1
|
Pioner JM, Pierantozzi E, Coppini R, Rubino EM, Biasci V, Vitale G, Laurino A, Santini L, Scardigli M, Randazzo D, Olianti C, Serano M, Rossi D, Tesi C, Cerbai E, Lange S, Reggiani C, Sacconi L, Poggesi C, Ferrantini C, Sorrentino V. Obscurin deficiency leads to compensated dilated cardiomyopathy and increased arrhythmias. J Gen Physiol 2025; 157:e202413696. [PMID: 40366302 PMCID: PMC12077377 DOI: 10.1085/jgp.202413696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Obscurin is a large muscle protein whose multiple functions include providing mechanical strength to the M-band and linking the sarcomere to the sarcoplasmic reticulum. Mutations in obscurin are linked to various forms of muscle diseases. This study compares cardiac function in a murine model of obscurin deletion (KO) with wild-type (WT) in vivo and ex vivo. Echocardiography showed that KO hearts had larger (+20%) end-diastolic and end-systolic volumes, reduced fractional shortening, and impaired ejection fraction, consistent with dilated cardiomyopathy. However, stroke volume and cardiac output were preserved due to increased end-diastolic volume. Morphological analyses revealed reduced sarcoplasmic reticulum volume, with preserved T-tubule network. While myofilament function was preserved in isolated myofibrils and skinned trabeculae, experiments in intact trabeculae revealed that Obscn KO hearts compared with WT displayed (1) reduced active tension at high frequencies and during resting-state contractions, (2) impaired positive inotropic and lusitropic response to β-adrenergic stimulation (isoproterenol 0.1 μM), and (3) faster mechanical restitution, suggesting reduced sarcoplasmic reticulum refractoriness. Intracellular [Ca2+]i measurements showed reduced peak systolic and increased diastolic levels in KO versus WT cardiomyocytes. Western blot experiments revealed lower SERCA and phospholamban (PLB) expression and reduced PLB phosphorylation in KO mice. While action potential parameters and conduction velocity were unchanged, β-adrenergic stimulation induced more frequent spontaneous Ca2+ waves and increased arrhythmia susceptibility in KO compared with WT. Taken together, these findings suggest that obscurin deletion, in adult mice, is linked to compensated dilated cardiomyopathy, altered E-C coupling, impaired response to inotropic agents, and increased propensity to arrhythmias.
Collapse
Affiliation(s)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Valentina Biasci
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Marina Scardigli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Randazzo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Camilla Olianti
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Stephan Lange
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
2
|
Del Monaco G, Amata F, Battaglia V, Panico C, Condorelli G, Pinto G. Hemodynamics in Left-Sided Cardiomyopathies. Rev Cardiovasc Med 2024; 25:455. [PMID: 39742240 PMCID: PMC11683717 DOI: 10.31083/j.rcm2512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiomyopathies, historically regarded as rare, are increasingly recognized due to advances in imaging diagnostics and heightened clinical focus. These conditions, characterized by structural and functional abnormalities of the myocardium, pose significant challenges in both chronic and acute patient management. A thorough understanding of the hemodynamic properties, specifically the pressure-volume relationships, is essential. These relationships provide insights into cardiac function, including ventricular compliance, contractility, and overall cardiovascular performance. Despite their potential utility, pressure-volume curves are underutilized in clinical settings due to the invasive nature of traditional measurement techniques. Recognizing the dynamic nature of cardiomyopathies, with possible transitions between phenotypes, underscores the importance of continuous monitoring and adaptive therapeutic strategies. Enhanced hemodynamic evaluation can facilitate tailored treatment, potentially improving outcomes for patients with these complex cardiac conditions.
Collapse
Affiliation(s)
- Guido Del Monaco
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve-Emanuele-Milan, Italy
| | - Francesco Amata
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve-Emanuele-Milan, Italy
| | - Vincenzo Battaglia
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve-Emanuele-Milan, Italy
| | - Cristina Panico
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve-Emanuele-Milan, Italy
| | - Gianluigi Condorelli
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve-Emanuele-Milan, Italy
| | - Giuseppe Pinto
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy
| |
Collapse
|
3
|
Creso JG, Gokhan I, Rynkiewicz MJ, Lehman W, Moore JR, Campbell SG. In silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R. Front Physiol 2024; 15:1452509. [PMID: 39282088 PMCID: PMC11392859 DOI: 10.3389/fphys.2024.1452509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is an inherited disorder often leading to severe heart failure. Linkage studies in affected families have revealed hundreds of different mutations that can cause DCM, with most occurring in genes associated with the cardiac sarcomere. We have developed an investigational pipeline for discovering mechanistic genotype-phenotype relationships in DCM and here apply it to the DCM-linked tropomyosin mutation TPM1 M8R. Atomistic simulations predict that M8R increases flexibility of the tropomyosin chain and enhances affinity for the blocked or inactive state of tropomyosin on actin. Applying these molecular effects to a Markov model of the cardiac thin filament reproduced the shifts in Ca2+sensitivity, maximum force, and a qualitative drop in cooperativity that were observed in an in vitro system containing TPM1 M8R. The model was then used to simulate the impact of M8R expression on twitch contractions of intact cardiac muscle, predicting that M8R would reduce peak force and duration of contraction in a dose-dependent manner. To evaluate this prediction, TPM1 M8R was expressed via adenovirus in human engineered heart tissues and isometric twitch force was observed. The mutant tissues manifested depressed contractility and twitch duration that agreed in detail with model predictions. Additional exploratory simulations suggest that M8R-mediated alterations in tropomyosin-actin interactions contribute more potently than tropomyosin chain stiffness to cardiac twitch dysfunction, and presumably to the ultimate manifestation of DCM. This study is an example of the growing potential for successful in silico prediction of mutation pathogenicity for inherited cardiac muscle disorders.
Collapse
Affiliation(s)
- Jenette G. Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Ilhan Gokhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA, United States
| | - Stuart G. Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Yu W, Li L, Tan X, Liu X, Yin C, Cao J. Development and validation of risk prediction and neural network models for dilated cardiomyopathy based on WGCNA. Front Med (Lausanne) 2023; 10:1239056. [PMID: 37869159 PMCID: PMC10585101 DOI: 10.3389/fmed.2023.1239056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a progressive heart condition characterized by ventricular dilatation and impaired myocardial contractility with a high mortality rate. The molecular characterization of DCM has not been determined yet. Therefore, it is crucial to discover potential biomarkers and therapeutic options for DCM. Methods The hub genes for the DCM were screened using Weighted Gene Co-expression Network Analysis (WGCNA) and three different algorithms in Cytoscape. These genes were then validated in a mouse model of doxorubicin (DOX)-induced DCM. Based on the validated hub genes, a prediction model and a neural network model were constructed and validated in a separate dataset. Finally, we assessed the diagnostic efficiency of hub genes and their relationship with immune cells. Results A total of eight hub genes were identified. Using RT-qPCR, we validated that the expression levels of five key genes (ASPN, MFAP4, PODN, HTRA1, and FAP) were considerably higher in DCM mice compared to normal mice, and this was consistent with the microarray results. Additionally, the risk prediction and neural network models constructed from these genes showed good accuracy and sensitivity in both the combined and validation datasets. These genes also demonstrated better diagnostic power, with AUC greater than 0.7 in both the combined and validation datasets. Immune cell infiltration analysis revealed differences in the abundance of most immune cells between DCM and normal samples. Conclusion The current findings indicate an underlying association between DCM and these key genes, which could serve as potential biomarkers for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Wei Yu
- Chongqing Medical University, Chongqing, China
| | - Lingjiao Li
- Chongqing Medical University, Chongqing, China
| | | | - Xiaozhu Liu
- Chongqing Medical University, Chongqing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Junyi Cao
- Department of Medical Quality Control, The First People’s Hospital of Zigong City, Zigong, China
| |
Collapse
|
5
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
6
|
Mora MT, Zaza A, Trenor B. Insights from an electro-mechanical heart failure cell model: Role of SERCA enhancement on arrhythmogenesis and myocyte contraction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107350. [PMID: 36689807 DOI: 10.1016/j.cmpb.2023.107350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Structural and electrical remodeling in heart failure predisposes the heart to ventricular arrhythmias. Computer modeling approaches, used to complement experimental results, can provide a more mechanistic knowledge of the biophysical phenomena underlying cardiac pathologies. Indeed, previous in-silico studies have improved the understanding of the electrical correlates of heart failure involved in arrhythmogenesis; however, information on the crosstalk between electrical activity, intracellular Ca2+ and contraction is still incomplete. This study aims to investigate the electro-mechanical behavior of virtual failing human ventricular myocytes to help in the development of therapies, which should ideally target pump failure and arrhythmias at the same time. METHODS We implemented characteristic remodeling of heart failure with reduced ejection fraction by including reported changes in ionic conductances, sarcomere function and cell structure (e.g. T-tubules disarray). Model parametrization was based on published experimental data and the outcome of simulations was validated against experimentally observed patterns. We focused on two aspects of myocardial dysfunction central in heart failure: altered force-frequency relationship and susceptibility to arrhythmogenic early afterdepolarizations. Because biological variability is a major problem in the generalization of in-silico findings based on a unique set of model parameters, we generated and evaluated a population of models. RESULTS The population-based approach is crucial in robust identification of parameters at the core of abnormalities and in generalizing the outcome of their correction. As compared to non-failing ones, failing myocytes had prolonged repolarization, a higher incidence of early afterdepolarizations, reduced contraction and a shallower force-frequency relationship, all features peculiar of heart failure. Component analysis applied to the model population identified reduced SERCA function as a relevant contributor to most of these derangements, which were largely reverted or diminished by restoration of SERCA function alone. CONCLUSIONS These simulated results encourage the development of strategies comprising SERCA stimulation and highlight the need to evaluate both electrical and mechanical outcomes.
Collapse
Affiliation(s)
- Maria Teresa Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Italy; Unità di Fisiologia Cardiovascolare, IRCCs Istituto Auxologico Italiano, Italy
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
7
|
Marlevi D, Mariscal-Harana J, Burris NS, Sotelo J, Ruijsink B, Hadjicharalambous M, Asner L, Sammut E, Chabiniok R, Uribe S, Winter R, Lamata P, Alastruey J, Nordsletten D. Altered Aortic Hemodynamics and Relative Pressure in Patients with Dilated Cardiomyopathy. J Cardiovasc Transl Res 2022; 15:692-707. [PMID: 34882286 PMCID: PMC9622552 DOI: 10.1007/s12265-021-10181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022]
Abstract
Ventricular-vascular interaction is central in the adaptation to cardiovascular disease. However, cardiomyopathy patients are predominantly monitored using cardiac biomarkers. The aim of this study is therefore to explore aortic function in dilated cardiomyopathy (DCM). Fourteen idiopathic DCM patients and 16 controls underwent cardiac magnetic resonance imaging, with aortic relative pressure derived using physics-based image processing and a virtual cohort utilized to assess the impact of cardiovascular properties on aortic behaviour. Subjects with reduced left ventricular systolic function had significantly reduced aortic relative pressure, increased aortic stiffness, and significantly delayed time-to-pressure peak duration. From the virtual cohort, aortic stiffness and aortic volumetric size were identified as key determinants of aortic relative pressure. As such, this study shows how advanced flow imaging and aortic hemodynamic evaluation could provide novel insights into the manifestation of DCM, with signs of both altered aortic structure and function derived in DCM using our proposed imaging protocol.
Collapse
Affiliation(s)
- David Marlevi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd, Sweden
| | - Jorge Mariscal-Harana
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Cardio MR, Chile
| | - Bram Ruijsink
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Myrianthi Hadjicharalambous
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Liya Asner
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Eva Sammut
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Faculty of Health Science, Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Radomir Chabiniok
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Inria, Palaiseau, France
- LMS, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
- Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, , Prague, Czech Republic
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Cardio MR, Chile
- Department of Radiology, School of Medicine, Pontifica Universidad Católica de Chile, Santiago, Chile
| | - Reidar Winter
- Department of Clinical Sciences, Karolinska Institutet, Danderyd, Sweden
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jordi Alastruey
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- World-Class Research Center "Digital Biodesign and Personlized Healthcare", Sechenov University, Moscow, Russia
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Cardiac Surgery and Biomedical Engineering, University of Michigan, Plymouth Rd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Effect of hypothyroidism on contractile performance of isolated end-stage failing human myocardium. PLoS One 2022; 17:e0265731. [PMID: 35404981 PMCID: PMC9000031 DOI: 10.1371/journal.pone.0265731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
The relationship between hypothyroidism and the occurrence and progression of heart failure (HF) has had increased interest over the past years. The low T3 syndrome, a reduced T3 in the presence of normal thyroid stimulating hormone (TSH), and free T4 concentration, is a strong predictor of all-cause mortality in HF patients. Still, the impact of hypothyroidism on the contractile properties of failing human myocardium is unknown. Our study aimed to investigate that impact using ex-vivo assessment of force and kinetics of contraction/relaxation in left ventricular intact human myocardial muscle preparations. Trabeculae were dissected from non-failing (NF; n = 9), failing with no hypothyroidism (FNH; n = 9), and failing with hypothyroidism (FH; n = 9) hearts. Isolated muscle preparations were transferred into a custom-made setup where baseline conditions as well as the three main physiological modulators that regulate the contractile strength, length-dependent and frequency-dependent activation, as well as β-adrenergic stimulation, were assessed under near-physiological conditions. Hypothyroidism did not show any additional significant impact on the contractile properties different from the recognized alterations usually detected in such parameters in any end-stage failing heart without thyroid dysfunction. Clinical information for FH patients in our study revealed they were all receiving levothyroxine. Absence of any difference between failing hearts with or without hypothyroidism, may possibly be due to the profound effects of the advanced stage of heart failure that concealed any changes between the groups. Still, we cannot exclude the possibility of differences that may have been present at earlier stages. The effects of THs supplementation such as levothyroxine on contractile force and kinetic parameters of failing human myocardium require further investigation to explore its full potential in improving cardiovascular performance and cardiovascular outcomes of HF associated with hypothyroidism.
Collapse
|
9
|
Zhan H, Wang Z, Lin J, Yu Y, Xia L. Optogenetic actuation in ChR2-transduced fibroblasts alter excitation-contraction coupling and mechano-electric feedback in coupled cardiomyocytes: a computational modeling study. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8354-8373. [PMID: 34814303 DOI: 10.3934/mbe.2021414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the help of the conventional electrical method and the growing optogenetic technology, cardiac fibroblasts (Fbs) have been verified to couple electrically with working myocytes and bring electrophysiological remodeling changes in them. The intrinsic properties of cardiac functional autoregulation represented by excitation-contraction coupling (ECC) and mechano-electric feedback (MEF) have also been extensively studied. However, the roles of optogenetic stimulation on the characteristics of ECC and MEF in cardiomyocytes (CMs) coupled with Fbs have been barely investigated. In this study, we proposed a combined model composed of three modules to explore these influences. Simulation results showed that (1) during ECC, an increased light duration (LD) strengthened the inflow of ChR2 current and prolonged action potential duration (APD), and extended durations of twitch and internal sarcomere deformation through the decreased dissociation of calcium with troponin C (CaTnC) complexes and the prolonged duration of Xb attachment-detachment; (2) during MEF, an increased LD was followed by a longer muscle twitch and deformation, and led to APD prolongation through the inward ChR2 current and its inward rectification kinetics, which far outweighed the effects of the delaying dissociation of CaTnC complexes and the prolonged reverse mode of Na+-Ca2+ exchange on AP shortening; (3) due to the ChR2 current's rectification feature, enhancing the light irradiance (LI) brought slight variations in peak or valley values of electrophysiological and mechanical parameters while did not change durations of AP and twitch and muscle deformation in both ECC and MEF. In conclusion, the inward ChR2 current and its inward rectification feature were found to affect significantly the durations of AP and twitch in both ECC and MEF. The roles of optogenetic actuation on both ECC and MEF should be considered in future cardiac computational optogenetics at the tissue and organ scale.
Collapse
Affiliation(s)
- Heqing Zhan
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jialun Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Yuanbo Yu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Shankar TS, Ramadurai DKA, Steinhorst K, Sommakia S, Badolia R, Thodou Krokidi A, Calder D, Navankasattusas S, Sander P, Kwon OS, Aravamudhan A, Ling J, Dendorfer A, Xie C, Kwon O, Cheng EHY, Whitehead KJ, Gudermann T, Richardson RS, Sachse FB, Schredelseker J, Spitzer KW, Chaudhuri D, Drakos SG. Cardiac-specific deletion of voltage dependent anion channel 2 leads to dilated cardiomyopathy by altering calcium homeostasis. Nat Commun 2021; 12:4583. [PMID: 34321484 PMCID: PMC8319341 DOI: 10.1038/s41467-021-24869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Voltage dependent anion channel 2 (VDAC2) is an outer mitochondrial membrane porin known to play a significant role in apoptosis and calcium signaling. Abnormalities in calcium homeostasis often leads to electrical and contractile dysfunction and can cause dilated cardiomyopathy and heart failure. However, the specific role of VDAC2 in intracellular calcium dynamics and cardiac function is not well understood. To elucidate the role of VDAC2 in calcium homeostasis, we generated a cardiac ventricular myocyte-specific developmental deletion of Vdac2 in mice. Our results indicate that loss of VDAC2 in the myocardium causes severe impairment in excitation-contraction coupling by altering both intracellular and mitochondrial calcium signaling. We also observed adverse cardiac remodeling which progressed to severe cardiomyopathy and death. Reintroduction of VDAC2 in 6-week-old knock-out mice partially rescued the cardiomyopathy phenotype. Activation of VDAC2 by efsevin increased cardiac contractile force in a mouse model of pressure-overload induced heart failure. In conclusion, our findings demonstrate that VDAC2 plays a crucial role in cardiac function by influencing cellular calcium signaling. Through this unique role in cellular calcium dynamics and excitation-contraction coupling VDAC2 emerges as a plausible therapeutic target for heart failure.
Collapse
Affiliation(s)
- Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dinesh K A Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Kira Steinhorst
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Aspasia Thodou Krokidi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Dallen Calder
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Paulina Sander
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA
| | - Aishwarya Aravamudhan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Jing Ling
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Andreas Dendorfer
- Walter-Brendel-Center of Experimental Medicine, Ludwig-Maximilians Universität Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Kevin J Whitehead
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Russel S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Mashali MA, Saad NS, Canan BD, Elnakish MT, Milani-Nejad N, Chung JH, Schultz EJ, Kiduko SA, Huang AW, Hare AN, Peczkowski KK, Fazlollahi F, Martin BL, Murray JD, Campbell CM, Kilic A, Whitson BA, Mokadam NA, Mohler PJ, Janssen PML. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J Mol Cell Cardiol 2021; 156:7-19. [PMID: 33766524 PMCID: PMC8217133 DOI: 10.1016/j.yjmcc.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with highly significant morbidity, mortality, and health care costs. Despite the significant advances in therapies and prevention, HF remains associated with poor clinical outcomes. Understanding the contractile force and kinetic changes at the level of cardiac muscle during end-stage HF in consideration of underlying etiology would be beneficial in developing targeted therapies that can help improve cardiac performance. OBJECTIVE Investigate the impact of the primary etiology of HF (ischemic or non-ischemic) on left ventricular (LV) human myocardium force and kinetics of contraction and relaxation under near-physiological conditions. METHODS AND RESULTS Contractile and kinetic parameters were assessed in LV intact trabeculae isolated from control non-failing (NF; n = 58) and end-stage failing ischemic (FI; n = 16) and non-ischemic (FNI; n = 38) human myocardium under baseline conditions, length-dependent activation, frequency-dependent activation, and response to the β-adrenergic stimulation. At baseline, there were no significant differences in contractile force between the three groups; however, kinetics were impaired in failing myocardium with significant slowing down of relaxation kinetics in FNI compared to NF myocardium. Length-dependent activation was preserved and virtually identical in all groups. Frequency-dependent activation was clearly seen in NF myocardium (positive force frequency relationship [FFR]), while significantly impaired in both FI and FNI myocardium (negative FFR). Likewise, β-adrenergic regulation of contraction was significantly impaired in both HF groups. CONCLUSIONS End-stage failing myocardium exhibited impaired kinetics under baseline conditions as well as with the three contractile regulatory mechanisms. The pattern of these kinetic impairments in relation to NF myocardium was mainly impacted by etiology with a marked slowing down of kinetics in FNI myocardium. These findings suggest that not only force development, but also kinetics should be considered as a therapeutic target for improving cardiac performance and thus treatment of HF.
Collapse
Affiliation(s)
- Mohammed A Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nancy S Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Nima Milani-Nejad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Eric J Schultz
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Salome A Kiduko
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda W Huang
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Austin N Hare
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kyra K Peczkowski
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Farbod Fazlollahi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Brit L Martin
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jason D Murray
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Courtney M Campbell
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ahmet Kilic
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Bryan A Whitson
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nahush A Mokadam
- Division of Cardiac Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
12
|
Xu X, Xie X, Zhang H, Wang P, Li G, Chen J, Chen G, Cao X, Xiong L, Peng F, Peng C. Water-soluble alkaloids extracted from Aconiti Radix lateralis praeparata protect against chronic heart failure in rats via a calcium signaling pathway. Biomed Pharmacother 2021; 135:111184. [PMID: 33418305 DOI: 10.1016/j.biopha.2020.111184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and β-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.
Collapse
MESH Headings
- Aconitum/chemistry
- Animals
- Apoptosis/drug effects
- Calcium Signaling/drug effects
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Chronic Disease
- Disease Models, Animal
- Fibrosis
- Heart Failure/drug therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Solubility
- Solvents/chemistry
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water/chemistry
- Rats
Collapse
Affiliation(s)
- Xin Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaofang Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Huiqiong Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Pei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gangmin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Junren Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Guanru Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaoyu Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China.
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China.
| |
Collapse
|
13
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J Physiol Sci 2020; 70:12. [PMID: 32070290 PMCID: PMC7028825 DOI: 10.1186/s12576-020-00741-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the 'ten Tusscher-Panfilov' electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the 'Ekaterinburg-Oxford' model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation-contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.
Collapse
Affiliation(s)
- Nathalie A Balakina-Vikulova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia
- Ghent University, Ghent, Belgium
| | - Olga Solovyova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Ural Federal University, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
15
|
Pitoulis FG, Terracciano CM. Heart Plasticity in Response to Pressure- and Volume-Overload: A Review of Findings in Compensated and Decompensated Phenotypes. Front Physiol 2020; 11:92. [PMID: 32116796 PMCID: PMC7031419 DOI: 10.3389/fphys.2020.00092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The adult human heart has an exceptional ability to alter its phenotype to adapt to changes in environmental demand. This response involves metabolic, mechanical, electrical, and structural alterations, and is known as cardiac plasticity. Understanding the drivers of cardiac plasticity is essential for development of therapeutic agents. This is particularly important in contemporary cardiology, which uses treatments with peripheral effects (e.g., on kidneys, adrenal glands). This review focuses on the effects of different hemodynamic loads on myocardial phenotype. We examine mechanical scenarios of pressure- and volume overload, from the initial insult, to compensated, and ultimately decompensated stage. We discuss how different hemodynamic conditions occur and are underlined by distinct phenotypic and molecular changes. We complete the review by exploring how current basic cardiac research should leverage available cardiac models to study mechanical load in its different presentations.
Collapse
|
16
|
Chung JH, Canan BD, Whitson BA, Kilic A, Janssen PML. Force-frequency relationship and early relaxation kinetics are preserved upon sarcoplasmic blockade in human myocardium. Physiol Rep 2019; 6:e13898. [PMID: 30350481 PMCID: PMC6198135 DOI: 10.14814/phy2.13898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the quantitative and qualitative role of the sarcoplasmic reticulum (SR) in the regulation of the force-frequency relationship (FFR). We blocked the function of SR with cyclopiazonic acid (CPA) and ryanodine and measured twitch kinetics and developed force at various stimulation frequencies in nonfailing and failing intact human right ventricular trabeculae. We found that developed forces are only slightly reduced upon SR blockade, while the positive FFR in nonfailing trabeculae and negative FFR in failing trabeculae were both preserved. The contraction kinetics (dF/dt, dF/dt/F, and time to peak), however, were significantly slower at all frequencies tested. Kinetics of first 50% of relaxation (RT50) was not affected by SR blockade. Kinetics of entire relaxation process (RT90) was overall slower at low frequencies, but not at high frequencies. From our findings, we conclude that the SR is not essential for FFR, and its role in regulation of FFR lies mostly in contraction kinetics. Unlike small rodents, human myocardium contractile function is near-normal in absence of a functional SR with little changes in contractile force, and with preservation with the main regulation of FFR.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
17
|
Chung JH, Milani-Nejad N, Davis JP, Weisleder N, Whitson BA, Mohler PJ, Janssen PML. Impact of heart rate on cross-bridge cycling kinetics in failing and nonfailing human myocardium. Am J Physiol Heart Circ Physiol 2019; 317:H640-H647. [PMID: 31347914 DOI: 10.1152/ajpheart.00163.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The force-frequency relationship (FFR) is an important regulatory mechanism that increases the force-generating capacity as well as the contraction and relaxation kinetics in human cardiac muscle as the heart rate increases. In human heart failure, the normally positive FFR often becomes flat, or even negative. The rate of cross-bridge cycling, which has been reported to affect cardiac output, could be potentially dysregulated and contribute to blunted or negative FFR in heart failure. We recently developed and herein use a novel method for measuring the rate of tension redevelopment. This method allows us to obtain an index of the rate of cross-bridge cycling in intact contracting cardiac trabeculae at physiological temperature and assess physiological properties of cardiac muscles while preserving posttranslational modifications representative of those that occur in vivo. We observed that trabeculae from failing human hearts indeed exhibit an impaired FFR and a reduced speed of relaxation kinetics. However, stimulation frequencies in the lower spectrum did not majorly affect cross-bridge cycling kinetics in nonfailing and failing trabeculae when assessed at maximal activation. Trabeculae from failing human hearts had slightly slower cross-bridge kinetics at 3 Hz as well as reduced capacity to generate force upon K+ contracture at this frequency. We conclude that cross-bridge kinetics at maximal activation in the prevailing in vivo heart rates are not majorly impacted by frequency and are not majorly impacted by disease.NEW & NOTEWORTHY In this study, we confirm that cardiac relaxation kinetics are impaired in filing human myocardium and that cross-bridge cycling rate at resting heart rates does not contribute to this impaired relaxation. At high heart rates, failing myocardium cross-bridge rates are slower than in nonfailing myocardium.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
18
|
Janssen PML, Elnakish MT. Modeling heart failure in animal models for novel drug discovery and development. Expert Opin Drug Discov 2019; 14:355-363. [PMID: 30861352 DOI: 10.1080/17460441.2019.1582636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION When investigating drugs that treat heart diseases, it is critical when choosing an animal model for the said model to produce data that is translatable to the human patient population, while keeping in mind the principles of reduction, refinement, and replacement of the animal model in the research. Areas covered: In this review, the authors focus on mammalian models developed to study the impact of drug treatments on human heart failure. Furthermore, the authors address human patient variability and animal model invariability as well as the considerations that need to be made regarding choice of species. Finally, the authors discuss some of the most common models for the two most prominent human heart failure etiologies; increased load on the heart and myocardial ischemia. Expert opinion: In the authors' opinion, the data generated by drug studies is often heavily impacted by the choice of species and the physiologically relevant conditions under which the data are collected. Approaches that use multiple models and are not restricted to small rodents but involve some verification on larger mammals or on human myocardium, are needed to advance drug discovery for the very large patient population that suffers from heart failure.
Collapse
Affiliation(s)
- Paul M L Janssen
- a Department of Physiology and Cell Biology , The Ohio State University Wexner Medical Center , Columbus, OH, USA.,b Dorothy M. Davis Heart and Lung Research Institute , The Ohio State University Wexner Medical Center , Columbus, OH, USA.,c Department of Internal Medicine , The Ohio State University Wexner Medical Center , Columbus, OH, USA
| | - Mohammad T Elnakish
- a Department of Physiology and Cell Biology , The Ohio State University Wexner Medical Center , Columbus, OH, USA.,b Dorothy M. Davis Heart and Lung Research Institute , The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
19
|
Rodrigues PG, Miranda-Silva D, Costa SM, Barros C, Hamdani N, Moura C, Mendes MJ, Sousa-Mendes C, Trindade F, Fontoura D, Vitorino R, Linke WA, Leite-Moreira AF, Falcão-Pires I. Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. Am J Physiol Heart Circ Physiol 2019; 316:H459-H475. [DOI: 10.1152/ajpheart.00401.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have demonstrated that administration of doxorubicin (DOXO) results in cardiotoxicity, which eventually progresses to dilated cardiomyopathy. The present work aimed to evaluate the early myocardial changes of DOXO-induced cardiotoxicity. Male New Zealand White rabbits were injected intravenously with DOXO twice weekly for 8 wk [DOXO-induced heart failure (DOXO-HF)] or with an equivolumetric dose of saline (control). Echocardiographic evaluation was performed, and myocardial samples were collected to evaluate myocardial cellular and molecular modifications. The DOXO-HF group presented cardiac hypertrophy and higher left ventricular cavity diameters, showing a dilated phenotype but preserved ejection fraction. Concerning cardiomyocyte function, the DOXO-HF group presented a trend toward increased active tension without significant differences in passive tension. The myocardial GSSG-to-GSH ratio and interstitial fibrosis were increased and Bax-to- Bcl-2 ratio presented a trend toward an increase, suggesting the activation of apoptosis signaling pathways. The macromolecule titin shifted toward the more compliant isoform (N2BA), whereas the stiffer one (N2B) was shown to be hypophosphorylated. Differential protein analysis from the aggregate-enriched fraction through gel liquid chromatography-tandem mass spectrometry revealed an increase in the histidine-rich glycoprotein fragment in DOXO-HF animals. This work describes novel and early myocardial effects of DOXO-induced cardiotoxicity. Thus, tracking these changes appears to be of extreme relevance for the early detection of cardiac damage (as soon as ventricular dilation becomes evident) before irreversible cardiac function deterioration occurs (reduced ejection fraction). Moreover, it allows for the adjustment of the therapeutic approach and thus the prevention of cardiomyopathy progression. NEW & NOTEWORTHY Identification of early myocardial effects of doxorubicin in the heart is essential to hinder the development of cardiac complications and adjust the therapeutic approach. This study describes doxorubicin-induced cellular and molecular modifications before the onset of dilated cardiomyopathy. Myocardial samples from doxorubicin-treated rabbits showed a tendency for higher cardiomyocyte active tension, titin isoform shift from N2B to N2BA, hypophosphorylation of N2B, increased apoptotic genes, left ventricular interstitial fibrosis, and increased aggregation of histidine-rich glycoprotein.
Collapse
Affiliation(s)
- Patricia G. Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Sofia M. Costa
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Carla Barros
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University, Bochum, Germany
| | - Cláudia Moura
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Maria J. Mendes
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Dulce Fontoura
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Janssen PML. Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage. Arch Biochem Biophys 2018; 661:145-148. [PMID: 30447209 DOI: 10.1016/j.abb.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Myocardial relaxation is critical for the heart to allow for adequate filling of the ventricles prior to the next contraction. In human heart failure, impairment of myocardial relaxation is a major problem, and impacts most patients suffering from end-stage failure. Furthering our understanding of myocardial relaxation is critical in developing future treatment strategies. This review highlights processes involved in myocardial relaxation, as well as governing processes that modulate myocardial relaxation, with a focus on impairment of myocardium-level relaxation in human end-stage heart failure.
Collapse
Affiliation(s)
- Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
21
|
Ahmad Bakir A, Al Abed A, Stevens MC, Lovell NH, Dokos S. A Multiphysics Biventricular Cardiac Model: Simulations With a Left-Ventricular Assist Device. Front Physiol 2018; 9:1259. [PMID: 30271353 PMCID: PMC6142745 DOI: 10.3389/fphys.2018.01259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Computational models have become essential in predicting medical device efficacy prior to clinical studies. To investigate the performance of a left-ventricular assist device (LVAD), a fully-coupled cardiac fluid-electromechanics finite element model was developed, incorporating electrical activation, passive and active myocardial mechanics, as well as blood hemodynamics solved simultaneously in an idealized biventricular geometry. Electrical activation was initiated using a simplified Purkinje network with one-way coupling to the surrounding myocardium. Phenomenological action potential and excitation-contraction equations were adapted to trigger myocardial contraction. Action potential propagation was formulated within a material frame to emulate gap junction-controlled propagation, such that the activation sequence was independent of myocardial deformation. Passive cardiac mechanics were governed by a transverse isotropic hyperelastic constitutive formulation. Blood velocity and pressure were determined by the incompressible Navier-Stokes formulations with a closed-loop Windkessel circuit governing the circulatory load. To investigate heart-LVAD interaction, we reduced the left ventricular (LV) contraction stress to mimic a failing heart, and inserted a LVAD cannula at the LV apex with continuous flow governing the outflow rate. A proportional controller was implemented to determine the pump motor voltage whilst maintaining pump motor speed. Following LVAD insertion, the model revealed a change in the LV pressure-volume loop shape from rectangular to triangular. At higher pump speeds, aortic ejection ceased and the LV decompressed to smaller end diastolic volumes. After multiple cycles, the LV cavity gradually collapsed along with a drop in pump motor current. The model was therefore able to predict ventricular collapse, indicating its utility for future development of control algorithms and pre-clinical testing of LVADs to avoid LV collapse in recipients.
Collapse
Affiliation(s)
- Azam Ahmad Bakir
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Michael C Stevens
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
22
|
Affiliation(s)
- Paul M L Janssen
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus.
| | - Brandon J Biesiadecki
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Mark T Ziolo
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Jonathan P Davis
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
23
|
Etiology-dependent impairment of relaxation kinetics in right ventricular end-stage failing human myocardium. J Mol Cell Cardiol 2018; 121:81-93. [PMID: 29981798 DOI: 10.1016/j.yjmcc.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND In patients with end-stage heart failure, the primary etiology often originates in the left ventricle, and eventually the contractile function of the right ventricle (RV) also becomes compromised. RV tissue-level deficits in contractile force and/or kinetics need quantification to understand involvement in ischemic and non-ischemic failing human myocardium. METHODS AND RESULTS The human population suffering from heart failure is diverse, requiring many subjects to be studied in order to perform an adequately powered statistical analysis. From 2009-present we assessed live tissue-level contractile force and kinetics in isolated myocardial RV trabeculae from 44 non-failing and 41 failing human hearts. At 1 Hz stimulation rate (in vivo resting state) the developed active force was not different in non-failing compared to failing ischemic nor non-ischemic failing trabeculae. In sharp contrast, the kinetics of relaxation were significantly impacted by disease, with 50% relaxation time being significantly shorter in non-failing vs. non-ischemic failing, while the latter was still significantly shorter than ischemic failing. Gender did not significantly impact kinetics. Length-dependent activation was not impacted. Although baseline force was not impacted, contractile reserve was critically blunted. The force-frequency relation was positive in non-failing myocardium, but negative in both ischemic and non-ischemic myocardium, while the β-adrenergic response to isoproterenol was depressed in both pathologies. CONCLUSIONS Force development at resting heart rate is not impacted by cardiac pathology, but kinetics are impaired and the magnitude of the impairment depends on the underlying etiology. Focusing on restoration of myocardial kinetics will likely have greater therapeutic potential than targeting force of contraction.
Collapse
|
24
|
Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A 2017; 114:E9096-E9104. [PMID: 29073106 PMCID: PMC5664535 DOI: 10.1073/pnas.1711303114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypertension increases the risk for development of abdominal aortic aneurysms, a silent pathology that is prone to rupture and cause sudden cardiac death. Male gender, smoking, and hypertension appear to increase risk for development of abdominal aortic aneurysms by provoking oxidative stress responses in cardiovascular tissues. Here we uncovered unexpected linkages between the calcium-sensing regulatory subunit MICU2 of the mitochondrial calcium uniporter and stress responses. We show that naive Micu2−/− mice had abnormalities of cardiac relaxation but, with modest blood pressure elevation, developed abdominal aortic aneurysms with spontaneous rupture. These findings implicate mitochondrial calcium homeostasis as a critical pathway involved in protecting cardiovascular tissues from oxidative stress. Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2−/− mice. Mutant mice had left atrial enlargement and Micu2−/− cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2−/− ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2−/− vs. wild type, P = 7.8 × 10−40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2−/− and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2−/− mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2−/− mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2−/− mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.
Collapse
|
25
|
Can the Drosophila model help in paving the way for translational medicine in heart failure? Biochem Soc Trans 2017; 44:1549-1560. [PMID: 27911738 DOI: 10.1042/bst20160017c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
Chronic heart failure is a common consequence of various heart diseases. Mechanical force is known to play a key role in heart failure development through regulating cardiomyocyte hypertrophy. In order to understand the complex disease mechanism, this article discussed a multi-disciplinary approach that may aid the illustration of heart failure molecular process.
Collapse
|
26
|
Milani-Nejad N, Canan BD, Elnakish MT, Davis JP, Chung JH, Fedorov VV, Binkley PF, Higgins RSD, Kilic A, Mohler PJ, Janssen PML. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2077-86. [PMID: 26453335 DOI: 10.1152/ajpheart.00685.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Robert S D Higgins
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
27
|
Olbrich HG, Michaelis H, Vandeplassche G, Borgers M, Oremek G, Krause E, Satter P, Kober G, Mutschler E, Kaltenbach M. Ultrastructural calcium distribution and myocardial calcium content in human idiopathic dilated cardiomyopathy. Cardiovasc Pathol 2015; 2:127-36. [PMID: 25990607 DOI: 10.1016/1054-8807(93)90024-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/1992] [Accepted: 12/31/1992] [Indexed: 02/07/2023] Open
Abstract
Myocardial calcium overload in chronic heart failure is still a debatable issue. The aim of this study was to investigate the myocardial calcium content and intracellular calcium distribution in end-stage dilated cardiomyopathy. The explanted hearts of 13 patients (9 male, 4 female, mean age 49 ± 12 years) undergoing heart transplantation because of end-stage dilated cardiomyopathy were examined. Samples were obtained from the right and left ventricular free wall and from the septum. Calcium and magnesium content were measured by atomic absorption spectrophotometry. Ultrastructural calcium distribution was examined in dilated cardiomyopathy using the phosphate-pyroantimonate method. Ultrastructural calcium distribution was also examined in left ventricular biopsies obtained from 3 patients (male, mean age 47 ± 3.6 years) with nonfailing hearts. The number of mitochondrial calcium precipitates was estimated morphometrically by a point counting method. Myocardial calcium and magnesium content in dilated cardiomyopathy did not differ significantly among the right and left ventricles and septum ranging from 8.5 to 10.8 mmol/kg dry weight. The phosphate-pyroantimonate method visualized calcium precipitates being confined to the sarcolemma, T-tubules, intercalated disks, and mitochondria in both nonfailing myocardium and dilated cardiomyopathy. Because mitochondria may act as buffers of cytoplasmic calcium, mitochondrial calcium precipitates served as a criterion for a possible cellular calcium overload. No differences in the amount of mitochondrial calcium deposits were observed between dilated cardiomyopathy and nonfailing hearts. The data suggest that there is no global myocardial calcium overload in human eng-stage dilated cardiomyopathy.
Collapse
Affiliation(s)
- H G Olbrich
- Zentrum der Inneren Medizin, Universität Frankfurt, Germany
| | - H Michaelis
- Zentrum der Inneren Medizin, Universität Frankfurt, Germany
| | | | - M Borgers
- Zentrum der Chirurgie, Universität Frankfurt, Germany
| | - G Oremek
- Zentrum der Inneren Medizin, Universität Frankfurt, Germany
| | - E Krause
- Janssen Research Foundation, Beerse, Belgium
| | - P Satter
- Janssen Research Foundation, Beerse, Belgium
| | - G Kober
- Zentrum der Inneren Medizin, Universität Frankfurt, Germany
| | - E Mutschler
- Pharmakologisches Institut für Naturwissenschaftler, Universität Frankfurt, Germany
| | - M Kaltenbach
- Zentrum der Inneren Medizin, Universität Frankfurt, Germany
| |
Collapse
|
28
|
Bhattacharya-Ghosh B, Bozkurt S, Rutten MCM, van de Vosse FN, Díaz-Zuccarini V. An in silico case study of idiopathic dilated cardiomyopathy via a multi-scale model of the cardiovascular system. Comput Biol Med 2014; 53:141-53. [PMID: 25147131 DOI: 10.1016/j.compbiomed.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Mathematical modelling has been used to comprehend the pathology and the assessment of different treatment techniques such as heart failure and left ventricular assist device therapy in the cardiovascular field. In this study, an in-silico model of the heart is developed to understand the effects of idiopathic dilated cardiomyopathy (IDC) as a pathological scenario, with mechanisms described at the cellular, protein and organ levels. This model includes the right and left atria and ventricles, as well as the systemic and pulmonary arteries and veins. First, a multi-scale model of the whole heart is simulated for healthy conditions. Subsequently, the model is modified at its microscopic and macroscopic spatial scale to obtain the characteristics of IDC. The extracellular calcium concentration, the binding affinity of calcium binding proteins and the maximum and minimum elastances have been identified as key parameters across all relevant scales. The modified parameters cause a change in (a) intracellular calcium concentration characterising cellular properties, such as calcium channel currents or the action potential, (b) the proteins being involved in the sliding filament mechanism and the proportion of the attached crossbridges at the protein level, as well as (c) the pressure and volume values at the organ level. This model allows to obtain insight and understanding of the effects of the treatment techniques, from a physiological and biological point of view.
Collapse
Affiliation(s)
| | - Selim Bozkurt
- Eindhoven University of Technology, Biomedical Engineering, Materials Technology, PO Box 513, GEM-Z 4.18, 5600 MB, Eindhoven, The Netherlands.
| | - Marcel C M Rutten
- Eindhoven University of Technology, Biomedical Engineering, Materials Technology, PO Box 513, GEM-Z 4.18, 5600 MB, Eindhoven, The Netherlands.
| | - Frans N van de Vosse
- Eindhoven University of Technology, Biomedical Engineering, Materials Technology, PO Box 513, GEM-Z 4.18, 5600 MB, Eindhoven, The Netherlands.
| | - Vanessa Díaz-Zuccarini
- University College London, Mechanical Engineering Department, Torrington Place, WC1E 7JE London, UK.
| |
Collapse
|
29
|
Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol 2012; 303:H475-85. [PMID: 22707558 PMCID: PMC3423146 DOI: 10.1152/ajpheart.00238.2012] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/09/2012] [Indexed: 12/21/2022]
Abstract
Circadian rhythms are approximate 24-h oscillations in physiology and behavior. Circadian rhythm disruption has been associated with increased incidence of hypertension, coronary artery disease, dyslipidemia, and other cardiovascular pathologies in both humans and animal models. Mice lacking the core circadian clock gene, brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like protein (Bmal1), are behaviorally arrhythmic, die prematurely, and display a wide range of organ pathologies. However, data are lacking on the role of Bmal1 on the structural and functional integrity of cardiac muscle. In the present study, we demonstrate that Bmal1(-/-) mice develop dilated cardiomyopathy with age, characterized by thinning of the myocardial walls, dilation of the left ventricle, and decreased cardiac performance. Shortly after birth the Bmal1(-/-) mice exhibit a transient increase in myocardial weight, followed by regression and later onset of dilation and failure. Ex vivo working heart preparations revealed systolic ventricular dysfunction at the onset of dilation and failure, preceded by downregulation of both myosin heavy chain isoform mRNAs. We observed structural disorganization at the level of the sarcomere with a shift in titin isoform composition toward the stiffer N2B isoform. However, passive tension generation in single cardiomyocytes was not increased. Collectively, these findings suggest that the loss of the circadian clock gene, Bmal1, gives rise to the development of an age-associated dilated cardiomyopathy, which is associated with shifts in titin isoform composition, altered myosin heavy chain gene expression, and disruption of sarcomere structure.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- Age Factors
- Aging
- Animals
- Cardiomyopathy, Dilated/diagnostic imaging
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Connectin
- Disease Progression
- Gene Expression Regulation
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/metabolism
- Myocardial Contraction
- Myocardium/metabolism
- Myocardium/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Protein Kinases/metabolism
- RNA, Messenger/metabolism
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Stroke Volume
- Ultrasonography
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Pressure
Collapse
Affiliation(s)
- Mellani Lefta
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
30
|
Wainstein RV, Sasson Z, Mak S. Frequency-dependent left ventricular performance in women and men. Am J Physiol Heart Circ Physiol 2012; 302:H2363-71. [DOI: 10.1152/ajpheart.01125.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine whether sex differences in humans extend to the dynamic response of the left ventricular (LV) chamber to changes in heart rate (HR). Several observations suggest sex influences LV structure and function in health; moreover, this physiology is also affected in a sex-specific manner by aging. Eight postmenopausal women and eight similarly aged men underwent a cardiac catheterization-based study for force-interval relationships of the LV. HR was controlled by right atrial (RA) pacing, and LV +dP/d tmax and volume were assessed by micromanometer-tipped catheter and Doppler echocardiography, respectively. Analysis of approximated LV pressure-volume relationships was performed using a time-varying model of elastance. External stroke work was also calculated. The relationship between HR and LV +dP/d tmax was expressed as LV +dP/d tmax = b + mHR. The slope ( m) of the relationship was steeper in women compared with men (11.8 ± 4.0 vs. 6.1 ± 4.1 mmHg·s−1·beats−1·min−1, P = 0.01). The greater increase in contractility in women was reproducibly observed after normalizing LV +dP/d tmax to LV end-diastolic volume (LVVed) or by measuring end-systolic elastance. LVVed and stroke volume decreased more in women. Thus, despite greater increases in contractility, HR was associated with a lesser rise in cardiac output and a steeper fall in external stroke work in women. Compared with men, women exhibit greater inotropic responses to incremental RA pacing, which occurs at the same time as a steeper decline in external stroke work. In older adults, we observed sexual dimorphism in determinants of LV mechanical performance.
Collapse
Affiliation(s)
| | - Zion Sasson
- The Harold & Esther Mecklinger Family and Posluns Family Cardiac Catheterization Research Laboratory, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Susanna Mak
- The Harold & Esther Mecklinger Family and Posluns Family Cardiac Catheterization Research Laboratory, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
31
|
Zhang GX, Obata K, Takeshita D, Mitsuyama S, Nakashima T, Kikuta A, Hirabayashi M, Tomita K, Vetter R, Dillmann WH, Takaki M. Evaluation of left ventricular mechanical work and energetics of normal hearts in SERCA2a transgenic rats. J Physiol Sci 2012; 62:221-31. [PMID: 22383047 PMCID: PMC10717940 DOI: 10.1007/s12576-012-0200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) is responsible for most of the Ca(2+) removal during diastole and a larger Ca(2+) handling energy consumer in excitation-contraction (E-C) coupling. To understand the cardiac performance under long-term SERCA2a overexpression conditions, we established SERCA2a transgenic (TG) Wistar rats to analyze cardiac mechanical work and energetics in normal hearts during pacing at 300 beats/min. SERCA2a protein expression was increased in TGI and TGII rats (F2 and F3 of the same father and different mothers). Mean left ventricular (LV) end-systolic pressure (ESP) and systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) were significantly larger in TGI rats and were unchanged in TGII rats, compared to those in non-TG [wildtype (WT)] littermates. Mean myocardial oxygen consumption per minute for E-C coupling was significantly increased, and the mean slope of myocardial oxygen consumption per beat (VO(2))-PVA (systolic PVA) linear relation was smaller, but the overall O(2) cost of LV contractility for Ca(2+) is unchanged in all TG rats. Mean Ca(2+) concentration exerting maximal ESP(mLVV) in TGII rats was significantly higher than that in WT rats. The Ca(2+) overloading protocol did not elicit mitochondrial swelling in TGII rats. Tolerance to higher Ca(2+) concentrations may support the possibility for enhanced SERCA2a activity in TGII rats. In conclusion, long-term SERCA2a overexpression enhanced or maintained LV mechanics, improved contractile efficiency under higher energy expenditure for Ca(2+) handling, and improved Ca(2+) tolerance, but it did not change the overall O(2) cost of LV contractility for Ca(2+) in normal hearts of TG rats.
Collapse
Affiliation(s)
- Guo-Xing Zhang
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
- Department of Physiology, Medical College of Soochow University, Dushu Lake Campus, Suzhou Industrial Park, Suzhou, 215123 People’s Republic of China
| | - Koji Obata
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Daisuke Takeshita
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Shinichi Mitsuyama
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Tamiji Nakashima
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Akio Kikuta
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Masumi Hirabayashi
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8787 Japan
| | - Koichi Tomita
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8787 Japan
| | - Roland Vetter
- Institut für Klinische Pharmakologie und Toxikologie, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Hufelandweg 9, 10117 Berlin, Germany
| | | | - Miyako Takaki
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| |
Collapse
|
32
|
Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1145-74. [PMID: 22453987 PMCID: PMC3740791 DOI: 10.1007/978-94-007-2888-2_52] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure (HF) is an increasing public health problem accelerated by a rapidly aging global population. Despite considerable progress in managing the disease, the development of new therapies for effective treatment of HF remains a challenge. To identify targets for early diagnosis and therapeutic intervention, it is essential to understand the molecular and cellular basis of calcium handling and the signaling pathways governing the functional remodeling associated with HF in humans. Calcium (Ca(2+)) cycling is an essential mediator of cardiac contractile function, and remodeling of calcium handling is thought to be one of the major factors contributing to the mechanical and electrical dysfunction observed in HF. Active research in this field aims to bridge the gap between basic research and effective clinical treatments of HF. This chapter reviews the most relevant studies of calcium remodeling in failing human hearts and discusses their connections to current and emerging clinical therapies for HF patients.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University in St. Louis, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
33
|
Haizlip KM, Janssen PML. In vitro studies of early cardiac remodeling: impact on contraction and calcium handling. Front Biosci (Schol Ed) 2011; 3:1047-57. [PMID: 21622254 DOI: 10.2741/209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac remodeling, hypertrophy, and alterations in calcium signaling are changes of the heart that often lead to failure. After a hypertrophic stimulus, the heart progresses through a state of compensated hypertrophy which over time leads to decompensated hypertrophy or failure. It is at this point that a cardiac transplant is required for survival making early detection imperative. Current experimental systems used to study the remodeling of the heart include in vivo systems (the whole body), isolated organ and sub-organ tissue, and the individual cardiac muscle cells and organelles.. During pathological remodeling there is a derangement in the intracellular calcium handling processes. These derangements are thought to lead to a dysregulation of contractile output. Hence, understanding the mechanism between remodeling and dysregulation is of great interest in the cardiac field and will ultimately help in the development of future treatment and early detection. This review will center on changes in contraction and calcium handling in early cardiac remodeling, with a specific focus on findings in two different in vitro model systems: multicellular and individual cell preparations.
Collapse
Affiliation(s)
- Kaylan M Haizlip
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
34
|
Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation 2011; 123:1881-90. [PMID: 21502574 PMCID: PMC3100201 DOI: 10.1161/circulationaha.110.989707] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/01/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excitation-contraction (EC) coupling is altered in end-stage heart failure. However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective of this article was to study functional remodeling of excitation-contraction coupling and calcium handling in failing and nonfailing human hearts. METHODS AND RESULTS We simultaneously optically mapped action potentials and calcium transients in coronary perfused left ventricular wedge preparations from nonfailing (n=6) and failing (n=5) human hearts. Our major findings are the following. First, calcium transient duration minus action potential duration was longer at subendocardium in failing compared with nonfailing hearts during bradycardia (40 bpm). Second, the transmural gradient of calcium transient duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 bpm). Third, calcium transient in failing hearts had a flattened plateau at the midmyocardium and exhibited a 2-component slow rise at the subendocardium in 3 failing hearts. Fourth, calcium transient relaxation was slower at the subendocardium than at the subepicardium in both groups. Protein expression of sarcoplasmic reticulum Ca(2+)-ATPase 2a was lower at the subendocardium than the subepicardium in both nonfailing and failing hearts. Sarcoplasmic reticulum Ca(2+)-ATPase 2a protein expression at subendocardium was lower in hearts with ischemic cardiomyopathy compared with those with nonischemic cardiomyopathy. CONCLUSIONS For the first time, we present direct experimental evidence of transmural heterogeneity of excitation-contraction coupling and calcium handling in human hearts. End-stage heart failure is associated with the heterogeneous remodeling of excitation-contraction coupling and calcium handling.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant 2010; 29:554-61. [DOI: 10.1016/j.healun.2009.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022] Open
|
37
|
Lehnart SE, Maier LS, Hasenfuss G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 2010; 14:213-24. [PMID: 19434491 PMCID: PMC2772965 DOI: 10.1007/s10741-009-9146-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca(2+)) and 3'-5'-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca(2+) and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Department of Cardiology & Pulmonology, Center of Molecular Cardiology, UMG Heart Center, Georg August University Medical School, Goettingen, Germany.
| | | | | |
Collapse
|
38
|
Istaroxime, a first in class new chemical entity exhibiting SERCA-2 activation and Na–K-ATPase inhibition: a new promising treatment for acute heart failure syndromes? Heart Fail Rev 2009; 14:277-87. [DOI: 10.1007/s10741-009-9136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
39
|
Hünlich M, Hasenfuss G. Effects of the NO donor sodium nitroprusside on oxygen consumption and energetics in rabbit myocardium. Basic Res Cardiol 2009; 104:359-65. [PMID: 19190952 PMCID: PMC3085761 DOI: 10.1007/s00395-009-0777-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 12/22/2008] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) has influence on various cellular functions. Little is known of the influence of NO on myocardial energetics. In the present study oxygen consumption and mechanical parameters of isometrically contracting rabbit papillary muscles (1 Hz stimulation frequency) were investigated at varying interventions while maintaining physiological conditions (37°C; 2.5 mM Ca2+) to study the effects of NO on energetics. The NO donor sodium nitroprusside (SNP) showed a negative inotropic effect. SNP decreased the maximal force in normal rabbit muscle strips by 30%, the force time integral (FTI) by 40% and the relaxation time by 20%. In addition the oxygen consumption decreased by 60%, a notably disproportional decrease compared to the mechanical parameters. Consequently, the economy as a ratio of FTI and oxygen consumption is significantly increased by SNP. In contrast the negative inotropic effect due to a reduction in extracellular Calcium (Ca2+) from 2.5 to 1.25 mM reduced FTI and oxygen consumption proportionally by 40% and did not change economy. The effect of NO on force and oxygen consumption could be reproduced by the application of the cyclic guanosine monophosphate (cGMP) analogue 8-bromo-cGMP. In summary, NO increased the economy of isometrically contracting papillary muscles. The improvement in contraction economy under NO seems to be mediated by cGMP as the secondary messenger and maybe due to alterations of the crossbridge cycle.
Collapse
Affiliation(s)
- Mark Hünlich
- Universitätsklinik Göttingen, Abteilung für Kardiologie, Robert-Koch-Strasse 40, 37099, Göttingen, Germany.
| | | |
Collapse
|
40
|
The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-01932-6_38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
41
|
Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity : a proteomic approach. Basic Res Cardiol 2008; 103:232-43. [PMID: 18274801 PMCID: PMC3085746 DOI: 10.1007/s00395-008-0696-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
Abstract
Chronic hemodynamic overload on the heart results in pathological myocardial hypertrophy, eventually followed by heart failure. Phosphatase calcineurin is a crucial mediator of this response. Little is known, however, about the role of calcineurin in response to acute alterations in loading conditions of the heart, where it could be mediating beneficial adaptational processes. We therefore analyzed proteome changes following a short-term increase in preload in rabbit myocardium in the absence or presence of the calcineurin inhibitor cyclosporine A. Rabbit right ventricular isolated papillary muscles were cultivated in a muscle chamber system under physiological conditions and remained either completely unloaded or were stretched to a preload of 3 mN/mm2, while performing isotonic contractions (zero afterload). After 6 h, proteome changes were detected by two-dimensional gel electrophoresis and ESI-MS/MS. We identified 28 proteins that were upregulated by preload compared to the unloaded group (at least 1.75-fold regulation, all P < 0.05). Specifically, mechanical load upregulated a variety of enzymes involved in energy metabolism (i.e., aconitase, pyruvate kinase, fructose bisphosphate aldolase, ATP synthase alpha chain, acetyl-CoA acetyltransferase, NADH ubiquinone oxidoreductase, ubiquinol cytochrome c reductase, hydroxyacyl-CoA dehydrogenase). Cyclosporine A treatment (1 µmol/l) abolished the preload-induced upregulation of these proteins. We demonstrate for the first time that an acute increase in the myocardial preload causes upregulation of metabolic enzymes, thereby increasing the capacity of the myocardium to generate ATP production. This short-term adaptation to enhanced mechanical load appears to critically depend on calcineurin phosphatase activity.
Collapse
|
42
|
Bragadeesh TKM, Mathur G, Clark AL, Cleland JGF. Novel cardiac myosin activators for acute heart failure. Expert Opin Investig Drugs 2007; 16:1541-8. [DOI: 10.1517/13543784.16.10.1541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
McGinley JC, Berretta RM, Chaudhary K, Rossman E, Bratinov GD, Gaughan JP, Houser S, Margulies KB. Impaired contractile reserve in severe mitral valve regurgitation with a preserved ejection fraction. Eur J Heart Fail 2007; 9:857-64. [PMID: 17594913 DOI: 10.1016/j.ejheart.2007.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/13/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Impaired contractile reserve in chronic MR results from load-independent, myocyte contractile abnormalities. AIMS Investigate the mechanisms of contractile dysfunction in chronic mitral valve regurgitation (MR). METHODS Mild MR was produced in eight dogs followed by pacing induced left ventricular (LV) dilatation over eight months. In-vivo LV dP/dt was measured at several pacing rates. Contractile function was measured in isolated LV trabeculae and myocytes at several stimulation rates and during changes in extracellular [Ca2+]. Identical studies were performed with six control dogs. RESULTS Chronic MR resulted in a preserved ejection fraction with decreased dP/dt (p<0.01). LV trabeculae demonstrated significantly lower developed force and a negative force-frequency relation with chronic MR (p<0.05). Myocytes exhibited a negative shortening-frequency relationship in both groups with a greater decline with chronic MR (p<0.001) paralleled by decreases in peak [Ca2+](i) transients. Increases in extracellular [Ca2+] abrogated the defects in force generation in trabeculae from animals with chronic MR. CONCLUSION Even with a preserved EF, chronic severe MR results in a significant reduction in intrinsic contractile function and reserve. Functional impairment was load-independent reflecting a predominant defect in calcium cycling rather than impaired peak force generating capacity due to myofibrillar attenuation.
Collapse
Affiliation(s)
- Joseph C McGinley
- Cardiovascular Research Center, Temple University School of Medicine, United States.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nguyen TC, Cheng A, Langer F, Rodriguez F, Oakes RA, Itoh A, Ennis DB, Liang D, Daughters GT, Ingels NB, Miller DC. Altered myocardial shear strains are associated with chronic ischemic mitral regurgitation. Ann Thorac Surg 2006; 83:47-54. [PMID: 17184629 DOI: 10.1016/j.athoracsur.2006.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemic mitral regurgitation (IMR) limits life expectancy and can lead to postinfarction global left ventricular (LV) dilatation and remodeling, the pathogenesis of which is not completely known. We tested the hypothesis that IMR perturbs adjacent myocardial LV systolic strains. METHODS Thirteen sheep had three columns of miniature beads inserted across the lateral LV wall, with additional epicardial markers silhouetting the ventricle. One week later posterolateral infarction was created. Seven weeks thereafter, the animals were divided into two groups according to severity of IMR (< or = 1+, n = 7, IMR[-] vs > or = 2+, n = 6, IMR[+]). Four dimensional marker coordinates and quantitative histology were used to calculate ventricular volumes, transmural myocardial systolic strains, and systolic fiber shortening. RESULTS Seven weeks after infarction, end-diastolic (ED) volume increased similarly in both groups, end-systolic (ES) E13 (circumferential-radial) shear increased in both groups, but more so in IMR(+) than IMR(-) (+0.12 vs 0.04, p < 0.005), and E12 (circumferential-longitudinal) shear increased in IMR(-) but not IMR(+) (+0.04 vs -0.01, p < 0.005). There were no significant differences in ED or ES remodeling strains or systolic fiber shortening between IMR(-) and IMR(+). CONCLUSIONS An equivalent increase in LV end-diastolic (ED) volume in both groups, coupled with unchanged ED and end-systolic remodeling strains as well as systolic circumferential, longitudinal, and radial strains, argue against a global LV or regional myocardial geometric basis for the cardiomyopathy associated with IMR. Further, similar systolic fiber shortening in both groups militates against an intracellular (cardiomyocyte) mechanism. The differences in subepicardial E12 and E13 shears, however, suggest a causal role of altered interfiber (cytoskeleton and extracellular-matrix) interactions.
Collapse
Affiliation(s)
- Tom C Nguyen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California 94305-5247, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vicario MLE, Caso P, Martiniello AR, Fontanella L, Petretta M, Sardu C, Petretta MP, Bonaduce D. Effects of volume loading on strain rate and tissue Doppler velocity imaging in patients with idiopathic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown) 2006; 7:852-8. [PMID: 17122670 DOI: 10.2459/01.jcm.0000253826.44234.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Strain rate is a promising echocardiographic technique which adds further information to that obtained with two-dimensional echocardiography and tissue Doppler imaging (TDI). The present study aimed to evaluate the effects of acute isotonic volume expansion on left ventricular function in patients with idiopathic dilated cardiomyopathy (DCM) utilizing TDI and strain rate measurements. METHODS Ten patients with DCM and a left ventricular ejection fraction (LVEF) </= 40% underwent two-dimensional echocardiography during volume expansion (0.9% NaCl; 0.25 ml/kg/min for 120 min). Peak systolic tissue velocity and peak systolic strain rate were measured at baseline and at the end of volume loading. RESULTS Mean LVEF was 32 +/- 9% at baseline and remained unchanged after volume loading. Similarly, peak systolic velocity was 2.21 cm/s at baseline and remained unchanged after volume expansion. By contrast, peak systolic strain rate significantly reduced from -1.08 +/- 0.37/s to -0.76 +/- 0.12/s (P < 0.05). CONCLUSIONS In patients with DCM, peak systolic strain rate significantly reduces with volume loading in the absence of change in LVEF or peak systolic velocities at TDI. Because strain rate is a relative load-independent index of systolic function, the reduction observed is probably related to the decrease in left ventricular systolic performance that follows volume loading in heart failure patients. Thus, peak systolic strain rate appears to be more useful than TDI velocities to evaluate left ventricular dynamics during volume loading in patients with depressed left ventricular function.
Collapse
Affiliation(s)
- Maria Lucia Eufrasia Vicario
- Department of Internal Medicine, Cardiology, Heart and Immunological Sciences, Section of Internal Medicine, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chakraborti S, Das S, Kar P, Ghosh B, Samanta K, Kolley S, Ghosh S, Roy S, Chakraborti T. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem 2006; 298:1-40. [PMID: 17119849 DOI: 10.1007/s11010-006-9355-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 10/12/2006] [Indexed: 01/24/2023]
Abstract
Ca(2+) is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca(2+))(i) level in situ. The Ca(2+) signal inducing contraction in cardiac muscle originates from two sources. Ca(2+) enters the cell through voltage dependent Ca(2+) channels. This Ca(2+) binds to and activates Ca(2+) release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca(2+) induced Ca(2+) release (CICR) process. Entry of Ca(2+) with each contraction requires an equal amount of Ca(2+) extrusion within a single heartbeat to maintain Ca(2+) homeostasis and to ensure relaxation. Cardiac Ca(2+) extrusion mechanisms are mainly contributed by Na(+)/Ca(2+) exchanger and ATP dependent Ca(2+) pump (Ca(2+)-ATPase). These transport systems are important determinants of (Ca(2+))(i) level and cardiac contractility. Altered intracellular Ca(2+) handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the beta-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca(2+) release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the beta-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca(2+) regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca(2+) handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hou M, Hu Q, Chen Y, Zhao L, Zhang J, Bache RJ. Acute effects of febuxostat, a nonpurine selective inhibitor of xanthine oxidase, in pacing induced heart failure. J Cardiovasc Pharmacol 2006; 48:255-63. [PMID: 17110808 DOI: 10.1097/01.fjc.0000249961.61451.da] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated whether xanthine oxidase inhibition with febuxostat enhances left ventricular (LV) function and improves myocardial high energy phosphates (HEP) in dogs with pacing-induced heart failure (CHF). Febuxostat (2.2 mg/kg over 10 minutes followed by 0.06 mg/kg/min) caused no change of LV function or myocardial oxygen consumption (MVO2) at rest or during treadmill exercise in normal dogs. In dogs with CHF, febuxostat increased LV dP/dtmax at rest and during heavy exercise (P < 0.05), indicating improved LV function with no change of MVO2. Myocardial adenosine triphosphate (ATP) and phosphocreatine (PCr) were examined using 31P nuclear magnetic resonance spectroscopy in the open chest state. In normal dogs, febuxostat increased PCr/ATP during basal conditions and during high workload produced by dobutamine + dopamine (P < 0.05). PCr/ATP was decreased in animals with CHF; in these animals, febuxostat (given after completing basal and high workload measurements with vehicle) tended to increase PCr/ATP during basal conditions with no effect during catecholamine stimulation. Thus, febuxostat improved LV performance in awake dogs with CHF, but caused only a trend toward increased PCr/ATP in the open chest state. It is possible that the antecedent high workload condition prior to drug administration blunted the effect of febuxostat on HEP in the CHF animals. Alternatively, beneficial effects of febuxostat on LV performance in the failing heart may not involve HEP.
Collapse
Affiliation(s)
- Mingxiao Hou
- Division of Cardiology, Department of Medicine, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Stimulation of several G-protein-coupled receptors (GPCRs) promotes intracellular production of cyclic adenosine 3',5'-monophosphate (cAMP) and subsequently activates protein kinase A (PKA). In the heart, beta-adrenergic receptor (beta-AR) stimulation increases contractile performance and heart rate as part of the 'fight-or-flight' stress response. Molecular organisation of PKA-effector association occurs by A kinase anchoring proteins (AKAPs), which target kinase action to specific intracellular sites. Some AKAPs interact directly with specific cAMP-hydrolysing phosphodiesterase (PDE) isoforms allowing for the assembly of multi-protein complexes that create focal points of intracellular cAMP signalling. Certain PDE isoforms co-localise with PKA as part of negative feedback mechanisms which may protect from excess beta-AR stimulation of Ca2+ transporters during cardiac excitation-contraction coupling. Pharmacological PDE inhibition increases intracellular cAMP concentrations and augments excitation-contraction coupling in heart failure. However, chronic PDE inhibitor treatment causes severe cardiac side effects and increases mortality. Moreover, cAMP hydrolysing PDE activity was found decreased in heart failure which may contribute to disease progression via chronic PKA-dependent dysregulation of Ca2+ transport proteins. The authors review the contribution of PDE activity in the heart to contractile stress adaptation, the significance of altered cAMP signalling in heart failure, and the effects of PDE inhibition in heart disease.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Columbia University, Clyde and Helen Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Phrommintikul A, Chattipakorn N. Roles of cardiac ryanodine receptor in heart failure and sudden cardiac death. Int J Cardiol 2006; 112:142-52. [PMID: 16701909 DOI: 10.1016/j.ijcard.2005.11.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
Calcium (Ca2+) plays an important role as a messenger in the excitation-contraction coupling process of the myocardium. It is stored in the sarcoplasmic reticulum (SR) and released via a calcium release channel called the ryanodine receptor. Cardiac ryanodine receptor (RyR2) controls Ca2+ release, which is essential for cardiac contractility. There are several molecules which bind and regulate the function of RyR2 including calstabin2, calmodulin, protein kinase A (PKA), phosphatase, sorcin and calsequestrin. Alteration of RyR2 and associated molecules can cause functional and/or structural changes of the heart, leading to heart failure and sudden cardiac death. In this review, the alteration of RyR2 and its regulatory proteins, and its roles in heart failure and sudden cardiac death, are discussed. Evidence of a possible novel therapy targeting RyR2 and its associated regulatory proteins, currently proposed by investigators, is also included in this article.
Collapse
Affiliation(s)
- Arintaya Phrommintikul
- Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
50
|
Abstract
While the remodeling process in myocardial failure involves changes in ventricular structure and performance, it is now appreciated that it is also associated with changes in thin filament composition and function. As is discussed, changes at the level thick filament may affect thin filament activation in heart failure. Alterations in actin, troponin and tropomyosin isoform composition do not appear to be significant factors in human heart failure. In contrast, proteolytic degradation of troponin subunits are likely to be playing a functional role in some forms of cardiomyopathy (e.g. ischemic). Finally, phosphorylation of troponin I and troponin T by kinases (most notably protein kinase C) substantially affect thin filament function in failing human myocardium. These findings indicate that functional deficits in thin filament function in failing myocardium are largely reversible and create the potential for future targeted therapies in the treatment of this deadly disease.
Collapse
Affiliation(s)
- Peter VanBuren
- Department of Medicine, College of Medicine, University of Vermont, VT 05405, USA.
| | | |
Collapse
|