ, Bayik D, Paouri E, Peng S, Lauko A, Alban TJ, Borjini N, Stanko S, Naik UP, Keri RA, Connor JR, Barnholtz-Sloan JS, Rubin JB, Berens M, Davalos D, Lathia JD. JAM-A functions as a female microglial tumor suppressor in glioblastoma. Neuro Oncol 2020; 22:1591-1601. [PMID: 32592484 PMCID: PMC7690368 DOI: 10.1093/neuonc/noaa148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive primary brain tumor and has a dismal prognosis. Previously, we identified that junctional adhesion molecule A (JAM-A), a cell adhesion molecule, is highly elevated in human GBM cancer stem cells and predicts poor patient prognosis. While JAM-A is also highly expressed in other cells in the tumor microenvironment, specifically microglia and macrophages, how JAM-A expression in these cells affects tumor growth has yet to be determined. The goal of this study was to understand the role of microenvironmental JAM-A in mediating GBM growth. METHODS Male and female wild-type (WT) and JAM-A-deficient mice were transplanted intracranially with the syngeneic glioma cell lines GL261 and SB28 and were assessed for differences in survival and microglial activation in tumors and in vitro. RNA-sequencing was performed to identify differentially regulated genes among all genotypes, and differences were validated in vitro and in vivo. RESULTS We found that JAM-A-deficient female mice succumbed to GBM more quickly compared with WT females and JAM-A-deficient and male WT mice. Analysis of microglia in the tumors revealed that female JAM-A-deficient microglia were more activated, and RNA-sequencing identified elevated expression of Fizz1 and Ifi202b specifically in JAM-A-deficient female microglia. CONCLUSIONS Our findings suggest that JAM-A functions to suppress pathogenic microglial activation in the female tumor microenvironment, highlighting an emerging role for sex differences in the GBM microenvironment and suggesting that sex differences extend beyond previously reported tumor cell-intrinsic differences.
Collapse
Affiliation(s)
- Soumya M Turaga
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Defne Bayik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sen Peng
- Cancer and Cell Biology Division, TGen, Phoenix, Arizona
| | - Adam Lauko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tyler J Alban
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
| | - Nozha Borjini
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sarah Stanko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ulhas P Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth A Keri
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Pharmacology and Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Michael Berens
- Cancer and Cell Biology Division, TGen, Phoenix, Arizona
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
| | - Justin D Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
10
|
Bonilha CS, Benson RA, Brewer JM, Garside P. Targeting Opposing Immunological Roles of the Junctional Adhesion Molecule-A in Autoimmunity and Cancer. Front Immunol 2020; 11:602094. [PMID: 33324419 PMCID: PMC7723963 DOI: 10.3389/fimmu.2020.602094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
The junctional adhesion molecule-A (JAM-A) is a cell surface adhesion molecule expressed on platelets, epithelial cells, endothelial cells and leukocytes (e. g. monocytes and dendritic cells). JAM-A plays a relevant role in leukocyte trafficking and its therapeutic potential has been studied in several pathological conditions due to its capacity to induce leukocyte migration out of inflamed sites or infiltration into tumor sites. However, disruption of JAM-A pathways may worsen clinical pathology in some cases. As such, the effects of JAM-A manipulation on modulating immune responses in the context of different diseases must be better understood. In this mini-review, we discuss the potential of JAM-A as a therapeutic target, summarizing findings from studies manipulating JAM-A in the context of inflammatory diseases (e.g. autoimmune diseases) and cancer and highlighting described mechanisms.
Collapse
Affiliation(s)
- Caio S. Bonilha
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Research and Development Department, Antibody Analytics Ltd., Newhouse, Lanarkshire, United Kingdom
| | - James M. Brewer
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Luissint AC, Williams HC, Kim W, Flemming S, Azcutia V, Hilgarth RS, Leary MNO, Denning TL, Nusrat A, Parkos CA. Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunol 2019; 12:668-678. [PMID: 30745566 PMCID: PMC6543824 DOI: 10.1038/s41385-019-0143-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam-afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota. Such observations highlight the functional link between a leaky gut and regulation of innate immune responses.
Collapse
Affiliation(s)
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Wooki Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Korea
| | - Sven Flemming
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Timothy L Denning
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Srivastava A, Shukla V, Tiwari D, Gupta J, Kumar S, Kumar A. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis. Biomed Pharmacother 2018; 105:256-266. [PMID: 29859468 DOI: 10.1016/j.biopha.2018.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors.
Collapse
Affiliation(s)
- Ankita Srivastava
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Vanistha Shukla
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Deepika Tiwari
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Jaya Gupta
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Sunil Kumar
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
14
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
15
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Hara T, Monguchi T, Iwamoto N, Akashi M, Mori K, Oshita T, Okano M, Toh R, Irino Y, Shinohara M, Yamashita Y, Shioi G, Furuse M, Ishida T, Hirata KI. Targeted Disruption of JCAD (Junctional Protein Associated With Coronary Artery Disease)/KIAA1462, a Coronary Artery Disease-Associated Gene Product, Inhibits Angiogenic Processes In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2017; 37:1667-1673. [PMID: 28705794 DOI: 10.1161/atvbaha.117.309721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/30/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent genome-wide association studies newly identified the human KIAA1462 gene as a new locus for coronary artery disease. However, the function of the gene product, named JCAD (junctional protein associated with coronary artery disease), is unknown. Because JCAD is expressed at cell-cell junctions in endothelial cells, we hypothesized and tested whether JCAD regulates angiogenic processes in vitro and in vivo. APPROACH AND RESULTS Cell culture experiments revealed impaired angiogenic ability (proliferation, migration, and cord formation) by the knockdown of JCAD with siRNA (P<0.05 versus control siRNA). We have generated mice lacking JCAD (mKIAA1462-/-) by gene-targeted deletion of JCAD to address in vivo angiogenic function. mKIAA1462-/- mice did not show morphological differences in development of retinal vasculature. Ex vivo aortic ring model demonstrated impaired neovascularization in aorta from mKIAA1462-/- mice than control wild-type mice (P<0.05). Tumor growth was assessed by monitoring tumor volume after the subcutaneous injection of melanoma, LLC (Lewis lung carcinoma), and E0771 cells into the mice. mKIAA1462-/- mice exhibited significantly smaller tumor volume compared with wild-type mice (P<0.001). Histological assessment of the tumor exhibited less smooth muscle actin-positive neovascularization determined by CD31-positive vascular structure in tumor of mKIAA1462-/- mice than wild-type mice, indicating that knockdown of JCAD inhibited the vascular maturation in pathological angiogenic process. CONCLUSIONS These in vitro and in vivo studies suggest that JCAD has a redundant functional role in physiological angiogenesis but serves a pivotal role in pathological angiogenic process after birth.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Endothelial Cells/metabolism
- Genotype
- Human Umbilical Vein Endothelial Cells/metabolism
- Intercellular Junctions/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Phenotype
- RNA Interference
- Retinal Neovascularization
- Signal Transduction
- Time Factors
- Tissue Culture Techniques
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Tetsuya Hara
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.).
| | - Tomoko Monguchi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Noriko Iwamoto
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Masaya Akashi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Kenta Mori
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Toshihiko Oshita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Mitsumasa Okano
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Ryuji Toh
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Yasuhiro Irino
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Masakazu Shinohara
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Yui Yamashita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Go Shioi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Mikio Furuse
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Tatsuro Ishida
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| | - Ken-Ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.H., T.M., K.M., T.O., M.O., T.I., K.-i.H.), Division of Cell Biology, Department of Physiology and Cell Biology (N.I., M.A., M.F.), Department of Oral and Maxillofacial Surgery (M.A.), Division of Evidence-Based Laboratory Medicine (R.T., Y.I.), Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science (M.S.), and The Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Japan; Animal Resource Development Unit (Y.Y.) and Genetic Engineering Team (Y.Y., G.S.), RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan; and Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan (M.F.)
| |
Collapse
|
17
|
Parkos CA. Neutrophil-Epithelial Interactions: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1404-16. [PMID: 27083514 DOI: 10.1016/j.ajpath.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
Abstract
In recent years, it has become clear that innate immune cells termed neutrophils act as double-edged swords by playing essential roles in clearing infection but also causing tissue damage, yet being critical for wound healing. Neutrophil recruitment to sites of injured tissue or infection has been well studied, and many of the molecular events that regulate passage of leukocytes out of the microcirculation are now understood. However, after exiting the circulation, the molecular details that regulate neutrophil passage to end targets, such mucosal surfaces, are just beginning to be appreciated. Given that migration of neutrophils across mucosal epithelia is associated with disease symptoms and disruption of critical barrier function in disorders such as inflammatory bowel disease, there has been long-standing interest in understanding the molecular basis and functional consequences of neutrophil-epithelial interactions. It is a great honor that my work was recognized by the Rous-Whipple Award this past year, giving me the opportunity to summarize what we have learned during the past few decades about leukocyte interactions with epithelial cells.
Collapse
Affiliation(s)
- Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Zheng Y, Ma H, Hu E, Huang Z, Cheng X, Xiong C. Inhibition of FGFR Signaling With PD173074 Ameliorates Monocrotaline-induced Pulmonary Arterial Hypertension and Rescues BMPR-II Expression. J Cardiovasc Pharmacol 2015; 66:504-14. [DOI: 10.1097/fjc.0000000000000302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Meguenani M, Miljkovic-Licina M, Fagiani E, Ropraz P, Hammel P, Aurrand-Lions M, Adams RH, Christofori G, Imhof BA, Garrido-Urbani S. Junctional adhesion molecule B interferes with angiogenic VEGF/VEGFR2 signaling. FASEB J 2015; 29:3411-25. [PMID: 25911611 DOI: 10.1096/fj.15-270223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
Abstract
De novo formation of blood vessels is a pivotal mechanism during cancer development. During the past few years, antiangiogenic drugs have been developed to target tumor vasculature. However, because of limitations and adverse effects observed with current therapies, there is a strong need for alternative antiangiogenic strategies. Using specific anti-junctional adhesion molecule (JAM)-B antibodies and Jam-b-deficient mice, we studied the role in antiangiogenesis of JAM-B. We found that antibodies against murine JAM-B, an endothelium-specific adhesion molecule, inhibited microvessel outgrowth from ex vivo aortic rings and in vitro endothelial network formation. In addition, anti-JAM-B antibodies blocked VEGF signaling, an essential pathway for angiogenesis. Moreover, increased aortic ring branching was observed in aortas isolated from Jam-b-deficient animals, suggesting that JAM-B negatively regulates proangiogenic pathways. In mice, JAM-B expression was detected in de novo-formed blood vessels of tumors, but anti-JAM-B antibodies unexpectedly did not reduce tumor growth. Accordingly, JAM-B deficiency in vivo had no impact on blood vessel formation, suggesting that targeting JAM-B in vivo may be offset by other proangiogenic mechanisms. In conclusion, despite the promising effects observed in vitro, targeting JAM-B during tumor progression seems to be inefficient as a stand-alone antiangiogenesis therapy.
Collapse
Affiliation(s)
- Mehdi Meguenani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Marijana Miljkovic-Licina
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Ernesta Fagiani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Patricia Ropraz
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Philippe Hammel
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Michel Aurrand-Lions
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Ralf H Adams
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Gerhard Christofori
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Beat A Imhof
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Sarah Garrido-Urbani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Liu ML, Nagai T, Tokunaga M, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Naito AT, Komuro I, Kobayashi Y. Anti-inflammatory peptides from cardiac progenitors ameliorate dysfunction after myocardial infarction. J Am Heart Assoc 2014; 3:e001101. [PMID: 25468657 PMCID: PMC4338698 DOI: 10.1161/jaha.114.001101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Cardiac cell therapy has been proposed as one of the new strategies against myocardial infarction. Although several reports showed improvement of the function of ischemic heart, the effects of cell therapy vary among the studies and the mechanisms of the beneficial effects are still unknown. Previously, we reported that clonal stem cell antigen‐1–positive cardiac progenitor cells exerted a therapeutic effect when transplanted into the ischemic heart. Our aims were to identify the cardiac progenitor‐specific paracrine factor and to elucidate the mechanism of its beneficial effect. Methods and Results By using an antibody array, we found that soluble junctional adhesion molecule‐A (JAM‐A) was abundantly secreted from cardiac progenitor cells. Pretreatment of neutrophils with conditioned medium from cultured cardiac progenitor cells or soluble JAM‐A inhibited transendothelial migration and reduced motility of neutrophils. These inhibitory effects were attenuated by anti–JAM‐A neutralizing antibody. Injection of cardiac progenitor cells into infarct heart attenuated neutrophil infiltration and expression of inflammatory cytokines. Injection of soluble JAM‐A–expressing, but not of JAM‐A siRNA–expressing, cardiac progenitor cells into the infarct heart prevented cardiac remodeling and reduced fibrosis area. Conclusions Soluble JAM‐A secreted from cardiac progenitor cells reduces infiltration of neutrophils after myocardial infarction and ameliorates tissue damage through prevention of excess inflammation. Our finding may lead to a new therapy for cardiovascular disease by using the anti‐inflammatory effect of JAM‐A.
Collapse
Affiliation(s)
- Mei-Lan Liu
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Toshio Nagai
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Masakuni Tokunaga
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Koji Iwanaga
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Katsuhisa Matsuura
- Department of Cardiology and Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (K.M.)
| | - Toshinao Takahashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Masato Kanda
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Naomichi Kondo
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Atsuhiko T Naito
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan (A.T.N., I.K.)
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan (A.T.N., I.K.)
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| |
Collapse
|
21
|
Tian Y, Tian Y, Zhang W, Wei F, Yang J, Luo X, Zhou T, Hou B, Qian S, Deng X, Qiu Y, Yao K. Junctional adhesion molecule-A, an epithelial–mesenchymal transition inducer, correlates with metastasis and poor prognosis in human nasopharyngeal cancer. Carcinogenesis 2014; 36:41-8. [DOI: 10.1093/carcin/bgu230] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Saker S, Stewart E, Browning A, Allen C, Amoaku W. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp Eye Res 2014; 121:161-7. [DOI: 10.1016/j.exer.2014.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 01/07/2014] [Accepted: 02/19/2014] [Indexed: 12/29/2022]
|
23
|
Wu M, Guo X, Yang L, Wang Y, Tang Y, Yang Y, Liu H. Mesenchymal stem cells with modification of junctional adhesion molecule a induce hair formation. Stem Cells Transl Med 2014; 3:481-8. [PMID: 24558164 DOI: 10.5966/sctm.2013-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The junctional adhesion molecule A (JAM-A) has been shown to serve a crucial role in the proliferation, differentiation, and tube-like formation of epithelial cells during angiogenesis. The role of JAM-A in hair follicle (HF) regeneration has not yet been reported. In this study, we used human JAM-A-modified human mesenchymal stem cells (MSCs) to repair HF abnormalities in BALB/c nu/nu mice. The JAM-A gene and JAM-A short hairpin RNA were transfected into cultured human MSCs to generate the JAM-A overexpression MSCs (JAM-A(ov) MSCs) and JAM-A knockdown MSCs (JAM-A(kd) MSCs), respectively. These cells were injected intradermally into the skin of nude mice during the first telogen phase of the HF that occurs 21 days postnatally. We found that JAM-A(ov) MSCs migrated into the HF sheath and remodeled HF structure effectively. The HF abnormalities such as HF curve and HF zigzag were remodeled, and hair formation was improved 7 days following injection in both the JAM-A(ov) MSC and MSC groups, compared with the JAM-A(kd) MSC group or negative control group. Furthermore, the JAM-A(ov) MSC group showed enhanced hair formation in contrast to the MSC group, and the number of curved and zigzagged HFs was reduced by 80% (p < .05). These results indicated that JAM-A(ov) MSCs improved hair formation in nude mice through HF structure remodeling.
Collapse
Affiliation(s)
- Minjuan Wu
- Research Center of Developmental Biology, Department of Histology and Embryology, and Department of Mathematics, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. Blood 2013; 123:1393-402. [PMID: 24300854 DOI: 10.1182/blood-2013-04-496232] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibrinogen binding to activated integrin induces outside-in signaling that results in stable platelet aggregates and clot retraction. How integrin αIIbβ3 is discouraged from spontaneous activation is not known. We have recently shown that junctional adhesion molecule-A (JAM-A) renders protection from thrombosis by suppressing integrin outside-in signaling. In this study, we show that JAM-A associates with integrin αIIbβ3 in resting platelets and dissociates upon platelet activation by agonists. We also show that integrin-associated JAM-A is tyrosine phosphorylated and is rapidly dephosphorylated upon platelet activation. C-terminal Src kinase (Csk) binds to tyrosine phosphorylated JAM-A through its Src homology 2 domain. Thus, JAM-A recruits Csk to the integrin-c-Src complex in resting platelets. Csk, in turn, keeps integrin-associated c-Src in an inactive state by phosphorylating Y(529) in its regulatory domain. Absence of JAM-A results in impaired c-SrcY(529) phosphorylation and augmentation of outside-in signaling-dependent c-Src activation. Our results strongly suggest that tyrosine-phosphorylated JAM-A is a Csk-binding protein and functions as an endogenous inhibitor of integrin signaling. JAM-A recruits Csk to the integrin-c-Src complex, where Csk negatively regulates c-Src activation, thereby suppressing the initiation of outside-in signaling. Upon agonist stimulation, JAM-A is dephosphorylated on the tyrosine, allowing the dissociation of Csk from the integrin complex, and thus facilitating outside-in signaling.
Collapse
|
25
|
Hatt L, Brinch M, Singh R, Møller K, Lauridsen RH, Uldbjerg N, Huppertz B, Christensen B, Kølvraa S. Characterization of Fetal Cells from the Maternal Circulation by Microarray Gene Expression Analysis - Could the Extravillous Trophoblasts Be a Target for Future Cell-Based Non-Invasive Prenatal Diagnosis? Fetal Diagn Ther 2013; 35:218-27. [DOI: 10.1159/000356073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
26
|
Chatterjee S, Wang Y, Duncan MK, Naik UP. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS One 2013; 8:e63674. [PMID: 23667656 PMCID: PMC3648504 DOI: 10.1371/journal.pone.0063674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/07/2013] [Indexed: 12/04/2022] Open
Abstract
Inflammation and angiogenesis are integral parts of wound healing. However, excessive and persistent wound-induced inflammation and angiogenesis in an avascular tissue such as the cornea may be associated with scarring and visual impairment. Junctional adhesion molecule A (Jam-A) is a tight junction protein that regulates leukocyte transmigration as well as fibroblast growth factor-2 (FGF-2)-induced angiogenesis. However its function in wound-induced inflammation and angiogenesis is still unknown. In this study, we report spontaneous corneal opacity in Jam-A deficient mice associated with inflammation, angiogenesis and the presence of myofibroblasts. Since wounds and/or corneal infections cause corneal opacities, we tested the role of Jam-A in wound-induced inflammation, angiogenesis and scarring by subjecting Jam-A deficient mice to full thickness corneal wounding. Analysis of these wounds demonstrated increased inflammation, angiogenesis, and increased number of myofibroblasts thereby indicating that Jam-A regulates the wound-healing response by controlling wound-induced inflammation, angiogenesis and scarring in the cornea. These effects were not due to inflammation alone since the inflammation-induced wound-healing response in Jam-A deficient mice was similar to wild type mice. In order to determine the molecular mechanism associated with the observed aberrant corneal wound healing in Jam-A deficient mice, we assessed the expression of the components of vascular endothelial growth factor A (VEGF-A)/vascular endothelial growth factor receptor- 2(VEGFR-2) signaling pathway. Interestingly, we observed increased levels of VEGF-A mRNA in Jam-A deficient eyes. We also observed nuclear localization of phosphorylated SMAD3 (pSMAD3) indicative of TGFβ pathway activation in the Jam-A deficient eyes. Furthermore the increased wound-induced corneal inflammation, angiogenesis, and scarring in Jam-A deficient mice was attenuated by treatment with DC101, an anti-vascular endothelial growth factor receptor-2 (VEGFR-2) antibody. Our results suggest that in the absence of Jam-A, the VEGF-A/VEGFR-2 pathway is upregulated, thereby augmenting wound induced corneal inflammation, angiogenesis, and myofibroblast accumulation leading to scarring.
Collapse
Affiliation(s)
- Sharmila Chatterjee
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | | | | | | |
Collapse
|
27
|
Powell GT, Wright GJ. Genomic organisation, embryonic expression and biochemical interactions of the zebrafish junctional adhesion molecule family of receptors. PLoS One 2012; 7:e40810. [PMID: 22815827 PMCID: PMC3399880 DOI: 10.1371/journal.pone.0040810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
The mammalian JAM family is composed of three cell surface receptors. Interactions between the proteins have well-characterised roles in inflammation and tight junction formation, but little is known about their function in early development. Recently, we identified a role for jamb and jamc in zebrafish myocyte fusion. Genome duplication in the teleost lineage raised the possibility that additional JAM family paralogues may also function in muscle development. To address this, we searched the zebrafish genome to identify potential paralogues and confirmed their homology, bringing the total number of zebrafish jam family members to six. We then compared the physical binding properties of each paralogue by surface plasmon resonance and determined the gene expression patterns of all zebrafish jam genes at different stages of development. Our results suggest a significant sub-functionalisation of JAM-B and JAM-C orthologues with respect to binding strength (but not specificity) and gene expression. The paralogous genes, jamb2 and jamc2, were not detected in the somites or myotome of wild-type embryos. We conclude that it is unlikely that the paralogues have a function in primary myogenesis.
Collapse
Affiliation(s)
- Gareth T. Powell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (GTP); (GJW)
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (GTP); (GJW)
| |
Collapse
|
28
|
Naik MU, Naik UP. Contra-regulation of calcium- and integrin-binding protein 1-induced cell migration on fibronectin by PAK1 and MAP kinase signaling. J Cell Biochem 2012; 112:3289-99. [PMID: 21748785 DOI: 10.1002/jcb.23255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium- and integrin-binding protein 1 (CIB1) has been shown to be involved in cell spreading and migration. The signaling events regulated by CIB1 during cell migration are poorly understood. Here we found that accumulation of CIB1 at the tip of the filopodia requires an intact cytoskeleton. Depletion of CIB1 using shRNA affects formation of FAK- and phosphotyrosine-rich focal adhesions without affecting stress fiber formation. Overexpression of CIB1 results in cell migration on fibronectin and Erk1/2 MAP kinase activation. CIB1-induced cell migration is dependent upon Erk1/2 activation, since it is inhibited by the MEK-specific inhibitor PD98059. Furthermore, CIB1-induced cell migration, as well as Erk1/2 activation, is dependent on PKC, Src family kinases as well as PI-3 kinase as it is inhibited by bisindolylmaleimide 1, PP2, and wortmannin, respectively, in a dose-dependent manner. Co-expression of dominant-negative Cdc42 completely abolished CIB1-induced cell migration. Additionally, co-expression of constitutively active, but not dominant negative PAK1, a CIB1 binding protein, inhibited CIB1-induced cell migration. These results suggest that CIB1 positively regulates cell migration and is necessary for the recruitment of FAK to the focal adhesions. Furthermore, CIB1-induced cell migration is dependent on MAP kinase signaling and its function is attenuated by PAK1.
Collapse
Affiliation(s)
- Meghna U Naik
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
29
|
Abstract
Junctional adhesion molecules are transmembrane proteins that belong to the immunoglobulin superfamily. In addition to their localization in close proximity to the tight junctions in endothelial and epithelial cells, junctional adhesion molecules are also expressed in circulating cells that do not form junctions, such as leukocytes and platelets. As a consequence, these proteins are associated not only with the permeability-regulating barrier function of the tight junctions, but also with other biologic processes, such as inflammatory reactions, responses to vascular injury, and tumor angiogenesis. Furthermore, because of their transmembrane topology, junctional adhesion molecules are poised both for receiving inputs from the cell interior (their expression, localization, and function being regulated in response to inflammatory cytokines and growth factors) and for translating extracellular adhesive events into functional responses. This review focuses on the different roles of junctional adhesion molecules in normal and pathologic conditions, with emphasis on inflammatory reactions and vascular responses to injury.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Department of Biochemistry and Molecular Pharmacology Mario Negri Institute of Pharmacological Research, Milano, Italy.
| |
Collapse
|
30
|
Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YHF, Low JY, Ebnet K, Kiesel L, Yip GW. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 2010; 29:6569-80. [PMID: 20818426 DOI: 10.1038/onc.2010.386] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.
Collapse
Affiliation(s)
- M Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rabquer BJ, Amin MA, Teegala N, Shaheen MK, Tsou PS, Ruth JH, Lesch CA, Imhof BA, Koch AE. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. THE JOURNAL OF IMMUNOLOGY 2010; 185:1777-85. [PMID: 20592283 DOI: 10.4049/jimmunol.1000556] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed by endothelial cells (ECs) that plays a role in tight junction formation, leukocyte adhesion, and transendothelial migration. In the current study, we investigated whether JAM-C is found in soluble form and whether soluble JAM-C (sJAM-C) mediates angiogenesis. We found that JAM-C is present in soluble form in normal serum and elevated in rheumatoid arthritis (RA) serum. The concentration of sJAM-C is also elevated locally in RA synovial fluid compared with RA serum or osteoarthritis synovial fluid. sJAM-C was also present in the culture supernatant of human microvascular ECs (HMVECs) and immortalized human dermal microvascular ECs, and its concentration was increased following cytokine stimulation. In addition, sJAM-C cleavage from the cell surface was mediated in part by a disintegrin and metalloproteinases 10 and 17. In functional assays, sJAM-C was both chemotactic and chemokinetic for HMVECs and induced HMVEC tube formation on Matrigel in vitro. Neutralizing anti-JAM-C Abs inhibited RA synovial fluid-induced HMVEC chemotaxis and sJAM-C-induced HMVEC tube formation on Matrigel. sJAM-C also induced angiogenesis in vivo in the Matrigel plug and sponge granuloma models. Moreover, sJAM-C-mediated HMVEC chemotaxis was dependent on Src, p38, and PI3K. Our results show that JAM-C exists in soluble form and suggest that modulation of sJAM-C may provide a novel route for controlling pathological angiogenesis.
Collapse
Affiliation(s)
- Bradley J Rabquer
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hou Y, Rabquer BJ, Gerber ML, Del Galdo F, Jimenez SA, Haines GK, Barr WG, Massa MC, Seibold JR, Koch AE. Junctional adhesion molecule-A is abnormally expressed in diffuse cutaneous systemic sclerosis skin and mediates myeloid cell adhesion. Ann Rheum Dis 2010; 69:249-54. [PMID: 19153103 PMCID: PMC2795028 DOI: 10.1136/ard.2008.102624] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the role of junctional adhesion molecule-A (JAM-A) in the pathogenesis of systemic sclerosis (SSc). METHODS Biopsy specimens from proximal and distal arm skin and serum were obtained from patients with SSc and normal volunteers. To determine the expression of JAM-A on SSc dermal fibroblasts and in SSc skin, cell surface ELISAs and immunohistology were performed. An ELISA was designed to determine the amount of soluble JAM-A (sJAM-A) in serum. Myeloid U937 cell-SSc dermal fibroblast and skin adhesion assays were performed to determine the role of JAM-A in myeloid cell adhesion. RESULTS The stratum granulosum and dermal endothelial cells (ECs) from distal arm SSc skin exhibited significantly decreased expression of JAM-A in comparison with normal volunteers. However, sJAM-A was increased in the serum of patients with SSc compared with normal volunteers. Conversely, JAM-A was increased on the surface of SSc compared with normal dermal fibroblasts. JAM-A accounted for a significant portion of U937 binding to SSc dermal fibroblasts. In addition, JAM-A contributed to U937 adhesion to both distal and proximal SSc skin. CONCLUSIONS JAM-A expression is dysregulated in SSc skin. Decreased expression of JAM-A on SSc ECs may result in a reduced response to proangiogenic basic fibroblast growth factor. Increased JAM-A expression on SSc fibroblasts may serve to retain myeloid cells, which in turn secrete angiogenic factors.
Collapse
Affiliation(s)
- Yong Hou
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, USA
| | - Bradley J. Rabquer
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, USA
| | - Michele L. Gerber
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, USA
| | - Francesco Del Galdo
- Thomas Jefferson University, Jefferson Institute of Molecular Medicine, Philadelphia, USA
| | - Sergio A. Jimenez
- Thomas Jefferson University, Jefferson Institute of Molecular Medicine, Philadelphia, USA
| | | | - Walter G. Barr
- Northwestern University Feinberg School of Medicine, Department of Internal Medicine, Chicago, USA
| | - Mary C. Massa
- Rush University Medical Center, Department of Dermatology, Chicago, USA
| | - James R. Seibold
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, USA
| | - Alisa E. Koch
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, USA
- VA Medical Service, Department of Veterans Affairs, Ann Arbor, USA
| |
Collapse
|
33
|
McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM, Gallagher WM. JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer 2009; 125:1343-51. [PMID: 19533747 DOI: 10.1002/ijc.24498] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cell-cell adhesion protein junctional adhesion molecule-A (JAM-A) influences epithelial cell morphology and migration. As migration is required for tumor cell invasion and metastasis, we sought to elucidate the role of JAM-A in invasive breast cancer. A breast cancer tissue microarray was analyzed for JAM-A protein expression, in parallel with analysis of JAM-A gene expression data from a breast cancer clinical dataset. Our data demonstrate a novel association between JAM-A gene and protein upregulation and poor prognosis in breast cancer. To mechanistically dissect this process, we used lentiviral technology to stably knock down JAM-A gene expression by shRNA in MCF7 breast cancer cells, which express high-endogenous levels of JAM-A. We also antagonized JAM-A function in wild-type MCF7 cells using an inhibitory antibody that blocks JAM-A dimerization. Knockdown or functional antagonism of JAM-A decreased breast cancer cell migration in scratch-wound assays. Reductions in beta1-integrin protein levels were observed after JAM-A-knockdown in MCF7 cells, suggesting a mechanism for reduced motility after loss of JAM-A. Consistent with this hypothesis, tissue microarray analysis of beta1-integrin protein expression in invasive breast cancer tissues revealed a trend toward high beta1-integrin protein levels being indicative of poor prognosis. Twenty-two percent of patients were observed to coexpress high levels of JAM-A and beta1-integrin protein, and MDA-MB-231 breast cells stably overexpressing JAM-A showed an increase in beta1-integrin protein expression. Our results are consistent with a previously unreported role for JAM-A overexpression as a possible mechanism contributing to progression in primary breast cancer; and a potential therapeutic target.
Collapse
Affiliation(s)
- Elaine A McSherry
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Severson EA, Parkos CA. Structural determinants of Junctional Adhesion Molecule A (JAM-A) function and mechanisms of intracellular signaling. Curr Opin Cell Biol 2009; 21:701-7. [PMID: 19608396 DOI: 10.1016/j.ceb.2009.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/01/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Junctional Adhesion Molecule A (JAM-A) is a multifunctional cell surface protein that has multiple evolutionarily conserved structural features. There is now conclusive evidence that discrete structural elements on JAM-A mediate intracellular signaling events that alter cell migration and paracellular permeability. Specifically, self-dimerization between extracellular Ig-like loops and close apposition of PDZ-dependent, JAM-A-associated intracellular scaffold proteins such as Afadin and guanine-nucleotide exchange factors mediate activation of Rap1 and modulation of epithelial cell migration by effects on beta1 integrin. While the same JAM-A structural features also modulate migration of other cell types and paracellular permeability in epithelia/endothelia, additional signaling proteins/mechanisms are probably involved. Recent insights into JAM-A outside-in signaling events that regulate these cellular functions are discussed.
Collapse
Affiliation(s)
- Eric A Severson
- Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
35
|
Huber P. [Endothelial cell-cell junctions in vessel formation]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2009; 203:119-23. [PMID: 19527625 DOI: 10.1051/jbio/2009015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelium, lining the inner side of all vessel types, is constituted of a monolayer of endothelial cells with cobblestone morphology. Endothelial cell-cell contacts contain numerous transmembrane adhesive proteins that are either clustered in junctional structures or located along the intercellular cleft. These proteins promote cell-cell adhesion and control vascular permeability to fluids and molecules, as well as transmigration of various types of leukocytes. In addition, recent findings showed that constituents of the junctions might be part of the vascular invasion machinery by activating cell protrusions. Such activities may thus be considered as markers of pathological angiogenesis or targets of antiangiogenic therapy.
Collapse
Affiliation(s)
- Philippe Huber
- Laboratoire de Physiopathologies Vasculaires, Unité CEA - Inserm - Université Joseph Fourier, CEA-Grenoble iRTSV-LAPV-U882, 17 rue des Martyrs, 38054 Grenoble
| |
Collapse
|
36
|
Li X, Stankovic M, Lee BPL, Aurrand-Lions M, Hahn CN, Lu Y, Imhof BA, Vadas MA, Gamble JR. JAM-C induces endothelial cell permeability through its association and regulation of {beta}3 integrins. Arterioscler Thromb Vasc Biol 2009; 29:1200-6. [PMID: 19461049 DOI: 10.1161/atvbaha.109.189217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The molecular mechanisms regulating vascular permeability are only now being elucidated. The junctional adhesion molecule (JAM) JAM-C has been linked to the induction of vascular permeability. We sought to understand the mechanism whereby JAM-C may disrupt junctional integrity in endothelial cells (ECs). METHODS AND RESULTS We show here that JAM-C alters permeability through modulation of integrin activity. JAM-C overexpression results in an increase in JAM-C at junctions and an increase in permeability. Conversely, knockdown of JAM-C by siRNA results in a reduction in permeability. JAM-C associates with alphavbeta3 integrin and regulates its localization and activity. JAM-C also inhibits the activation state of the beta(1) integrin although it does not associate with this integrin. These changes induced on the integrins are mediated through regulation of the small GTPase, Rap1b but not Rap1a. Thrombin, a powerful inductor of vascular leak, causes localization of JAM-C into the junctions, whereas angiopoietin-1, an inhibitor of permeability, prevents JAM-C translocation. CONCLUSIONS The regulation of EC junctional integrity involves the coordinated and dynamic modification of localization and activity of junctional stabilizers such as the integrin beta(3) and the destabilizer, JAM-C.
Collapse
Affiliation(s)
- Xiaochun Li
- Centenary Institute of Cancer Medicine and Cell Biology, Locked bag#6, Newtown, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Çelebi B, Elçin YM. Proteome Analysis of Rat Bone Marrow Mesenchymal Stem Cell Subcultures. J Proteome Res 2009; 8:2164-72. [DOI: 10.1021/pr800590g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Betül Çelebi
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Y. Murat Elçin
- Ankara University, Faculty of Science and Biotechnology Institute, AU-TEBNL, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| |
Collapse
|
38
|
Izikki M, Guignabert C, Fadel E, Humbert M, Tu L, Zadigue P, Dartevelle P, Simonneau G, Adnot S, Maitre B, Raffestin B, Eddahibi S. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J Clin Invest 2009; 119:512-23. [PMID: 19197140 DOI: 10.1172/jci35070] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 12/22/2008] [Indexed: 12/29/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive, lethal lung disease characterized by pulmonary artery SMC (PA-SMC) hyperplasia leading to right-sided heart failure. Molecular events originating in pulmonary ECs (P-ECs) may contribute to the PA-SMC hyperplasia in PH. Thus, we exposed cultured human PA-SMC to medium conditioned by P-EC from patients with idiopathic PH (IPH) or controls and found that IPH P-EC-conditioned medium increased PA-SMC proliferation more than control P-EC medium. Levels of FGF2 were increased in the medium of IPH P-ECs over controls, while there was no detectable difference in TGF-beta1, PDGF-BB, or EGF levels. No difference in FGF2-induced proliferation or FGF receptor type 1 (FGFR1) mRNA levels was detected between IPH and control PA-SMCs. Knockdown of FGF2 in P-EC using siRNA reduced the PA-SMC growth-stimulating effects of IPH P-EC medium by 60% and control P-EC medium by 10%. In situ hybridization showed FGF2 overproduction predominantly in the remodeled vascular endothelium of lungs from patients with IPH. Repeated intravenous FGF2-siRNA administration abolished lung FGF2 production, both preventing and nearly reversing a rat model of PH. Similarly, pharmacological FGFR1 inhibition with SU5402 reversed established PH in the same model. Thus, endothelial FGF2 is overproduced in IPH and contributes to SMC hyperplasia in IPH, identifying FGF2 as a promising target for new treatments against PH.
Collapse
Affiliation(s)
- Mohamed Izikki
- INSERM U841, Faculté de Médecine, 8 avenue du Général Sarrail, 94010 Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA. Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate beta1 integrin levels, and enhance cell migration. Mol Biol Cell 2009; 20:1916-25. [PMID: 19176753 DOI: 10.1091/mbc.e08-10-1014] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is a transmembrane tight junction protein that has been shown to regulate barrier function and cell migration through incompletely understood mechanisms. We have previously demonstrated that JAM-A regulates cell migration by dimerization of the membrane-distal immunoglobulin-like loop and a C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding motif. Disruption of dimerization resulted in decreased epithelial cell migration secondary to diminished levels of beta1 integrin and active Rap1. Here, we report that JAM-A is physically and functionally associated with the PDZ domain-containing molecules Afadin and PDZ-guanine nucleotide exchange factor (GEF) 2, but not zonula occludens (ZO)-1, in epithelial cells, and these interactions mediate outside-in signaling events. Both Afadin and PDZ-GEF2 colocalized and coimmunoprecipitated with JAM-A. Furthermore, association of PDZ-GEF2 with Afadin was dependent on the expression of JAM-A. Loss of JAM-A, Afadin, or PDZ-GEF2, but not ZO-1 or PDZ-GEF1, similarly decreased cellular levels of activated Rap1, beta1 integrin protein, and epithelial cell migration. The functional effects observed were secondary to decreased levels of Rap1A because knockdown of Rap1A, but not Rap1B, resulted in decreased beta1 integrin levels and reduced cell migration. These findings suggest that JAM-A dimerization facilitates formation of a complex with Afadin and PDZ-GEF2 that activates Rap1A, which regulates beta1 integrin levels and cell migration.
Collapse
Affiliation(s)
- Eric A Severson
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
40
|
Naik UP, Naik MU. Putting the brakes on cancer cell migration: JAM-A restrains integrin activation. Cell Adh Migr 2008; 2:249-51. [PMID: 19262151 DOI: 10.4161/cam.2.4.6753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, downregulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and downregulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.
Collapse
Affiliation(s)
- Ulhas P Naik
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA.
| | | |
Collapse
|
41
|
Tian Y, Jain S, Kelemen SE, Autieri MV. AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. Am J Physiol Cell Physiol 2008; 296:C256-66. [PMID: 18787073 DOI: 10.1152/ajpcell.00325.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelial cell (EC) activation plays a key role in vascular inflammation, thrombosis, and angiogenesis. Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein that has been implicated in the regulation of inflammation. The expression and function of AIF-1 in EC is uncharacterized, and the purpose of this study was to characterize AIF-1 expression and function in ECs. AIF-1 expression colocalized with CD31-positive ECs in neointima of inflamed human arteries but not normal arteries. AIF-1 is detected at low levels in unstimulated EC, but expression can be increased in response to serum and soluble factors. Stable transfection of AIF-1 small interfering RNA (siRNA) in ECs reduced AIF-1 protein expression by 73% and significantly reduced EC proliferation and migration (P < 0.05 and 0.001). Rescue of AIF-1 expression restored both proliferation and migration of siRNA-expressing ECs, and AIF-1 overexpression enhanced both of these activities, suggesting a strong association between AIF-1 expression and EC activation. Activation of mitogen-activated protein kinase p44/42 and PAK1 was significantly reduced in siRNA ECs challenged with inflammatory stimuli. Reduction of AIF-1 expression did not decrease EC tube-like structure or microvessel formation from aortic rings, but overexpression of AIF-1 did significantly increase the number and complexity of these structures. These data indicate that AIF-1 expression plays an important role in signal transduction and activation of ECs and may also participate in new vessel formation.
Collapse
Affiliation(s)
- Ying Tian
- Temple Univ. School of Medicine, Rm. 810, MRB, 3420 N. Broad St., Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
42
|
The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol 2008; 41:521-30. [PMID: 18762270 DOI: 10.1016/j.biocel.2008.05.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is prevalent both during normal mammalian development and in certain pathological conditions such as tumor growth. It is stimulated and controlled by a complex network of intracellular signaling mechanisms, many of which are initiated by trans-membrane receptors transducing signals received from other cells and from the extracellular environment. Of these, cytokine signaling is recognized as one of the primary drivers of angiogenesis, but it has become increasingly evident that signaling mechanisms generated as a result of cell adhesion interactions are also crucially important. In addition, cell adhesion pathways are also intimately tied to cytokine signaling often making it difficult to dissect out the relative contribution of each to a particular angiogenic step. Many of these same signaling mechanisms are often manipulated by tumors to stimulate aberrant angiogenesis and enhance their blood supply. As a consequence, there is a great deal of interest in trying to understand the full complement of intracellular signaling pathways in angiogenesis as well as their interplay and timing during the process. Ultimately, understanding the complex network of signaling pathways that function during angiogenesis will provide important avenues for future therapeutic development.
Collapse
|
43
|
Severson EA, Jiang L, Ivanov AI, Mandell KJ, Nusrat A, Parkos CA. Cis-dimerization mediates function of junctional adhesion molecule A. Mol Biol Cell 2008; 19:1862-72. [PMID: 18272784 PMCID: PMC2366836 DOI: 10.1091/mbc.e07-09-0869] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/15/2008] [Accepted: 02/06/2008] [Indexed: 01/17/2023] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is a transmembrane component of tight junctions that has been proposed to play a role in regulating epithelial cell adhesion and migration, yet mechanistic structure-function studies are lacking. Although biochemical and structural studies indicate that JAM-A forms cis-homodimers, the functional significance of dimerization is unclear. Here, we report the effects of cis-dimerization-defective JAM-A mutants on epithelial cell migration and adhesion. Overexpression of dimerization-defective JAM-A mutants in 293T cells inhibited cell spreading and migration across permeable filters. Similar inhibition was observed with using dimerization-blocking antibodies. Analyses of cells expressing the JAM-A dimerization-defective mutant proteins revealed diminished beta1 integrin protein but not mRNA levels. Further analyses of beta1 protein localization and expression after disruption of JAM-A dimerization suggested that internalization of beta1 integrin precedes degradation. A functional link between JAM-A and beta1 integrin was confirmed by restoration of cell migration to control levels after overexpression of beta1 integrin in JAM-A dimerization-defective cells. Last, we show that the functional effects of JAM dimerization require its carboxy-terminal postsynaptic density 95/disc-large/zonula occludins-1 binding motif. These results suggest that dimerization of JAM-A regulates cell migration and adhesion through indirect mechanisms involving posttranscriptional control of beta1 integrin levels.
Collapse
Affiliation(s)
- Eric A. Severson
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Liangyong Jiang
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Andrei I. Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kenneth J. Mandell
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Charles A. Parkos
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
44
|
Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP. Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 2008; 68:2194-203. [PMID: 18381425 DOI: 10.1158/0008-5472.can-07-3057] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The metastatic potential of cancer cells is directly attributed to their ability to invade through the extracellular matrix. The mechanisms regulating this cellular invasiveness are poorly understood. Here, we show that junctional adhesion molecule A (JAM-A), a tight junction protein, is a key negative regulator of cell migration and invasion. JAM-A is robustly expressed in normal human mammary epithelium, and its expression is down-regulated in metastatic breast cancer tumors. In breast cancer cell lines, an inverse relationship between JAM-A expression and the ability of these cells to migrate on a collagen matrix was observed, which correlates with the known ability of these cells to metastasize. The T47D and MCF-7 cells, which migrate least, are found to express high levels of JAM-A, whereas the more migratory MDA-MB-468 cells have lower levels of JAM-A on the cell surface. MDA-MB-231 cells, which are highly migratory, express the least amount of JAM-A. Overexpression of JAM-A in MDA-MB-231 cells inhibited both migration and invasion through collagen gels. Furthermore, knockdown of JAM-A using short interfering RNAs enhanced the invasiveness of MDA-MB-231 cells as well as T47D cells. The ability of JAM-A to attenuate cell invasion correlated with the formation of increased numbers of focal adhesions and the formation of functional tight junctions. These results show for the first time that an immunoglobulin superfamily cell adhesion protein expressed at tight junctions could serve as a key negative regulator of breast cancer cell invasion and possibly metastasis. Furthermore, loss of JAM-A could be used as a biomarker for aggressive breast cancer.
Collapse
Affiliation(s)
- Meghna U Naik
- Deparment of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
45
|
Ghosh G, Mehta I, Cornette AL, Anderson KW. Measuring permeability with a whole cell-based biosensor as an alternate assay for angiogenesis: Comparison with common in vitro assays. Biosens Bioelectron 2008; 23:1109-16. [DOI: 10.1016/j.bios.2007.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/05/2007] [Accepted: 10/30/2007] [Indexed: 11/26/2022]
|
46
|
Braiterman LT, Heffernan S, Nyasae L, Johns D, See AP, Yutzy R, McNickle A, Herman M, Sharma A, Naik UP, Hubbard AL. JAM-A is both essential and inhibitory to development of hepatic polarity in WIF-B cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G576-88. [PMID: 18096610 DOI: 10.1152/ajpgi.00159.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Junctional adhesion molecule (JAM) is involved in tight junction (TJ) formation in epithelial cells. Three JAMs (A, B, and C) are expressed in rat hepatocytes, but only rat JAM-A is present in polarized WIF-B cells, a rat-human hepatic line. We used knockdown (KD) and overexpression in WIF-B cells to determine the role of JAM-A in the development of hepatic polarity. Expression of rat JAM-A short hairpin RNA resulted in approximately 50% KD of JAM-A and substantial loss of hepatic polarity, as measured by the absence of apical cysts formed by adjacent cells and sealed by TJ belts. When inhibitory RNA-resistant human JAM-A (huWT) was expressed in KD cells, hepatic polarity was restored. In contrast, expression of JAM-A that either lacked its PDZ-binding motif (huDeltaC-term) or harbored a point mutation (T273A) did not complement, indicating that multiple sites within JAM-A's cytoplasmic tail are required for the development of hepatic polarity. Overexpression of huWT in normal WIF-B cells unexpectedly blocked WIF-B maturation to the hepatic phenotype, as did expression of three huJAM-A constructs with single point mutations in putative phosphorylation sites. In contrast, huDeltaC-term was without effect, and the T273A mutant only partially blocked maturation. Our results show that JAM-A is essential for the development of polarity in cultured hepatic cells via its possible phosphorylation and recruitment of relevant PDZ proteins and that hepatic polarity is achieved within a narrow range of JAM-A expression levels. Importantly, formation/maintenance of TJs and the apical domain in hepatic cells are linked, unlike simple epithelia.
Collapse
Affiliation(s)
- Lelita T Braiterman
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA. JAM Family and Related Proteins in Leukocyte Migration (Vestweber Series). Arterioscler Thromb Vasc Biol 2007; 27:2104-12. [PMID: 17615384 DOI: 10.1161/atvbaha.107.147694] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exploring the role of junctional adhesion molecules (JAMs) has proven to be varied and controversial. The purpose of this review is to discuss the new and exciting roles of these IgSF molecules and how they have evolved to contribute to diverse functions from development to inflammation. In particular, recent research has focused on JAM subfamily members JAM-A, -B, and -C with newly described roles in leukocyte trafficking during inflammation and angiogenesis. However, research on all JAM family members has demonstrated recurring themes with striking similarities in the many diverse processes they are now known to regulate.
Collapse
Affiliation(s)
- Paul F Bradfield
- Department of Pathology and Immunology, University Medical Centre, CH-1211, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
48
|
Crosstalk of tight junction components with signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:729-56. [PMID: 17950242 DOI: 10.1016/j.bbamem.2007.08.018] [Citation(s) in RCA: 584] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 12/28/2022]
Abstract
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.
Collapse
|
49
|
Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007; 7:467-77. [PMID: 17525755 DOI: 10.1038/nri2096] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Junctional adhesion molecules (JAMs) of the immunoglobulin superfamily are important in the control of vascular permeability and leukocyte transmigration across endothelial-cell surfaces, by engaging in homophilic, heterophilic and lateral interactions. Through their localization on the endothelial-cell surface and expression by platelets, JAMs contribute to adhesive interactions with circulating leukocytes and platelets. Antibody-blocking studies and studies using genetically modified mice have implicated these functions of JAMs in the regulation of leukocyte recruitment to sites of inflammation and ischaemia-reperfusion injury, in growth-factor-mediated angiogenesis, atherogenesis and neointima formation. The comparison of different JAM-family members and animal models, however, shows that the picture remains rather complex. This Review summarizes recent progress and future directions in understanding the role of JAMs as 'gate keepers' in inflammation and vascular pathology.
Collapse
Affiliation(s)
- Christian Weber
- Institute for Molecular Cardiovascular Research, RWTH University Hospital, 52074 Aachen, Germany.
| | | | | |
Collapse
|
50
|
Kang LI, Wang Y, Suckow AT, Czymmek KJ, Cooke VG, Naik UP, Duncan MK. Deletion of JAM-A causes morphological defects in the corneal epithelium. Int J Biochem Cell Biol 2006; 39:576-85. [PMID: 17118692 DOI: 10.1016/j.biocel.2006.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 10/11/2006] [Indexed: 11/30/2022]
Abstract
Junctional adhesion molecule-A (JAM-A, JAM-1, F11R) is an Ig domain containing transmembrane protein that has been proposed to function in diverse processes including platelet activation and adhesion, leukocyte transmigration, angiogenesis, epithelial cell shape and endothelial cell migration although its function in vivo is less well established. In the mouse eye, JAM-A protein expression is first detected at 12.5 dpc in the blood vessels of the tunica vasculosa, while it is first detected in both the corneal epithelium and lens between 13.5 and 14.5 dpc. In the corneal epithelium, JAM-A levels remain appreciable throughout life, while JAM-A immunostaining becomes stronger in the lens as the animals age. Both the cornea and lens of mice lacking an intact JAM-A gene are transparent until at least a year of age, although the cells of the JAM-A null corneal epithelium are irregularly shaped. In wild-type mice, JAM-A protein is found at the leading edge of repairing corneal epithelial wounds, however, corneal epithelial wound repair was qualitatively normal in JAM-A null animals. In summary, JAM-A is expressed in the corneal epithelium where it appears to regulate cell shape.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Shape/genetics
- Cell Shape/physiology
- DNA Primers/genetics
- Epithelium, Corneal/abnormalities
- Epithelium, Corneal/cytology
- Epithelium, Corneal/embryology
- Epithelium, Corneal/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Female
- Gene Expression Regulation, Developmental
- Heterozygote
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- PAX6 Transcription Factor
- Paired Box Transcription Factors/deficiency
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Phenotype
- Pregnancy
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Wound Healing/physiology
Collapse
Affiliation(s)
- Liang I Kang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|