1
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025; 22:414-430. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
2
|
Gonzalez AL, Youwakim CM, Leake BF, Fuller KK, Rahman SMJ, Dungan MM, Gu K, Bonin JL, Cavnar AB, Michell DL, Davison LM, Cutchins C, Chu YE, Yuan S, Yurdagul A, Traylor JG, Orr AW, Kohutek ZA, Linton MF, MacNamara KC, Ferrell PB, Vickers KC, Madhur MS, Brown JD, Doran AC. Impaired CAMK4 Activity Limits Atherosclerosis and Reprograms Myelopoiesis. Arterioscler Thromb Vasc Biol 2025. [PMID: 40336480 DOI: 10.1161/atvbaha.125.322530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Chronic inflammation is a major driver of atherosclerotic cardiovascular disease, and therapeutics that target inflammation reduce cardiac events beyond levels seen with strategies targeting cholesterol alone. RNA sequencing revealed increased expression of CaMK4 (calcium/calmodulin-dependent protein kinase IV) in advanced/unstable human carotid artery plaque. We validated this finding in mouse and human atherosclerotic lesions, demonstrating increased CaMK4 in plaque macrophages. Therefore, we hypothesized that CaMK4 would promote inflammation and impair resolution in atherosclerosis. METHODS We obtained mice in which exon 3 within the kinase domain of CaMK4 is deleted, leading to degradation and deletion of the gene (Camk4-/-). Control and Camk4-/- mice were injected with a gain-of-function AAV (adeno-associated virus) 8-PCSK9 (proprotein convertase subtilisin/kexin type 9) virus, rendering them hypercholesterolemic, and fed a high-fat/high-cholesterol diet for 12 weeks. RESULTS Hypercholesterolemic Camk4-/- mice developed smaller and more stable lesions compared with control mice. Surprisingly, Camk4-/- mice had a peripheral monocytosis with skewing of monocyte populations toward the nonclassical Ly6clow subset, suggesting a less inflammatory monocyte population. Silencing or inhibition of CaMK4 in human monocytes recapitulated this phenotype. In response to hypercholesterolemia, which promotes myelopoiesis, Camk4-/- mice had markedly more myeloid progenitors. Camk4-/- monocytes expressed higher levels of genes associated with myeloid differentiation and recruitment of ATF6 (activating transcription factor 6) to conserved binding sites. In addition, Camk4-/- monocytes expressed higher levels of Nr4a1, which promotes conversion of Ly6chigh to Ly6clow monocytes. Camk4-/- monocytes failed to efficiently traffic in vitro and in vivo. Bone marrow-derived macrophages generated from Camk4-/- marrow had a more proreparative phenotype than control macrophages, consistent with our in vivo observations in the plaque. CONCLUSIONS These findings suggest that CaMK4 is an important regulator of the myelopoietic response to hypercholesterolemia through ATF6-mediated transcriptional regulation and that loss of functional CaMK4 promotes a proreparative phenotype in myeloid cells. Therefore, targeting CaMK4 may offer a unique way to target the progression of atherosclerosis.
Collapse
Affiliation(s)
- Azuah L Gonzalez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN. (A.L.G., M.M.D., A.B.C., K.C.V., A.C.D.)
| | - Cristina M Youwakim
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Brenda F Leake
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Kristin K Fuller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - S M Jamshedur Rahman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Matthew M Dungan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN. (A.L.G., M.M.D., A.B.C., K.C.V., A.C.D.)
| | - Katherine Gu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Jesse L Bonin
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, LA. (J.L.B., A.Y.)
| | - Ashley B Cavnar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN. (A.L.G., M.M.D., A.B.C., K.C.V., A.C.D.)
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Lindsay M Davison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Calliope Cutchins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Yunli E Chu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN. (Y.E.C., P.B.F.), and
| | - Shuai Yuan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA (S.Y.)
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, LA. (J.L.B., A.Y.)
| | - James G Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center-Shreveport, LA. (J.G.T., A.W.O.)
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center-Shreveport, LA. (J.G.T., A.W.O.)
| | - Zachary A Kohutek
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN. (Z.A.K.)
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | | | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN. (Y.E.C., P.B.F.), and
| | - Kasey C Vickers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN. (A.L.G., M.M.D., A.B.C., K.C.V., A.C.D.)
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. (K.C.V., J.D.B., A.C.D.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Meena S Madhur
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis (M.S.M.)
| | - Jonathan D Brown
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. (K.C.V., J.D.B., A.C.D.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| | - Amanda C Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN. (A.L.G., M.M.D., A.B.C., K.C.V., A.C.D.)
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. (K.C.V., J.D.B., A.C.D.)
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN. (A.C.D.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., Y.E.C., M.F.L., P.B.F., K.C.V., J.D.B., A.C.D.)
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN. (C.M.Y., B.F.L., K.K.F., S.M.J.R., K.G., D.L.M., L.M.D., C.C., M.F.L., K.C.V., J.D.B., A.C.D.)
| |
Collapse
|
3
|
Babakhani K, Kucinskas AL, Ye X, Giles ED, Sun Y. Aging immunity: unraveling the complex nexus of diet, gut microbiome, and immune function. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00061. [PMID: 40352822 PMCID: PMC12063687 DOI: 10.1097/in9.0000000000000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
Aging is associated with immune senescence and gut dysbiosis, both of which are heavily influenced by the diet. In this review, we summarize current knowledge regarding the impact of diets high in fiber, protein, or fat, as well as different dietary components (tryptophan, omega-3 fatty acids, and galacto-oligosaccharides) on the immune system and the gut microbiome in aging. Additionally, this review discusses how aging alters tryptophan metabolism, contributing to changes in immune function and the gut microbiome. Understanding the relationship between diet, the gut microbiome, and immune function in the context of aging is critical to formulate sound dietary recommendations for older individuals, and these personalized nutritional practices will ultimately improve the health and longevity of the elderly.
Collapse
Affiliation(s)
| | - Amanda L. Kucinskas
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Xiangcang Ye
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Erin D. Giles
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Zhao Y, Yu ZM, Cui T, Li LD, Li YY, Qian FC, Zhou LW, Li Y, Fang QL, Huang XM, Zhang QY, Cai FH, Dong FJ, Shang DS, Li CQ, Wang QY. scBlood: A comprehensive single-cell accessible chromatin database of blood cells. Comput Struct Biotechnol J 2024; 23:2746-2753. [PMID: 39050785 PMCID: PMC11266868 DOI: 10.1016/j.csbj.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ∼400 high-quality scATAC-seq samples covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facilitates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood-related diseases.
Collapse
Affiliation(s)
- Yu Zhao
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Min Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cui
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Dong Li
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Yu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Feng-Cui Qian
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Wei Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ye Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiao-Li Fang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Xue-Mei Huang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Qin-Yi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Hong Cai
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Juan Dong
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - De-Si Shang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chun-Quan Li
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Maternal and Child Health Care Hospital, National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiu-Yu Wang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Maternal and Child Health Care Hospital, National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Schneckmann R, Döring M, Gerfer S, Gorressen S, Heitmeier S, Helten C, Polzin A, Jung C, Kelm M, Fender AC, Flögel U, Grandoch M. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Res Cardiol 2023; 118:31. [PMID: 37580509 PMCID: PMC10425524 DOI: 10.1007/s00395-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Pharmacological inhibition of factor Xa by rivaroxaban has been shown to mediate cardioprotection and is frequently used in patients with, e.g., atrial fibrillation. Rivaroxaban's anti-inflammatory actions are well known, but the underlying mechanisms are still incompletely understood. To date, no study has focused on the effects of rivaroxaban on the bone marrow (BM), despite growing evidence that the BM and its activation are of major importance in the development/progression of cardiovascular disease. Thus, we examined the impact of rivaroxaban on BM composition under homeostatic conditions and in response to a major cardiovascular event. Rivaroxaban treatment of mice for 7 days markedly diminished mature leukocytes in the BM. While apoptosis of BM-derived mature myeloid leukocytes was unaffected, lineage-negative BM cells exhibited a differentiation arrest at the level of granulocyte-monocyte progenitors, specifically affecting neutrophil maturation via downregulation of the transcription factors Spi1 and Csfr1. To assess whether this persists also in situations of increased leukocyte demand, mice were subjected to cardiac ischemia/reperfusion injury (I/R): 7 d pretreatment with rivaroxaban led to reduced cardiac inflammation 72 h after I/R and lowered circulating leukocyte numbers. However, BM myelopoiesis showed a rescue of the leukocyte differentiation arrest, indicating that rivaroxaban's inhibitory effects are restricted to homeostatic conditions and are mainly abolished during emergency hematopoiesis. In translation, ST-elevation MI patients treated with rivaroxaban also exhibited reduced circulating leukocyte numbers. In conclusion, we demonstrate that rivaroxaban attenuates neutrophil maturation in the BM, which may offer a therapeutic option to limit overshooting of the immune response after I/R.
Collapse
Affiliation(s)
- R Schneckmann
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - M Döring
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - S Gerfer
- Department of Cardiothoracic Surgery, Heart Center of the University Hospital of Cologne, Cologne, Germany
| | - S Gorressen
- Institute for Pharmacology Düsseldorf, Medical Faculty, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - S Heitmeier
- Research & Development Pharmaceuticals, Bayer AG, Acute Hospital Research, Wuppertal, Germany
| | - C Helten
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - A Polzin
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - C Jung
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - M Kelm
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - A C Fender
- Institute of Pharmacology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Flögel
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - M Grandoch
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Mikhailova L, Minchenko A, Soroko I, Khlusov I, Litvinova L. Adipocyte- and Monocyte-Mediated Vicious Circle of Inflammation and Obesity (Review of Cellular and Molecular Mechanisms). Int J Mol Sci 2023; 24:12259. [PMID: 37569635 PMCID: PMC10418857 DOI: 10.3390/ijms241512259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Larisa Mikhailova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Anastasia Minchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Irina Soroko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
7
|
Zaunz S, De Smedt J, Lauwereins L, Cleuren L, Laffeber C, Bajaj M, Lebbink JHG, Marteijn JA, De Keersmaecker K, Verfaillie C. APEX1 Nuclease and Redox Functions are Both Essential for Adult Mouse Hematopoietic Stem and Progenitor Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10550-0. [PMID: 37266894 PMCID: PMC10390635 DOI: 10.1007/s12015-023-10550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function. In this study, we demonstrated that complete loss of APEX1 from murine bone marrow HSPCs (induced by CRISPR/Cas9) caused severe hematopoietic failure following transplantation, as well as a HSPC expansion defect in culture conditions maintaining in vivo HSC functionality. Using specific inhibitors against either the nuclease or redox domains of APEX1 in combination with single cell transcriptomics (CITE-seq), we found that both APEX1 nuclease and redox domains are regulating mouse HSPCs, but through distinct underlying transcriptional changes. Inhibition of the APEX1 nuclease function resulted in loss of HSPCs accompanied by early activation of differentiation programs and enhanced lineage commitment. By contrast, inhibition of the APEX1 redox function significantly downregulated interferon-stimulated genes and regulons in expanding HSPCs and their progeny, resulting in dysfunctional megakaryocyte-biased HSPCs, as well as loss of monocytes and lymphoid progenitor cells. In conclusion, we demonstrate that APEX1 is a key regulator for adult regenerative hematopoiesis, and that the APEX1 nuclease and redox domains differently impact proliferating HSPCs.
Collapse
Affiliation(s)
- Samantha Zaunz
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium.
| | - Jonathan De Smedt
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
- GlaxoSmithKline Biologicals SA, 1300, Wavre, Belgium
| | - Lukas Lauwereins
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Lana Cleuren
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manmohan Bajaj
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| |
Collapse
|
8
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
9
|
Watanabe A, Koike H, Kumagami N, Shimba S, Manabe I, Oishi Y. Arntl deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci Rep 2023; 13:6747. [PMID: 37185573 PMCID: PMC10130093 DOI: 10.1038/s41598-023-33830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Naoki Kumagami
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
10
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
11
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
12
|
Maheshwari A. The Phylogeny, Ontogeny, and Organ-specific Differentiation of Macrophages in the Developing Intestine. NEWBORN (CLARKSVILLE, MD.) 2022; 1:340-355. [PMID: 36698382 PMCID: PMC9872774 DOI: 10.5005/jp-journals-11002-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrophages are large highly motile phagocytic leukocytes that appear early during embryonic development and have been conserved during evolution. The developmental roles of macrophages were first described nearly a century ago, at about the time these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since then, we have made considerable progress in understanding the development of various subsets of macrophages and the diverse roles these cells play in both physiology and disease. This article reviews the phylogeny and the ontogeny of macrophages with a particular focus on the gastrointestinal tract, and the role of these mucosal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the importance of these macrophages in the inflammatory changes in neonatal necrotizing enterocolitis (NEC). This article presents a combination of our own peer-reviewed clinical and preclinical studies, with an extensive review of the literature using the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
13
|
Khan ANH, Emmons TR, Magner WJ, Alqassim E, Singel KL, Ricciuti J, Eng KH, Odunsi K, Tomasi TB, Lee K, Abrams SI, Mesa C, Segal BH. VSSP abrogates murine ovarian tumor-associated myeloid cell-driven immune suppression and induces M1 polarization in tumor-associated macrophages from ovarian cancer patients. Cancer Immunol Immunother 2022; 71:2355-2369. [PMID: 35166871 PMCID: PMC10591410 DOI: 10.1007/s00262-022-03156-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
The ovarian tumor microenvironment (TME) is characterized by the accumulation of immunosuppressive tumor-associated macrophages (TAMs) and granulocytic cells. Very small size particles (VSSP), comprised of the ganglioside NAcGM3 and Neisseria meningitidis derived outer membrane vesicles, is being developed as a nanoparticulated modulator of innate immunity. Prior studies have shown that VSSP enhanced antigen-specific cytotoxic T cell responses and reduced the suppressive phenotype of splenic granulocytic cells in tumor-bearing mice. Here, we hypothesized that intraperitoneal VSSP would modify myeloid cell accumulation and phenotypes in the ovarian TME and abrogate suppressor function of TAMs and tumor-associated granulocytic cells. In the ID8 syngeneic model of epithelial ovarian cancer, VSSP reduced peritoneal TAMs and induced M1-like polarization in TAMs. In addition, VSSP stimulated peritoneal inflammation characterized by increased granulocytes and monocytes, including inflammatory monocytic cells. VSSP treatment resulted in peritoneal TAMs and granulocytic cells being less suppressive of ex vivo stimulated CD8+ T cell responses. VSSP alone and combined with anti-PD-1 modestly but significantly prolonged survival in tumor-bearing mice. In addition, ex vivo treatment with VSSP induced M1-like polarization in TAMs from patients with metastatic ovarian cancer and variably abrogated their suppressor phenotype. VSSP treatment also partially abrogated the induction of suppressor function in healthy donor neutrophils exposed to ascites supernatants from patients with ovarian cancer. Together, these results point to VSSP reprogramming myeloid responses resulting in abrogation of suppressive pathways and raise the potential for administration of VSSP into the TME to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William J Magner
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Emad Alqassim
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kelly L Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Office of Evaluation, Performance, and Reporting; Division of Program Coordination, Planning, and Strategic Initiatives; Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Jason Ricciuti
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kevin H Eng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Thomas B Tomasi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kelvin Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA
| | - Circe Mesa
- Center of Molecular Immunology, Havana, Cuba
- Innovative Immunotherapy Alliance, S. A. Mariel, Artemisa, Cuba
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA.
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, USA.
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
14
|
Castell N, Guerrero-Martin SM, Rubin LH, Shirk EN, Brockhurst JK, Lyons CE, Najarro KM, Queen SE, Carlson BW, Adams RJ, Morrell CN, Gama L, Graham DR, Zink C, Mankowski JL, Clements JE, Metcalf Pate KA. Effect of Single Housing on Innate Immune Activation in Immunodeficiency Virus-Infected Pigtail Macaques ( Macaca nemestrina ) as a Model of Psychosocial Stress in Acute HIV Infection. Psychosom Med 2022; 84:966-975. [PMID: 36162063 PMCID: PMC9553260 DOI: 10.1097/psy.0000000000001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.
Collapse
|
15
|
Hu L, Liu S, Peng Y, Ge R, Su R, Senevirathne C, Harada BT, Dai Q, Wei J, Zhang L, Hao Z, Luo L, Wang H, Wang Y, Luo M, Chen M, Chen J, He C. m 6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat Biotechnol 2022; 40:1210-1219. [PMID: 35288668 PMCID: PMC9378555 DOI: 10.1038/s41587-022-01243-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/28/2022] [Indexed: 01/28/2023]
Abstract
Functional studies of the RNA N6-methyladenosine (m6A) modification have been limited by an inability to map individual m6A-modified sites in whole transcriptomes. To enable such studies, here, we introduce m6A-selective allyl chemical labeling and sequencing (m6A-SAC-seq), a method for quantitative, whole-transcriptome mapping of m6A at single-nucleotide resolution. The method requires only ~30 ng of poly(A) or rRNA-depleted RNA. We mapped m6A modification stoichiometries in RNA from cell lines and during in vitro monocytopoiesis from human hematopoietic stem and progenitor cells (HSPCs). We identified numerous cell-state-specific m6A sites whose methylation status was highly dynamic during cell differentiation. We observed changes of m6A stoichiometry as well as expression levels of transcripts encoding or regulated by key transcriptional factors (TFs) critical for HSPC differentiation. m6A-SAC-seq is a quantitative method to dissect the dynamics and functional roles of m6A sites in diverse biological processes using limited input RNA.
Collapse
Affiliation(s)
- Lulu Hu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Fudan University Institutes of Biomedical Sciences, Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, China.
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Yong Peng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bryan T Harada
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Lisheng Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Ziyang Hao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Liangzhi Luo
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Huanyu Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuru Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma. Cell Discov 2022; 8:68. [PMID: 35853872 PMCID: PMC9296597 DOI: 10.1038/s41421-022-00415-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 01/01/2023] Open
Abstract
The clear cell renal cell carcinoma (ccRCC) microenvironment consists of many different cell types and structural components that play critical roles in cancer progression and drug resistance, but the cellular architecture and underlying gene regulatory features of ccRCC have not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to generate transcriptional and epigenomic landscapes of ccRCC. We identified tumor cell-specific regulatory programs mediated by four key transcription factors (TFs) (HOXC5, VENTX, ISL1, and OTP), and these TFs have prognostic significance in The Cancer Genome Atlas (TCGA) database. Targeting these TFs via short hairpin RNAs (shRNAs) or small molecule inhibitors decreased tumor cell proliferation. We next performed an integrative analysis of chromatin accessibility and gene expression for CD8+ T cells and macrophages to reveal the different regulatory elements in their subgroups. Furthermore, we delineated the intercellular communications mediated by ligand–receptor interactions within the tumor microenvironment. Taken together, our multiomics approach further clarifies the cellular heterogeneity of ccRCC and identifies potential therapeutic targets.
Collapse
|
17
|
Chen C, Yu W, Alikarami F, Qiu Q, Chen CH, Flournoy J, Gao P, Uzun Y, Fang L, Davenport JW, Hu Y, Zhu Q, Wang K, Libbrecht C, Felmeister A, Rozich I, Ding YY, Hunger SP, Felix CA, Wu H, Brown PA, Guest EM, Barrett DM, Bernt KM, Tan K. Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia. Blood 2022; 139:2198-2211. [PMID: 34864916 PMCID: PMC8990373 DOI: 10.1182/blood.2021013442] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.
Collapse
Affiliation(s)
- Changya Chen
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine
| | | | - Qi Qiu
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research and
| | - Jennifer Flournoy
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yasin Uzun
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, and
| | - Clara Libbrecht
- Division of Oncology and Center for Childhood Cancer Research and
| | - Alex Felmeister
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Isaiah Rozich
- Graduate Group in Immunology, University of Pennsylvania, Philadelphia, PA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Carolyn A Felix
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Patrick A Brown
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD; and
| | - Erin M Guest
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - David M Barrett
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Kathrin M Bernt
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Pediatrics, Perelman School of Medicine
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research and
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine
- Department of Genetics, Perelman School of Medicine
- Penn Epigenetics Institute, and
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, Kushwaha J. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann Neurosci 2022; 28:191-200. [PMID: 35341232 PMCID: PMC8948319 DOI: 10.1177/09727531211070532] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Innate immunity is mediated by a variety of cell types, including microglia,
macrophages, and neutrophils, and serves as the immune system's first line of defense.
There are numerous pathways involved in innate immunity, including the interferon (IFN)
pathway, TRK pathway, mitogen-activated protein kinase (MAPK) pathway, Janus
kinase/signal transducer and activator of transcription (JAK/STAT) pathway, interleukin
(IL) pathways, chemokine pathways (CCR5), GSK signaling, and Fas signaling. Summary: JAK/STAT is one of these important signaling pathways and this review focused on
JAK/STAT signaling pathway only. The overactivation of microglia and astrocytes
influences JAK/STAT's role in neuroinflammatory disease by initiating innate immunity,
orchestrating adaptive immune mechanisms, and ultimately constraining inflammatory and
immunological responses. The JAK/STAT signaling pathway is one of the critical factors
that promotes neuroinflammation in neurodegenerative diseases. Key message: Given the importance of the JAK/STAT pathway in neurodegenerative disease, this review
discussed the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy
for neurodegenerative diseases in near future.
Collapse
Affiliation(s)
- Mayank Jain
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul Kumar Singh
- Department of Urology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Hari Shyam
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Archana Mishra
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Kumar
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Ambrish Kumar
- Department of Vascular Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Jitendra Kushwaha
- Department of General Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
20
|
Magidey-Klein K, Cooper TJ, Kveler K, Normand R, Zhang T, Timaner M, Raviv Z, James BP, Gazit R, Ronai ZA, Shen-Orr S, Shaked Y. IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. J Immunother Cancer 2021; 9:jitc-2021-002856. [PMID: 34140316 PMCID: PMC8212411 DOI: 10.1136/jitc-2021-002856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of death in patients with cancer. Myeloid skewing of hematopoietic cells is a prominent promoter of metastasis. However, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern from hematopoietic stem and progenitor cells (HSPCs) have not been explored. METHODS We used a unique model system consisting of tumor cell clones with low metastatic potential or high metastatic potential (met-low and met-high, respectively) to investigate the fate of HSPC differentiation using murine melanoma and breast carcinoma. Single-cell RNA sequencing (scRNA-seq) analysis was performed on HSPC obtained from the BM of met-low and met-high tumors. A proteomic screen of tumor-conditioned medium integrated with the scRNA-seq data analysis was performed to analyze the potential cross talk between cancer cells and HSPCs. Adoptive transfer of tumor-educated HSPC subsets obtained from green fluorescent protein (GFP)+ tagged mice was then carried out to identify the contribution of committed HSPCs to tumor spread. Peripheral mononuclear cells obtained from patients with breast and lung cancer were analyzed for HSPC subsets. RESULTS Mice bearing met-high tumors exhibited a significant increase in the percentage of HSPCs in the BM in comparison with tumor-free mice or mice bearing met-low tumors. ScRNA-seq analysis of these HSPCs revealed that met-high tumors enriched the monocyte-dendritic progenitors (MDPs) but not granulocyte-monocyte progenitors (GMPs). A proteomic screen of tumor- conditioned medium integrated with the scRNA-seq data analysis revealed that the interleukin 6 (IL-6)-IL-6 receptor axis is highly active in HSPC-derived MDP cells. Consequently, loss of function and gain of function of IL-6 in tumor cells resulted in decreased and increased metastasis and corresponding MDP levels, respectively. Importantly, IL-6-educated MDPs induce metastasis within mice bearing met-low tumors-through further differentiation into immunosuppressive macrophages and not dendritic cells. Consistently, MDP but not GMP levels in peripheral blood of breast and lung cancer patients are correlated with tumor aggressiveness. CONCLUSIONS Our study reveals a new role for tumor-derived IL-6 in hijacking the HSPC differentiation program toward prometastatic MDPs that functionally differentiate into immunosuppressive monocytes to support the metastatic switch.
Collapse
Affiliation(s)
| | - Tim J Cooper
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ksenya Kveler
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachelly Normand
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Michael Timaner
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Brian P James
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Roi Gazit
- Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Southern, Israel
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Shai Shen-Orr
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Leylek R, Alcántara-Hernández M, Granja JM, Chavez M, Perez K, Diaz OR, Li R, Satpathy AT, Chang HY, Idoyaga J. Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Rep 2021; 32:108180. [PMID: 32966789 PMCID: PMC7546547 DOI: 10.1016/j.celrep.2020.108180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function. Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis. Human dendritic cells (DCs) orchestrate immune responses by a division of labor between functionally specialized subsets; however, the transcriptional basis of this heterogeneity is poorly understood. Using ATAC-seq, Leylek et al. profile the chromatin landscape of human DC subsets, providing insight into the underlying regulatory mechanisms that modulate their function.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey M Granja
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly Perez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar R Diaz
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Tahir S, Steffens S. Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2021; 320:C761-C770. [PMID: 33596150 DOI: 10.1152/ajpcell.00326.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monocytes are a heterogeneous cell population of innate immune cells with distinct cell surface markers that help them in carrying out different functions. In humans, there are three well-characterized subsets, namely, classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+ CD16++) monocytes. There is an emerging focus on the not yet well explored nonclassical monocytes that maintain vascular integrity by slowly patrolling on the endothelium, reacting to inflammatory signals, and clearing cell debris. In this manner, they are not only crucial for vascular homeostasis but also play a vital role in wound healing and resolution of inflammation by linking innate to adaptive immune response. Although they have been shown to be protective, yet they are also associated with inflammatory disease progression. This short review will give an insight about the emerging role of nonclassical monocytes in vascular homeostasis, inflammation, and protection in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Sibgha Tahir
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
23
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
24
|
The transcription factor C/EBPβ orchestrates dendritic cell maturation and functionality under homeostatic and malignant conditions. Proc Natl Acad Sci U S A 2020; 117:26328-26339. [PMID: 33020261 DOI: 10.1073/pnas.2008883117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPβ as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPβ in CD11c+MHCIIhi DCs, gene expression profiles of splenic C/EBPβ-/- DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c+MHCIIhiCD64+ DC compartment was also increased, suggesting that C/EBPβ deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPβ could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPβ-/- bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPβ/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPβ plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.
Collapse
|
25
|
Mohamedaly S, Alkhani A, Nijagal A. The relative abundance of monocyte subsets determines susceptibility to perinatal hepatic inflammation. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2020; 11:602. [PMID: 36304699 PMCID: PMC9603689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The devastating consequences of perinatal liver inflammation contribute to a pressing need to develop therapeutics for the diseases that underly this condition. Biliary atresia (BA) is a perinatal inflammatory disease of the liver that results in obliterative cholangiopathy and rapidly progresses to liver failure, requiring transplantation. The ability to develop targeted therapies requires an understanding of the immune mechanisms that mitigate perinatal liver inflammation. This article reviews our recent findings demonstrating that in a murine model of perinatal hepatic inflammation, Ly6cLo non-classical monocytes express a pro-reparative transcriptomic profile and that the relative abundance of Ly6cLo monocytes promotes resolution of perinatal liver inflammation, rendering neonatal pups resistant to disease. We also examine the lineage relationship between monocyte subsets, reviewing data that suggests classical monocytes are a precursor for non-classical monocytes, and the alternative possibility that separate progenitors exist for each subset. Although a precursor-product relationship between classical and non-classical monocytes might exist in certain environments, we argue that they may also arise from separate progenitors, which is evident by sustained Ly6cLo non-classical monocyte expansion when Ly6cHi monocytes are absent. An improved understanding of monocyte subsets and their developmental trajectories during perinatal hepatic inflammation will provide insight into how therapies directed at controlling monocyte function may help alleviate the devastating consequences of diseases like BA.
Collapse
Affiliation(s)
| | | | - Amar Nijagal
- ‡ Corresponding Author: Amar Nijagal, MD, Assistant Professor of Surgery, Division of Pediatric Surgery, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, University of CA, San Francisco, San Francisco, CA 94143-0570, Office: 415-476-4086; Fax: 415-476-2314,
| |
Collapse
|
26
|
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol 2020; 10:1399. [PMID: 33042791 PMCID: PMC7528630 DOI: 10.3389/fonc.2020.01399] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Monocytes influence multiple aspects of tumor progression, including antitumor immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and differentiating into tumor-associated macrophages. Emerging evidence suggests that the tumor-induced systemic environment influences the development and phenotype of monocytes before their arrival to the tumor site. As a result, circulating monocytes show functional alterations in cancer, such as the acquisition of immunosuppressive activity and reduced responsiveness to inflammatory stimuli. In this review, we summarize available evidence about cancer-induced changes in monopoiesis and its impact on the abundance and function of monocytes in the periphery. In addition, we describe the phenotypical alterations observed in tumor-educated peripheral blood monocytes and highlight crucial gaps in our knowledge about additional cellular functions that may be affected based on transcriptomic studies. We also highlight emerging therapeutic strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral monocytes to inhibit tumor progression and improve therapy responses. Overall, we suggest that an in-depth understanding of systemic monocyte reprogramming will have implications for cancer immunotherapy and the development of clinical biomarkers.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aarushi Audhut Caro
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells 2020; 9:cells9092040. [PMID: 32900001 PMCID: PMC7565932 DOI: 10.3390/cells9092040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.
Collapse
|
28
|
Wang C, Sun D, Huang X, Wan C, Li Z, Han Y, Qin Q, Fan J, Qiu X, Xie Y, Meyer CA, Brown M, Tang M, Long H, Liu T, Liu XS. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol 2020; 21:198. [PMID: 32767996 PMCID: PMC7412809 DOI: 10.1186/s13059-020-02116-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
We present Model-based AnalysEs of Transcriptome and RegulOme (MAESTRO), a comprehensive open-source computational workflow ( http://github.com/liulab-dfci/MAESTRO ) for the integrative analyses of single-cell RNA-seq (scRNA-seq) and ATAC-seq (scATAC-seq) data from multiple platforms. MAESTRO provides functions for pre-processing, alignment, quality control, expression and chromatin accessibility quantification, clustering, differential analysis, and annotation. By modeling gene regulatory potential from chromatin accessibilities at the single-cell level, MAESTRO outperforms the existing methods for integrating the cell clusters between scRNA-seq and scATAC-seq. Furthermore, MAESTRO supports automatic cell-type annotation using predefined cell type marker genes and identifies driver regulators from differential scRNA-seq genes and scATAC-seq peaks.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Dongqing Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Changxin Wan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Ya Han
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Qian Qin
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Jingyu Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Clifford A Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
29
|
Zimmerman KA, Hopp K, Mrug M. Role of chemokines, innate and adaptive immunity. Cell Signal 2020; 73:109647. [PMID: 32325183 DOI: 10.1016/j.cellsig.2020.109647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Polycystic Kidney Disease (PKD) triggers a robust immune system response including changes in both innate and adaptive immunity. These changes involve immune cells (e.g., macrophages and T cells) as well as cytokines and chemokines (e.g., MCP-1) that regulate the production, differentiation, homing, and various functions of these cells. This review is focused on the role of the immune system and its associated factors in the pathogenesis of PKDs as evidenced by data from cell-based systems, animal models, and PKD patients. It also highlights relevant pre-clinical and clinical studies that point to specific immune system components as promising candidates for the development of prognostic biomarkers and therapeutic strategies to improve PKD outcomes.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
30
|
Yu W, Uzun Y, Zhu Q, Chen C, Tan K. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Genome Biol 2020; 21:94. [PMID: 32312293 PMCID: PMC7169039 DOI: 10.1186/s13059-020-02008-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Single-cell chromatin accessibility sequencing has become a powerful technology for understanding epigenetic heterogeneity of complex tissues. However, there is a lack of open-source software for comprehensive processing, analysis, and visualization of such data generated using all existing experimental protocols. Here, we present scATAC-pro for quality assessment, analysis, and visualization of single-cell chromatin accessibility sequencing data. scATAC-pro computes a range of quality control metrics for several key steps of experimental protocols, with a flexible choice of methods. It generates summary reports for both quality assessment and downstream analysis. scATAC-pro is available at https://github.com/tanlabcode/scATAC-pro.
Collapse
Affiliation(s)
- Wenbao Yu
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yasin Uzun
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Changya Chen
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
32
|
The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 2019; 110:102359. [PMID: 31806421 DOI: 10.1016/j.jaut.2019.102359] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.
Collapse
|
33
|
Broughton TWK, ElTanbouly MA, Schaafsma E, Deng J, Sarde A, Croteau W, Li J, Nowak EC, Mabaera R, Smits NC, Kuta A, Noelle RJ, Lines JL. Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness. Front Immunol 2019; 10:2641. [PMID: 31803182 PMCID: PMC6877598 DOI: 10.3389/fimmu.2019.02641] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
The role of negative checkpoint regulators (NCRs) in human health and disease cannot be overstated. V-domain Ig-containing Suppressor of T-cell Activation (VISTA) is an Ig superfamily protein predominantly expressed within the hematopoietic compartment and has been studied for its role in the negative regulation of T cell responses. The findings presented in this study show that, unlike all other NCRs, VISTA deficiency dramatically impacts on macrophage cytokine and chemokine production, as well as the chemotactic response of VISTA-deficient macrophages. A select group of inflammatory chemokines, including CCL2, CCL3, CCL4, and CCL5, was strikingly elevated in culture supernatants from VISTA KO macrophages. VISTA deficiency also altered chemokine receptor recycling and profoundly disrupted myeloid chemotaxis. The impact of VISTA deficiency on chemotaxis in vivo was apparent with the reduced ability of both KO macrophages and MDSCs to migrate to the tumor microenvironment. This is the first demonstration of an NCR impacting on myeloid mediator production and chemotaxis, and will guide the use of anti-VISTA therapeutics to manipulate the chemotaxis of inflammatory macrophages or immunosuppressive MDSCs in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Thomas W. K. Broughton
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Transplantation Immunology & Mucosal Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Evelien Schaafsma
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Aurélien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Walburga Croteau
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jiannan Li
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Section of Hematology and Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Nicole C. Smits
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Anna Kuta
- Immunext Corp., Lebanon, NH, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
34
|
Chiaranunt P, Burrows K, Ngai L, Mortha A. Isolation of mononuclear phagocytes from the mouse gut. Methods Enzymol 2019; 632:67-90. [PMID: 32000915 DOI: 10.1016/bs.mie.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intestinal tract is home to trillions of microbes that make up the gut microbiota and is a major source of environmental antigens that can be derived from food, commensal microorganisms, and potential pathogens. Amidst this complex environment, myeloid cells, including macrophages (MPs) and dendritic cells (DCs), are key immunological sentinels that locally maintain both tissue and immune homeostasis. Recent research has revealed substantial functional and developmental heterogeneity within the intestinal DC and MP compartments, with evidence pointing to their regulation by the microbiota. DCs are classically divided into three subsets based on their CD103 and CD11b expression: CD103+CD11b-(XCR1+) cDC1s, CD103+CD11b+ cDC2s, and CD103-CD11b+ cDC2s. Meanwhile, mature gut MPs have recently been classified by their expression of Tim-4 and CD4 into a long-lived, self-maintaining Tim-4+CD4+ population and short-lived, monocyte-derived Tim-4-CD4+ and Tim-4-CD4- populations. In this chapter, we provide experimental procedures to classify and isolate these myeloid subsets from the murine intestinal lamina propria for functional characterization.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Fang P, Li X, Shan H, Saredy JJ, Cueto R, Xia J, Jiang X, Yang XF, Wang H. Ly6C + Inflammatory Monocyte Differentiation Partially Mediates Hyperhomocysteinemia-Induced Vascular Dysfunction in Type 2 Diabetic db/db Mice. Arterioscler Thromb Vasc Biol 2019; 39:2097-2119. [PMID: 31366217 PMCID: PMC6761027 DOI: 10.1161/atvbaha.119.313138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hyperhomocysteinemia (HHcy) is a potent risk factor for diabetic cardiovascular diseases. We have previously reported that hyperhomocysteinemia potentiates type 1 diabetes mellitus-induced inflammatory monocyte differentiation, vascular dysfunction, and atherosclerosis. However, the effects of hyperhomocysteinemia on vascular inflammation in type 2 diabetes mellitus (T2DM) and the underlying mechanism are unknown. Approach and Results: Here, we demonstrate that hyperhomocysteinemia was induced by a high methionine diet in control mice (homocysteine 129 µmol/L), which was further worsened in T2DM db/db mice (homocysteine 180 µmol/L) with aggravated insulin intolerance. Hyperhomocysteinemia potentiated T2DM-induced mononuclear cell, monocyte, inflammatory monocyte (CD11b+Ly6C+), and M1 macrophage differentiation in periphery and aorta, which were rescued by folic acid-based homocysteine-lowering therapy. Moreover, hyperhomocysteinemia exacerbated T2DM-impaired endothelial-dependent aortic relaxation to acetylcholine. Finally, transfusion of bone marrow cells depleted for Ly6C by Ly6c shRNA transduction improved insulin intolerance and endothelial-dependent aortic relaxation in hyperhomocysteinemia+T2DM mice. CONCLUSIONS Hyperhomocysteinemia potentiated systemic and vessel wall inflammation and vascular dysfunction partially via inflammatory monocyte subset induction in T2DM. Inflammatory monocyte may be a novel therapeutic target for insulin resistance, inflammation, and cardiovascular complications in hyperhomocysteinemia+T2DM.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Jason J Saredy
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Jixiang Xia
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
- Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
- Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
36
|
Gordon S, Plüddemann A. The Mononuclear Phagocytic System. Generation of Diversity. Front Immunol 2019; 10:1893. [PMID: 31447860 PMCID: PMC6696592 DOI: 10.3389/fimmu.2019.01893] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
We are living through an unprecedented accumulation of data on gene expression by macrophages, reflecting their origin, distribution, and localization within all organs of the body. While the extensive heterogeneity of the cells of the mononuclear phagocyte system is evident, the functional significance of their diversity remains incomplete, nor is the mechanism of diversification understood. In this essay we review some of the implications of what we know, and draw attention to issues to be clarified in further research, taking advantage of the powerful genetic, cellular, and molecular tools now available. Our thesis is that macrophage specialization and functions go far beyond immunobiology, while remaining an essential contributor to innate as well as adaptive immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106:309-322. [PMID: 30776148 PMCID: PMC6658332 DOI: 10.1002/jlb.4ri0818-311r] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Monocytes are innate immune cells of the mononuclear phagocyte system that have emerged as important regulators of cancer development and progression. Our understanding of monocytes has advanced from viewing these cells as a homogenous population to a heterogeneous system of cells that display diverse responses to different stimuli. During cancer, different monocyte subsets perform functions that contribute to both pro- and antitumoral immunity, including phagocytosis, secretion of tumoricidal mediators, promotion of angiogenesis, remodeling of the extracellular matrix, recruitment of lymphocytes, and differentiation into tumor-associated macrophages and dendritic cells. The ability of cancer to evade immune recognition and clearance requires protumoral signals to outweigh ongoing attempts by the host immune system to prevent tumor growth. This review discusses current understanding of monocyte heterogeneity during homeostasis, highlights monocyte functions in cancer progression, and describes monocyte-targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Claire E. Olingy
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | | |
Collapse
|
38
|
Wolf AA, Yáñez A, Barman PK, Goodridge HS. The Ontogeny of Monocyte Subsets. Front Immunol 2019; 10:1642. [PMID: 31379841 PMCID: PMC6650567 DOI: 10.3389/fimmu.2019.01642] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Classical and non-classical monocytes, and the macrophages and monocyte-derived dendritic cells they produce, play key roles in host defense against pathogens, immune regulation, tissue repair and many other processes throughout the body. Recent studies have revealed previously unappreciated heterogeneity among monocytes that may explain this functional diversity, but our understanding of mechanisms controlling the functional programming of distinct monocyte subsets remains incomplete. Resolving monocyte heterogeneity and understanding how their functional identity is determined holds great promise for therapeutic immune modulation. In this review, we examine how monocyte origins and developmental influences shape the phenotypic and functional characteristics of monocyte subsets during homeostasis and in the context of infection, inflammation, and cancer. We consider how extrinsic signals and transcriptional regulators impact monocyte production and functional programming, as well as the influence of epigenetic and metabolic mechanisms. We also examine the evidence that functionally distinct monocyte subsets are produced via different developmental pathways during homeostasis and that inflammatory stimuli differentially target progenitors during an emergency response. We highlight the need for a more comprehensive understanding of the relationship between monocyte ontogeny and heterogeneity, including multiparametric single-cell profiling and functional analyses. Studies defining mechanisms of monocyte subset production and maintenance of unique monocyte identities have the potential to facilitate the design of therapeutic interventions to target specific monocyte subsets in a variety of disease contexts, including infectious and inflammatory diseases, cancer, and aging.
Collapse
Affiliation(s)
- Anja A Wolf
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alberto Yáñez
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
39
|
Affiliation(s)
- Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, United Kingdom; and Institut National de la Santé et de la Recherche Médicale, Paris, France.
| |
Collapse
|
40
|
Dekkers KF, Neele AE, Jukema JW, Heijmans BT, de Winther MPJ. Human monocyte-to-macrophage differentiation involves highly localized gain and loss of DNA methylation at transcription factor binding sites. Epigenetics Chromatin 2019; 12:34. [PMID: 31171035 PMCID: PMC6551876 DOI: 10.1186/s13072-019-0279-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophages and their precursors monocytes play a key role in inflammation and chronic inflammatory disorders. Monocyte-to-macrophage differentiation and activation programs are accompanied by significant epigenetic remodeling where DNA methylation associates with cell identity. Here we show that DNA methylation changes characteristic for monocyte-to-macrophage differentiation occur at transcription factor binding sites, and, in contrast to what was previously described, are generally highly localized and encompass both losses and gains of DNA methylation. Results We compared genome-wide DNA methylation across 440,292 CpG sites between human monocytes, naïve macrophages and macrophages further activated toward a pro-inflammatory state (using LPS/IFNγ), an anti-inflammatory state (IL-4) or foam cells (oxLDL and acLDL). Moreover, we integrated these data with public whole-genome sequencing data on monocytes and macrophages to demarcate differentially methylated regions. Our analysis showed that differential DNA methylation was most pronounced during monocyte-to-macrophage differentiation, was typically restricted to single CpGs or very short regions, and co-localized with lineage-specific enhancers irrespective of whether it concerns gain or loss of methylation. Furthermore, differentially methylated CpGs were located at sites characterized by increased binding of transcription factors known to be involved in monocyte-to-macrophage differentiation including C/EBP and ETS for gain and AP-1 for loss of methylation. Conclusion Our study highlights the involvement of subtle, yet highly localized remodeling of DNA methylation at regulatory regions in cell differentiation. Electronic supplementary material The online version of this article (10.1186/s13072-019-0279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koen F Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Munich, Germany.
| |
Collapse
|
41
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
42
|
A miR-150/TET3 pathway regulates the generation of mouse and human non-classical monocyte subset. Nat Commun 2018; 9:5455. [PMID: 30575719 PMCID: PMC6303340 DOI: 10.1038/s41467-018-07801-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
Non-classical monocyte subsets may derive from classical monocyte differentiation and the proportion of each subset is tightly controlled. Deregulation of this repartition is observed in diverse human diseases, including chronic myelomonocytic leukemia (CMML) in which non-classical monocyte numbers are significantly decreased relative to healthy controls. Here, we identify a down-regulation of hsa-miR-150 through methylation of a lineage-specific promoter in CMML monocytes. Mir150 knock-out mice demonstrate a cell-autonomous defect in non-classical monocytes. Our pulldown experiments point to Ten-Eleven-Translocation-3 (TET3) mRNA as a hsa-miR-150 target in classical human monocytes. We show that Tet3 knockout mice generate an increased number of non-classical monocytes. Our results identify the miR-150/TET3 axis as being involved in the generation of non-classical monocytes.
Collapse
|
43
|
Labonte AC, Kegerreis B, Geraci NS, Bachali P, Madamanchi S, Robl R, Catalina MD, Lipsky PE, Grammer AC. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One 2018; 13:e0208132. [PMID: 30562343 PMCID: PMC6298676 DOI: 10.1371/journal.pone.0208132] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormalities in B cell and T cell function, but the role of disturbances in the activation status of macrophages (Mϕ) has not been well described in human patients. To address this, gene expression profiles from isolated lymphoid and myeloid populations were analyzed to identify differentially expressed (DE) genes between healthy controls and patients with either inactive or active SLE. While hundreds of DE genes were identified in B and T cells of active SLE patients, there were no DE genes found in B or T cells from patients with inactive SLE compared to healthy controls. In contrast, large numbers of DE genes were found in myeloid cells (MC) from both active and inactive SLE patients. Among the DE genes were several known to play roles in Mϕ activation and polarization, including the M1 genes STAT1 and SOCS3 and the M2 genes STAT3, STAT6, and CD163. M1-associated genes were far more frequent in data sets from active versus inactive SLE patients. To characterize the relationship between Mϕ activation and disease activity in greater detail, weighted gene co-expression network analysis (WGCNA) was used to identify modules of genes associated with clinical activity in SLE patients. Among these were disease activity-correlated modules containing activation signatures of predominantly M1-associated genes. No disease activity-correlated modules were enriched in M2-associated genes. Pathway and upstream regulator analysis of DE genes from both active and inactive SLE MC were cross-referenced with high-scoring hits from the drug discovery Library of Integrated Network-based Cellular Signatures (LINCS) to identify new strategies to treat both stages of SLE. A machine learning approach employing MC gene modules and a generalized linear model was able to predict the disease activity status in unrelated gene expression data sets. In summary, altered MC gene expression is characteristic of both active and inactive SLE. However, disease activity is associated with an alteration in the activation of MC, with a bias toward the M1 proinflammatory phenotype. These data suggest that while hyperactivity of B cells and T cells is associated with active SLE, MC potentially direct flare-ups and remission by altering their activation status toward the M1 state.
Collapse
Affiliation(s)
- Adam C. Labonte
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Brian Kegerreis
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Nicholas S. Geraci
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
| | - Sushma Madamanchi
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Robert Robl
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Michelle D. Catalina
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 11:97. [PMID: 30064449 PMCID: PMC6069866 DOI: 10.1186/s13045-018-0637-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Immune cells were traditionally considered as major pro-inflammatory contributors. Recent advances in molecular immunology prove that immune cell lineages are composed of different subsets capable of a vast array of specialized functions. These immune cell subsets share distinct duties in regulating innate and adaptive immune functions and contribute to both immune activation and immune suppression responses in peripheral tissue. Here, we summarized current understanding of the different subsets of major immune cells, including T cells, B cells, dendritic cells, monocytes, and macrophages. We highlighted molecular characterization, frequency, and tissue distribution of these immune cell subsets in human and mice. In addition, we described specific cytokine production, molecular signaling, biological functions, and tissue population changes of these immune cell subsets in both cardiovascular diseases and cancers. Finally, we presented a working model of the differentiation of inflammatory mononuclear cells, their interaction with endothelial cells, and their contribution to tissue inflammation. In summary, this review offers an updated and comprehensive guideline for immune cell development and subset differentiation, including subset characterization, signaling, modulation, and disease associations. We propose that immune cell subset differentiation and its complex interaction within the internal biological milieu compose a “pathophysiological network,” an interactive cross-talking complex, which plays a critical role in the development of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Dai
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Lauren Cole
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Javier Andres Camacho
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingfeng Wang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes. Immunity 2017; 47:890-902.e4. [PMID: 29166589 DOI: 10.1016/j.immuni.2017.10.021] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors. GMPs and MDPs yielded classical (Ly6Chi) monocytes with gene expression signatures that were defined by their origins and impacted their function. GMPs produced a subset of "neutrophil-like" monocytes, whereas MDPs gave rise to a subset of monocytes that yielded monocyte-derived dendritic cells. GMPs and MDPs were also independently mobilized to produce specific combinations of myeloid cell types following the injection of microbial components. Thus, the balance of GMP and MDP differentiation shapes the myeloid cell repertoire during homeostasis and following infection.
Collapse
|
46
|
Affiliation(s)
- Feiming Ye
- aDepartment of Cardiology, The Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China bSaha Cardiovascular Research Center cDepartment of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
47
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
48
|
Kratofil RM, Kubes P, Deniset JF. Monocyte Conversion During Inflammation and Injury. Arterioscler Thromb Vasc Biol 2016; 37:35-42. [PMID: 27765768 DOI: 10.1161/atvbaha.116.308198] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Monocytes are circulating leukocytes important in both innate and adaptive immunity, primarily functioning in immune defense, inflammation, and tissue remodeling. There are 2 subsets of monocytes in mice (3 subsets in humans) that are mobilized from the bone marrow and recruited to sites of inflammation, where they carry out their respective functions in promoting inflammation or facilitating tissue repair. Our understanding of the fate of these monocyte subsets at the site of inflammation is constantly evolving. This brief review highlights the plasticity of monocyte subsets and their conversion during inflammation and injury.
Collapse
Affiliation(s)
- Rachel M Kratofil
- From the Department of Microbiology, Immunology, and Infectious Diseases (R.M.K., P.K.) and Department of Physiology and Pharmacology (P.K., J.F.D.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Paul Kubes
- From the Department of Microbiology, Immunology, and Infectious Diseases (R.M.K., P.K.) and Department of Physiology and Pharmacology (P.K., J.F.D.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Justin F Deniset
- From the Department of Microbiology, Immunology, and Infectious Diseases (R.M.K., P.K.) and Department of Physiology and Pharmacology (P.K., J.F.D.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Canada
| |
Collapse
|