1
|
Li N, Pi C, Zhu S, Li X, Wang L, Shi P, Zuo Y, Zheng W, Jiang J, Yang Y, Zhang Q, Tao L, Chu S, Wei Y, Zhao L. Opportunities for the treatment of atherosclerosis: selectins. Pharmacol Res 2025:107807. [PMID: 40449813 DOI: 10.1016/j.phrs.2025.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/17/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Despite the widespread availability of selectins for tumor therapy, their contribution to atherosclerosis has long been under-emphasized due to their "cofactor's" status and technological limitations. However, advances in immunohistology, glycomics, and related technologies require us to reassess their relationship. Thus, this review identifies pivotal translational opportunities from the intricate mechanisms and explores the clinical promise of selectins in the diagnosis and treatment of atherosclerosis based on the latest clinical research. This review provides insights into selectin-specific tracers and inhibitors, providing lessons for more precise diagnosis and treatment of patients with atherosclerosis.
Collapse
Affiliation(s)
- Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Chao Pi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Siying Zhu
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiumei Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Liu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Peng Shi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Jun Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qiong Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Lei Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College.
| | - Yumeng Wei
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
2
|
Gong X, Gang Y, Lu Z, Cai Q, Xue M, Zhu B, Cheng X, Yu C, Lu J. Residual inflammatory risk is associated with leukoaraiosis in patients with ischemic stroke. J Stroke Cerebrovasc Dis 2025; 34:108261. [PMID: 39988002 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE Emerging evidence has highlighted the clinical significance of residual inflammation risk (RIR) in cardiovascular and cerebrovascular diseases, with studies demonstrating its association with disease recurrence and poor prognosis. This study aimed to investigate the relationship between RIR and leukoaraiosis (LA) severity in patients with ischemic stroke. METHODS In this observational cohort study, we classified patients into four groups based on low-density lipoprotein cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) levels: RIR (LDL-C < 2.6 mmol/L and hsCRP ≥ 2 mg/L), residual cholesterol risk (RCR) (LDL-C ≥ 2.6 mmol/L and hsCRP < 2 mg/L), both risk or residual cholesterol and inflammatory risk (RCIR) (LDL-C ≥ 2.6 mmol/L and hsCRP ≥ 2 mg/L) and neither risk (LDL-C < 2.6 mmol/L and hsCRP < 2 mg/L). LA presence and severity were assessed using magnetic resonance imaging (MRI) and graded according to the Fazekas scale. Ordinal logistic regression analyses were performed to evaluate the association between RIR and LA severity. RESULTS Among 643 enrolled patients, 413 (64.2 %) exhibited LA. The distribution of patients across RIR, RCR, RCIR, and neither risk groups was 28.9 %, 19.8 %, 20.4 %, and 30.9 %, respectively. Comparative analysis revealed that LA patients exhibited significantly higher age (P < 0.001), elevated BMI (P < 0.001), increased hypertension prevalence (P = 0.004), greater RIR proportion (P < 0.001), and higher smoking rates (P = 0.007) compared to non-LA counterparts. Ordinal logistic regression analysis demonstrated that RIR (OR 1.447, 95 % CI 1.044-1.851, P < 0.001) was independently associated with the severity of LA after adjusting for multiple confounding variables. Subgroup analysis stratified by BMI further revealed that RIR (OR 2.994, 95 % CI 2.259-3.730, P < 0.001) was significantly correlated with LA severity in patients with a BMI ≥ 25.0. CONCLUSIONS These findings suggest that RIR may serve as an independent risk factor for LA in patients with ischemic stroke, particularly among those with a BMI ≥25.0.
Collapse
Affiliation(s)
- Xiuqun Gong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China.
| | - Yuwen Gang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China; School of Medicine, Anhui University of Science and Technology, Huainan, Anhui Province, China.
| | - Zeyu Lu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China.
| | - Qiankun Cai
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Min Xue
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China.
| | - Beibei Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China.
| | - Xiaosi Cheng
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China.
| | - Chuanqing Yu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, 203 Huaibin Road, Huainan, Anhui Province 232007, China.
| | - Jun Lu
- School of Public Health, Anhui University of Science and Technology, 168 Taifeng Road, Huainan, Anhui Province 232001, China.
| |
Collapse
|
3
|
Wang X, Xie Z, Zhang J, Chen Y, Li Q, Yang Q, Chen X, Liu B, Xu S, Dong Y. Interaction between lipid metabolism and macrophage polarization in atherosclerosis. iScience 2025; 28:112168. [PMID: 40201117 PMCID: PMC11978336 DOI: 10.1016/j.isci.2025.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory condition associated with lipid deposition. The interaction between abnormal lipid metabolism and the inflammatory response has been identified as the underlying cause of AS. Lipid metabolism disorders are considered the basis of atherosclerotic lesion formation and macrophages are involved in the entire process of AS formation. Macrophages have a high degree of plasticity, and the change of their polarization direction can determine the progress or regression of AS. The disturbances in bioactive lipid metabolism affect the polarization of different phenotypes of macrophages, thus, affecting lipid metabolism and the expression of key signal factors. Therefore, understanding the interaction between lipid metabolism and macrophages as well as their key targets is important for preventing and treating AS and developing new drugs. Recent studies have shown that traditional Chinese medicines play a positive role in the prevention and treatment of AS, providing a basis for clinical individualized treatment.
Collapse
Affiliation(s)
- Xinge Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng Xie
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Chen
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xu Chen
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bing Liu
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Dong
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
4
|
Ren Y, Chen Y, Zheng W, Kong W, Liao Y, Zhang J, Wang M, Zeng T. The effect of GLP-1 receptor agonists on circulating inflammatory markers in type 2 diabetes patients: A systematic review and meta-analysis. Diabetes Obes Metab 2025. [PMID: 40230207 DOI: 10.1111/dom.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
AIM To investigate whether the antidiabetic agent glucagon-like peptide-1 receptor agonists (GLP-1 RAs) can exert anti-inflammatory effects while lowering blood glucose, we performed a meta-analysis and systematic review. METHODS We searched 4 online databases (Medline, Embase, Cochrane Library and the Web of Science) for randomised controlled trials (RCTs) that examined changes after GLP-1RAs intervention in commonly accepted biomarkers of inflammation: C-reactive protein (CRP), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), leptin, adiponectin, plasminogen activator inhibitor-1 (PAI-1), monocyte chemotactic protein-1(MCP-1) and advanced glycation end products (AGEs). RESULTS This meta-analysis included 52 eligible RCTs (n = 4734) with a median follow-up of 24 weeks, a mean age of 54.13 years, 44.46% females, body mass index (BMI) 29.80 kg/m2, glycated haemoglobin (HbA1c) 8.28% and diabetes duration 7.27 years. GLP-1 RAs treatment, compared to placebo or conventional diabetes therapies (including oral medicine and insulin), resulted in significant reductions in CRP, TNF-α, IL-6, IL-1β and leptin (standard mean difference [SMD] -0.63 [-1.03, -0.23]; SMD -0.92 [-1.57, -0.27]; SMD -0.76 [-1.32, -0.20], SMD -3.89 [-6.56, -1.22], SMD -0.67 [-1.09, -0.26], respectively), as well as significant increases in adiponectin (SMD 0.69 [0.19, 1.19]). CONCLUSIONS Our meta-analysis demonstrates that GLP-1 RAs exert significant anti-inflammatory effects in patients with T2DM. Our findings provide important insights that may guide the therapeutic application of GLP-1 RAs and inform the development of related therapies.
Collapse
Affiliation(s)
- Yifan Ren
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Yuzhang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Meng Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| |
Collapse
|
5
|
Zengwei C, Shiyi G, Pinfang K, Dasheng G, Jun W, Sigan H. Associations of Gla-rich protein and interleukin-1β with coronary artery calcification risk in patients with suspected coronary artery disease. Front Endocrinol (Lausanne) 2025; 16:1504346. [PMID: 40241989 PMCID: PMC11999850 DOI: 10.3389/fendo.2025.1504346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Background Gla-rich protein (GRP) and interleukin-1β (IL-1β) are recognized as reliable biomarkers for evaluating inflammation and are effective predictors of cardiovascular disease. However, the relationship between GRP, IL-1β, and coronary artery calcification (CAC) in patients with suspected coronary artery disease (CAD) remains unclear. Therefore, we investigated the association between these inflammatory biomarkers (GRP and IL-1β) and CAC in patients with suspected CAD. Methods This prospective study included patients with suspected CAD who underwent coronary computed tomography angiography (CTA). Fasting venous blood samples were collected at admission, and GRP and IL-1β levels were quantified using enzyme-linked immunosorbent assays (ELISA). The Agatston score was calculated to assess coronary artery calcification (CAC) based on coronary CTA findings. Results A total of 120 patients were included in this study. Multivariate logistic regression analysis revealed that GRP [odds ratio (OR), 1.202; 95% confidence interval (CI), 1.065-1.356; p = 0.003] and IL-1β (OR, 1.011; 95% CI, 1.002-1.020; p = 0.015) were independent risk factors for CAC severity. Receiver operating characteristic (ROC) curve analysis demonstrated that GRP had a predictive ability for CAC, with an area under the curve (AUC) of 0.830 [95% CI (0.755, 0.904)]. IL-1β exhibited an AUC of 0.753 [95% CI (0.660, 0.847)]. The combination of GRP and IL-1β in a predictive model improved the AUC to 0.835. Additionally, GRP and IL-1β levels showed a strong positive correlation (r = 0.6861, p < 0.05), and GRP was significantly associated with CAC severity (r = 0.5018, p < 0.05). Conclusions Elevated levels of GRP and IL-1β, as inflammatory biomarkers, were associated with CAC in patients with suspected CAD. These biomarkers may provide valuable insights into the pathophysiology of coronary artery calcification and contribute to improved risk stratification in this patient population.
Collapse
Affiliation(s)
- Cheng Zengwei
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Cardiology, Wuhe County People’s Hospital, Bengbu, China
| | - Gao Shiyi
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Kang Pinfang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Gao Dasheng
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wang Jun
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hu Sigan
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Zhang Y, Li K, Bo X, Zhang Y, Xiao T, Liu H, Villamil OIRC, Chen K, Ding J. Effects of residual inflammatory and cholesterol risks on cardiovascular events with evolocumab in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Lipids Health Dis 2025; 24:123. [PMID: 40165297 PMCID: PMC11956451 DOI: 10.1186/s12944-025-02537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Evolocumab has shown significant reductions in low-density lipoprotein cholesterol (LDL-C) levels and incident cardiovascular events among acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Nonetheless, the potential modification of evolocumab's effectiveness by baseline inflammatory risk remains unclear. We aimed to assess evolocumab's effectiveness based on baseline neutrophil-to-lymphocyte ratio (NLR) and evaluate residual inflammatory and cholesterol-related risks across varying on-treatment NLR and LDL-C levels. METHODS This multicentric, retrospective analysis enrolled consecutive patients with ACS undergoing PCI and exhibiting elevated LDL-C at the First Affiliated Hospital of Zhengzhou University and Zhongda Hospital Southeast University between March 2019 and August 2021. Patients were categorized into evolocumab and standard-of-care treatment groups based on evolocumab administration. Hazard ratios for the primary composite outcome-including myocardial infarction, ischemic stroke, cardiac death, unplanned coronary revascularization, and hospitalization due to unstable angina-comparing baseline NLR quartiles were computed using multivariable Cox regression. We assessed evolocumab's impact on the primary outcome across median-based NLR dichotomization and evaluated the outcome across 1-month NLR and LDL-C levels. RESULTS The median baseline NLR was 2.99 (IQR: 2.14-4.69), remaining stable following evolocumab therapy. Each NLR quartile increase heightened the risk of primary outcome by 29% (95% CI, 17-42%; P < 0.01). The relative risk reductions with evolocumab were consistent across NLR categories (P-interaction > 0.05), but absolute risk reductions were higher in high-NLR patients (2.9% vs. 6.2%). Residual inflammatory and cholesterol risks, indicated by on-treatment NLR and LDL-C, independently correlated with the primary outcome (P < 0.001). CONCLUSIONS Higher baseline NLR is associated with increased cardiovascular risk in ACS/PCI patients. Relative risk reductions with evolocumab were consistent across NLR categories, while absolute risk reductions were more significant in high-NLR patients. Minimized risk is observed in patients with the lowest on-treatment NLR and LDL-C levels.
Collapse
Affiliation(s)
- Yahao Zhang
- Department of Cardiology, National Key Clinical Specialty, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Kairu Li
- Department of Cardiology, Tinghu People's Hospital of Yancheng City, Yancheng, 224000, China
| | - Xiangwei Bo
- Department of Cardiology, National Key Clinical Specialty, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanghui Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Xiao
- Department of Cardiology, National Key Clinical Specialty, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Huan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Orion I R Chiara Villamil
- Department of Cardiology, National Key Clinical Specialty, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiandong Ding
- Department of Cardiology, National Key Clinical Specialty, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
7
|
Occhipinti G, Brugaletta S, Abbate A, Pedicino D, Del Buono MG, Vinci R, Biondi Zoccai G, Sabate M, Angiolillo D, Liuzzo G. Inflammation in coronary atherosclerosis: diagnosis and treatment. Heart 2025:heartjnl-2024-325408. [PMID: 40139681 DOI: 10.1136/heartjnl-2024-325408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Coronary atherosclerosis is a chronic condition characterised by the development of an atherosclerotic plaque in the inner layer of the coronary artery, mainly associated with cholesterol accumulation and favoured by endothelial dysfunction related to other cardiovascular risk factors, such as smoking, diabetes and hypertension. A key actor in this process is the systemic inflammatory response, which can make plaques either grow slowly over the course of years (like a 'mountain'), obstructing coronary flow, and causing stable coronary artery disease, or make them explode (like a 'volcano') with subsequent abrupt thrombosis causing an acute coronary syndrome. This central role of inflammation in coronary atherosclerosis has led to its consideration as a modifiable cardiovascular risk factor and a therapeutic target. Classic anti-inflammatory drugs have been tested in clinical trials with some encouraging results, and new drugs specifically designed to tackle inflammation are currently being under investigation in ongoing trials. The objectives of this review are to (1) summarise the role of inflammatory biomarkers and imaging techniques to detect inflammation at each stage of plaque progression, and (2) explore currently available and upcoming anti-inflammatory therapies.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
| | - Salvatore Brugaletta
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Manel Sabate
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
8
|
Mehta A, Blumenthal RS, Gluckman TJ, Feldman DI, Kohli P. High-sensitivity C-reactive Protein in Atherosclerotic Cardiovascular Disease: To Measure or Not to Measure? US CARDIOLOGY REVIEW 2025; 19:e06. [PMID: 40171210 PMCID: PMC11959579 DOI: 10.15420/usc.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 04/03/2025] Open
Abstract
Inflammation and dyslipidemia are central to the pathogenesis of atherosclerotic cardiovascular disease (ASCVD). While lipid-lowering therapies are the cornerstone of ASCVD prevention and treatment, there are other emerging targets, including inflammation (which has been dubbed the 'residual inflammatory risk'), that can be addressed after LDL cholesterol thresholds have been reached. Research over the past 20 years has identified C-reactive protein (CRP) as a key marker of inflammation with atherosclerosis. The association of more sensitive measures of CRP (high- sensitivity C-reactive protein [hsCRP]) with ASCVD risk in epidemiological studies has also led to its incorporation as a risk enhancer in primary prevention guidelines and its incorporation into risk stratification tools. While there are no formal recommendations related to measurement of hsCRP in secondary prevention, consideration should be given to an individualized approach that addresses inflammatory risk in those with major adverse cardiovascular events, despite maximal lipid-lowering therapy and well-controlled LDL cholesterol levels. The aim of this review is to discuss the role of inflammation in ASCVD, the use of hsCRP as a tool to assess residual inflammatory risk to target upstream pathways such as glucose intolerance and obesity, and to consider use of additional anti-inflammatory medications for ASCVD risk reduction. The authors provide clinical context around when to measure hsCRP in clinical practice and how to address residual inflammatory risk in ASCVD.
Collapse
Affiliation(s)
- Adhya Mehta
- Department of Internal Medicine, Albert Einstein College of Medicine/Jacobi Medical CenterBronx, NY
| | - Roger S Blumenthal
- Division of Cardiology, Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of MedicineBaltimore, MD
| | - Ty J Gluckman
- Division of Cardiology, Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of MedicineBaltimore, MD
- Center for Cardiovascular Analytics, Research and Data Science (CARDS), Providence Heart Institute, Providence Joseph Health SystemPortland, OR
| | - David I Feldman
- Massachusetts General Hospital, Harvard Medical SchoolBoston, MA
| | - Payal Kohli
- Department of Cardiology, Johns Hopkins UniversityBaltimore, MD
| |
Collapse
|
9
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
10
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM, Metallo CM. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab 2025; 37:274-290.e9. [PMID: 39547233 DOI: 10.1016/j.cmet.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr-/- mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.
Collapse
Affiliation(s)
- Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zoya Y Chih
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maureen L Ruchhoeft
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Secrest
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ethan L Ashley
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Zhang Y, Wang X, Gao Y, Chen W, Johnston SC, Amarenco P, Bath PM, Yan H, Wang T, Yang Y, Zhou Q, Wang M, Jing J, Wang C, Wang Y, Wang Y, Pan Y. Dual Antiplatelet Treatment up to 72 Hours After Ischemic Stroke Stratified by Risk Profile: A Post Hoc Analysis. Stroke 2025; 56:46-55. [PMID: 39705390 DOI: 10.1161/strokeaha.124.049246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Risk profile of recurrence may influence the effect of antiplatelet therapy. This study aimed to evaluate the efficacy and safety of clopidogrel-aspirin initiated within 72 hours after symptom onset for acute mild stroke or high-risk transient ischemic attack stratified by risk profile. METHODS This is a secondary post hoc analysis of the INSPIRES (Intensive Statin and Antiplatelet Therapy for Acute High-risk Intracranial or Extracranial Atherosclerosis) randomized clinical trial that enrolled patients 35 to 80 years old with acute mild ischemic stroke or high-risk transient ischemic attack between 2018 and 2022. Patients were stratified into different groups based on the Essen Stroke Risk Score (ESRS) and modified ESRS. The primary efficacy outcome was any new stroke within 90 days. The primary safety outcome was moderate-to-severe bleeding within 90 days. RESULTS Among 6100 patients (3050 each in the clopidogrel-aspirin group and aspirin group), the median age was 65 years (interquartile range, 57-71 years), and 3915 (64.2%) were male. Clopidogrel-aspirin was associated with a reduced risk of new stroke in patients with an ESRS of <3 (hazard ratio [HR], 0.67 [95% CI, 0.52-0.86]), but not in those with an ESRS of ≥3 (HR, 0.92 [95% CI, 0.72-1.18]), compared with aspirin (Pinteraction=0.07). Similar results were found in patients stratified by modified ESRS (modified ESRS <6 in male and <5 in female: HR, 0.68 [95% CI, 0.55-0.83]; modified ESRS ≥6 in male and ≥5 in female: HR, 1.14 [95% CI, 0.82-1.59]; Pinteraction=0.01). The association between antiplatelet therapy and the moderate-to-severe bleeding did not differ across risk profile subgroups (ESRS of <3: HR, 1.35 [95% CI, 0.54-3.35]; ESRS of ≥3: HR, 3.21 [95% CI, 1.18-8.78]; Pinteraction=0.21; modified ESRS of <6 in male and <5 in female: HR, 1.96 [95% CI, 0.88-4.36]; modified ESRS of ≥6 in male and ≥5 in female: HR, 2.27 [95% CI, 0.70-7.39]; Pinteraction=0.85). CONCLUSIONS This post hoc analysis of the INSPIRES trial showed that patients with a low level of risk profile assessed by ESRS received greater benefit from clopidogrel-aspirin initiated within 72 hours after symptom onset than aspirin alone. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03635749.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Xuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Ying Gao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | | | - Pierre Amarenco
- Department of Neurology and Stroke Center, Assistance Publique-Hôpitaux de Paris (APHP), Bichat Hospital, INSERM LVTS-U1148, University of Paris, France (P.A.)
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (P.A.)
| | - Philip M Bath
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, University of Nottingham, United Kingdom (P.M.B.)
| | - Hongyi Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Qi Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Chunjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Yongjun Wang, Yilong Wang)
- National Center for Neurological Disorders, Beijing, China (Yongjun Wang, Yilong Wang)
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China (Yongjun Wang)
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Yongjun Wang, Yilong Wang)
- National Center for Neurological Disorders, Beijing, China (Yongjun Wang, Yilong Wang)
- Chinese Institute for Brain Research, Beijing, China (Yilong Wang)
- Beijing Laboratory of Oral Health, Capital Medical University, China (Yilong Wang)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, China (Yilong Wang)
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
- China National Clinical Research Center for Neurological Diseases, Beijing (Y.Z., X.W., Y.G., W.C., H.Y., T.W., Y.Y., Q.Z., M.W., J.J., C.W., Yongjun Wang, Yilong Wang, Y.P.)
| |
Collapse
|
12
|
Wang H, Huang Z, Wang J, Yue S, Hou Y, Ren R, Zhang Y, Cheng Y, Zhang R, Mu Y. Predictive value of system immune-inflammation index for the severity of coronary stenosis in patients with coronary heart disease and diabetes mellitus. Sci Rep 2024; 14:31370. [PMID: 39732905 PMCID: PMC11682039 DOI: 10.1038/s41598-024-82826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Coronary heart disease (CHD) has been recognized as a chronic progressive inflammatory disorder, and Diabetes mellitus (DM) is an independent risk factor for the pathogenesis of CHD. Recent research has underscored the systemic immune-inflammation index (SII) as a potent prognostic indicator for individuals suffering from acute coronary syndrome (ACS). This study aimed to delve into the relationship between SII and the degree of coronary atherosclerotic stenosis in non-acute myocardial infarction patients with or without DM. We enrolled a total of 2760 patients with cardiovascular disease between November 2023 and May 2024. All eligible participants were divided into the CHD group and the DM & CHD group according to the existence of comorbid DM. Our study revealed that the SII values were significantly higher in diabetic patients with CHD compared to those with CHD alone (P < 0.05). Furthermore, among patients with both CHD and DM, higher SII values were associated with a greater likelihood of developing complex, triple-branch coronary artery lesions, while the opposite trend was observed in CHD populations (P < 0.05). In the regression model completely adjusted for potential confounders, the correlation between high SII levels and co-existing DM status in CHD patients persisted as statistically significant even after attaining guideline-recommended LDL-C and TG goals (P < 0.05). Moreover, our findings demonstrated a significant link between SII levels and the severity of coronary artery stenosis as assessed by coronary angiography, particularly in the DM and CHD patient cohorts (P < 0.05). Further stratified analysis revealed a novel finding that SII levels in DM and CHD patients maintained a positive linear relationship with coronary plaque burden even under stringent glycemic control (P < 0.01, r = 0.37), whereas this correlation was absent in CHD patients who had FBG of 7 mmol/L or lower upon admission (P < 0.01, r < 0.30). These important findings underscore the SII as an independent predictor of the severity of coronary plaque burden in diabetic patients with CHD, offering valuable insights that can aid clinicians in refining risk stratification and implementing personalized management strategies for those at elevated risk.
Collapse
Affiliation(s)
- Haiming Wang
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Zhihang Huang
- Department of Cardiovascular Medicine, Xiang' An Hospital of Xiamen University, Xiamen, 361101, China
| | - Jing Wang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuai Yue
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, 100853, China
| | - Yu Hou
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rui Ren
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yue Zhang
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Cheng
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ran Zhang
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, 100853, China.
| | - Yiming Mu
- Department of Endocrinology, The First Clinical Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Tsioulos G, Vallianou NG, Skourtis A, Dalamaga M, Kotsi E, Kargioti S, Adamidis N, Karampela I, Mourouzis I, Kounatidis D. Vaccination as a Promising Approach in Cardiovascular Risk Mitigation: Are We Ready to Embrace a Vaccine Strategy? Biomolecules 2024; 14:1637. [PMID: 39766344 PMCID: PMC11727084 DOI: 10.3390/biom14121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular disease (CVD) remains a leading global health concern, with atherosclerosis being its principal cause. Standard CVD treatments primarily focus on mitigating cardiovascular (CV) risk factors through lifestyle changes and cholesterol-lowering therapies. As atherosclerosis is marked by chronic arterial inflammation, the innate and adaptive immune systems play vital roles in its progression, either exacerbating or alleviating disease development. This intricate interplay positions the immune system as a compelling therapeutic target. Consequently, immunomodulatory strategies have gained increasing attention, though none have yet reached widespread clinical adoption. Safety concerns, particularly the suppression of host immune defenses, remain a significant barrier to the clinical application of anti-inflammatory therapies. Recent decades have revealed the significant role of adaptive immune responses to plaque-associated autoantigens in atherogenesis, opening new perspectives for targeted immunological interventions. Preclinical models indicate that vaccines targeting specific atherosclerosis-related autoantigens can slow disease progression while preserving systemic immune function. In this context, numerous experimental studies have advanced the understanding of vaccine development by exploring diverse targeting pathways. Key strategies include passive immunization using naturally occurring immunoglobulin G (IgG) antibodies and active immunization targeting low-density lipoprotein cholesterol (LDL-C) and apolipoproteins, such as apolipoprotein B100 (ApoB100) and apolipoprotein CIII (ApoCIII). Other approaches involve vaccine formulations aimed at proteins that regulate lipoprotein metabolism, including proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesteryl ester transfer protein (CETP), and angiopoietin-like protein 3 (ANGPTL3). Furthermore, the literature highlights the potential for developing non-lipid-related vaccines, with key targets including heat shock proteins (HSPs), interleukins (ILs), angiotensin III (Ang III), and a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7). However, translating these promising findings into safe and effective clinical therapies presents substantial challenges. This review provides a critical evaluation of current anti-atherosclerotic vaccination strategies, examines their proposed mechanisms of action, and discusses key challenges that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Georgios Tsioulos
- Fourth Department of Internal Medicine, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Alexandros Skourtis
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelia Kotsi
- Second Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokratio General Hospital, 11527 Athens, Greece;
| | - Sofia Kargioti
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Nikolaos Adamidis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 12461 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
14
|
d'Aiello A, Filomia S, Brecciaroli M, Sanna T, Pedicino D, Liuzzo G. Targeting Inflammatory Pathways in Atherosclerosis: Exploring New Opportunities for Treatment. Curr Atheroscler Rep 2024; 26:707-719. [PMID: 39404934 PMCID: PMC11530513 DOI: 10.1007/s11883-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE OF THE REVIEW This review discusses the molecular mechanisms involved in the immuno-pathogenesis of atherosclerosis, the pleiotropic anti-inflammatory effects of approved cardiovascular therapies and the available evidence on immunomodulatory therapies for atherosclerotic cardiovascular disease (ACVD). We highlight the importance of clinical and translational research in identifying molecular mechanisms and discovering new therapeutic targets. RECENT FINDINGS The CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) trial was the first to demonstrate a reduction in cardiovascular (CV) risk with anti-inflammatory therapy, irrespective of serum lipid levels. ACVD is the leading cause of death worldwide. Although targeting principal risk factors significantly reduces CV risk, residual risk remains unaddressed. The immunological mechanisms underlying atherosclerosis represent attractive therapeutic targets. Several commonly used and non-primarily anti-inflammatory drugs (i.e. SGLT2i, and PCSK9i) exhibit pleiotropic properties. Otherwise, recent trials have investigated the blockade of primarily inflammatory compounds, trying to lower the residual risk via low-dose IL-2, PTPN22 and CD31 pathway modulation. In the era of precision medicine, modern approaches may explore new pharmacological targets, identify new markers of vascular inflammation, and evaluate therapeutic responses.
Collapse
Affiliation(s)
- Alessia d'Aiello
- Department of Cardiovascular Sciences- CUORE, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Simone Filomia
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168, Rome, Italy
| | - Mattia Brecciaroli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168, Rome, Italy
| | - Tommaso Sanna
- Department of Cardiovascular Sciences- CUORE, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168, Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Sciences- CUORE, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences- CUORE, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
15
|
Mazhar F, Faucon AL, Fu EL, Szummer KE, Mathisen J, Gerward S, Reuter SB, Marx N, Mehran R, Carrero JJ. Systemic inflammation and health outcomes in patients receiving treatment for atherosclerotic cardiovascular disease. Eur Heart J 2024; 45:4719-4730. [PMID: 39211962 PMCID: PMC11578643 DOI: 10.1093/eurheartj/ehae557] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS The burden and outcomes of inflammation in patients with atherosclerotic cardiovascular disease (ASCVD) are not well defined beyond the controlled settings of trials and research cohorts. METHODS This was an observational study of ASCVD adults undergoing C-reactive protein testing in Stockholm's healthcare (2007-21). After excluding C-reactive protein tests associated with acute illness or medications/conditions that bias C-reactive protein interpretation, systemic inflammation was evaluated over a 3-month ascertainment window. Determinants of C-reactive protein ≥ 2 mg/L were explored with logistic regression. C-reactive protein categories were compared via negative-binomial/Cox regression for subsequent healthcare resource utilization and occurrence of major adverse cardiovascular events, heart failure hospitalization, and death. RESULTS A total of 84 399 ASCVD adults were included (46% female, mean age 71 years, 59% with C-reactive protein ≥ 2 mg/L). Female sex, older age, lower kidney function, albuminuria, diabetes, hypertension, and recent anaemia were associated with higher odds of C-reactive protein ≥ 2 mg/L. The use of renin-angiotensin system inhibitors, antiplatelets, and lipid-lowering therapy was associated with lower odds. Over a median of 6.4 years, compared with C-reactive protein < 2 mg/L, patients with C-reactive protein ≥ 2 mg/L had higher rates of hospitalizations, days spent in hospital, outpatient consultations, and dispensed medications (P < .05 for all). They also had a higher rate of major adverse cardiovascular events [hazard ratio (HR) 1.30; 95% confidence interval (CI) 1.27-1.33], heart failure (HR 1.24; 95% CI 1.20-1.30), and death (HR 1.35; 95% CI 1.31-1.39). Results were consistent across subgroups and granular C-reactive protein categories and robust to the exclusion of extreme C-reactive protein values or early events. CONCLUSIONS Three in five adults with ASCVD have systemic inflammation, which is associated with excess healthcare resource utilization and increased rates of cardiovascular events and death.
Collapse
Affiliation(s)
- Faizan Mazhar
- Department of Medical Epidemiology and Biostatistics, Campus Solna, Karolinska Institutet, Nobels väg 12A, 171 65 Stockholm, Sweden
| | - Anne-Laure Faucon
- Department of Medical Epidemiology and Biostatistics, Campus Solna, Karolinska Institutet, Nobels väg 12A, 171 65 Stockholm, Sweden
| | - Edouard L Fu
- Department of Medical Epidemiology and Biostatistics, Campus Solna, Karolinska Institutet, Nobels väg 12A, 171 65 Stockholm, Sweden
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karolina E Szummer
- Department of Cardiology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | | | | - Nikolaus Marx
- Department of Internal Medicine I, RWTH Aachen University, Aachen, Germany
| | - Roxana Mehran
- Mount Sinai School of Medicine, Mount Sinai Health System, New York City, NY, USA
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Campus Solna, Karolinska Institutet, Nobels väg 12A, 171 65 Stockholm, Sweden
- Division of Nephrology, Department of Clinical Sciences, Danderyd Hospital, Danderyd, Sweden
| |
Collapse
|
16
|
Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J, Banning AP, Budaj A, Buechel RR, Chiariello GA, Chieffo A, Christodorescu RM, Deaton C, Doenst T, Jones HW, Kunadian V, Mehilli J, Milojevic M, Piek JJ, Pugliese F, Rubboli A, Semb AG, Senior R, Ten Berg JM, Van Belle E, Van Craenenbroeck EM, Vidal-Perez R, Winther S. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45:3415-3537. [PMID: 39210710 DOI: 10.1093/eurheartj/ehae177] [Citation(s) in RCA: 502] [Impact Index Per Article: 502.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
17
|
Salica A, Cammisotto V, Scaffa R, Folino G, De Paulis R, Carnevale R, Benedetto U, Saade W, Marullo A, Sciarretta S, Sarto G, Palmerio S, Valenti V, Peruzzi M, Miraldi F, Irace FG, Frati G. Different Oxidative Stress and Inflammation Patterns of Diseased Left Anterior Descending Coronary Artery versus Internal Thoracic Artery. Antioxidants (Basel) 2024; 13:1180. [PMID: 39456434 PMCID: PMC11505158 DOI: 10.3390/antiox13101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation are typically implied in atherosclerosis pathogenesis and progression, especially in coronary artery disease (CAD). Our objective was to investigate the oxidative stress and inflammation burden directly associated with atherosclerotic plaque in patients with stable coronary disease undergoing coronary artery bypass graft (CABG) surgery. Specifically, markers of oxidative stress and inflammation were compared in blood samples obtained from the atherosclerotic left anterior descending artery (LAD) and blood samples obtained from the healthy left internal thoracic artery (LITA), used as a bypass graft, within the same patient. METHODS Twenty patients scheduled for off-pump CABG were enrolled. Blood samples were collected from the LITA below anastomosis and the LAD below the stenosis. Samples were analysed for oxidative stress (sNOXdp, H2O2, NO) and inflammation markers (TNFα, IL-6, IL-1β, IL-10). RESULTS The analysis showed a significant increase in oxidative stress burden in the LAD as compared to LITA, as indicated by higher sNOX2-dp and H2O2 levels and lower NO levels (p < 0.01). Also, pro-inflammatory cytokines were increased in the LAD as compared to the LITA, as indicated by higher TNFα and IL-6 amounts (p < 0.01). On the other hand, no significant differences could be seen regarding IL-1β and IL-10 levels between the two groups. CONCLUSIONS The oxidative stress and inflammatory burden are specifically enhanced in the LAD artery of stable coronary patients compared to systemic blood from the LITA of stable coronary patients.
Collapse
Affiliation(s)
- Andrea Salica
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Raffaele Scaffa
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Giulio Folino
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
- UniCamillus, International University of Health Sciences, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Umberto Benedetto
- Department of Cardiac Surgery, University “G. d’Annunzio”, 66013 Pescara, Italy
| | - Wael Saade
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Antonino Marullo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Gianmarco Sarto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Valentina Valenti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Mariangela Peruzzi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Giosuè Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, Circ.ne Gianicolense 87, 00152 Rome, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| |
Collapse
|
18
|
Liu MM, Chen X, Bao XH, Huang BH. Lipids, lipid-lowering drugs and lateral epicondylitis of the humerus: a drug-targeted Mendelian randomization study. Front Genet 2024; 15:1437712. [PMID: 39286458 PMCID: PMC11402682 DOI: 10.3389/fgene.2024.1437712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Clinical observations indicate that blood lipids may be risk factors for lateral epicondylitis (LE) of the humerus, and lipid-lowering drugs are also used for the prevention and treatment of tendon diseases, but these lack high-quality clinical trial evidence and remain inconclusive. Mendelian randomization (MR) analyses can overcome biases in traditional observational studies and offer more accurate inference of causal relationships. Therefore, we employed this approach to investigate whether blood lipids are risk factors for LE and if lipid-lowering drugs can prevent it. Methods Genetic variations associated with lipid traits, including low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC), were obtained from the UK Biobank and the Global Lipids Genetics Consortium (GLGC). Data on genetic variation in LE were sourced from FinnGen, including 24,061 patients and 275,212 controls. Subsequently, MR analyses were conducted to assess the potential correlation between lipid traits and LE. Additionally, drug-target Mendelian randomization analyses were performed on 10 drug targets relevant to LE. For those drug targets that yielded significant results, further analysis was conducted using colocalization techniques. Results No correlation was found between three blood lipid traits and LE. Lipoprotein lipase (LPL) enhancement is significantly associated with a decreased risk of LE (OR = 0.76, [95% CI, 0.65-0.90], p = 0.001). The expression of LPL in the blood is associated with LE and shares a single causal variant (12.07%), greatly exceeding the probability of different causal variations (1.93%), with a colocalization probability of 86.2%. Conclusion The three lipid traits are not risk factors for lateral epicondylitis. LPL is a potential drug target for the prevention and treatment of LE.
Collapse
Affiliation(s)
- Meng-Meng Liu
- School of Physical Education And Health, Guangxi Medical University, Nanning, China
| | - Xiang Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Hang Bao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Bao-Hua Huang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
19
|
Pan X, Xu H, Ding Z, Luo S, Li Z, Wan R, Jiang J, Chen X, Liu S, Chen Z, Chen X, He B, Deng M, Zhu X, Xian S, Li J, Wang L, Fang H. Guizhitongluo Tablet inhibits atherosclerosis and foam cell formation through regulating Piezo1/NLRP3 mediated macrophage pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155827. [PMID: 38955059 DOI: 10.1016/j.phymed.2024.155827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.
Collapse
Affiliation(s)
- Xianmei Pan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China
| | - Honglin Xu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhiqiang Ding
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China
| | - Shangfei Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhifang Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China
| | - Rentao Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jintao Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoting Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Silin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Mengting Deng
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China
| | - Xi Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Hongcheng Fang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, China.
| |
Collapse
|
20
|
Mousavi I, Nambi V, Abushamat LA, Al-Kindi SG, Shapiro MD, Sperling L, Virani SS, Minhas AMK. Bempedoic Acid in Secondary Prevention. Am J Prev Cardiol 2024; 19:100715. [PMID: 39224771 PMCID: PMC11367048 DOI: 10.1016/j.ajpc.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
•Bempedoic acid has been shown to reduce major adverse cardiovascular outcomes in patients unable to take statins due to statin-associated side effects.•Analysis of CLEAR Outcomes trial data reveals possible differences in baseline characteristics between the primary and secondary prevention subgroups.•Further research is needed to optimize use of bempedoic acid and clarify its impact on cardiovascular outcomes in diverse patient populations.
Collapse
Affiliation(s)
- Idine Mousavi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Layla A. Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Michael D. Shapiro
- Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laurence Sperling
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Salim S. Virani
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Aga Khan University, Karachi, Pakistan
- Baylor College of Medicine and Texas Heart Institute, Houston, TX, USA
| | - Abdul Mannan Khan Minhas
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Bosco G, Mszar R, Piro S, Sabouret P, Gallo A. Cardiovascular Risk Estimation and Stratification Among Individuals with Hypercholesterolemia. Curr Atheroscler Rep 2024; 26:537-548. [PMID: 38965183 DOI: 10.1007/s11883-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE OF THE REVIEW This review aims to assess the variability in considering hypercholesterolemia for cardiovascular risk stratification in the general population. Recent literature on the integration of hypercholesterolemia into clinical risk scores and its interaction with other risk factors will be explored. RECENT FINDINGS The impact of hypercholesterolemia on risk estimation varies among different cardiovascular risk calculators. Elevated lipid levels during early life stages contribute to atherosclerotic plaque development, influencing disease severity despite later treatment initiation. The interplay between low-density lipoprotein cholesterol (LDLc), inflammatory markers and non-LDL lipid parameters enhances cardiovascular risk stratification. Studies have also examined the role of coronary artery calcium (CAC) score as a negative risk marker in populations with severe hypercholesterolemia. Furthermore, polygenic risk scores (PRS) may aid in diagnosing non-monogenic hypercholesterolemia, refining cardiovascular risk stratification and guiding lipid-lowering therapy strategies. Understanding the heterogeneity in risk estimation and the role of emerging biomarkers and imaging techniques is crucial for optimizing cardiovascular risk prediction and guiding personalized treatment strategies in individuals with hypercholesterolemia.
Collapse
Affiliation(s)
- Giosiana Bosco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Sorbonne Université, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, 47/83 Boulevard de L'Hôpital, 75013, Paris, France
| | - Reed Mszar
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pierre Sabouret
- Heart Institute, Cardiology Department, Sorbonne University, 47-83 Boulevard de L'Hôpital, 75013, Paris, FR, France
- National College of French Cardiologists, 13 Rue Niepce, 75014, Paris, FR, France
| | - Antonio Gallo
- Sorbonne Université, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, 47/83 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
22
|
Tan L, Wang N, Galema‐Boers AMH, van Vark‐van der Zee L, van Lennep JR, Mulder MT, Lu X, Danser AHJ, Verdonk K. Statins, but not proprotein convertase subtilisin-kexin type 9 inhibitors, lower chemerin in hypercholesterolemia via low-density lipoprotein receptor upregulation. MedComm (Beijing) 2024; 5:e681. [PMID: 39220103 PMCID: PMC11364859 DOI: 10.1002/mco2.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Hypercholesterolemia is characterized by elevated low-density lipoprotein (LDL)-cholesterol levels and an increased risk of cardiovascular disease. The adipokine chemerin is an additional risk factor. Here we investigated whether cholesterol-lowering with statins or proprotein convertase subtilisin-kexin type 9 inhibitors (PCSK9i) affects chemerin. Both statins and PCKS9i lowered plasma LDL-cholesterol, triglycerides and total cholesterol in hypercholesterolemic patients, and increased high-density lipoprotein (HDL)-cholesterol. Yet, only statins additionally reduced chemerin and high-sensitivity C-reactive protein (hsCRP). Applying PCSK9i on top of statins did not further reduce chemerin. Around 20% of chemerin occurred in the HDL2/HDL3 fractions, while >75% was free. Statins lowered both HDL-bound and free chemerin. Pull-down assays revealed that chemerin binds to the HDL-component Apolipoprotein A-I (ApoA-I). The statins, but not PCSK9i, diminished chemerin secretion from HepG2 cells by upregulating LDL receptor mRNA. Furthermore, chemerin inhibited HDL-mediated cholesterol efflux via its chemerin chemokine-like receptor 1 in differentiated macrophages. In conclusion, statins, but not PCSK9i, lower circulating chemerin by directly affecting its release from hepatocytes. Chemerin binds to ApoA-I and inhibits HDL-mediated cholesterol efflux. Statins prevent this by lowering HDL-bound chemerin. Combined with their anti-inflammatory effect evidenced by hsCRP suppression, this represents a novel cardiovascular protective function of statins that distinguishes them from PCSK9i.
Collapse
Affiliation(s)
- Lunbo Tan
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Na Wang
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Annet M. H. Galema‐Boers
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Leonie van Vark‐van der Zee
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Jeanine Roeters van Lennep
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Monique T. Mulder
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Xifeng Lu
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - A. H. Jan Danser
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| | - Koen Verdonk
- Division of Vascular Medicine and PharmacologyDepartment of Internal MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
23
|
Bashir B, Schofield J, Downie P, France M, Ashcroft DM, Wright AK, Romeo S, Gouni-Berthold I, Maan A, Durrington PN, Soran H. Beyond LDL-C: unravelling the residual atherosclerotic cardiovascular disease risk landscape-focus on hypertriglyceridaemia. Front Cardiovasc Med 2024; 11:1389106. [PMID: 39171323 PMCID: PMC11335737 DOI: 10.3389/fcvm.2024.1389106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Aims Historically, atherosclerotic cardiovascular disease (ASCVD) risk profile mitigation has had a predominant focus on low density lipoprotein cholesterol (LDL-C). In this narrative review we explore the residual ASCVD risk profile beyond LDL-C with a focus on hypertriglyceridaemia, recent clinical trials of therapeutics targeting hypertriglyceridaemia and novel modalities addressing other residual ASCVD risk factors. Findings Hypertriglyceridaemia remains a significant ASCVD risk despite low LDL-C in statin or proprotein convertase subtilisin/kexin type 9 inhibitor-treated patients. Large population-based observational studies have consistently demonstrated an association between hypertriglyceridaemia with ASCVD. This relationship is complicated by the co-existence of low high-density lipoprotein cholesterol. Despite significantly improving atherogenic dyslipidaemia, the most recent clinical trial outcome has cast doubt on the utility of pharmacologically lowering triglyceride concentrations using fibrates. On the other hand, purified eicosapentaenoic acid (EPA), but not in combination with docosahexaenoic acid (DHA), has produced favourable ASCVD outcomes. The outcome of these trials suggests alternate pathways involved in ASCVD risk modulation. Several other pharmacotherapies have been proposed to address other ASCVD risk factors targeting inflammation, thrombotic and metabolic factors. Implications Hypertriglyceridaemia poses a significant residual ASCVD risk in patients already on LDL-C lowering therapy. Results from pharmacologically lowering triglyceride are conflicting. The role of fibrates and combination of EPA and DHA is under question but there is now convincing evidence of ASCVD risk reduction with pure EPA in a subgroup of patients with hypertriglyceridaemia. Clinical guidelines should be updated in line with recent clinical trials evidence. Novel agents targeting non-conventional ASCVD risks need further evaluation.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- NIHR/Wellcome Trust Clinical Research Facility, Manchester, United Kingdom
| | - Jonathan Schofield
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Paul Downie
- Department of Clinical Biochemistry, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Michael France
- Department of Clinical Biochemistry, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| | - Darren M. Ashcroft
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison K. Wright
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ioanna Gouni-Berthold
- Centre for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Akhlaq Maan
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Paul N. Durrington
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- NIHR/Wellcome Trust Clinical Research Facility, Manchester, United Kingdom
| |
Collapse
|
24
|
Caffè A, Animati FM, Iannaccone G, Rinaldi R, Montone RA. Precision Medicine in Acute Coronary Syndromes. J Clin Med 2024; 13:4569. [PMID: 39124834 PMCID: PMC11313297 DOI: 10.3390/jcm13154569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, current guidelines on acute coronary syndrome (ACS) provide recommendations mainly based on the clinical presentation. However, greater attention is being directed to the specific pathophysiology underlying ACS, considering that plaque destabilization and rupture leading to luminal thrombotic obstruction is not the only pathway involved, albeit the most recognized. In this review, we discuss how intracoronary imaging and biomarkers allow the identification of specific ACS endotypes, leading to the recognition of different prognostic implications, tailored management strategies, and new potential therapeutic targets. Furthermore, different strategies can be applied on a personalized basis regarding antithrombotic therapy, non-culprit lesion revascularization, and microvascular obstruction (MVO). With respect to myocardial infarction with non-obstructive coronary arteries (MINOCA), we will present a precision medicine approach, suggested by current guidelines as the mainstay of the diagnostic process and with relevant therapeutic implications. Moreover, we aim at illustrating the clinical implications of targeted strategies for ACS secondary prevention, which may lower residual risk in selected patients.
Collapse
Affiliation(s)
- Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Giulia Iannaccone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
25
|
Li Q, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Wang X, Chen Y, Zhang Y, Zhu P, Guo X, Jiang L, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Han Y, Yuan J. The combined effect of triglyceride-glucose index and high-sensitivity C-reactive protein on cardiovascular outcomes in patients with chronic coronary syndrome: A multicenter cohort study. J Diabetes 2024; 16:e13589. [PMID: 39136595 PMCID: PMC11321053 DOI: 10.1111/1753-0407.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.
Collapse
Affiliation(s)
- Qinxue Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Department of CardiologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaozeng Wang
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongzhen Zhang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhifang Wang
- Department of CardiologyXinxiang Central HospitalXinxiangChina
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingsheng Wang
- Department of CardiologyThe First Hospital of QinhuangdaoQinhuangdaoChina
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingqing Feng
- Department of CardiologyGuangdong Provincial People's HospitalGuangdongChina
| | - Yaling Han
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
26
|
Reddy KSS, Varadaraj P, Nallusamy G, SenthilNathan S. Correlation Between Hemoglobin A1c (HbA1c) and High-Sensitivity C-Reactive Protein (hs-CRP) in Myocardial Infarction Patients and Their Six-Month Mortality Follow-Up. Cureus 2024; 16:e67070. [PMID: 39286672 PMCID: PMC11404393 DOI: 10.7759/cureus.67070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Background Acute coronary syndrome (ACS), encompassing unstable angina (UA), non-ST-elevation myocardial infarction (NSTEMI), and ST-elevation myocardial infarction (STEMI), poses significant global health challenges because of its associated high mortality and morbidity rates. Vascular inflammation plays a crucial role in the pathogenesis of atherosclerosis, and it is often assessed using biomarkers such as high-sensitivity C-reactive protein (hs-CRP). Hyperglycemia, common in myocardial infarction patients, is linked to increased complications and mortality, with glycosylated hemoglobin A1c (HbA1c) serving as a key indicator of long-term glycemic control. Objective This study investigates the correlation between hs-CRP and HbA1c levels in patients with acute myocardial infarction (AMI) and type 2 diabetes mellitus (T2DM) and evaluates their impact on six-month mortality outcomes. Methods A prospective observational study was conducted with 80 patients diagnosed with AMI. Data collection included demographic information, medical history, clinical assessments, laboratory investigations (including hs-CRP and HbA1c levels), and imaging studies. Patients received standard treatment and were followed up for six months. Statistical analyses were performed to examine the relationships between hs-CRP, HbA1c, and clinical outcomes. Results Higher HbA1c levels at admission were significantly correlated with elevated hs-CRP levels (p < 0.05). Both biomarkers showed a reduction at six months, correlating with improved glycemic control and reduced inflammation. Each unit increase in HbA1c was associated with a 21% increase in the hazard of mortality, and, similarly, each unit increase in hs-CRP was associated with a 17% increase in the hazard of mortality. The positive correlation between HbA1c and hs-CRP suggests that HbA1c can serve as an independent marker for predicting mortality in this patient population. Conclusion The study demonstrates a significant correlation between hs-CRP and HbA1c levels in patients with AMI and T2DM, with both biomarkers serving as strong predictors of six-month mortality. HbA1c, because of its positive correlation with hs-CRP, could be used as an independent marker for assessing the risk of adverse outcomes in these patients. These findings highlight the importance of managing both glycemic control and inflammation in diabetic patients with ACSs.
Collapse
Affiliation(s)
- Keesari Sai Sandeep Reddy
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Priyadarshini Varadaraj
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Gunasekaran Nallusamy
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Subbiah SenthilNathan
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
27
|
Katsuki S, Jha PK, Aikawa E, Aikawa M. The role of proprotein convertase subtilisin/kexin 9 (PCSK9) in macrophage activation: a focus on its LDL receptor-independent mechanisms. Front Cardiovasc Med 2024; 11:1431398. [PMID: 39149582 PMCID: PMC11324467 DOI: 10.3389/fcvm.2024.1431398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Recent clinical trials demonstrated that proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors reduce cardiovascular events without affecting systemic inflammation in the patients with coronary artery disease, as determined by high sensitivity C-reactive protein (CRP) levels. However, its pro-inflammatory effects in cardiovascular disease in humans and experimental animals beyond the traditional cholesterol receptor-dependent lipid metabolism have also called attention of the scientific community. PCSK9 may target receptors associated with inflammation other than the low-density lipoprotein receptor (LDLR) and members of the LDLR family. Accumulating evidence suggests that PCSK9 promotes macrophage activation not only via lipid-dependent mechanisms, but also lipid-independent and LDLR-dependent or -independent mechanisms. In addition to dyslipidemia, PCSK9 may thus be a potential therapeutic target for various pro-inflammatory diseases.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine (MA), Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Jiao J, Hu B, Mou T, Li Q, Tian Y, Zhang N, Zhang Y, Yun M, Nan N, Tian J, Yu W, Mi H, Dong W, Song X. Translocator Protein 18 kDa Tracer 18F-FDPA PET/CTA Imaging for the Evaluation of Inflammation in Vulnerable Plaques. Mol Pharm 2024; 21:3623-3633. [PMID: 38819959 DOI: 10.1021/acs.molpharmaceut.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Biao Hu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tiantian Mou
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Quan Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yi Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nan Nan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jing Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Yu
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hongzhi Mi
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Dong
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
29
|
Zhou Y, Huang J, Mai W, Kuang W, Li X, Shi D, Yang Y, Wu J, Wu Z, Liao Y, Zhou Z, Qiu Z. The novel vaccines targeting interleukin-1 receptor type I. Int Immunopharmacol 2024; 132:111941. [PMID: 38554439 DOI: 10.1016/j.intimp.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVE There is mounting evidence indicating that atherosclerosis represents a persistent inflammatory process, characterized by the presence of inflammation at various stages of the disease. Interleukin-1 (IL-1) precisely triggers inflammatory signaling pathways by binding to interleukin-1 receptor type I (IL-1R1). Inhibition of this signaling pathway contributes to the prevention of atherosclerosis and myocardial infarction. The objective of this research is to develop therapeutic vaccines targeting IL-1R1 as a preventive measure against atherosclerosis and myocardial infarction. METHODS ILRQβ-007 and ILRQβ-008 vaccines were screened, prepared and then used to immunize high-fat-diet fed ApoE-/- mice and C57BL/6J mice following myocardial infarction. Progression of atherosclerosis in ApoE-/- mice was assessed primarily by oil-red staining of the entire aorta and aortic root, as well as by detecting the extent of macrophage infiltration. The post-infarction cardiac function in C57BL/6J mice were evaluated using cardiac ultrasound and histological staining. RESULTS ILRQβ-007 and ILRQβ-008 vaccines stimulated animals to produce high titers of antibodies that effectively inhibited the binding of interleukin-1β and interleukin-1α to IL-1R1. Both vaccines effectively reduced atherosclerotic plaque area, promoted plaque stabilization, decreased macrophage infiltration in plaques and influenced macrophage polarization, as well as decreasing levels of inflammatory factors in the aorta, serum, and ependymal fat in ApoE-/- mice. Furthermore, these vaccines dramatically improved cardiac function and macrophage infiltration in C57BL/6J mice following myocardial infarction. Notably, no significant immune-mediated damage was observed in immunized animals. CONCLUSION The vaccines targeting the IL-1R1 would be a novel and promising treatment for the atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wuqian Mai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhijie Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Rosenson RS, Tate A, Mar P, Grushko O, Chen Q, Goonewardena SN. Inhibition of PCSK9 with evolocumab modulates lipoproteins and monocyte activation in high-risk ASCVD subjects. Atherosclerosis 2024; 392:117529. [PMID: 38583289 DOI: 10.1016/j.atherosclerosis.2024.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Mechanistic studies suggest that proprotein convertase subtilisin/kexin type 9 inhibitors can modulate inflammation. METHODS Double-blind, placebo-controlled trial randomized 41 ASCVD subjects with type 2 diabetes with microalbuminuria and LDL-C level >70 mg/dL on maximum tolerated statin therapy received subcutaneous evolocumab 420 mg every 4 weeks or matching placebo. The primary outcomes were change in circulating immune cell transcriptional response, lipoproteins and blood viscosity at 2 weeks and 12 weeks. Safety was assessed in all subjects who received at least one dose of assigned treatment and analyses were conducted in the intention-to-treat population. RESULTS All 41 randomized subjects completed the 2-week visit. Six subjects did not receive study medication consistently after the 2-week visit due to COVID-19 pandemic suspension of research activities. The groups were well-matched with respect to age, comorbidities, baseline LDL-C, white blood cell counts, and markers of systemic inflammation. Evolocumab reduced LDL-C by -68.8% (p < 0.0001) and -52.8% (p < 0.0001) at 2 and 12 weeks, respectively. There were no differences in blood viscosity at baseline nor at 2 and 12 weeks. RNA-seq was performed on peripheral blood mononuclear cells with and without TLR4 stimulation ("Stress" transcriptomics). "Stress" transcriptomics unmasked immune cell phenotypic differences between evolocumab and placebo groups at 2 and 12 weeks. CONCLUSIONS This trial is the first to demonstrate that PCSK9 mAB with evolocumab can modulate circulating immune cell properties and highlights the importance of "stress" profiling of circulating immune cells that more clearly define immune contributions to ASCVD.
Collapse
Affiliation(s)
- Robert S Rosenson
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States.
| | - Ashley Tate
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| | - Phyu Mar
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States
| | - Olga Grushko
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| | - Qinzhong Chen
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States
| | - Sascha N Goonewardena
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| |
Collapse
|
31
|
Lopez-Candales A, Sawalha K, Asif T. Nonobstructive epicardial coronary artery disease: an evolving concept in need of diagnostic and therapeutic guidance. Postgrad Med 2024; 136:366-376. [PMID: 38818874 DOI: 10.1080/00325481.2024.2360888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
For decades, we have been treating patients presenting with angina and concerning electrocardiographic changes indicative of ischemia or injury, in whom no culprit epicardial coronary stenosis was found during diagnostic coronary angiography. Unfortunately, the clinical outcomes of these patients were not better than those with recognized obstructive coronary disease. Improvements in technology have allowed us to better characterize these patients. Consequently, an increasing number of patients with ischemia and no obstructive coronary artery disease (INOCA) or myocardial infarction in the absence of coronary artery disease (MINOCA) have now gained formal recognition and are more commonly encountered in clinical practice. Although both entities might share functional similarities at their core, they pose significant diagnostic and therapeutic challenges. Unless we become more proficient in identifying these patients, particularly those at higher risk, morbidity and mortality outcomes will not improve. Though this field remains in constant flux, data continue to become available. Therefore, we thought it would be useful to highlight important milestones that have been recognized so we can all learn about these clinical entities. Despite all the progress made regarding INOCA and MINOCA, many important knowledge gaps continue to exist. For the time being, prompt identification and early diagnosis remain crucial in managing these patients. Even though we are still not clear whether intensive medical therapy alters clinical outcomes, we remain vigilant and wait for more data.
Collapse
Affiliation(s)
- Angel Lopez-Candales
- Cardiovascular Medicine Division University Health Truman Medical Center, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Khalid Sawalha
- Cardiometabolic Fellowship, University Health Truman Medical Center and the University of Missouri-Kansas City, Kansas City, USA
| | - Talal Asif
- Division of Cardiovascular Diseases, University Health Truman Medical Center and the University of Missouri-Kansas City Kansas City, Kansas City, MO, USA
| |
Collapse
|
32
|
Sinha T, Guntha M, Mayow AH, Zin AK, Chaudhari SS, Khan MW, Kholoki S, Khan A. Impact of Elevated Lipoprotein A on Clinical Outcomes in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-analysis. Cureus 2024; 16:e61069. [PMID: 38915979 PMCID: PMC11195316 DOI: 10.7759/cureus.61069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/26/2024] Open
Abstract
Lipoprotein(a) (Lp(a)) is an inherited lipoprotein particle associated with increased risk of atherosclerotic cardiovascular (CV) diseases. However, its impact on outcomes after percutaneous coronary intervention (PCI) remains unclear. The objective of this study was to assess the relationship between elevated Lp(a) levels and major adverse cardiovascular events (MACEs) and other outcomes in patients undergoing PCI. We systematically searched Embase, MEDLINE/PubMed, and Web of Science for studies published from 2015 to 2024 comparing CV outcomes between patients with elevated versus non-elevated Lp(a) levels after PCI. Primary outcome was MACE. Secondary outcomes included all-cause mortality, CV mortality, stroke, myocardial infarction, and revascularization. Risk ratios (RRs) were pooled using a random-effect model. Fifteen studies with 45,059 patients were included. Patients with elevated Lp(a) had a significantly higher risk of MACE (RR 1.38, 95% confidence interval (CI) 1.23-1.56). Elevated Lp(a) was also associated with increased risks of all-cause death (RR 1.26), CV death (RR 1.58), myocardial infarction (RR 1.44), revascularization (RR 1.38), and stroke (RR 1.18). Heterogeneity was considerable for some outcomes. This meta-analysis demonstrates that elevated Lp(a) levels are associated with worse CV outcomes, including higher rates of MACE, mortality, and recurrent ischemic events in patients undergoing PCI. Novel therapeutic approaches specifically targeting Lp(a) reduction may help mitigate residual CV risk in this high-risk population.
Collapse
Affiliation(s)
- Tanya Sinha
- Internal Medicine, Tribhuvan University, Kathmandu, NPL
| | | | | | - Aung K Zin
- Internal Medicine, University of Medicine, Mandalay, Mandalay, MMR
| | - Sandipkumar S Chaudhari
- Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, USA
- Family Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, USA
| | | | - Samer Kholoki
- Internal Medicine, La Grange Memorial Hospital, Chicago, USA
| | - Areeba Khan
- Critical Care Medicine, United Medical and Dental College, Karachi, PAK
| |
Collapse
|
33
|
Abstract
BACKGROUND Approximately one in four stroke patients suffer from recurrent vascular events, underlying the necessity to improve secondary stroke prevention strategies. Immune mechanisms are causally associated with coronary atherosclerosis. However, stroke is a heterogeneous disease and the relative contribution of inflammation across stroke mechanisms is not well understood. The optimal design of future randomized control trials (RCTs) of anti-inflammatory therapies to prevent recurrence after stroke must be informed by a clear understanding of the prognostic role of inflammation according to stroke subtype and individual patient factors. AIM In this narrative review, we discuss (1) inflammatory pathways in the etiology of ischemic stroke subtypes; (2) the evidence on inflammatory markers and vascular recurrence after stroke; and (3) review RCT evidence of anti-inflammatory agents for vascular prevention. SUMMARY OF REVIEW Experimental work, genetic epidemiological data, and plaque-imaging studies all implicate inflammation in atherosclerotic stroke. However, emerging evidence also suggests that inflammatory mechanisms are also important in other stroke mechanisms. Advanced neuroimaging techniques support the role of neuroinflammation in blood-brain barrier dysfunction in cerebral small vessel disease (cSVD). Systemic inflammatory processes also promote atrial cardiopathy, incident and recurrent atrial fibrillation (AF). Although several inflammatory markers have been associated with recurrence after stroke, interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) are presently the most promising markers to identify patients at increased vascular risk. Several RCTs have shown that anti-inflammatory therapies reduce vascular risk, including stroke, in coronary artery disease (CAD). Some, but not all of these trials, selected patients on the basis of elevated hsCRP. Although unproven after stroke, targeting inflammation to reduce recurrence is a compelling strategy and several RCTs are ongoing. CONCLUSION Evidence points toward the importance of inflammation across multiple stroke etiologies and potential benefit of anti-inflammatory targets in secondary stroke prevention. Taking the heterogeneous stroke etiologies into account, the use of serum biomarkers could be useful to identify patients with residual inflammatory risk and perform biomarker-led patient selection for future RCTs.
Collapse
Affiliation(s)
- Annaelle Zietz
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurology and Neurorehabilitation, University Department of Geriatric Medicine Felix Platter, University of Basel, Basel, Switzerland
| | - Sarah Gorey
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Geriatric Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter J Kelly
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Neurology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Mira Katan
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - John J McCabe
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Geriatric Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
34
|
Shin D, Kim S, Lee H, Lee HC, Lee J, Park HW, Fukai M, Choi E, Choi S, Koo BJ, Yu JH, No G, Cho S, Kim CW, Han D, Jang HD, Kim HS. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nat Commun 2024; 15:2789. [PMID: 38555386 PMCID: PMC10981688 DOI: 10.1038/s41467-024-46336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) binds to and degrades low-density lipoprotein (LDL) receptor, leading to increase of LDL cholesterol in blood. Its blockers have emerged as promising therapeutics for cardiovascular diseases. Here we show that PCSK9 itself directly induces inflammation and aggravates atherosclerosis independently of the LDL receptor. PCSK9 exacerbates atherosclerosis in LDL receptor knockout mice. Adenylyl cyclase-associated protein 1 (CAP1) is the main binding partner of PCSK9 and indispensable for the inflammatory action of PCSK9, including induction of cytokines, Toll like receptor 4, and scavenger receptors, enhancing the uptake of oxidized LDL. We find spleen tyrosine kinase (Syk) and protein kinase C delta (PKCδ) to be the key mediators of inflammation after PCSK9-CAP1 binding. In human peripheral blood mononuclear cells, serum PCSK9 levels are positively correlated with Syk, PKCδ, and p65 phosphorylation. The CAP1-fragment crystallizable region (CAP1-Fc) mitigates PCSK9-mediated inflammatory signal transduction more than the PCSK9 blocking antibody evolocumab does.
Collapse
Affiliation(s)
- Dasom Shin
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soungchan Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hwan Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Chae Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Woo Park
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mina Fukai
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - EunByule Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Subin Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bon-Jun Koo
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Yu
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gyurae No
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungyoon Cho
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kim
- Department of Preclinical Trial, Laboratory Animal Center, Osong Medical Innovation Foundation (KBIO), Cheongju, Chungbuk, Republic of Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Duk Jang
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Nazari I, Feinstein MJ. Evolving mechanisms and presentations of cardiovascular disease in people with HIV: implications for management. Clin Microbiol Rev 2024; 37:e0009822. [PMID: 38299802 PMCID: PMC10938901 DOI: 10.1128/cmr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
People with HIV (PWH) are at elevated risk for cardiovascular diseases (CVDs), including myocardial infarction, heart failure, and sudden cardiac death, among other CVD manifestations. Chronic immune dysregulation resulting in persistent inflammation is common among PWH, particularly those with sustained viremia and impaired CD4+ T cell recovery. This inflammatory milieu is a major contributor to CVDs among PWH, in concert with common comorbidities (such as dyslipidemia and smoking) and, to a lesser extent, off-target effects of antiretroviral therapy. In this review, we discuss the clinical and mechanistic evidence surrounding heightened CVD risks among PWH, implications for specific CVD manifestations, and practical guidance for management in the setting of evolving data.
Collapse
Affiliation(s)
- Ilana Nazari
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Feinstein
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
36
|
Alunno A, Carubbi F, Ferri C. Colchicine and cardiovascular prevention. Eur J Intern Med 2024; 121:30-34. [PMID: 38171936 DOI: 10.1016/j.ejim.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Alessia Alunno
- University of L'Aquila, Department of Clinical Medicine, Life, Health and Environmental Sciences, Internal Medicine and Nephrology Division, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Carubbi
- University of L'Aquila, Department of Clinical Medicine, Life, Health and Environmental Sciences, Internal Medicine and Nephrology Division, San Salvatore Hospital, L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Clinical Medicine, Life, Health and Environmental Sciences, Internal Medicine and Nephrology Division, San Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
37
|
Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, DiDonato JA, Hilser JR, Hartiala JA, Haghikia A, Cajka T, Fiehn O, Sangwan N, Demuth I, König M, Steinhagen-Thiessen E, Landmesser U, Tang WHW, Allayee H, Hazen SL. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat Med 2024; 30:424-434. [PMID: 38374343 PMCID: PMC11841810 DOI: 10.1038/s41591-023-02793-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.
Collapse
Affiliation(s)
- Marc Ferrell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Program, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James T Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James R Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaana A Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arash Haghikia
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ilja Demuth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
38
|
Waksman R, Merdler I, Case BC, Waksman O, Porto I. Targeting inflammation in atherosclerosis: overview, strategy and directions. EUROINTERVENTION 2024; 20:32-44. [PMID: 38165117 PMCID: PMC10756224 DOI: 10.4244/eij-d-23-00606] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a chronic condition characterised by the build-up of plaque in the inner lining of the blood vessels and it is the main underlying cause of cardiovascular disease. The development of atherosclerosis is associated with the accumulation of cholesterol and inflammation. Although effective therapies exist to lower low-density lipoprotein cholesterol (LDL-C) levels, some patients still experience cardiovascular events due to persistent inflammation, known as residual inflammatory risk (RIR). Researchers have conducted laboratory and animal studies to investigate the measurement and targeting of the inflammatory cascade associated with atherosclerosis, which have yielded promising results. In addition to guideline-directed lifestyle modifications and optimal medical therapy focusing on reducing LDL-C levels, pharmacological interventions targeting inflammation may provide further assistance in preventing future cardiac events. This review aims to explain the mechanisms of inflammation in atherosclerosis, identifies potential biomarkers, discusses available therapeutic options and their strengths and limitations, highlights future advancements, and summarises notable clinical studies. Finally, an evaluation and management algorithm for addressing RIR is presented.
Collapse
Affiliation(s)
- Ron Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ilan Merdler
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Brian C Case
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ori Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| |
Collapse
|
39
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
40
|
Chen C, Chen Y, Gao Q, Wei Q. Association of systemic immune inflammatory index with all-cause and cause-specific mortality among individuals with type 2 diabetes. BMC Cardiovasc Disord 2023; 23:596. [PMID: 38057733 PMCID: PMC10702126 DOI: 10.1186/s12872-023-03638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The evidence regarding the association between the systemic immune inflammatory index (SII) and mortality among individuals with diabetes is limited. This study aims to evaluate the associations between SII and all-cause and cause-specific mortality among individuals with diabetes. METHODS The study included 8,668 participants with diabetes from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 with follow-up until 31 December 2019. The calculation of SII in this study was performed using the following formula: the neutrophil-to-lymphocyte ratio multiplied by the platelet count (10^9 cells/µL). RESULTS The study documented 2,463 deaths over 68,542 person-years, including 853 deaths from CVD and 424 from cancer. An increase in SII was significantly associated with higher all-cause and CVD mortality risk after multivariate adjustment. For each standard deviation increment in natural log transformed SII (lnSII), all-cause mortality increased by 17%, and CVD mortality increased by 34% (both P < 0.001). Additionally, the association between SII and all-cause mortality was U-shaped, with the inflection point at 6.02. The association between SII and CVD mortality was non-linear and J-shaped, where the risk increased significantly when lnSII exceeded 6.22. Furthermore, the association between SII and CVD mortality was attenuated in female and hyperlipidemia patients. CONCLUSION In this study, we observed a significant positive association between the SII and both all-cause and CVD mortality in patients with diabetes. Additionally, it was discovered that this association exhibited a non-linear pattern. These findings suggest that maintaining SII within an optimal range may play a critical role in mitigating the risk of mortality.
Collapse
Affiliation(s)
- Chaoyang Chen
- Department of Cardiology, Shangyu People's Hospital of Shaoxing, Shaoxing, China
| | - Yuwen Chen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyue Gao
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qucheng Wei
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Suo Y, Jing J, Meng X, Li Z, Pan Y, Yan H, Jiang Y, Liu L, Zhao X, Wang Y, Li H, Wang Y. Intracranial arterial stenosis and recurrence in stroke patients with different risk stratifications by Essen stroke risk score. Neurol Res 2023; 45:1069-1078. [PMID: 37724803 DOI: 10.1080/01616412.2023.2257415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/29/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES We sought to investigate whether the prognostic value of intracranial arterial stenosis (ICAS) is consistent across different risk stratifications using the Essen Stroke Risk score (ESRS). METHODS We derived data from the Clopidogrel in High-Risk Patients with Acute Nondisabling Cerebrovascular Events trial. Patients without complete baseline brain imaging data were excluded. Participants were categorized into different risk groups based on ESRS (low risk, 0-2, and high risk ≥ 3). The main outcome was stroke recurrence within 3 and 12 months. Hazard ratios (HRs) and 95% confidence intervals (95%CIs) of ICAS, and other factors associated with stroke recurrence within 3 and 12 months were estimated using the Cox regression method. RESULTS During the 3-month follow-up, 54 patients (7.9%) had recurrent stroke in the low-risk group, and 39 patients (9.6%) had recurrent stroke in the high-risk group. ICAS was associated with a higher risk of stroke within 3 months (HR = 2.761; 95%CI = 1.538-4.957; P < 0.001) in the low-risk group, but not in the high-risk group (HR = 1.501; 95%CI = 0.701-3.213; P = 0.296). ICAS was independently associated with higher recurrent risk in the low-risk group (HR = 2.540; 95%CI = 1.472-4.381; P < 0.001), but not in the high-risk group (HR = 1.951; 95%CI = 0.977-3.893; P = 0.058) within 12 months. CONCLUSION ICAS was an independent predictor of both 3- and 12-month stroke recurrence in low-risk but not high-risk patients with minor ischemic stroke or transient ischemic attack according to ESRS stratification.
Collapse
Affiliation(s)
- Yue Suo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyi Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Lee JH, Shores KL, Breithaupt JJ, Lee CS, Fodera DM, Kwon JB, Ettyreddy AR, Myers KM, Evison BJ, Suchowerska AK, Gersbach CA, Leong KW, Truskey GA. PCSK9 activation promotes early atherosclerosis in a vascular microphysiological system. APL Bioeng 2023; 7:046103. [PMID: 37854060 PMCID: PMC10581720 DOI: 10.1063/5.0167440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.
Collapse
Affiliation(s)
- Jounghyun H. Lee
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - Kevin L. Shores
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jason J. Breithaupt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - Daniella M. Fodera
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | | | | | - Kristin M. Myers
- Department of Mechanical Engineering, Columbia University, New York, New York 10032, USA
| | | | | | | | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
43
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
44
|
Noothi SK, Ahmed MR, Agrawal DK. Residual risks and evolving atherosclerotic plaques. Mol Cell Biochem 2023; 478:2629-2643. [PMID: 36897542 PMCID: PMC10627922 DOI: 10.1007/s11010-023-04689-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Atherosclerotic disease of the coronary and carotid arteries is the primary global cause of significant mortality and morbidity. The chronic occlusive diseases have changed the epidemiological landscape of health problems both in developed and the developing countries. Despite the enormous benefit of advanced revascularization techniques, use of statins, and successful attempts of targeting modifiable risk factors, like smoking and exercise in the last four decades, there is still a definite "residual risk" in the population, as evidenced by many prevalent and new cases every year. Here, we highlight the burden of the atherosclerotic diseases and provide substantial clinical evidence of the residual risks in these diseases despite advanced management settings, with emphasis on strokes and cardiovascular risks. We critically discussed the concepts and potential underlying mechanisms of the evolving atherosclerotic plaques in the coronary and carotid arteries. This has changed our understanding of the plaque biology, the progression of unstable vs stable plaques, and the evolution of plaque prior to the occurrence of a major adverse atherothrombotic event. This has been facilitated using intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy in the clinical settings to achieve surrogate end points. These techniques are now providing exquisite information on plaque size, composition, lipid volume, fibrous cap thickness and other features that were previously not possible with conventional angiography.
Collapse
Affiliation(s)
- Sunil K Noothi
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, USA
| | - Mohamed Radwan Ahmed
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, USA.
| |
Collapse
|
45
|
Zhang HW, Guo YL, Wu NQ, Zhu CG, Dong Q, Sun J, Dou KF, Li JJ. Low-density lipoprotein triglyceride predicts outcomes in patients with chronic coronary syndrome following percutaneous coronary intervention according to inflammatory status. Clin Chim Acta 2023; 551:117631. [PMID: 37931732 DOI: 10.1016/j.cca.2023.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Low-density lipoprotein-triglyceride (LDL-TG), a novel lipid marker, has been reported to be associated with cardiovascular events (CVEs). However, whether inflammatory status has a combined effect with LDL-TG on CVEs in patients with chronic coronary syndrome (CCS) receiving percutaneous coronary intervention (PCI) remains uncertain. METHODS A total of 4,415 patient with coronary angiography were primarily enrolled. Among them, 2,215 patients undergoing PCI were finally classified into subgroups according to LDL-TG and high-sensitivity C-reactive protein (hs-CRP) concentrations. Patients were followed up for up to 7 y for CVEs. The associations between LDL-TG, hs-CRP and CVEs were analyzed. RESULTS Patients with CVEs showed higher concentrations of LDL-TG compared to those without. In Cox regression analysis, LDL-TG was independently associated with CVEs (hazard ratio [HR]: 2.003, 95 % confidence intervals [CI]: 1.365-2.940, p < 0.001). Interestingly, when patients were further categorized into six subgroups according to hs-CRP and LDL-TG concentrations, LDL-TG was correlated with increased events only in patients with high hs-CRP concentrations (HR: 1.726, 95 %CI: 1.055-2.826, p = 0.030). Moreover, the Kaplan-Meier survival curves indicated that patients in the higher plasma concentrations of hs-CRP in combination with the highest LDL-TG concentrations were associated with the highest risk of CVEs. CONCLUSIONS LDL-TG was associated with increased CVEs among patients receiving PCI with increased hs-CRP concentrations, suggesting that measurement of LDL-TG combined with hs-CRP facilitates prognostic utility for cardiovascular risks.
Collapse
Affiliation(s)
- Hui-Wen Zhang
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Yuan-Lin Guo
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Na-Qiong Wu
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Cheng-Gang Zhu
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Qian Dong
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Jing Sun
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Ke-Fei Dou
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China.
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China.
| |
Collapse
|
46
|
Bo W, Ma Y, Feng L, Yu M, Zhang L, Cai M, Song W, Xi Y, Tian Z. FGF21 promotes myocardial angiogenesis and mediates the cardioprotective effects of exercise in myocardial infarction mice. J Appl Physiol (1985) 2023; 135:696-705. [PMID: 37535710 DOI: 10.1152/japplphysiol.00307.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
The mechanism by which aerobic exercise promotes cardiac function after myocardial infarction (MI) is still not fully understand. In this study, we investigated the role of fibroblast growth factor 21 (FGF21) in exercise protecting the cardiac function of MI mice. In vivo, MI was induced by left anterior descending coronary artery ligation in wild-type and fgf21 knockout mice on the C57BL/6 background. One week after MI, the mice underwent aerobic exercise for 4 wk. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with H2O2, recombinant human FGF21 (rhFGF21), fibroblast growth factor receptor 1 (FGFR1) inhibitor (PD166866), and phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) to explore the potential mechanisms. Scratch wound healing and tubule formation analysis were used to detect the migration and tubule formation ability of HUVECs. Our results showed that aerobic exercise significantly promoted angiogenesis and cardiac function through enhancing the expression of FGF21 and activating FGFR1/PI3K/AKT/VEGF pathway. But such changes in cardiac from aerobic exercise were attenuated by fgf21 knockout mice. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) enhanced angiogenesis and cell migration through FGF21/FGFR1/PI3K/AKT/VEGF signaling pathway. Under the intervention of H2O2, rhFGF21 also played the role of promoting angiogenesis and cell migration through the same mechanism. In conclusion, our results showed that FGF21 promoted the aerobic exercise-induced angiogenesis and improved cardiac function via FGFR1/PI3K/AKT/VEGF signal in MI mice.NEW & NOTEWORTHY FGF21 activated FGFR1/PI3K/AKT/VEGF signaling pathway mediated angiogenesis in MI mice. FGF21 deficiency attenuated aerobic exercise-induced cardiac angiogenesis in MI mice. FGF21/FGFR1/PI3K/AKT/VEGF signal played an important role in aerobic exercise to promote myocardial angiogenesis and improved cardiac function.
Collapse
Affiliation(s)
- Wenyan Bo
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Yixuan Ma
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Lili Feng
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Mengyuan Yu
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Lili Zhang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Mengxin Cai
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Wei Song
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
47
|
Li L, Liu S, Zhang Z, Zhou L, Zhang Z, Xiong Y, Hu Z, Yao Y. Prognostic value of high-sensitivity C-reactive protein in patients undergoing percutaneous coronary intervention with different glycemic metabolism status. Cardiovasc Diabetol 2023; 22:223. [PMID: 37620818 PMCID: PMC10463538 DOI: 10.1186/s12933-023-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND High-sensitivity C-reaction protein (hsCRP), a biomarker of residual inflammatory risk, has been demonstrated with poor cardiovascular outcomes. We aimed to investigate the prognostic value of hsCRP in patients undergoing percutaneous coronary intervention (PCI) with or without diabetes mellitus (DM). METHODS In this large-scale, prospective cohort study, we enrolled 8050 consecutive patients who underwent PCI for coronary artery stenosis. All subjects were stratified as high hsCRP (> 3 mg/L) and low hsCRP (≤ 3 mg/L) and were divided into four groups (hsCRP-L/non-DM, hsCRP-H/non-DM, hsCRP-L/DM, hsCRP-H/DM). The primary endpoint of the study was major adverse cardiovascular events (MACEs), including all-cause mortality, myocardial infarction, stroke, and unplanned vessel revascularization, evaluated at a 3 year follow-up. RESULTS After 35.7 months (interquartile range: 33.2 to 36.0 months) of median follow-up time, 674 patients suffered from MACEs. We found elevated hsCRP was highly associated with an increased risk of MACEs in both diabetic (hazard ratio [HR] = 1.68, 95% confidence interval CI 1.29-2.19, P < 0.001) and non-diabetic patients (HR = 1.31, 95% CI: 1.05-1.62, P = 0.007) after adjustment for other confounding factors. Kaplan-Meier survival analysis showed the highest incidence of MACEs in hsCRP-H/DM (P < 0.001). In addition, the results of the restricted cubic spline analysis suggested a positive linear relationship between hsCRP and MACEs. CONCLUSION Elevated hsCRP is an independent risk factors of MACEs in patients undergoing PCI irrespective of glycemic metabolism status.
Collapse
Affiliation(s)
- Le Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Shangyu Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuxin Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Likun Zhou
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Zhenhao Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Yulong Xiong
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Zhao Hu
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China
| | - Yan Yao
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fu Wai Hospital, Beijing, China.
| |
Collapse
|
48
|
Péč MJ, Benko J, Jurica J, Péčová M, Samec M, Hurtová T, Bolek T, Galajda P, Péč M, Samoš M, Mokáň M. The Anti-Thrombotic Effects of PCSK9 Inhibitors. Pharmaceuticals (Basel) 2023; 16:1197. [PMID: 37765005 PMCID: PMC10534645 DOI: 10.3390/ph16091197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis is the primary process that underlies cardiovascular disease. The connection between LDL cholesterol and the formation of atherosclerotic plaques is established by solid evidence. PCSK9 inhibitors have proven to be a valuable and practical resource for lowering the LDL cholesterol of many patients in recent years. Their inhibitory effect on atherosclerosis progression seems to be driven not just by lipid metabolism modification but also by LDL-independent mechanisms. We review the effect of PCSK9 inhibitors on various mechanisms involving platelet activation, inflammation, endothelial dysfunction, and the resultant clot formation. The main effectors of PCSK9 activation of platelets are CD36 receptors, lipoprotein(a), oxidised LDL particles, tissue factor, and factor VIII. Many more molecules are under investigation, and this area of research is growing rapidly.
Collapse
Affiliation(s)
- Martin Jozef Péč
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
| | - Jakub Benko
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
- Department of Cardiology, Teaching Hospital Nitra, 949 01 Nitra, Slovakia
| | - Jakub Jurica
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
| | - Monika Péčová
- Oncology Centre, Teaching Hospital Martin, 036 59 Martin, Slovakia
- Department of Hematology and Transfusiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia
| | - Tatiana Hurtová
- Department of Infectology and Travel Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia
- Department of Dermatovenerology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia
| | - Tomáš Bolek
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
| | - Peter Galajda
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
| | - Martin Péč
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia
| | - Matej Samoš
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
- Division of Acute and Interventional Cardiology, Department of Cardiology and Angiology II, Mid-Slovakian Institute of Heart and Vessel Diseases (SÚSCCH, a.s.) in Banská Bystrica, 974 01 Banská Bystrica, Slovakia
| | - Marián Mokáň
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 59 Martin, Slovakia; (M.J.P.)
| |
Collapse
|
49
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
50
|
Marfella R, Prattichizzo F, Sardu C, Paolisso P, D'Onofrio N, Scisciola L, La Grotta R, Frigé C, Ferraraccio F, Panarese I, Fanelli M, Modugno P, Calafiore AM, Melchionna M, Sasso FC, Furbatto F, D'Andrea D, Siniscalchi M, Mauro C, Cesaro A, Calabrò P, Santulli G, Balestrieri ML, Barbato E, Ceriello A, Paolisso G. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque. Atherosclerosis 2023; 378:117180. [PMID: 37422356 DOI: 10.1016/j.atherosclerosis.2023.06.971] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND AIMS Preclinical evidence suggests that proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors hold anti-inflammatory properties independently of their ability to lower LDL-cholesterol (C). However, whether PCSK9 inhibitors exert anti-inflammatory effects within the atherosclerotic plaque in humans is unknown. We explored the impact of PCSK9 inhibitors, used as monotherapy, compared with other lipid-lowering drugs (oLLD) on the expression of inflammatory markers within the plaque, assessing also the subsequent incidence of cardiovascular events. METHODS In an observational study, we recruited 645 patients on stable therapy for at least six months and undergoing carotid endarterectomy, categorizing patients according to the use of PCSK9 inhibitors only (n = 159) or oLLD (n = 486). We evaluated the expression of NLRP3, caspase-1, IL-1β, TNFα, NF-kB, PCSK9, SIRT3, CD68, MMP-9, and collagen within the plaques in the two groups through immunohistochemistry, ELISA, or immunoblot. A composite outcome including non-fatal myocardial infarction, non-fatal stroke, and all-cause mortality was assessed during a 678 ± 120 days follow-up after the procedure. RESULTS Patients treated with PCSK9 inhibitors had a lower expression of pro-inflammatory proteins and a higher abundance of SIRT3 and collagen within the plaque, a result obtained despite comparable levels of circulating hs-CRP and observed also in LDL-C-matched subgroups with LDL-C levels <100 mg/dL. Patients treated with PCSK9 inhibitors showed a decreased risk of developing the outcome compared with patients on oLLD, also after adjustment for multiple variables including LDL-C (adjusted hazard ratio 0.262; 95% CI 0.131-0.524; p < 0.001). The expression of PCSK9 correlated positively with that of pro-inflammatory proteins, which burden was associated with a higher risk of developing the outcome, independently of the therapeutic regimen. CONCLUSIONS The use of PCSK9 inhibitors is accompanied by a beneficial remodelling of the inflammatory burden within the human atheroma, an effect possibly or partly independent of their LDL-C lowering ability. This phenomenon might provide an additional cardiovascular benefit.
Collapse
Affiliation(s)
- Raffaele Marfella
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy.
| | | | - Celestino Sardu
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, The University of Campania "Luigi Vanvitelli", Italy
| | - Lucia Scisciola
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | - Chiara Frigé
- IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Franca Ferraraccio
- Department of Mental Health and Public Medicine, Section of Statistic, The University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Department of Mental Health and Public Medicine, Section of Statistic, The University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Piero Modugno
- Department of Cardiovascular Medicine, Gemelli Molise SpA, Campobasso, Italy
| | | | - Mario Melchionna
- Department of Cardiovascular Medicine, Gemelli Molise SpA, Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Fulvio Furbatto
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Davide D'Andrea
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Paolisso
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy
| |
Collapse
|