1
|
Strijdhorst A, Vos WG, Bosmans LA, Dzobo KE, Kusters PJH, Hanssen NMJ, Kroon J, Lutgens E, van Laarhoven HWM, Seijkens TTP, van Es N. Accelerated atherosclerosis associated with immune checkpoint inhibitors: a systematic review and meta-analysis of pre-clinical studies. Atherosclerosis 2025; 405:119219. [PMID: 40354680 DOI: 10.1016/j.atherosclerosis.2025.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Patients with cancer treated with immune checkpoint inhibitors are at increased risk of myocardial infarction and ischemic stroke. The mechanism is incompletely understood but may involve accelerated atherosclerosis due to enhanced inflammation. Pre-clinical studies may provide insight in these mechanisms. AIM To assess the effects of modulating co-inhibitory immune checkpoint proteins on atherosclerosis progression in animal models. METHODS A systematic review was performed in MEDLINE, Embase, Web of Science, and Scopus up to March 2025. Animal studies were included if the effect of modulation of programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and/or lymphocyte-activation gene 3 (LAG-3) on atherosclerotic plaque size was evaluated. Secondary outcomes were plaque composition and systemic inflammation. The ratios of means (RoM) across the studies were pooled in a random effects meta-analysis. Risk of bias was assessed using the SYRCLE tool, focusing on randomization, blinding, and completeness of outcome reporting. RESULTS Fourteen eligible studies were included. All studies used an atherosclerotic mouse model (ApoE-/-, Ldlr-/-, ApoE3∗Leiden, or AAV8-PCSK9) and either evaluated pharmacological or genetic modulation of co-inhibitory immune checkpoint proteins. Upon inhibition, atherosclerotic plaque size in the aorta was 53 % higher in exposed mice compared to control mice (RoM, 1.53; 95 % CI, 1.29-1.83; I2 = 89 %). Plaque composition was predominantly characterized by a greater abundance of CD4+ T cells, CD8+ T cells, and macrophages. Studies stimulating co-inhibitory immune checkpoint proteins corroborated these findings and demonstrated that atherosclerotic plaque size was reduced by 28 % in treated mice compared to controls (RoM, 0.72; 95 % CI, 0.65-0.80; I2 = 85 %). This reduction was paralleled by a decrease in the number of macrophages and T cells in plaques. CONCLUSION Immune checkpoint inhibition leads to increased plaque inflammation and a significant increase in murine atherosclerotic plaque size. These changes may reflect the cause of the increased risk of myocardial infarction and ischemic stroke in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Anniek Strijdhorst
- Amsterdam UMC Location University of Amsterdam, Department of Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands.
| | - Winnie G Vos
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Laura A Bosmans
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Kim E Dzobo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Pascal J H Kusters
- Department of Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nordin M J Hanssen
- Amsterdam UMC Location University of Amsterdam, Department of Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Boelelaan, 1117, Amsterdam, the Netherlands
| | - Tom T P Seijkens
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nick van Es
- Amsterdam UMC Location University of Amsterdam, Department of Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Wang J, Zheng W, Shang H, Pan L, Yuan Y, Chen W, Guo C, Li S, Sun X, Guo J, Zhang X. Radial artery intima-media thickening is a sensitive marker of atherosclerosis and coronary artery stenosis, a lesson from a 6-year study of a spontaneous monkey model. Mol Cell Biochem 2025:10.1007/s11010-025-05315-x. [PMID: 40411734 DOI: 10.1007/s11010-025-05315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/15/2025] [Indexed: 05/26/2025]
Abstract
Atherosclerosis is the primary driver of cardiovascular and cerebral vascular diseases globally. Atherosclerotic plaques have been detected in multiple arterial locations, such as the aorta, carotids, and coronaries. However, it remains uncertain if there are variations in susceptibility and association among arteries of different calibers. Utilizing a spontaneous rhesus monkey model of metabolic syndrome (MetS), we assessed the susceptibility of atherosclerosis among the radial artery, femoral artery, and carotid artery and their correlation with coronary heart disease (CHD). The development of atherosclerosis in the three arteries mentioned above was evaluated by Intima-media thickness (IMT) and plaques using echo imaging over 6 years in a cohort of elderly monkeys with metabolic disorders. Coronary artery stenosis was assessed by coronary flow reserve (CFR) simultaneously. The diagnosis was further confirmed by histopathological examination, and RNA sequencing was employed to probe the transcriptional underpinnings of atherosclerotic development. The spontaneous development of atherosclerosis was observed in elderly monkeys, and the incidence of atherosclerosis was increased by three times in the MetS monkeys compared to the age-matched control group. During the 6-year follow-up, there was a notable increase in the IMT across all three arteries, with the radial artery showing the most pronounced thickening. Moreover, only the radial IMT correlated with CFR, suggesting its potential as a non-invasive diagnostic indicator for CHD. Histopathology confirmed the findings by echo imaging and identified different extracellular matrix (ECM) remodeling patterns in the arteries. In addition, transcriptomic analysis revealed that ECM remodeling and inflammation-related pathways were significantly upregulated in radial atherosclerotic samples, multiple inflammatory pathways were upregulated in the femoral lesion samples, and the carotid samples failed to enrich any pathways due to a lack of differentially expressed genes compared to the control samples. Non-human primates, which share extensive genetic and physiological similarities with humans, develop atherosclerosis spontaneously. This provides an invaluable platform for investigating the intricate mechanisms of arterial disease and evaluating potential treatments. Using the monkey model, we identified the radial artery as a sensitive indicator for assessing the occurrence and progression of atherosclerosis and coronary stenosis.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Wen Zheng
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Haibao Shang
- Laboratory Animal Center, Peking University, Beijing, 100871, China
| | - Lin Pan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ye Yuan
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenli Chen
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Chunguang Guo
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shihan Li
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
González-Moro A, Herranz E, Rodríguez de Lope MM, Sanchez-Pajares IR, Sánchez-Ramírez J, Rivera-Tenorio A, Shamoon L, Sánchez-Ferrer CF, Peiró C, de la Cuesta F. Sex-specific molecular hallmarks point to increased atherogenesis susceptibility in male senescence-accelerated mice. Life Sci 2025; 369:123529. [PMID: 40049367 DOI: 10.1016/j.lfs.2025.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
AIMS The senescence-accelerated mouse (SAM) model has been extensively used to study neurological alterations associated with aging. The SAM model has also proved to be useful in the study of vascular aging, but there is still work to be done to better define its utility as a model of atherosclerosis, since contradictory data have been published and sex seems to play a crucial role in potential divergences. MATERIALS AND METHODS With this in mind, we aimed to decipher the molecular mechanisms underlying early vascular aging on SAMP8 mice, analyzing the aorta of 10 months-old animals by means of in-depth proteomic analysis, considering sex-specific differences. Validation of the results obtained were performed by western blot in an independent cohort of mice, as well as in human aortic smooth muscle cells (HASMC). Besides, an exhaustive lipoprotein and glycoprotein analysis was performed in blood plasma. KEY FINDINGS Distinct proteomic, lipoprotein and glycoprotein profiles have been found in SAMP8 mice, according to sex. Male SAMP8 mice showed signs of increased atherogenesis susceptibility due to several sex-specific alterations: 1) increased number of VLDLs, as well as in their cholesterol and TG content; 2) upregulation of inflammatory glycoproteins in plasma; and 3) increased features of SASP and vascular calcification: upregulation of exocytic vesicular transport and downregulation of the protein Gas6. On the contrary, female mice showed a much better proteomic and lipoprotein profile. SIGNIFICANCE The results obtained suggest that male SAMP8 mice will be more susceptible to develop atherosclerosis under a HFD than female mice.
Collapse
Affiliation(s)
- Ainara González-Moro
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Estela Herranz
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Miriam Morales Rodríguez de Lope
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Ibone Rubio Sanchez-Pajares
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jorge Sánchez-Ramírez
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Alan Rivera-Tenorio
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Licia Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Carlos Félix Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Fernando de la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.
| |
Collapse
|
4
|
Wang X, Shi SR, Sun MM, Zhang XY, Zhang XH, Song SL, Yin F, Guo SD. Mechanisms of action of Fucus vesiculosus-derived fucoidan on improving dyslipidemia in New Zealand rabbits fed a high-fat diet. Int J Biol Macromol 2025; 314:144148. [PMID: 40368205 DOI: 10.1016/j.ijbiomac.2025.144148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/30/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Dyslipidemia is a major contributor to various diseases, including atherosclerotic cardiovascular disease and obesity. Treatment strategies for dyslipidemia continue to evolve as our understanding of this metabolic disorder and potential therapeutic candidates advance. Notably, fucoidan demonstrates promising effects in ameliorating dyslipidemia in rodents, although their lipid metabolism differs significantly from humans. This study, investigates the lipid-regulatory effects of Fucus vesiculosus-derived fucoidan (FvF) and elucidates the underlying mechanisms of action using New Zealand rabbits fed a high-fat diet, whose lipid profiles closely resemble those of patients with dyslipidemia. The results demonstrate that FvF intervention ameliorates dyslipidemia and lipid deposition in a dose-dependent manner. Mechanistically, FvF intervention modulates the expression levels of multiple molecules involved in lipid transport, fatty acid synthesis and beta-oxidation, and redox balance, as revealed by quantitative reverse transcription polymerase chain reaction, western blotting, and proteomic analysis. This study is the first to report that FvF, consisting of alternating [→4)-α-L-Fucp(1 → 3)-α-L-Fucp(1→] glycosyls ameliorates dyslipidemia by directly modulating lipid metabolism and indirectly attenuating oxidative stress. These findings suggest that FvF holds significant potential as a candidate for the treatment of lipid disorder-related diseases.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Min-Min Sun
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Xu-Hang Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shi-Lin Song
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
5
|
Zhang R, Wu S, Ye C, Li P, Xu B, Wang Y, Yang Z, Chen X, Chen J. In vivo metabolic effects of naringin in reducing oxidative stress and protecting the vascular endothelium in dyslipidemic mice. J Nutr Biochem 2025; 139:109866. [PMID: 39955014 DOI: 10.1016/j.jnutbio.2025.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Naringin, a flavonoid, has high antioxidant activity and hypolipidemic pharmacological effects. In this study, an animal model of dyslipidemia was established by feeding Apoe-/- mice a high-fat diet for 4 weeks. Subsequently, the mice were administered Naringin via gavage at doses of 50 mg/(kg·d), 100 mg/(kg·d), or 200 mg/(kg·d) for an additional 4 weeks. The research utilized liquid chromatography-mass spectrometry (LC-MS) metabolomics in conjunction with analyses of serum oxidative stress markers, Hematoxylin-eosin staining, Masson's trichome staining, and immunohistochemical staining. Naringin treatment reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol concentrations (P<.05), reversed disorders of vascular structure and morphology, increased serum nicotinamide adenine dinucleotide phosphate hydride and glutathione concentrations (P<.05), reduced serum peroxynitrite concentrations (P<.05), promoted aortic endothelial nitric oxide synthase protein expression and inhibited aortic prolyl isomerase-1 protein expression. Twenty differentiated metabolites were obtained from the serum by LC-MS assay, followed by 16 differential metabolic pathways after enrichment. Among the metabolic pathways, glycolysis/gluconeogenesis, the pentose phosphate pathway, purine metabolism, ascorbate metabolism, and aldarate metabolism are the most relevant metabolic pathways by which naringin reduces oxidative stress. Our findings suggest that naringin can reduce oxidative stress levels associated with dyslipidemia through multiple metabolic pathways, protect vascular endothelial function, and thus providing a novel and promising natural medicine for treating dyslipidemia.
Collapse
Affiliation(s)
- Runlei Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shengxian Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Xu
- Traditional Chinese Medicine Department, Tibetology Research Center of Beijing Tibetan Medicine Hospital, Beijing China
| | - Yue Wang
- Department of general surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Onishi Y, Miura N, Tanimoto A, Kawaguchi H. Methotrexate Enhances Atherosclerosis Progression via Impairment of Folate Pathway in a Microminipig Model. In Vivo 2025; 39:1262-1274. [PMID: 40295005 PMCID: PMC12041998 DOI: 10.21873/invivo.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM As the pathophysiology of Microminipigs (μMPs) is similar to that of human, μMPs are useful in atherosclerosis research. To clarify the effect of methotrexate (MTX) on atherosclerosis, we investigated the pathology of MTX-induced atherosclerosis lesion exacerbation in μMPs fed a high-fat and high-cholesterol diet (HFHCD). MATERIALS AND METHODS The μMPs were divided into four groups: HFHCD, HFHCD+MTX, HFHCD+MTX+leucovorin (LV), and HFHCD+MTX+folic acid (FA), and fed for two weeks. Laboratory tests including blood lipid, FA, and homocysteine (Hcy) levels, and pathological evaluation of the atherosclerosis lesion area and thickness were performed. Hepatic and jejunal gene expressions related to lipid and folate metabolism pathways including 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) were monitored using RT-PCR. RESULTS The HFHCD+MTX group showed increased blood Hcy (p<0.01) and decreased FA levels (p<0.05) in accordance with increased hepatic MTR mRNA expression (p<0.1) and exacerbation of atherosclerosis (p=0.051 for lesion area and p=0.045 for lesion thickness) compared to the HFHCD group. Administration of LV or FA attenuated the MTX-induced increase in the Hcy level (p<0.01), atherosclerosis lesion thickness (p<0.1), and MTR mRNA expression (p<0.1 in HFHCD+MTX vs. HFHCD+MTX+LV groups). CONCLUSION MTX exacerbated HFHCD-induced atherosclerosis mediated through reduced blood FA and the subsequent increase of Hcy in μMPs, indicating that the μMP model may advance cardio-oncology research by providing useful experimental approaches. As MTX is administered for rheumatoid arthritis and malignant tumors in humans, atherosclerosis exacerbation should be acknowledged as a possible adverse effect of MTX treatment.
Collapse
Affiliation(s)
- Yuko Onishi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan;
| |
Collapse
|
7
|
Jiang M, Ding H, Huang Y, Lau CW, Guo Y, Luo J, Shih YT, Xia Y, Yao X, Chiu JJ, Wang L, Chien S, Huang Y. Endothelial Serotonin Receptor 1B Acts as a Mechanosensor to Drive Atherosclerosis. Circ Res 2025; 136:887-901. [PMID: 40071330 DOI: 10.1161/circresaha.124.325453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Atherosclerosis is characterized by the accumulation of fatty and fibrotic plaques, which preferentially develop at curvatures and branches along the arterial trees that are exposed to disturbed flow. However, the mechanisms by which endothelial cells sense disturbed flow are still unclear. METHODS The partial carotid ligation mouse model was used to investigate disturbed flow-induced atherogenesis. In vitro experiments were performed using the ibidi system to generate oscillatory shear stress and laminar shear stress. ApoE-/- mice with endothelium-specific knockout or overexpression of 5-HT1B (serotonin receptor 1B) were used to investigate the role of endothelial 5-HT1B in atherosclerosis. RNA sequencing analysis, immunofluorescence analysis, and molecular biological techniques were used to explore the role of 5-HT1B in mechanotransduction and endothelial activation. RESULTS The data showed that human endothelial cells express a high level of 5-HT1B, which is a serotonin receptor subtype. Endothelial 5-HT1B is upregulated in atherosclerotic areas of both humans and rodents and is increased by disturbed flow both in vivo and in vitro. Endothelium-specific overexpression of 5-HT1B exacerbates, whereas knockout or knockdown of 5-HT1B in endothelium inhibits disturbed flow-induced endothelial inflammation and atherogenesis in both male and female ApoE-/- mice. We reveal a previously unknown role of 5-HT1B as a mechanosensor in endothelial cells in response to mechanical stimuli. Upon activation by oscillatory shear stress, 5-HT1B recruits β-arrestin, orchestrates RhoA (ras homolog family member A), and then activates mechanosensitive YAP (yes-associated protein), thereby enhancing endothelial inflammation and monocyte infiltration. Pharmacological blockade of 5-HT1B suppresses endothelial activation and atherogenesis via inhibition of YAP. CONCLUSIONS Taken together, these results uncover that endothelial 5-HT1B acts as a mechanosensor for disturbed flow and contributes to atherogenesis. Inhibition of 5-HT1B could be a promising therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Animals
- Humans
- Mechanotransduction, Cellular
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Mice
- Male
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Endothelial Cells/metabolism
- Stress, Mechanical
- Cells, Cultured
- Female
- Human Umbilical Vein Endothelial Cells/metabolism
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
Collapse
Affiliation(s)
- Minchun Jiang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (M.J.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Yuhong Huang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Ying Guo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.G.)
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (J.L.)
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Jeng-Jiann Chiu
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (J.-J.C.)
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Li Wang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Shu Chien
- Departments of Bioengineering and Medicine, and Institute of Engineering in Medicine, University of California, San Diego, CA (S.C.)
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre (Yu Huang), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Rroji M, Spahia N, Figurek A, Spasovski G. Targeting Diabetic Atherosclerosis: The Role of GLP-1 Receptor Agonists, SGLT2 Inhibitors, and Nonsteroidal Mineralocorticoid Receptor Antagonists in Vascular Protection and Disease Modulation. Biomedicines 2025; 13:728. [PMID: 40149704 PMCID: PMC11940462 DOI: 10.3390/biomedicines13030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Atherosclerosis is a closely related complication of diabetes mellitus (DM), driven by endothelial dysfunction, inflammation, and oxidative stress. The progression of atherosclerosis is accelerated by hyperglycemia, insulin resistance, and hyperlipidemia. Novel antidiabetic agents, SGLT2 inhibitors, and GLP-1 agonists improve glycemic control and offer cardiovascular protection, reducing the risk of major adverse cardiovascular events (MACEs) and heart failure hospitalization. These agents, along with nonsteroidal mineralocorticoid receptor antagonists (nsMRAs), promise to mitigate metabolic disorders and their impact on endothelial function, oxidative stress, and inflammation. This review explores the potential molecular mechanisms through which these drugs may prevent the development of atherosclerosis and cardiovascular disease (CVD), supported by a summary of preclinical and clinical evidence.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, University of Medicine Tirana, 1001 Tirana, Albania
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Nereida Spahia
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland;
| | - Goce Spasovski
- Department of Nephrology, University Sts. Cyril and Methodius, 1000 Skopje, North Macedonia;
| |
Collapse
|
9
|
Akther F, Sajin D, Moonshi SS, Pickett J, Wu Y, Zhang J, Nguyen NT, Ta HT. An intimal-lumen model in a microfluidic device: potential platform for atherosclerosis-related studies. LAB ON A CHIP 2025; 25:354-369. [PMID: 39698809 DOI: 10.1039/d4lc00868e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory vascular disorder driven by factors such as endothelial dysfunction, hypertension, hyperlipidemia, and arterial calcification, and is considered a leading global cause of death. Existing atherosclerosis models have limitations due to the absence of an appropriate hemodynamic microenvironment in vitro and interspecies differences in vivo. Here, we develop a simple but robust microfluidic intimal-lumen model of early atherosclerosis using interconnected dual channels for studying monocyte transmigration and foam cell formation at an arterial shear rate. To the best of our knowledge, this is the first study that creates a physiologically relevant microenvironment under an arterial shear rate to modulate lipid-laden foam cells on a microfluidic platform. As a proof of concept, we use murine endothelial cells to develop a vascular lumen in one channel and collagen-embedded murine smooth muscle cells to mimic the subendothelial intimal layer in another channel. The model successfully triggers endothelial dysfunction upon TNF-α stimulation, initiating monocyte adhesion to the endothelial monolayer under the arterial shear rate. Unlike existing in vitro models, native low-density lipoprotein (LDL) is added in the culture media instead of ox-LDL to stimulate subendothelial lipid accumulation, thereby mimicking more accurate physiology. The subendothelial transmigration of adherent monocytes and subsequent foam cell formation is also achieved under flow conditions in the model. The model also investigates the inhibitory effect of aspirin in monocyte adhesion and transmigration. The model exhibits a significant dose-dependent reduction in monocyte adhesion and transmigration upon aspirin treatment, making it an excellent tool for drug testing.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jessica Pickett
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
10
|
Wang Y, Ohishi H, Wu R, Liu H, Xu R. Prophylactic and therapeutic effects of EsV3 on atherosclerotic lesions in ApoE -/- mice. BMC Cardiovasc Disord 2025; 25:54. [PMID: 39865227 PMCID: PMC11770915 DOI: 10.1186/s12872-025-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a major contributor to vascular disorders and represents a significant risk to human health. Currently, first-line pharmacotherapies are associated with substantial side effects, and the development of atherosclerosis is closely linked to dietary factors. This study evaluated the effects of a dietary supplement, EsV3, on AS in apolipoprotein E (ApoE) -/- model mice. METHODS The study utilized a high-fat diet-induced ApoE-/- hyperlipidemic mouse model. EsV3 was administered in prophylactic (P-EsV3) and therapeutic regimens for 16 and 12 weeks, respectively, with distinct high- and low-dose groups (0.36 and 1.8 g/kg/day). Serum lipid levels were measured and monitored for body weight and food consumption alterations in murine models. Aortic oil red O staining was conducted to assess plaque formation and calculate the plaque-to-vessel area ratio. Liver tissue changes were examined via HE staining. Moreover, serum oxidative stress markers (MDA, GSH, SOD) were measured to evaluate oxidative damage and lipid metabolism. RESULTS Both atorvastatin and P-EsV3 treatments significantly lowered TC, TG, and LDL-C levels, with P-EsV3-H enhancing HDL-C levels (P < 0.05). Prophylactic EsV3 administration was more effective than therapeutic administration in regulating TG and LDL-C levels and had comparable effects to atorvastatin on TC and HDL-C. All treatment groups exhibited reduced body weight compared to the model group, with no significant differences in food intake. Additionally, EsV3 administration significantly reduced the aortic plaque area and liver lipid droplets compared to the model group, while mitigating oxidative stress, as evidenced by decreased MDA levels and increased SOD and GSH levels, with outcomes comparable to those observed with atorvastatin. CONCLUSIONS In ApoE-/- hyperlipidemic mice, EsV3 improved lipid profiles and reduced aortic plaque formation. EsV3's effects, attributed partly to its antioxidant properties, were comparable to atorvastatin, suggesting its potential as a preventive and therapeutic agent for hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Yaze Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | - Rongji Wu
- Eiho Technology (WUHAN) Co., Ltd, Wuhan, 430030, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
11
|
Kong D, Ryu JC, Shin N, Lee SE, Kim NG, Kim HY, Kim MJ, Choi J, Kim DH, Kang KS. In Vitro Modeling of Atherosclerosis Using iPSC-Derived Blood Vessel Organoids. Adv Healthc Mater 2025; 14:e2400919. [PMID: 39580678 DOI: 10.1002/adhm.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
As modeling of atherosclerosis requires recapitulating complex interactions with vasculature and immune cells, previous in vitro models have limitations due to their insufficient 3D vascular structures. However, induced pluripotent stem cell-derived blood vessel organoids (BVOs) are applicable for modeling vascular diseases, containing multiple cell types, including endothelial and vascular smooth muscle cells self-assembled into a blood vessel structure. Atherosclerotic BVOs with a microenvironment associated with atherogenesis, such as shear stress, low-density lipoprotein, pro-inflammatory cytokine, and monocyte co-culture are successfully developed. In atherosclerotic BVOs, representative atherosclerotic phenotypes, including endothelial dysfunction, inflammatory responses, formation of foam cells and fibrous plaque, and moreover, calcification of the plaques are observed. To verify the drug response in this model, it is treated with clinically used lovastatin and confirm phenotype attenuation. Furthermore, the therapeutic efficacy of nano-sized graphene oxides (NGOs) is evaluated on atherosclerosis. Due to their anti-inflammatory effects, NGOs effectively alleviate the pathologic lesions in atherosclerotic BVOs by promoting macrophage polarization toward M2. These results suggest that atherosclerotic BVOs are advanced in vitro models suitable for drug discovery and elucidation of therapeutic mechanisms. From the perspective of precision medicine, this platform using patient-derived BVOs can be further employed for personalized drug screening in the future.
Collapse
Affiliation(s)
- Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Chul Ryu
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Bio and Nano Convergence, Biogo Co., LTD, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Yeong Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungju Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Department of Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Maringanti R, van Dijk CGM, Meijer EM, Brandt MM, Li M, Tiggeloven VPC, Krebber MM, Chrifi I, Duncker DJ, Verhaar MC, Cheng C. Atherosclerosis on a Chip: A 3-Dimensional Microfluidic Model of Early Arterial Events in Human Plaques. Arterioscler Thromb Vasc Biol 2024; 44:2453-2472. [PMID: 39297206 DOI: 10.1161/atvbaha.124.321332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Realistic reconstruction of the in vivo human atherosclerotic environment requires the coculture of different cell types arranged in atherosclerotic vessel-like structures with exposure to flow and circulating cells, presenting challenges for disease modeling. This study aimed to develop a 3-dimensional tubular microfluidic model with quadruple coculture of human aortic smooth muscle cells, human umbilical cord vein endothelial cells, and foam cells to recreate a complex human atherosclerotic vessel in vitro to study the effects of flow and circulating immune cells. METHODS We developed a coculture protocol utilizing BFP (blue fluorescent protein)-labeled human aortic smooth muscle cells, GFP (green fluorescent protein)-labeled human umbilical cord vein endothelial cells, and THP-1 macrophage-derived, Dil-labeled oxidized LDL (low-density lipoprotein) foam cells within a fibrinogen/collagen I-based 3-dimensional ECM (extracellular matrix). Perfusion experiments were conducted for 24 hours on both atherosclerotic vessels and healthy vessels (BFP-labeled human aortic smooth muscle cells and GFP-labeled human umbilical cord vein endothelial cells without foam cells). Additionally, perfusion with circulating THP-1 monocytes was performed to observe cell extravasation and recruitment. RESULTS The resulting vessels displayed early lesion morphology, with a layered composition including an endothelium and media, and foam cells accumulating in the subendothelial space. The layered wall composition of both atherosclerotic and healthy vessels remained stable under perfusion. Circulating THP-1 monocytes demonstrated cell extravasation into the atherosclerotic vessel wall and recruitment to the foam cell core. The qPCR (quantitative polymerase chain reaction) analysis indicated increased expression of atherosclerosis markers in the atherosclerotic vessels and adaptation of vascular smooth muscle cell migration in response to flow and the plaque microenvironment, compared with control vessels. CONCLUSIONS The human 3-dimensional atherosclerosis model demonstrated stability under perfusion and allowed for the observation of immune cell behavior, providing a valuable tool for the atherosclerosis research field.
Collapse
MESH Headings
- Humans
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Coculture Techniques
- Lab-On-A-Chip Devices
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Plaque, Atherosclerotic
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- THP-1 Cells
- Foam Cells/pathology
- Foam Cells/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Aorta/pathology
- Aorta/metabolism
- Lipoproteins, LDL/metabolism
- Microfluidic Analytical Techniques/instrumentation
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Cell Movement
- Cell Culture Techniques, Three Dimensional/methods
- Cells, Cultured
Collapse
Affiliation(s)
- Ranganath Maringanti
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Elana M Meijer
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Mingzi Li
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Vera P C Tiggeloven
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Merle M Krebber
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Ihsan Chrifi
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Dirk J Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| |
Collapse
|
13
|
Kathuria I, Prasad A, Sharma BK, Aithabathula RV, Ofosu-Boateng M, Gyamfi MA, Jiang J, Park F, Singh UP, Singla B. Nidogen 2 Overexpression Promotes Hepatosteatosis and Atherosclerosis. Int J Mol Sci 2024; 25:12782. [PMID: 39684493 DOI: 10.3390/ijms252312782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Clinical and genetic studies strongly support a significant connection between nonalcoholic fatty liver disease (NAFLD) and atherosclerotic cardiovascular disease (ASCVD) and identify ASCVD as the primary cause of death in NAFLD patients. Understanding the molecular factors and mechanisms regulating these diseases is critical for developing novel therapies that target them simultaneously. Our preliminary immunoblotting experiments demonstrated elevated expression of nidogen 2 (NID2), a basement membrane glycoprotein, in human atherosclerotic vascular tissues and murine steatotic livers. Therefore, we investigated the role of NID2 in regulating hepatosteatosis and atherosclerosis utilizing Western diet-fed Apoe-/- mice with/without NID2 overexpression. Quantitative real-time PCR confirmed increased NID2 mRNA expression in multiple organs (liver, heart, kidney, and adipose) of NID2-overexpressing mice. Male mice with NID2 overexpression exhibited higher liver and epididymal white adipose tissue mass, increased hepatic lipid accumulation, and fibrosis. Additionally, these mice developed larger atherosclerotic lesions in the whole aortas and aortic roots, with increased necrotic core formation. Mechanistic studies showed reduced AMPK activation in the livers of NID2-overexpressing mice compared with controls, without any effects on hepatic inflammation. In conclusion, these findings suggest that NID2 plays a deleterious role in both hepatosteatosis and atherosclerosis, making it a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Aditi Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Maxwell A Gyamfi
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
14
|
Zhao H, Jin Z, Li J, Fang J, Wu W, Fang JF. Novel insights of disulfidptosis-mediated immune microenvironment regulation in atherosclerosis based on bioinformatics analyses. Sci Rep 2024; 14:27336. [PMID: 39521794 PMCID: PMC11550432 DOI: 10.1038/s41598-024-78392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Atherosclerosis (AS) is the leading cause of coronary heart disease, which is the primary cause of death worldwide. Recent studies have identified disulfidptosis as a new type of cell death that may be involved in onset and development of many diseases. However, the role of disulfidptosis in AS is not clear. In this study, bioinformatics analysis and experiments in vivo and in vitro were performed to evaluate the potential relationship between disulfidptosis and AS. AS-related sequencing data were obtained from the Gene Expression Omnibus (GEO). Bioinformatics techniques were used to evaluate differentially expressed genes (DEGs) associated with disulfidptosis-related AS. Hub genes were screened using least absolute shrinkage and selection operator (LASSO) and random forests (RF) methods. In addition, we established a foam cell model in vitro and an AS mouse model in vivo to verify the expressions of hub genes. In addition, we constructed a diagnostic nomogram with hub genes to predict progression of AS. Finally, the consensus clustering method was used to establish two different subtypes, and associations between subtypes and immunity were explored. As the results, 9 disulfidptosis-related AS DEGs were identified from GSE28829 and GSE43292 datasets. Evaluation of DEGs using LASSO and RF methods resulted in identification of 4 hub genes (CAPZB, DSTN, MYL6, PDLIM1), which were analyzed for diagnostic value using ROC curve analysis and verified in vitro and in vivo. Furthermore, a nomogram including hub genes was established that accurately predicted the occurrence of AS. The consensus clustering algorithm was used to separate patients with early atherosclerotic plaques and patients with advanced atherosclerotic plaques into two disulfidptosis subtypes. Cluster B displayed higher levels of infiltrating immune cells, which indicated that patients in cluster B may have a positive immune response for progression of AS. In summary, disulfidptosis-related genes including CAPZB, DSTN, MYL6, and PDLIM1 may be diagnostic markers and therapeutic targets for AS. In addition, these genes are closely related to immune cells, which may inform immunotherapy for AS.
Collapse
Affiliation(s)
- Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zheng Jin
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Junlong Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Junfeng Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - J F Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
15
|
San Sebastián-Jaraba I, Fernández-Gómez MJ, Blázquez-Serra R, Sanz-Andrea S, Blanco-Colio LM, Méndez-Barbero N. In vitro 3D co-culture model of human endothelial and smooth muscle cells to study pathological vascular remodeling. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:356-363. [PMID: 38724438 DOI: 10.1016/j.arteri.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 11/16/2024]
Abstract
Pathological vascular remodeling of the vessel wall refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease. The vessel wall is composed of two main types of cells, endothelial cells and vascular smooth muscle cells, whose communication is crucial in both the development of the vasculature and the homeostasis of mature vessels. Changes in the dialogue between endothelial cells and vascular smooth muscle cells are associated with various pathological states that triggers remodeling of the vascular wall. For many years, considerable efforts have been made to develop effective diagnoses and treatments for these pathologies by studying their mechanisms in both in vitro and in vivo models. Compared to animal models, in vitro models can provide great opportunities to obtain data in a more homogeneous, economical and massive way, providing an overview of the signaling pathways responsible for these pathologies. The implementation of three-dimensional in vitro co-culture models for the study of other pathologies has been postulated as a potentially applicable methodology, which determines the importance of its application in studies of cardiovascular diseases. In this article we present a method for culturing human endothelial cells and vascular smooth muscle cells, grown under non-adherent conditions, that generate three-dimensional spheroidal structures with greater physiological equivalence to in vivo conditions. This in vitro modeling could be used as a study tool to identify cellular and molecular mechanisms involved in the pathological processes underlying vascular remodeling.
Collapse
Affiliation(s)
- Irene San Sebastián-Jaraba
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - Rafael Blázquez-Serra
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Sandra Sanz-Andrea
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Facultad de Medicina y Biomedicina, Universidad Alfonso X el Sabio, Madrid, España.
| |
Collapse
|
16
|
Xing-Xing C, Ri-Jin H, Xin-Ge W, Cai-Ying Y, Qing Y, Ying C, Qi L, Xiao-Xin Z, Lihong Y, Long C, Yu D. Mechanistic exploration of the shenlian formula in the suppression of atherosclerosis progression via network pharmacology and in vivo experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118347. [PMID: 38801914 DOI: 10.1016/j.jep.2024.118347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenlian formula (SL) is a Chinese medicine formula used to curb the development of atherosclerosis (AS) and cardiovascular disease in clinical practice. However, owing to the complexity of compounds and their related multiple targets in traditional Chinese medicine (TCM), it remains difficult and urgent to elucidate the underlying mechanisms at a holistic level. AIM To investigate the intrinsic mechanisms by which SL suppresses AS progression and to gain new insight into its clinical use. METHODS We proposed a network pharmacology-based workflow to evaluate the mechanism by which SL affects AS via data analysis, target prediction, PPI network construction, GO and KEGG analyses, and a "drug-core ingredient-potential target-key pathway" network. Then, non-targeted lipidomic analysis was performed to explore the differential lipid metabolites in AS rats, revealing the possible mechanism by which SL affects atherosclerotic progression. Moreover, an AS rabbit model was constructed and gavaged for SL intervention. Serum lipid profiles and inflammatory cytokine indices were tested as an indication of the mitigating effect of SL on AS. RESULTS A total of 89 bioactive compounds and 298 targets related to SL and AS, which play essential roles in this process, were identified, and a component-target-disease network was constructed. GO and KEGG analyses revealed that SL regulated metabolic pathway, lipids and atherosclerosis, the PI3K-Akt pathway, the MAPK pathway and so on. In vivo experimental validation revealed that a total of 43 different lipid metabolites regulated by SL were identified by non-targeted lipidomics, and glycerophospholipid metabolism was found to be an important mechanism for SL to interfere with AS. SL reduced the plaque area and decreased the levels of inflammatory cytokines (TNF-α and IL-4) and blood lipids (TC, TG, LDL-C, and ApoB) in HFD-induced AS models. In addition, HDL and ApoA1 levels are increased. PLA2 and Lipin1 are highly expressed in AS model, indicating their role in destabilizing glycerophosphatidylcholine metabolism and contributing to the onset and progression of ankylosing spondylitis. Moreover, SL intervention significantly reduced the level of pro-inflammatory cytokines; significantly down-regulated NF-kB/p65 expression, exhibiting anti-inflammatory activity. CONCLUSION The Shenlian formula (SL) plays a pivotal role in the suppression of AS progression by targeting multiple pathways and mechanisms. This study provides novel insights into the essential genes and pathways associated with the prognosis and pathogenesis of AS.
Collapse
Affiliation(s)
- Chen Xing-Xing
- Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New Area, Honghuagang District, Zunyi, 563003, PR China.
| | - Hao Ri-Jin
- Shanxi Pharmaceuticals Vocational College, No. 16, Minhangnanlu, Taiyuan, 030031, PR China.
| | - Wang Xin-Ge
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, No. 5, Beixiange, Xicheng District, Beijing, PR China; Chengdu University of Traditional Chinese Medicine, No. 1166, West Liutai Avenue, Chengdu, 611137, PR China.
| | - Yan Cai-Ying
- Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New Area, Honghuagang District, Zunyi, 563003, PR China.
| | - Yang Qing
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Chen Ying
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Li Qi
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Zhu Xiao-Xin
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Yang Lihong
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Cheng Long
- College of Nursing, Chifeng University, 024000, No. 1, Yingbing Road, Hongshan District, Chifeng, PR China.
| | - Dong Yu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, No. 5, Beixiange, Xicheng District, Beijing, PR China.
| |
Collapse
|
17
|
Benitez-Amaro A, Garcia E, La Chica Lhoëst MT, Martínez A, Borràs C, Tondo M, Céspedes MV, Caruana P, Pepe A, Bochicchio B, Cenarro A, Civeira F, Prades R, Escola-Gil JC, Llorente-Cortés V. Targeting LDL aggregation decreases atherosclerotic lipid burden in a humanized mouse model of familial hypercholesterolemia: Crucial role of ApoB100 conformational stabilization. Atherosclerosis 2024:118630. [PMID: 39547850 DOI: 10.1016/j.atherosclerosis.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND AIMS Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly1127-Cys1140 of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (Ldlr-/-hApoB100 Tg) and determine the potential LDL-related underlying mechanisms. METHODS Tg mice were fed an HFD for 21 days to induce atherosclerosis and then randomized into three groups that received a daily subcutaneous administration (10 mg/kg) of i) vehicle, ii) DP3 peptide, or iii) a non-active peptide (IP321). The in vivo biodistribution of a fluorescent-labeled peptide version (TAMRA-DP3), and its colocalization with ApoB100 in the arterial intima, was analyzed by imaging system (IVIS) and confocal microscopy. Heart aortic roots were used for atherosclerosis detection and quantification. LDL functionality was analyzed by biochemical, biophysical, molecular, and cellular studies. RESULTS Intimal neutral lipid accumulation in the aortic root was reduced in the DP3-treated group as compared to control groups. ApoB100 in LDLs from the DP3 group exhibited an increased percentage of α-helix secondary structures and decreased immunoreactivity to anti-ApoB100 antibodies. LDL from DP3-treated mice were protected against passive and sphingomyelinase (SMase)-induced aggregation, although they still experienced SMase-induced sphingomyelin phospholysis. In patients with familial hypercholesterolemia (FH), DP3 efficiently inhibited both SMase-induced phospholysis and aggregation. CONCLUSIONS DP3 peptide administration inhibits atherosclerosis by preserving the α-helix secondary structures of ApoB100 in a humanized ApoB100 murine model that mimicks the hallmark of human hypercholesterolemia.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - E Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - M T La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Martínez
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - C Borràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - M Tondo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain; Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041, Barcelona, Spain
| | - M V Céspedes
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - P Caruana
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - A Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - B Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - A Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - F Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - R Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - J C Escola-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - V Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Takaoka M, Zhao X, Lim HY, Magnussen CG, Ang O, Suffee N, Schrank PR, Ong WS, Tsiantoulas D, Sommer F, Mohanta SK, Harrison J, Meng Y, Laurans L, Wu F, Lu Y, Masters L, Newland SA, Denti L, Hong M, Chajadine M, Juonala M, Koskinen JS, Kähönen M, Pahkala K, Rovio SP, Mykkänen J, Thomson R, Kaisho T, Habenicht AJR, Clement M, Tedgui A, Ait-Oufella H, Zhao TX, Nus M, Ruhrberg C, Taleb S, Williams JW, Raitakari OT, Angeli V, Mallat Z. Early intermittent hyperlipidaemia alters tissue macrophages to fuel atherosclerosis. Nature 2024; 634:457-465. [PMID: 39231480 PMCID: PMC11464399 DOI: 10.1038/s41586-024-07993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here we find that early intermittent feeding of mice on a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to the WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify biological pathways related to actin filament organization, of which alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insights into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat ASCVD.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Child
- Child, Preschool
- Female
- Humans
- Male
- Mice
- Middle Aged
- Young Adult
- Atherosclerosis/epidemiology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Diet, Western/adverse effects
- Diet, Western/statistics & numerical data
- Finland/epidemiology
- Genome-Wide Association Study
- Hyperlipidemias/complications
- Hyperlipidemias/epidemiology
- Hyperlipidemias/genetics
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Incidence
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Phenotype
- Plaque, Atherosclerotic/epidemiology
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Time Factors
Collapse
Affiliation(s)
- Minoru Takaoka
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Xiaohui Zhao
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Costan G Magnussen
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen Ang
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Nadine Suffee
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Patricia R Schrank
- Department of Integrative Biology & Physiology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Wei Siong Ong
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dimitrios Tsiantoulas
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel and University Hospital Schleswig Holstein (UKSH), Kiel, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - James Harrison
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Yaxing Meng
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ludivine Laurans
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Feitong Wu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yuning Lu
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Leanne Masters
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Stephen A Newland
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Laura Denti
- Institute of Ophthalmology, University College London, London, UK
| | - Mingyang Hong
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Mouna Chajadine
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Juhani S Koskinen
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Medicine, Satakunta Central Hospital, Pori, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere, Tampere, Finland
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, University of Tampere, Tampere, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Russell Thomson
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Analytical Edge, Hobart, Tasmania, Australia
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Marc Clement
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Alain Tedgui
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Tian X Zhao
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | - Meritxell Nus
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK
| | | | - Soraya Taleb
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France
| | - Jesse W Williams
- Department of Integrative Biology & Physiology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine; University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Véronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ziad Mallat
- Department of Medicine, Section of CardioRespiratory Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, UK.
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, U970, PARCC, Paris, France.
| |
Collapse
|
19
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Hartley A, Afoke J, Liu G, Owen S, Hajhosseiny R, Hassen K, Punjabi P, Haskard D, Shalhoub J, Khamis R. A novel translational model of atherosclerosis, the ex vivo pump-perfused amputated human limb model. Sci Rep 2024; 14:17244. [PMID: 39060350 PMCID: PMC11282226 DOI: 10.1038/s41598-024-67635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The preclinical study of atherosclerosis has traditionally centred around the use of small animal models, translating to large animal models, prior to first-in-man studies. We propose to disrupt this paradigm by designing an ex vivo pump perfused human limb model. The novel model consists of taking a freshly amputated limb and incorporating it into an ex situ pump-perfused bypass system (akin to extracorporeal membrane oxygenation), circulating warmed, oxygenated blood. The circuit incorporates an introducer sheath and guiding catheter for intravascular imaging and X-ray angiography. Regular monitoring is performed using blood gas analysis, aiming for physiological parameters. The model maintains oxygen saturations > 99% for the length of perfusion (up to 6-h). Clinical grade X-ray angiography, intravascular ultrasound and optical coherence tomography have been successfully performed. Indocyanine green, a near-infrared fluorescent dye that localises to atherosclerotic plaque, has been injected into the system and left to circulate for 90-min. Fluorescence reflectance imaging of the dissected arterial bed confirmed uptake in areas of calcific atherosclerotic plaque on intravascular imaging. This is the first demonstration of an ex vivo pump-perfused "living" limb experimental model of atherosclerosis, which shows promise for future studies in translational interventional imaging and molecular targeting.
Collapse
Affiliation(s)
- Adam Hartley
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Afoke
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
| | - Guiqing Liu
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
| | - Samuel Owen
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
| | - Reza Hajhosseiny
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Kimberly Hassen
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Prakash Punjabi
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Dorian Haskard
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK
| | - Joseph Shalhoub
- Imperial College London and Imperial Vascular Unit, Imperial College Healthcare NHS Trust, Waller Unit, Mary Stanford Wing, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ramzi Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK.
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
22
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
23
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
24
|
Sun F, Chen X, Zhang S, Jiang H, Chen T, Xing T, Li X, Sultan R, Wang Z, Jia J. Cross-species signaling pathways analysis inspire animal model selections for drug screening and target prediction in vascular aging diseases. Evol Appl 2024; 17:e13708. [PMID: 38863828 PMCID: PMC11164676 DOI: 10.1111/eva.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Age is a significant contributing factor to the occurrence and progression of cardiovascular disease (CVD). Pharmacological treatment can effectively alleviate CVD symptoms caused by aging. However, 90% of the drugs have failed in clinics because of the loss of drug effects or the occurrence of the side effects. One of the reasons is the disparity between animal models used and the actual physiological levels in humans. Therefore, we integrated multiple datasets from single-cell and bulk-seq RNA-sequencing data in rats, monkeys, and humans to identify genes and pathways with consistent/differential expression patterns across these three species. An approach called "Cross-species signaling pathway analysis" was developed to select suitable animal models for drug screening. The effectiveness of this method was validated through the analysis of the pharmacological predictions of four known anti-vascular aging drugs used in animal/clinical experiments. The effectiveness of drugs was consistently observed between the models and clinics when they targeted pathways with the same trend in our analysis. However, drugs might have exhibited adverse effects if they targeted pathways with opposite trends between the models and the clinics. Additionally, through our approach, we discovered four targets for anti-vascular aging drugs, which were consistent with their pharmaceutical effects in literatures, showing the value of this approach. In the end, software was established to facilitate the use of "Cross-species signaling pathway analysis." In sum, our study suggests utilizing bioinformatics analysis based on disease characteristics can help in choosing more appropriate animal models.
Collapse
Affiliation(s)
- Fei Sun
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Xingxing Chen
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Shuqing Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Haihong Jiang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Tianhong Chen
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Tongying Xing
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Xueyi Li
- Sino‐Swiss Institute of Advanced Technology, School of Micro‐ElectronicsShanghai UniversityShanghaiChina
| | - Rabia Sultan
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Zhimin Wang
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghaiChina
| | - Jia Jia
- School of Life SciencesShanghai UniversityShanghaiChina
- Sino‐Swiss Institute of Advanced Technology, School of Micro‐ElectronicsShanghai UniversityShanghaiChina
| |
Collapse
|
25
|
Kokai D, Markovic Filipovic J, Opacic M, Ivelja I, Banjac V, Stanic B, Andric N. In vitro and in vivo exposure of endothelial cells to dibutyl phthalate promotes monocyte adhesion. Food Chem Toxicol 2024; 188:114663. [PMID: 38631435 DOI: 10.1016/j.fct.2024.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The effect of endothelial cells' exposure to dibutyl phthalate (DBP) on monocyte adhesion is largely unknown. We evaluated monocyte adhesion to DBP-exposed endothelial cells by combining three approaches: short-term exposure (24 h) of EA.hy926 cells to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. Monocyte adhesion to human EA.hy926 and rat aortic endothelial cells, expression of selected cellular adhesion molecules and chemokines, and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) were analyzed. We observed increased monocyte adhesion to DBP-exposed EA.hy926 cells in vitro and to rat aortic endothelium ex vivo. ERK1/2 inhibitor prevented monocyte adhesion to DBP-exposed EA.hy926 cells in short-term exposure experiments. Increased ERK1/2 phosphorylation in rat aortic endothelium and transient decrease in ERK1/2 activation following long-term exposure of EA.hy926 cells to DBP were also observed. In summary, exposure of endothelial cells to DBP promotes monocyte adhesion, thus suggesting a possible role for this phthalate in the development of atherosclerosis. ERK1/2 signaling could be the mediator of monocyte adhesion to DBP-exposed endothelial cells, but only after short-term high-level exposure.
Collapse
Affiliation(s)
- Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Ivana Ivelja
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Vojislav Banjac
- University of Novi Sad, Institute of Food Technology, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
26
|
Ding D, Zhao Y, Jia Y, Niu M, Li X, Zheng X, Chen H. Identification of novel genes associated with atherosclerosis in Bama miniature pig. Animal Model Exp Med 2024; 7:377-387. [PMID: 38720469 PMCID: PMC11228093 DOI: 10.1002/ame2.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic cardiovascular disease of great concern. However, it is difficult to establish a direct connection between conventional small animal models and clinical practice. The pig's genome, physiology, and anatomy reflect human biology better than other laboratory animals, which is crucial for studying the pathogenesis of atherosclerosis. METHODS We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis, and further used bioinformatic tools to filter and identify underlying candidate genes. Candidate gene function prediction was performed using the online prediction tool STRING 12.0. Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes. RESULTS We mapped differential single nucleotide polymorphisms (SNPs) to genes and obtained a total of 102 differential genes, then we used GO and KEGG pathway enrichment analysis to identify four candidate genes, including SLA-1, SLA-2, SLA-3, and TAP2. nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins, the primary structures of these two proteins have undergone amino acid changes, and the tertiary structures also show slight changes. In addition, immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer. CONCLUSIONS We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis, highlighting the importance of antigen processing and immune response in atherogenesis.
Collapse
Affiliation(s)
- Dengfeng Ding
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xuezhuang Li
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xinou Zheng
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
27
|
Duan H, Tao N, Lv L, Yan KX, You YG, Mao Z, Wang CY, Li X, Jin JY, Wu CT, Wang H. Hepatocyte growth factor enhances the ability of dental pulp stem cells to ameliorate atherosclerosis in apolipoprotein E-knockout mice. World J Stem Cells 2024; 16:575-590. [PMID: 38817328 PMCID: PMC11135256 DOI: 10.4252/wjsc.v16.i5.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), a chronic inflammatory disease of blood vessels, is a major contributor to cardiovascular disease. Dental pulp stem cells (DPSCs) are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflammation-related diseases. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases. AIM To modify DPSCs with HGF (DPSC-HGF) and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout (ApoE-/-) mouse model and an in vitro cellular model. METHODS ApoE-/- mice were fed with a high-fat diet (HFD) for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs (DPSC-Null) through tail vein at weeks 4, 7, and 11, respectively, and the therapeutic efficacy and mechanisms were analyzed by histopathology, flow cytometry, lipid and glucose measurements, real-time reverse transcription polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay at the different time points of the experiment. An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells (HAOECs), and indirect co-cultured with supernatant of DPSC-Null (DPSC-Null-CM) or DPSC-HGF-CM, and the effect and mechanisms were analyzed by flow cytometry, RT-PCR and western blot. Nuclear factor-κB (NF-κB) activators and inhibitors were also used to validate the related signaling pathways. RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors, and the percentage of macrophages in the aorta, and DPSC-HGF treatment had more pronounced effects. DPSCs treatment had no effect on serum lipoprotein levels. The FACS results showed that DPSCs treatment reduced the percentages of monocytes, neutrophils, and M1 macrophages in the peripheral blood and spleen. DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-α stimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway. CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/- mice on a HFD, and could be of greater value in stem cell-based treatments for AS.
Collapse
Affiliation(s)
- Han Duan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Ning Tao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kai-Xin Yan
- Department of Cardiology, The Sixth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100037, China
| | - Yong-Gang You
- Department of Orthopaedics, The Fourth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang-Yao Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Yan Jin
- Third Cadet Regiment, School of Basic Medical Science, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
28
|
Qi J, Zhou S, Wang G, Hua R, Wang X, He J, Wang Z, Zhu Y, Luo J, Shi W, Luo Y, Chen X. The Antioxidant Dendrobium officinale Polysaccharide Modulates Host Metabolism and Gut Microbiota to Alleviate High-Fat Diet-Induced Atherosclerosis in ApoE -/- Mice. Antioxidants (Basel) 2024; 13:599. [PMID: 38790704 PMCID: PMC11117934 DOI: 10.3390/antiox13050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The discovery of traditional plants' medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. PURPOSE This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE-/-) mice. STUDY DESIGN AND METHODS The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 μL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. RESULTS DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman's correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. CONCLUSIONS This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Shuaishuai Zhou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Guisheng Wang
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| | - Rongrong Hua
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Zi Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (S.Z.); (Z.W.); (Y.Z.); (J.L.)
| | - Xiaoxia Chen
- Department of Radiology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; (G.W.); (R.H.)
| |
Collapse
|
29
|
Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, Wang G. Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism. World J Microbiol Biotechnol 2024; 40:198. [PMID: 38727952 DOI: 10.1007/s11274-024-04010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1β, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.
Collapse
Affiliation(s)
- Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Liao Xiaoling
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
30
|
Li J, Yang L, Song J, Yan B, Morris AJ, Moseley H, Flight R, Wang C, Liu J, Weiss HL, Morris EF, Abdelhamid I, Gerl MJ, Melander O, Smyth S, Evers BM. Neurotensin accelerates atherosclerosis and increases circulating levels of short-chain and saturated triglycerides. Atherosclerosis 2024; 392:117479. [PMID: 38423808 PMCID: PMC11088984 DOI: 10.1016/j.atherosclerosis.2024.117479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND AIMS Obesity and type 2 diabetes are significant risk factors for atherosclerotic cardiovascular disease (CVD) worldwide, but the underlying pathophysiological links are poorly understood. Neurotensin (NT), a 13-amino-acid hormone peptide, facilitates intestinal fat absorption and contributes to obesity in mice fed a high-fat diet. Elevated levels of pro-NT (a stable NT precursor produced in equimolar amounts relative to NT) are associated with obesity, type 2 diabetes, and CVD in humans. Whether NT is a causative factor in CVD is unknown. METHODS Nt+/+ and Nt-/- mice were either injected with adeno-associated virus encoding PCSK9 mutants or crossed with Ldlr-/- mice and fed a Western diet. Atherosclerotic plaques were analyzed by en face analysis, Oil Red O and CD68 staining. In humans, we evaluated the association between baseline pro-NT and growth of carotid bulb thickness after 16.4 years. Lipidomic profiles were analyzed. RESULTS Atherosclerotic plaque formation is attenuated in Nt-deficient mice through mechanisms that are independent of reductions in circulating cholesterol and triglycerides but associated with remodeling of the plasma triglyceride pool. An increasing plasma concentration of pro-NT predicts atherosclerotic events in coronary and cerebral arteries independent of all major traditional risk factors, indicating a strong link between NT and atherosclerosis. This plasma lipid profile analysis confirms the association of pro-NT with remodeling of the plasma triglyceride pool in atherosclerotic events. CONCLUSIONS Our findings are the first to directly link NT to increased atherosclerosis and indicate the potential role for NT in preventive and therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Jing Li
- University of Kentucky, Lexington, KY, 40536, USA
| | - Liping Yang
- University of Kentucky, Lexington, KY, 40536, USA
| | - Jun Song
- University of Kentucky, Lexington, KY, 40536, USA
| | - Baoxiang Yan
- University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew J Morris
- University of Arkansas for Medical Sciences, Little Rock, AR, 77205, USA
| | | | | | - Chi Wang
- University of Kentucky, Lexington, KY, 40536, USA
| | - Jinpeng Liu
- University of Kentucky, Lexington, KY, 40536, USA
| | | | - Edward F Morris
- Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | | | | | | | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, AR, 77205, USA
| | - B Mark Evers
- University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
31
|
Ariyanto EF, Wijaya I, Pradian ZA, Bhaskara APM, Rahman PHA, Oktavia N. Recent Updates on Epigenetic-Based Pharmacotherapy for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:1867-1878. [PMID: 38706808 PMCID: PMC11068051 DOI: 10.2147/dmso.s463221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Atherosclerosis is one of the most dominant pathological processes responsible in cardiovascular diseases (CVD) caused by cholesterol accumulation accompanied by inflammation in the arteries which will subsequently lead to further complications, including myocardial infarction and stroke. Although the incidence of atherosclerosis is decreasing in some countries, it is still considered the leading cause of death worldwide. Atherosclerosis is a vascular pathological process that is chronically inflammatory and is characterized by the invasion of inflammatory cells and cytokines. Many reports have unraveled the pivotal roles of epigenetics such as DNA methylation, post-translational histone modifications, and non-coding RNAs (ncRNAs) in atherogenesis, which regulate the expression of numerous genes related to various responsible pathways. Many studies have been conducted to develop new therapeutical approaches based on epigenetic changes for combating atherosclerosis. This review elaborates on recent updates on the development of new atherosclerosis drugs whose mechanism of action is associated with the modulation of DNA methylation, posttranslational histone modifications, and ncRNA-based gene regulation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ibnu Wijaya
- Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | | | | | - Nandina Oktavia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
32
|
Seol DW, Park BJ, Koo DB, Kim JS, Jeon YH, Lee JE, Park JS, Jang H, Wee G. Optimizing Embryo Collection for Application of CRISPR/Cas9 System and Generation of Fukutin Knockout Rat Using This Method. Curr Issues Mol Biol 2024; 46:3752-3762. [PMID: 38785502 PMCID: PMC11120416 DOI: 10.3390/cimb46050234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Rat animal models are widely used owing to their relatively superior cognitive abilities and higher similarity compared with mouse models to human physiological characteristics. However, their use is limited because of difficulties in establishing embryonic stem cells and performing genetic modifications, and insufficient embryological research. In this study, we established optimal superovulation and fertilized-egg transfer conditions, including optimal hormone injection concentration (≥150 IU/kg of PMSG and hCG) and culture medium (mR1ECM), to obtain high-quality zygotes and establish in vitro fertilization conditions for rats. Next, sgRNA with optimal targeting activity was selected by performing PCR analysis and the T7E1 assay, and the CRISPR/Cas9 system was used to construct a rat model for muscular dystrophy by inducing a deficiency in the fukutin gene without any off-target effect detected. The production of fukutin knockout rats was phenotypically confirmed by observing a drop-in body weight to one-third of that of the control group. In summary, we succeeded in constructing the first muscular dystrophy disease rat model using the CRISPR/CAS9 system for increasing future prospects of producing various animal disease models and encouraging disease research using rats.
Collapse
Affiliation(s)
- Dong-Won Seol
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIHUB), Daegu 41061, Republic of Korea; (D.-W.S.); (Y.-H.J.); (J.-E.L.); (J.-S.P.)
- Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju 28160, Republic of Korea
| | - Byoung-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.-J.P.); (J.-S.K.)
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea;
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.-J.P.); (J.-S.K.)
| | - Yong-Hyun Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIHUB), Daegu 41061, Republic of Korea; (D.-W.S.); (Y.-H.J.); (J.-E.L.); (J.-S.P.)
| | - Jae-Eon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIHUB), Daegu 41061, Republic of Korea; (D.-W.S.); (Y.-H.J.); (J.-E.L.); (J.-S.P.)
| | - Joon-Suk Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIHUB), Daegu 41061, Republic of Korea; (D.-W.S.); (Y.-H.J.); (J.-E.L.); (J.-S.P.)
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Gabbine Wee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIHUB), Daegu 41061, Republic of Korea; (D.-W.S.); (Y.-H.J.); (J.-E.L.); (J.-S.P.)
| |
Collapse
|
33
|
Christ C, Ocskay Z, Kovács G, Jakus Z. Characterization of Atherosclerotic Mice Reveals a Sex-Dependent Susceptibility to Plaque Calcification but No Major Changes in the Lymphatics in the Arterial Wall. Int J Mol Sci 2024; 25:4046. [PMID: 38612867 PMCID: PMC11012298 DOI: 10.3390/ijms25074046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; (C.C.); (Z.O.); (G.K.)
| |
Collapse
|
34
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
35
|
Huang B, Zou Z, Li Y, Chen H, Lai K, Yuan Y, Xu Y. Gasdermin D-Mediated Pyroptosis Promotes the Development of Atherosclerosis. J Transl Med 2024; 104:100337. [PMID: 38266921 DOI: 10.1016/j.labinv.2024.100337] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory cardiovascular disease with a high-morbidity and mortality rate. An increasing number of studies have addressed the crucial contribution of gasdermin D (GSDMD)-mediated pyroptosis, which is triggered by the inflammasomes to the development of atherosclerosis. However, the underlying mechanism is still unclear. This study aimed to uncover the detailed role of GSDMD in the development of atherosclerosis. An atherosclerotic model was established in Gsdmd-/-/Ldlr-/- mice and Gsdmd+/+/Ldlr-/- mice fed with a high-fat diet. The atherosclerotic lesions, the activation of GSDMD, and the expression level of inflammatory cytokines and chemokines were evaluated. Gsdmd deletion ameliorated the atherosclerotic lesion sizes and the infiltration of immune cells and inflammatory cells in the aortas of mice. Additionally, Gsdmd deletion suppressed the pyroptosis of macrophages and endothelial cells induced by the serum of Ldlr-/- mice fed with a high-fat diet. Furthermore, the formation of neutrophil extracellular traps was also attenuated by knockout of Gsdmd. Bone marrow chimeras confirmed that the genetic deficiency of Gsdmd in both immune cells and intrinsic cells played a role in the promotion of arteriosclerosis. Collectively, our study demonstrated that Gsdmd deletion hindered the pathogenesis of atherosclerosis by inhibiting endothelial cell and macrophage cell death, and the formation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Bangbang Huang
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhenhuan Zou
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
36
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. A bioinformatics approach to elucidate conserved genes and pathways in C. elegans as an animal model for cardiovascular research. Sci Rep 2024; 14:7471. [PMID: 38553458 PMCID: PMC10980734 DOI: 10.1038/s41598-024-56562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in CVD research. Caenorhabditis elegans, a nematode species, has emerged as a prominent experimental organism widely utilized in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilization for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Science for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Chirashree Ghosh
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Li K, Song X, Li H, Kuang X, Liu S, Liu R, Li D. Mussel oil is superior to fish oil in preventing atherosclerosis of ApoE -/- mice. Front Nutr 2024; 11:1326421. [PMID: 38410635 PMCID: PMC10894946 DOI: 10.3389/fnut.2024.1326421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives The present study aimed to explore the preventive effect of mussel oil (MO) on atherosclerosis and the potential mechanism in apolipoprotein E-null (ApoE-/-) mice. Methods ApoE-/- mice were fed with a high-fat and high-cholesterol chow and given corn oil (CO), fish oil (FO), MO, or aspirin (ASP, dissolved in CO) by gavage for 12 weeks. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.01%) and FO (46.82%) were comparable (mainly C22:6n-3 and C20:5n-3). Wild-type mice were fed with a normal chow and given equivalent CO as health control (CON). Results Compared with the CON group, obvious atherosclerotic plaque appeared at aorta and aortic sinus in the CO group. Compared with the CO group, MO but not FO had a significantly smaller atherosclerotic plaque area in the aorta. The aortic atherosclerotic plaque area was comparable in the MO, CON, and ASP groups. The MO group had a significantly smaller atherosclerotic plaque area, lower lipid deposition, lower contents of smooth muscle cell (SMC), and slightly lower contents of macrophage at the aortic sinus than the FO group. Serum concentrations of IL-1β, NF-κB, and VCAM-1 were comparable in the MO and FO groups and were significantly lower than the CO group. Compared with the CO group, the MO group but not FO group had significantly lower aortic protein levels of p65NF-κB, p38MAPK, and VCAM-1. The aortic protein levels of p-p65NF-κB and p-p38MAPK were significantly lower in the MO group than the FO group. Conclusion In conclusion, MO is more potent than FO in preventing atherosclerosis, and the possible mechanism may be by downregulating p38MAPK/NF-κB signaling pathway, decreasing VCAM-1 and macrophage, and inhibiting proliferation and migration of SMC.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Christensen JJ, Arnesen EK, Rundblad A, Telle-Hansen VH, Narverud I, Blomhoff R, Bogsrud MP, Retterstøl K, Ulven SM, Holven KB. Dietary fat quality, plasma atherogenic lipoproteins, and atherosclerotic cardiovascular disease: An overview of the rationale for dietary recommendations for fat intake. Atherosclerosis 2024; 389:117433. [PMID: 38219649 DOI: 10.1016/j.atherosclerosis.2023.117433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The scientific evidence supporting the current dietary recommendations for fat quality keeps accumulating; however, a paradoxical distrust has taken root among many researchers, clinicians, and in parts of the general public. One explanation for this distrust may relate to an incomplete overview of the totality of the evidence for the link between fat quality as a dietary exposure, and health outcomes such as atherosclerotic cardiovascular disease (ASCVD). Therefore, the main aim of the present narrative review was to provide a comprehensive overview of the rationale for dietary recommendations for fat intake, limiting our discussion to ASCVD as outcome. Herein, we provide a core framework - a causal model - that can help us understand the evidence that has accumulated to date, and that can help us understand new evidence that may become available in the future. The causal model for fat quality and ASCVD is comprised of three key research questions (RQs), each of which determine which scientific methods are most appropriate to use, and thereby which lines of evidence that should feed into the causal model. First, we discuss the link between low-density lipoprotein (LDL) particles and ASCVD (RQ1); we draw especially on evidence from genetic studies, randomized controlled trials (RCTs), epidemiology, and mechanistic studies. Second, we explain the link between dietary fat quality and LDL particles (RQ2); we draw especially on metabolic ward studies, controlled trials (randomized and non-randomized), and mechanistic studies. Third, we explain the link between dietary fat quality, LDL particles, and ASCVD (RQ3); we draw especially on RCTs in animals and humans, epidemiology, population-based changes, and experiments of nature. Additionally, the distrust over dietary recommendations for fat quality may partly relate to an unclear understanding of the scientific method, especially as applied in nutrition research, including the process of developing dietary guidelines. We therefore also aimed to clarify this process. We discuss how we assess causality in nutrition research, and how we progress from scientific evidence to providing dietary recommendations.
Collapse
Affiliation(s)
- Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Erik Kristoffer Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ingunn Narverud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Potashnikova D, Maryukhnich E, Vorobyeva D, Rusakovich G, Komissarov A, Tvorogova A, Gontarenko V, Vasilieva E. Cytokine Profiling of Plasma and Atherosclerotic Plaques in Patients Undergoing Carotid Endarterectomy. Int J Mol Sci 2024; 25:1030. [PMID: 38256102 PMCID: PMC10816498 DOI: 10.3390/ijms25021030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Atherosclerotic plaques are sites of chronic inflammation with diverse cell contents and complex immune signaling. Plaque progression and destabilization are driven by the infiltration of immune cells and the cytokines that mediate their interactions. Here, we attempted to compare the systemic cytokine profiles in the blood plasma of patients with atherosclerosis and the local cytokine production, using ex vivo plaque explants from the same patients. The developed method of 41-plex xMAP data normalization allowed us to differentiate twenty-two cytokines produced by the plaque that were not readily detectable in free circulation and six cytokines elevated in blood plasma that may have other sources than atherosclerotic plaque. To verify the xMAP data on the putative atherogenesis-driving chemokines MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), RANTES (CCL5), and fractalkine (CX3CL1), qPCR was performed. The MIP1A (CCL3), MIP1B (CCL4), FKN (CX3CL1), and MCP1 (CCL2) genes were expressed at high levels in the plaques, whereas RANTES (CCL5) was almost absent. The expression patterns of the chemokines were restricted to the plaque cell types: the MCP1 (CCL2) gene was predominantly expressed in endothelial cells and monocytes/macrophages, MIP1A (CCL3) in monocytes/macrophages, and MIP1B (CCL4) in monocytes/macrophages and T cells. RANTES (CCL5) was restricted to T cells, while FKN (CX3CL1) was not differentially expressed. Taken together, our data indicate a plaque-specific cytokine production profile that may be a useful tool in atherosclerosis studies.
Collapse
Affiliation(s)
- Daria Potashnikova
- Laboratory of Atherothrombosis, Cardiology Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127006 Moscow, Russia
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| | - Elena Maryukhnich
- Laboratory of Atherothrombosis, Cardiology Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127006 Moscow, Russia
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| | - Daria Vorobyeva
- Laboratory of Atherothrombosis, Cardiology Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127006 Moscow, Russia
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| | - George Rusakovich
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| | - Alexey Komissarov
- Laboratory of Atherothrombosis, Cardiology Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127006 Moscow, Russia
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Anna Tvorogova
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| | - Vladimir Gontarenko
- Department of Vascular Surgery, National Medical Research Centre of Surgery Named after A.V. Vishnevsky under the RF Public Health Ministry, 117997 Moscow, Russia
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Cardiology Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127006 Moscow, Russia
- City Clinical Hospital Named after I.V. Davydovsky, Moscow Department of Healthcare, 109240 Moscow, Russia; (G.R.)
| |
Collapse
|
40
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. Conserved Cardiovascular Network: Bioinformatics Insights into Genes and Pathways for Establishing Caenorhabditis elegans as an Animal Model for Cardiovascular Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573256. [PMID: 38234826 PMCID: PMC10793405 DOI: 10.1101/2023.12.24.573256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in cardiovascular disease (CVD) research. Caenorhabditis elegans , a nematode species, has emerged as a prominent experimental organism widely utilised in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilisation for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signalling pathway, the FoxO signalling pathway, the MAPK signalling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
|
41
|
Summers KM. Genetic models of fibrillinopathies. Genetics 2024; 226:iyad189. [PMID: 37972149 PMCID: PMC11021029 DOI: 10.1093/genetics/iyad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Models of arterial thrombus formation represent a vital experimental tool to investigate platelet function and test novel antithrombotic drugs. This review highlights some of the recent advances in modelling thrombus formation in vitro and suggests potential future directions. RECENT FINDINGS Microfluidic devices and the availability of commercial chips in addition to enhanced accessibility of 3D printing has facilitated a rapid surge in the development of novel in-vitro thrombosis models. These include progression towards more sophisticated, 'vessel on a chip' models which incorporate vascular endothelial cells and smooth muscle cells. Other approaches include the addition of branches to the traditional single channel to yield an occlusive model; and developments in the adhesive coating of microfluidic chambers to better mimic the thrombogenic surface exposed following plaque rupture. Future developments in the drive to create more biologically relevant chambers could see a move towards the use of human placental vessels, perfused ex-vivo. However, further work is required to determine the feasibility and validity of this approach. SUMMARY Recent advances in thrombus formation models have significantly improved the pathophysiological relevance of in-vitro flow chambers to better reflect the in-vivo environment and provide a more translational platform to test novel antithrombotics.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | | | | |
Collapse
|
43
|
Arya P, Sharma V, Thapliyal S, Sagar R, Singh P. Preclinical models of atherosclerosis: An overview. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:535-542. [PMID: 38629090 PMCID: PMC11017846 DOI: 10.22038/ijbms.2024.74352.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/11/2023] [Indexed: 04/19/2024]
Abstract
Atherosclerosis is a primary cause of illness and death globally and its mechanism is still unclear. Different animal models have been created to evaluate the progression of atherosclerosis, allowing researchers to carefully control the circumstances of the experiment as well as the nutrition and environmental risk factors. To investigate the negative effects of various interventions, pathophysiological alterations might be generated utilizing genetic or pharmacological methods. These models' molecular and pathophysiological mechanisms have been clarified through experiments, and they have served as platforms for the creation of new drugs. Different models can be employed to address various research problems, each with its own benefits and drawbacks. In the current review study, various species of atherosclerosis models are discussed, along with the viability of using them in experiments.
Collapse
Affiliation(s)
- Priyanka Arya
- Galgotias College of Pharmacy, Greater Noida, U.P., India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, U.P., India
| | - Surabhi Thapliyal
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | | | - Priyanka Singh
- Galgotias College of Pharmacy, Greater Noida, U.P., India
| |
Collapse
|
44
|
Pappolla MA, Refolo L, Sambamurti K, Zambon D, Duff K. Hypercholesterolemia and Alzheimer's Disease: Unraveling the Connection and Assessing the Efficacy of Lipid-Lowering Therapies. J Alzheimers Dis 2024; 101:S371-S393. [PMID: 39422957 DOI: 10.3233/jad-240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This article examines the relationship between cholesterol levels and Alzheimer's disease (AD), beginning with the early observation that individuals who died from heart attacks often had brain amyloid deposition. Subsequent animal model research proved that high cholesterol could hasten amyloid accumulation. In contrast, cholesterol-lowering treatments appeared to counteract this effect. Human autopsy studies reinforced the cholesterol-AD connection, revealing that higher cholesterol levels during midlife significantly correlated with higher brain amyloid pathology. This effect was especially pronounced in individuals aged 40 to 55. Epidemiological data supported animal research and human tissue observations and suggested that managing cholesterol levels in midlife could reduce the risk of developing AD. We analyze the main observational studies and clinical trials on the efficacy of statins. While observational data often suggest a potential protective effect against AD, clinical trials have not consistently shown benefit. The failure of these trials to demonstrate a clear advantage is partially attributed to multiple factors, including the timing of statin therapy, the type of statin and the appropriate selection of patients for treatment. Many studies failed to target individuals who might benefit most from early intervention, such as high-risk patients like APOE4 carriers. The review addresses how cholesterol is implicated in AD through various biological pathways, the potential preventive role of cholesterol management as suggested by observational studies, and the difficulties encountered in clinical trials, particularly related to statin use. The paper highlights the need to explore alternate therapeutic targets and mechanisms that escape statin intervention.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lorenzo Refolo
- Translational Research Branch, Division of Neuroscience, Bethesda, MD, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Zambon
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - Karen Duff
- Karen Duff, UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
45
|
Alakhtar B, Guilbert C, Subramaniam N, Caruana V, Makhani K, Baglole CJ, Mann KK. E-cigarette exposure causes early pro-atherogenic changes in an inducible murine model of atherosclerosis. FRONTIERS IN TOXICOLOGY 2023; 5:1244596. [PMID: 38164438 PMCID: PMC10757938 DOI: 10.3389/ftox.2023.1244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Evidence suggests that e-cigarette use (vaping) increases cardiovascular disease risk, but decades are needed before people who vape would develop pathology. Thus, murine models of atherosclerosis can be utilized as tools to understand disease susceptibility, risk and pathogenesis. Moreover, there is a poor understanding of how risk factors for atherosclerosis (i.e., hyperlipidemia, high-fat diet) intersect with vaping to promote disease risk. Herein, we evaluated whether there was early evidence of atherosclerosis in an inducible hyperlipidemic mouse exposed to aerosol from commercial pod-style devices and e-liquid. Methods: Mice were injected with adeno-associated virus containing the human protein convertase subtilisin/kexin type 9 (PCSK9) variant to promote hyperlipidemia. These mice were fed a high-fat diet and exposed to room air or aerosol derived from JUUL pods containing polyethylene glycol/vegetable glycerin (PG/VG) or 5% nicotine with mango flavoring for 4 weeks; this timepoint was utilized to assess markers of atherosclerosis that may occur prior to the development of atherosclerotic plaques. Results: These data show that various parameters including weight, circulating lipoprotein/glucose levels, and splenic immune cells were significantly affected by exposure to PG/VG and/or nicotine-containing aerosols. Discussion: Not only can this mouse model be utilized for chronic vaping studies to assess the vascular pathology but these data support that vaping is not risk-free and may increase CVD outcomes later in life.
Collapse
Affiliation(s)
- Bayan Alakhtar
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Nivetha Subramaniam
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vincenza Caruana
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kiran Makhani
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J. Baglole
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Koren K. Mann
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
Lee GH, Lee HY, Lim YJ, Kim JH, Jung SJ, Jung ES, Chae SW, Lee J, Lim J, Rashid MMU, Min KH, Chae HJ. Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction. Aging (Albany NY) 2023; 15:13608-13627. [PMID: 38095615 PMCID: PMC10756119 DOI: 10.18632/aging.205343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young-Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Hyun Kim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Jin Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Eun-Soo Jung
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Juwon Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyung Hyun Min
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
47
|
Xie X. Steady solution and its stability of a mathematical model of diabetic atherosclerosis. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2257734. [PMID: 37711027 PMCID: PMC10576982 DOI: 10.1080/17513758.2023.2257734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), β cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Xuming Xie
- Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
48
|
Tyrrell DJ, Wragg KM, Chen J, Wang H, Song J, Blin MG, Bolding C, Vardaman D, Giles K, Tidwell H, Ali MA, Janappareddi A, Wood SC, Goldstein DR. Clonally expanded memory CD8 + T cells accumulate in atherosclerotic plaques and are pro-atherogenic in aged mice. NATURE AGING 2023; 3:1576-1590. [PMID: 37996758 PMCID: PMC11924142 DOI: 10.1038/s43587-023-00515-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
Aging is a strong risk factor for atherosclerosis and induces accumulation of memory CD8+ T cells in mice and humans. Biological changes that occur with aging lead to enhanced atherosclerosis, yet the role of aging on CD8+ T cells during atherogenesis is unclear. In this study, using femle mice, we found that depletion of CD8+ T cells attenuated atherogenesis in aged, but not young, animals. Furthermore, adoptive transfer of splenic CD8+ T cells from aged wild-type, but not young wild-type, donor mice significantly enhanced atherosclerosis in recipient mice lacking CD8+ T cells. We also characterized T cells in healthy and atherosclerotic young and aged mice by single-cell RNA sequencing. We found specific subsets of age-associated CD8+ T cells, including a Granzyme K+ effector memory subset, that accumulated and was clonally expanded within atherosclerotic plaques. These had transcriptomic signatures of T cell activation, migration, cytotoxicity and exhaustion. Overall, our study identified memory CD8+ T cells as therapeutic targets for atherosclerosis in aging.
Collapse
Affiliation(s)
- Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianrui Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Muriel G Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chase Bolding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald Vardaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kara Giles
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison Tidwell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sherri C Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Tscheuschner L, Tzafriri AR. Cardiovascular Tissue Engineering Models for Atherosclerosis Treatment Development. Bioengineering (Basel) 2023; 10:1373. [PMID: 38135964 PMCID: PMC10740643 DOI: 10.3390/bioengineering10121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
In the early years of tissue engineering, scientists focused on the generation of healthy-like tissues and organs to replace diseased tissue areas with the aim of filling the gap between organ demands and actual organ donations. Over time, the realization has set in that there is an additional large unmet need for suitable disease models to study their progression and to test and refine different treatment approaches. Increasingly, researchers have turned to tissue engineering to address this need for controllable translational disease models. We review existing and potential uses of tissue-engineered disease models in cardiovascular research and suggest guidelines for generating adequate disease models, aimed both at studying disease progression mechanisms and supporting the development of dedicated drug-delivery therapies. This involves the discussion of different requirements for disease models to test drugs, nanoparticles, and drug-eluting devices. In addition to realistic cellular composition, the different mechanical and structural properties that are needed to simulate pathological reality are addressed.
Collapse
Affiliation(s)
- Linnea Tscheuschner
- Department of Vascular Surgery, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Abraham R. Tzafriri
- Department of Research and Innovation, CBSET Inc., Lexington, MA 02421, USA;
| |
Collapse
|
50
|
Yan A, Gotlieb AI. The microenvironment of the atheroma expresses phenotypes of plaque instability. Cardiovasc Pathol 2023; 67:107572. [PMID: 37595697 DOI: 10.1016/j.carpath.2023.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Data from histopathology studies of human atherosclerotic tissue specimens and from vascular imaging studies support the concept that the local arterial microenvironment of a stable atheroma promotes destabilizing conditions that result in the transition to an unstable atheroma. Destabilization is characterized by several different plaque phenotypes that cause major clinical events such as acute coronary syndrome and cerebrovascular strokes. There are several rupture-associated phenotypes causing thrombotic vascular occlusion including simple fibrous cap rupture of an atheroma, fibrous cap rupture at site of previous rupture-and-repair of an atheroma, and nodular calcification with rupture. Endothelial erosion without rupture has more recently been shown to be a common phenotype to promote thrombosis as well. Microenvironment features that are linked to these phenotypes of plaque instability are neovascularization arising from the vasa vasorum network leading to necrotic core expansion, intraplaque hemorrhage, and cap rupture; activation of adventitial and perivascular adipose tissue cells leading to secretion of cytokines, growth factors, adipokines in the outer artery wall that destabilize plaque structure; and vascular smooth muscle cell phenotypic switching through transdifferentiation and stem/progenitor cell activation resulting in the promotion of inflammation, calcification, and secretion of extracellular matrix, altering fibrous cap structure, and necrotic core growth. As the technology evolves, studies using noninvasive vascular imaging will be able to investigate the transition of stable to unstable atheromas in real time. A limitation in the field, however, is that reliable and predictable experimental models of spontaneous plaque rupture and/or erosion are not currently available to study the cell and molecular mechanisms that regulate the conversion of the stable atheroma to an unstable plaque.
Collapse
Affiliation(s)
- Angela Yan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|