1
|
Tian F, Sun S, Ge Z, Ge Y, Ge X, Shi Z, Qian X. Understanding the Anticancer Effects of Phytochemicals: From Molecular Docking to Anticarcinogenic Signaling. J Nutr 2025; 155:431-444. [PMID: 39581266 DOI: 10.1016/j.tjnut.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
As nontraditional nutrients, the biological activity of phytochemicals have been extensively studied for their antioxidant, anti-inflammatory, and apoptosis-promoting effects in various diseases. The general anticancer benefits of phytochemicals have been demonstrated in both basic researches and clinical trials. However, researchers understanding of how phytochemicals target cancer-related signaling pathways is still in its infancy. Molecular docking simulation analyses have yielded a large amount of cellular target molecules of phytochemicals. Herein, we review the potential signaling pathways that may be involved in the phytochemical-driven cancer benefits. We expect these findings to help in the design of potential cancer treatments designed by manipulating the binding modes and sites of these plant chemicals.
Collapse
Affiliation(s)
- Fuwei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Huang T, Wang J, Wang G, Luo F. Roles of gender and smoking in the associations between urinary phytoestrogens and asthma/wheeze and lung function: evidence from a cross-sectional study. BMJ Open Respir Res 2024; 11:e001708. [PMID: 38448045 PMCID: PMC10916099 DOI: 10.1136/bmjresp-2023-001708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The role of phytoestrogens in asthma/wheeze and lung function remains controversial. Thus, we aimed to examine whether phytoestrogens have beneficial effects on asthma/wheeze, lung function for subgroups and mortality. METHODS Participants in this study were individuals aged 20 years or older from the National Health and Nutrition Examination Survey. Multivariate logistic regression models were fitted to examine the associations of urinary phytoestrogens with the risk of asthma/wheeze and lung function in individuals with and without asthma/wheeze. Cox proportional hazards regression was used to examine the relationship between urinary phytoestrogens and all-cause mortality. Stratified analyses were conducted based on gender and smoking status. RESULTS We included 2465 individuals in this study. Enterolactone levels in the highest quartile were associated with a lower risk of asthma than those in the lowest quartile. As compared with the lowest quartile, the highest quartile of enterodiol and enterolactone was associated with a lower risk of wheeze. Significant associations were observed between subtypes of phytoestrogens (equol and enterolactone) and lung function (forced vital capacity (FVC) and forced expiratory volume in 1 s). Besides, FVC was higher in individuals with higher levels of enterodiol. The results were consistent in subpopulations without asthma/wheeze, while the significant difference was not observed in individuals with asthma/wheeze. The stratified analyses revealed that the associations between phytoestrogens and lung function differed by gender and smoking status among subgroups. No significant association was found between urinary phytoestrogens and all-cause mortality. CONCLUSION In summary, subtypes of phytoestrogens were associated with lower risk of asthma/wheeze and beneficial for lung function improvement in individuals without asthma/wheeze. Furthermore, gender and smoking may interact in the relationship between phytoestrogens and asthma/wheeze, and lung function. Further researches are needed to confirm these associations and explain the results of stratified analyses.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Tingxuan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Rasheed S, Rehman K, Shahid M, Suhail S, Akash MSH. Therapeutic potentials of genistein: New insights and perspectives. J Food Biochem 2022; 46:e14228. [PMID: 35579327 DOI: 10.1111/jfbc.14228] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Genistein, a polyphenolic isoflavone compound found abundantly in soy or soy-based products, is widely consumed in the Asian population. Genistein has poor bioavailability, to overcome this problem many advanced nano-drug delivery carrier systems are designed to enhance its water solubility and stability. However, further research is required to develop more efficient bioavailability improvement strategies. Genistein is a phytoestrogen which has been associated with reducing the risk of cancer, cardiovascular disorders, and diabetes mellitus. This plant-based bioactive compound possesses numerous biological activities such as anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, cardioprotective, and anti-diabetic activities to treat various disease states. Genistein has been used as an active therapeutic agent in many medications. Moreover, several clinical trials are in the ongoing stage to develop more efficient treatment therapies, especially for cancer treatment. This article highlights the protective and therapeutic benefits of genistein in the treatment of different ailments, and more specifically elaborates on the anti-cancer potential of genistein regarding various types of cancers. PRACTICAL APPLICATIONS: Genistein possesses versatile biological activities, including anti-diabetic, anti-inflammatory, anti-oxidant, anti-obesity, and anti-angiogenic. The most studied activity is anti-cancer. Currently, a number of pre-clinical and clinical trials are being carried out on anti-neoplastic and cytotoxic activities of genistein to develop novel therapeutic agents with excellent anti-cancer potential for the treatment of various kinds of cancer. Moreover, many bioavailability enhancement strategies have been developed to improve the bioavailability of genistein. Genistein shows significant hypoglycemic effects alone or in combination with other anti-diabetic agents. Genistein in combination with other chemotherapeutic agents is used for the treatment of prostate, bone, colorectal, glioma, breast, and bladder cancer.
Collapse
Affiliation(s)
- Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Momina Shahid
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Shaleem Suhail
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Zhang X, Veliky CV, Birru RL, Barinas-Mitchell E, Magnani JW, Sekikawa A. Potential Protective Effects of Equol (Soy Isoflavone Metabolite) on Coronary Heart Diseases-From Molecular Mechanisms to Studies in Humans. Nutrients 2021; 13:3739. [PMID: 34835997 PMCID: PMC8622975 DOI: 10.3390/nu13113739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Equol, a soy isoflavone-derived metabolite of the gut microbiome, may be the key cardioprotective component of soy isoflavones. Systematic reviews have reported that soy isoflavones have no to very small effects on traditional cardiovascular disease risk factors. However, the potential mechanistic mode of action of equol on non-traditional cardiovascular risk factors has not been systematically reviewed. We searched the PubMed through to July 2021 by using terms for equol and each of the following markers: inflammation, oxidation, endothelial function, vasodilation, atherosclerosis, arterial stiffness, and coronary heart disease. Of the 231 records identified, 69 articles met the inclusion criteria and were summarized. Our review suggests that equol is more lipophilic, bioavailable, and generally more potent compared to soy isoflavones. Cell culture, animal, and human studies show that equol possesses antioxidative, anti-inflammatory, and vasodilatory properties and improves arterial stiffness and atherosclerosis. Many of these actions are mediated through the estrogen receptor β. Overall, equol may have a greater cardioprotective benefit than soy isoflavones. Clinical studies of equol are warranted because equol is available as a dietary supplement.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Cole V. Veliky
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Rahel L. Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Emma Barinas-Mitchell
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Jared W. Magnani
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| |
Collapse
|
7
|
Solopov P, Colunga Biancatelli RML, Dimitropoulou C, Catravas JD. Dietary Phytoestrogens Ameliorate Hydrochloric Acid-Induced Chronic Lung Injury and Pulmonary Fibrosis in Mice. Nutrients 2021; 13:3599. [PMID: 34684599 PMCID: PMC8536981 DOI: 10.3390/nu13103599] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction.
Collapse
Affiliation(s)
- Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
| | | | - Christiana Dimitropoulou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
8
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
9
|
Małecka M, Skoczyńska A, Goodman DM, Hartinger CG, Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Effects of soy intake on circulating levels of TNF-α and interleukin-6: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 60:581-601. [PMID: 33399974 DOI: 10.1007/s00394-020-02458-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Pro-inflammatory mediators, including serum tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), can be used as biomarkers to indicate or monitor disease. This study was designed to ascertain the effects of soy products on TNF-α and IL-6 levels. METHODS PubMed, EMBASE, Science Direct, Web of Science, Google Scholar and the Cochrane Central Register of Controlled Trials were searched to November 2019 for RCTs around the effects of soy-based products on TNF-α and IL-6. A random effects model was used to calculate overall effect size. RESULTS In total, 29 eligible publications were considered in the present systematic review, of which 25 were included in this meta-analysis. The overall effect of soy products on TNF-α and IL-6 levels failed to reach statistical significance (MD = - 0.07; 95% CI - 0.22-0.09; I2 50.9; MD = 0.03; 95% CI - 0.07-0.14; I2 42.1, respectively). According to a subgroup analysis, natural soy products led to a reduction in TNF-α concentration compared with processed soy products (MD = - 0.32; 95% CI - 0.45 to - 0.19; I2 0.0). Moreover, IL-6 reduction was stronger in participants who were affected by different diseases (MD = - 0.04; 95% CI - 0.07 to - 0.02; I2 0.0). CONCLUSIONS A review of RCTs published to November 2019 found that natural soy products are effective in lowering TNF-α levels. While the beneficial effects on reduction of IL-6 appeared stronger in individuals affected by different diseases, this finding cannot be generalized to all individuals affected by different diseases.
Collapse
|
11
|
Back to the future: re-establishing guinea pig in vivo asthma models. Clin Sci (Lond) 2020; 134:1219-1242. [PMID: 32501497 DOI: 10.1042/cs20200394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.
Collapse
|
12
|
Guo TL, Lefever DE, Nagy T, Meng AH. In utero exposure to genistein decreased intranasal house dust mite-induced respiratory allergy in middle-aged male B6C3F1 offspring. Toxicol Lett 2020; 333:222-231. [PMID: 32798538 DOI: 10.1016/j.toxlet.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Despite many hypothesized benefits of dietary isoflavone genistein (GEN) deriving from soy-based products, questions surrounding GEN's developmental effects are increasing. To understand if in utero GEN exposure modulated postnatal respiratory allergies in the middle age, we conducted a time course study in the B6C3F1 offspring (PND 240-330) using a common household allergen (house dust mites: HDM; 10 μg/mouse for PND 240 and 290, and 50 μg/mouse for PND 330, a middle age in mice) following intranasal instillation, a physiological route of allergen exposure. GEN was administered to dams by gavage from gestational day 14 to parturition at a physiologically relevant dose (20 mg/kg body weight). Female and male offspring were sensitized with HDM allergens beginning about one month prior to sacrifice followed by challenges with three weekly dosings of HDM extracts, and they were euthanized at day 3 following the final HDM exposure. In utero exposure to GEN decreased HDM allergen-induced respiratory allergy in male B6C3F1 offspring at PND 330 as reflected by decreases in airway hyperresponsiveness (e.g., Penh value), HDM-specific IgG1 (a Th2 type Ab) and the activity of eosinophil peroxidase in the lung (an indication of eosinophil recruitment to the lungs). However, in utero exposure to GEN had minimal effects on HDM allergen-induced respiratory allergy in the middle-aged female offspring. Changes in serum total IgE, HDM-specific IgE, and lung histopathology scores in both male and female offspring were not biologically significant. Overall, in utero GEN exposure exerted a protective effect on respiratory allergy in the middle-aged male, but not female, B6C3F1 offspring following later-life HDM exposures.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, United States.
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, United States
| | - Tamas Nagy
- Department of Veterinary Pathology, University of Georgia, Athens, GA 30602-7382, United States
| | - Andrew H Meng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, United States
| |
Collapse
|
13
|
Sadeghalvad M, Mohammadi-Motlagh HR, Karaji AG, Mostafaie A. In vivo anti-inflammatory efficacy of the combined Bowman-Birk trypsin inhibitor and genistein isoflavone, two biological compounds from soybean. J Biochem Mol Toxicol 2019; 33:e22406. [PMID: 31593353 DOI: 10.1002/jbt.22406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023]
Abstract
Soybean Bowman-Birk protease inhibitor (BBI) and genistein, two biological compounds from soybean, are well-known for their anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was designing a BBI-genistein conjugate and then investigating its protective effect on lipopolysaccharide (LPS)-induced inflammation in BALB/c mice, compared with the effects of combination of BBI and genistein. BBI was purified from soybean and the BBI-genistein conjugate was synthesized. The BALB/c mice were intraperitoneally treated 2 hours before LPS induction. Our results showed that treatment with the combination of BBI and genistein greatly led to more reduced serum levels of tumor necrosis factor (TNF)-α and interferon (IFN)-γ compared with the treatments of BBI alone, the BBI-genistein conjugate, and genistein alone, respectively. Moreover, the expression of TNF-α and IFN-γ in the splenocytes was significantly downregulated along with improving host survival against the LPS-induced lethal endotoxemia in the same way. Our data support a new combined therapy using BBI and genistein, as natural anti-inflammatory agents, to develop a new drug for inflammatory diseases.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019; 299:125124. [PMID: 31288163 DOI: 10.1016/j.foodchem.2019.125124] [Citation(s) in RCA: 678] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Inflammation plays a key role in diseases such as diabetes, asthma, cardiovascular diseases and cancer. Diet can influence different stages of inflammation and can have an important impact on several inflammatory diseases. Increasing scientific evidence has shown that polyphenolic compounds, such as flavonoids, which are found in fruits, vegetables, legumes, or cocoa, can have anti-inflammatory properties. Recent studies have demonstrated that flavonoids can inhibit regulatory enzymes or transcription factors important for controlling mediators involved in inflammation. Flavonoids are also known as potent antioxidants with the potential to attenuate tissue damage or fibrosis. Consequently, numerous studies in vitro and in animal models have found that flavonoids have the potential to inhibit the onset and development of inflammatory diseases. In the present review, we focused in flavonoids, the most abundant polyphenols in the diet, to give an overview of the most recent scientific knowledge about their impact on different inflammatory diseases.
Collapse
Affiliation(s)
- Soheila J Maleki
- U.S. Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Jesus F Crespo
- Servicio de Alergia, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Beatriz Cabanillas
- Servicio de Alergia, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; Department of Dermatology and Allergy, University of Bonn Medical Center, Sigmund- Freud-Str., 25, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Lam SH, Jian SD, Hwang TL, Chen PJ, Hung HY, Kuo PC, Wu TS. A new dimeric protoberberine alkaloid and other compounds from the tubers of Tinospora dentata. Nat Prod Res 2019; 35:17-24. [PMID: 31135226 DOI: 10.1080/14786419.2019.1611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new dimeric quaternary protoberberine alkaloid, bispalmatrubine (1), and thirteen known compounds (2-14) were purified from the tubers of Tinospora dentata. Their structures were determined by spectroscopic and spectrometric analytical methods. Among the isolates, eight compounds were examined for their in vitro anti-inflammatory potential and several tested alkaloids displayed moderate inhibitory effects of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Duan Jian
- Chuang Song Zong Pharmaceutical Co., LTD, Kaohsiung City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| |
Collapse
|
16
|
Sahin I, Bilir B, Ali S, Sahin K, Kucuk O. Soy Isoflavones in Integrative Oncology: Increased Efficacy and Decreased Toxicity of Cancer Therapy. Integr Cancer Ther 2019; 18:1534735419835310. [PMID: 30897972 PMCID: PMC6431760 DOI: 10.1177/1534735419835310] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Soy consumption in human diet has been linked to decreased incidence of a variety of cancers, suggesting a potential role of soy products in cancer prevention and control. Furthermore, a substantial body of evidence in the literature suggests that soy supplementation may improve the efficacy and prevent the adverse effects of cancer chemotherapy and radiation therapy. Isoflavones constitute the predominant anticancer bioactive compounds in soy. Genistein, which is the most abundant and active isoflavone in soy, has a multitude of effects on cancer cells, including inhibition of NF-κB activation and DNA methylation, enhancement of histone acetylation, inhibition of cell growth and metastasis, and antiangiogenic, anti-inflammatory, and anti-oxidant effects. Isoflavones are orally bioavailable, easily metabolized, and usually considered safe. In this article, we review in vitro and in vivo evidence as well as the results of clinical and epidemiological studies on the effects of soy isoflavones, with a focus on sensitization of cancer cells to chemotherapy and radiation while at the same time protecting normal cells from the harmful effects of these treatments.
Collapse
Affiliation(s)
- Ilyas Sahin
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Birdal Bilir
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | | | | | - Omer Kucuk
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Abuelezz SA. Nebivolol attenuates oxidative stress and inflammation in a guinea pig model of ovalbumin-induced asthma: a possible mechanism for its favorable respiratory effects. Can J Physiol Pharmacol 2018; 96:258-265. [PMID: 29319332 DOI: 10.1139/cjpp-2017-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An experimental model of ovalbumin (OVA) induced asthma was used to assess the effects of nebivolol, the third-generation selective β1-adrenergic receptor blocker, on airway reactivity, lung inflammation, and oxidative stress markers. The asthma induction protocol was done by OVA sensitization and challenge. Guinea pigs were classified into control, asthmatic, or asthmatic receiving nebivolol either 7.5 or 15 mg·kg-1·day-1 orally. At the end of the study respiratory, the anti-inflammatory and antioxidative effects of nebivolol were assessed. The asthmatic group exhibited a significant increase in early and late airway resistance, airway hyperreactivity to histamine, total and absolute leucocytic count, tumor necrosis factor-α, and interleukin-6 in bronchoalveolar lavage fluid and lung lipid peroxidation and a significant decrease in superoxide dismutase and glutathione compared to the control group. Additionally, there was a significant decrease in lung endothelial nitric oxide synthase (eNOS) and a significant increase in inducible nitric oxide synthase (iNOS) mRNA expression compared to the control group. The high dose of nebivolol counteracted the increased airway resistance induced by OVA, whereas it had no effect on airway hyperresponsiveness. Moreover, nebivolol exhibited significant anti-inflammatory and antioxidant effects and restored the altered levels of eNOS and iNOS compared to the asthmatic group. Collectively, these results suggest a beneficial effect of nebivolol in asthma.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt.,Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
18
|
A new method to evaluate anti-allergic effect of food component by measuring leukotriene B 4 from a mouse mast cell line. Cytotechnology 2017; 70:177-184. [PMID: 28852902 DOI: 10.1007/s10616-017-0129-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/25/2017] [Indexed: 02/03/2023] Open
Abstract
Leukotrienes (LTs), chemical mediators produced by mast cells, play an important role in allergic symptoms such as food allergies and hay fever. We tried to construct an evaluation method for the anti-LTB4 activity of chemical substances using a mast cell line, PB-3c. PB-3c pre-cultured with or without arachidonic acid (AA) was stimulated by calcium ionophore (A23187) for 20 min, and LTB4 production by the cells was determined by HPLC with UV detection. LTB4 was not detected when PB-3c was pre-cultured without AA. On the other hand, LTB4 production by PB-3c pre-cultured with AA was detectable by HPLC, and the optimal conditions of PB-3c for LTB4 detection were to utilize the cells pre-cultured with 50 µM AA for 48 h. MK-886 (5-lipoxygenase inhibitor) completely inhibited LTB4 production, but AACOCF3 (phospholipase A2 inhibitor) slightly increased LTB4 production, suggesting that LTB4 was generated from exogenous free AA through 5-lipoxygenase pathway. We applied this technique to the evaluation of the anti-LTB4 activity of food components. PB-3c pre-cultured with 50 µM AA for 48 h was stimulated with A23187 in the presence of 50 µM soybean isoflavones (daidzin, genistin, daidzein, and genistein), equol, quercetin, or kaempferol. Genistein, equol, quercetin, and kaempferol strongly inhibited LTB4 production without cytotoxicity. These results suggest that a new assay system using PB-3c is convenient to evaluate LTB4 inhibition activity by food components. This method could be utilized for elucidation of the mechanisms of LTB4 release suppression by food components such as flavonoids and the structure-activity relationship.
Collapse
|
19
|
Zhou X, Zhu J, Bian T, Wang R, Gao F. Mislocalization of Runt-related transcription factor 3 results in airway inflammation and airway hyper-responsiveness in a murine asthma model. Exp Ther Med 2017; 14:2695-2701. [PMID: 28962214 DOI: 10.3892/etm.2017.4812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
The Runt-related transcription factor (RUNX) gene family consists of three members, RUNX1, -2 and -3, which heterodimerize with a common protein, core-binding factor β, and contain the highly conserved Runt-homology domain. RUNX1 and -2 have essential roles in hematopoiesis and osteogenesis. Runx3 protein regulates cell lineage decisions in neurogenesis and thymopoiesis. The aim of the present study was to determine the expression features of the Runx3 protein in a murine asthma model. In vivo, Runx3 protein and mRNA were found to be almost equivalently expressed in the murine lung tissue of the control, ovalbumin (OVA) and genistein groups; however, the nuclear Runx3 protein was abated in lung tissue in OVA-immunized and challenged mice. Following treatment with genistein, which is a flavonoid previously demonstrated to decrease airway inflammation in asthma, the allergic airway inflammation and airway hyper-responsiveness were attenuated and the Runx3 protein tended to augment in the nucleus. These results were further determined in vitro. These results indicated that the mislocalization of Runx3 protein is a molecular mechanism of allergic inflammation and airway hyper-responsiveness in a murine asthma model.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Respiratory Medicine, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jinxiao Zhu
- Department of Stomatology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Ruiqian Wang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fei Gao
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
20
|
Jung AR, Ahn SH, Park IS, Park SY, Jeong SI, Cheon JH, Kim K. Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4. Altern Ther Health Med 2016; 16:416. [PMID: 27776525 PMCID: PMC5078902 DOI: 10.1186/s12906-016-1394-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Douchi (fermented Glycine max Merr.) is produced from fermented soybeans, which is widely used in traditional herbal medicine. In this study, we investigated whether Douchi attenuates protein kinase C (PKC) and interleukin (IL)-4 response and cutaneous inflammation in Atopic dermatitis (AD)-like NC/Nga mice. METHODS To induce AD-like skin lesions, D. farinae antigen was applied to the dorsal skin of 3-week-old NC/Nga mice. After inducing AD, Douchi extract was administered 20 mg/kg daily for 3 weeks to the Douchi-treated mice group. We identified the changes of skin barrier and Th2 differentiation through PKC and IL-4 by immunohistochemistry. RESULTS Douchi treatment of NC/Nga mice significantly reduced clinical scores (p < 0.01) and histological features. The levels of PKC and IL-4 were significantly reduced in the Douchi-treated group (p < 0.01). The reduction of IL-4 and PKC led to decrease of inflammatory factors such as substance P, inducible nitric oxide synthase (iNOS) and Matrix metallopeptidase 9 (MMP-9) (all p < 0.01). Douchi also down-regulated Th1 markers (IL-12, TNF-α) as well as Th2 markers (IL-4, p-IκB) (p < 0.01). CONCLUSION Douchi alleviates AD-like skin lesions through suppressing of PKC and IL-4. These results also lead to diminish levels of substance P, iNOS and MMP-9 in skin lesions. Therefore, Douchi may have potential applications for the prevention and treatment of AD.
Collapse
|
21
|
Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016; 8:nu8060361. [PMID: 27294954 PMCID: PMC4924202 DOI: 10.3390/nu8060361] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Bi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
22
|
Heck S, Nguyen J, Le DD, Bals R, Dinh QT. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals. Int Arch Allergy Immunol 2016; 168:241-52. [PMID: 26895179 DOI: 10.1159/000443930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is a heterogeneous, complex, chronic inflammatory and obstructive pulmonary disease driven by various pathways to present with different phenotypes. A small proportion of asthmatics (5-10%) suffer from severe asthma with symptoms that cannot be controlled by guideline therapy with high doses of inhaled steroids plus a second controller, such as long-acting β2 agonists (LABA) or leukotriene receptor antagonists, or even systemic steroids. The discovery and characterization of the pathways that drive different asthma phenotypes have opened up new therapeutic avenues for asthma treatment. The approval of the humanized anti-IgE antibody omalizumab for the treatment of severe allergic asthma has paved the way for other cytokine-targeting therapies, particularly those targeting interleukin (IL)-4, IL-5, IL-9, IL-13, IL-17, and IL-23 and the epithelium-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Knowledge of the molecular basis of asthma phenotypes has helped, and continues to help, the development of novel biologicals that target a diverse array of phenotype-specific molecular targets in patients suffering from severe asthma. This review summarizes potential therapeutic approaches that are likely to show clinical efficacy in the near future, focusing on biologicals as promising novel therapies for severe asthma.
Collapse
Affiliation(s)
- Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
23
|
Mehta AA, Agrawal AD, Appanna V, Chaudagar KK. Vitamin D improves corticosteroid efficacy and attenuates its side-effects in an animal model of asthma. Can J Physiol Pharmacol 2016; 93:53-61. [PMID: 25429688 DOI: 10.1139/cjpp-2014-0323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subacute use of corticosteroids has side-effects such as glucose intolerance, dyslipidemia, anxiety, and depression, which could be halted with vitamin D, which is an immunomodulatory vitamin. Thus, we aimed to study the anti-asthmatic efficacy and side-effects profile of vitamin D, the corticosteroid dexamethasone, and their combination on ovalbumin-induced airway inflammation in rats. For this, 2 different doses of vitamin D (50 IU/kg, daily for 2 weeks, or and 60000 IU/kg, bolus dose, by intraperitoneal injection (i.p.)) were administered in combination with dexamethasone (2.5 mg/kg, i.p., for 2 weeks) prior to challenge with ovalbumin. At the end of the therapy, the asthmatic parameters such as differential white blood cell counts, serum levels of immunoglobulin E, bronchoalveolar lavaged fluid, and interleukin-5, as well as serum levels of nitric oxide were significantly increased after allergen challenges in asthmatic rats as compared with the controls. Such increases were significantly attenuated by monotherapy with vitamin D and with combination therapy of vitamin D and dexamethasone, where the combination therapy was superior to the monotherapy. Dexamethasone-induced hyperglycemia, hyperlipidemia, and behavioral abnormalities in the allergic rats were attenuated with vitamin D. The daily dose was better for controlling serum levels of immunoglobulin E than the bolus dose, whereas the bolus was superior for reducing dexamethasone-induced psychotropic abnormalities. There were no significant changes in other parameters between the daily and the bolus dose. In conclusion, a daily dose of vitamin D in combination with dexamethasone is more efficacious for treating asthma in allergic rats than monotherapy.
Collapse
Affiliation(s)
- Anita A Mehta
- a Department of Pharmacology, L.M. College of Pharmacy, Navarangpura, Ahmedabad, Gujarat 380 009, India
| | | | | | | |
Collapse
|
24
|
Smith LJ, Kalhan R, Wise RA, Sugar EA, Lima JJ, Irvin CG, Dozor AJ, Holbrook JT. Effect of a soy isoflavone supplement on lung function and clinical outcomes in patients with poorly controlled asthma: a randomized clinical trial. JAMA 2015; 313:2033-43. [PMID: 26010632 PMCID: PMC5443623 DOI: 10.1001/jama.2015.5024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IMPORTANCE Soy isoflavone supplements are used to treat several chronic diseases, although the data supporting their use are limited. Some data suggest that supplementation with soy isoflavone may be an effective treatment for patients with poor asthma control. OBJECTIVE To determine whether a soy isoflavone supplement improves asthma control in adolescent and adult patients with poorly controlled disease. DESIGN, SETTING, AND PARTICIPANTS Multicenter, randomized, double-blind, placebo-controlled trial conducted between May 2010 and August 2012 at 19 adult and pediatric pulmonary and allergy centers in the American Lung Association Asthma Clinical Research Centers network. Three hundred eighty-six adults and children aged 12 years or older with symptomatic asthma while taking a controller medicine and low dietary soy intake were randomized, and 345 (89%) completed spirometry at week 24. INTERVENTIONS Participants were randomly assigned to receive soy isoflavone supplement containing 100 mg of total isoflavones (n=193) or matching placebo (n=193) in 2 divided doses administered daily for 24 weeks. MAIN OUTCOMES AND MEASURES The primary outcome measure was change in forced expiratory volume in the first second (FEV1) at 24 weeks. Secondary outcome measures were symptoms, episodes of poor asthma control, Asthma Control Test score (range, 5-25; higher scores indicate better control), and systemic and airway biomarkers of inflammation. RESULTS Mean changes in prebronchodilator FEV1 over 24 weeks were 0.03 L (95% CI, -0.01 to 0.08 L) in the placebo group and 0.01 L (95% CI, -0.07 to 0.07 L) in the soy isoflavone group, which were not significantly different (P = .36). Mean changes in symptom scores on the Asthma Control Test (placebo, 1.98 [95% CI, 1.42-2.54] vs soy isoflavones, 2.20 [95% CI, 1.53-2.87]; positive values indicate a reduction in symptoms), number of episodes of poor asthma control (placebo, 3.3 [95% CI, 2.7-4.1] vs soy isoflavones, 3.0 [95% CI, 2.4-3.7]), and changes in exhaled nitric oxide (placebo, -3.48 ppb [95% CI, -5.99 to -0.97 ppb] vs soy isoflavones, 1.39 ppb [95% CI, -1.73 to 4.51 ppb]) did not significantly improve more with the soy isoflavone supplement than with placebo. Mean plasma genistein level increased from 4.87 ng/mL to 37.67 ng/mL (P < .001) in participants receiving the supplement. CONCLUSIONS AND RELEVANCE Among adults and children aged 12 years or older with poorly controlled asthma while taking a controller medication, use of a soy isoflavone supplement, compared with placebo, did not result in improved lung function or clinical outcomes. These findings suggest that this supplement should not be used for patients with poorly controlled asthma. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01052116.
Collapse
Affiliation(s)
- Lewis J Smith
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ravi Kalhan
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert A Wise
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth A Sugar
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - John J Lima
- Nemours Children's Clinic, Jacksonville, Florida
| | | | - Allen J Dozor
- Department of Pediatrics, New York Medical College, Valhalla
| | - Janet T Holbrook
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
25
|
Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab Anim Res 2014; 30:143-50. [PMID: 25628724 PMCID: PMC4306701 DOI: 10.5625/lar.2014.30.4.143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Genistein is one of isoflavones mostly derived in a leguminous plant. It is well known as one of phytoestrogens that have structures similar to the principal mammalian estrogen. It has diverse biological functions including chemopreventive properties against cancers. Anticancer efficacies of genistein have been related with the epidemiological observations indicating that the incidence of some cancers is much lower in Asia, where diets are rich in soyfoods, than Western countries. This review deals with in vivo anticancer activities of genistein identified in animal studies being divided into its effects on carcinogenesis and cancer progression. Because animal studies have advantages in designing the experiments to suit the goals, they imply diverse information on the anticancer activity of genistein. The in vivo animal studies have adopted the specific animal models according to a developmental stage of cancer to prove the anticancer efficacies of genistein against diverse types of cancer. The numerous previous studies insist that genistein effectively inhibits carcinogenesis in the DMBA-induced animal cancer models by reducing the incidence of adenocarcinoma and cancer progression in the transgenic and xenograft animal models by suppressing the tumor growth and metastatic transition. Although the protective effect of genistein against cancer has been controversial, genistein may be a candidate for chemoprevention of carcinogenesis and cancer progression and may deserve to be the central compound supporting the epidemiological evidence.
Collapse
|
26
|
Sung NY, Byun EB, Song DS, Jin YB, Park JN, Kim JK, Park JH, Song BS, Park SH, Lee JW, Kim JH. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Cardet JC, Johns CB, Savage JH. Bacterial metabolites of diet-derived lignans and isoflavones inversely associate with asthma and wheezing. J Allergy Clin Immunol 2014; 135:267-9. [PMID: 25190319 DOI: 10.1016/j.jaci.2014.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Juan-Carlos Cardet
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Christina B Johns
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Jessica H Savage
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
28
|
Kim H, Kim JR, Kang H, Choi J, Yang H, Lee P, Kim J, Lee KW. 7,8,4'-Trihydroxyisoflavone attenuates DNCB-induced atopic dermatitis-like symptoms in NC/Nga mice. PLoS One 2014; 9:e104938. [PMID: 25170825 PMCID: PMC4149428 DOI: 10.1371/journal.pone.0104938] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023] Open
Abstract
Atopic dermatitis (AD) is characterized by chronic highly pruritic and relapsing inflammatory skin lesions. Despite its growing prevalence, therapeutic treatments remain limited. Natural immune modulators from herbal extracts or derivatives may be useful for treating AD symptoms. This study examined the effect of 7,8,4'-trihydroxyisoflavone (7,8,4'-THIF), a metabolite of soy isoflavone daidzin, on AD-like symptoms. Repeated epicutaneous application of 2,4-dinitrochlorobenzene (DNCB) was performed on the ear and dorsal skin of NC/Nga mice to induce AD-like symptoms and skin lesions, and 7,8,4'-THIF (200 and 400 nmol) or tacrolimus (100 µg) was applied topically for 3 weeks to assess their anti-pruritic effects. We found that 7,8,4'-THIF alleviated DNCB-induced AD-like symptoms as quantified by skin lesion, dermatitis score, ear thickness, and scratching behavior. Histopathological analysis demonstrated that 7,8,4'-THIF decreased DNCB-induced eosinophil and mast cell infiltration into skin lesions. We also found that 7,8,4'-THIF significantly alleviated DNCB-induced loss of water through the epidermal layer. In addition to reducing the DNCB-induced increase in serum IgE, 7,8,4'-THIF also lowered skin lesion levels of the chemokine thymus and activation regulated chemokine; Th2 cytokines interleukin (IL)-4, IL-5, and IL-13; and Th1 cytokines IL-12 and interferon-γ. These results suggest that 7,8,4'-THIF might be a potential therapeutic candidate for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Heejung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Heerim Kang
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinhwan Choi
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hee Yang
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Pomjoo Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jiyoung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Laboratory of Toxicology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (KWL); (JK)
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- * E-mail: (KWL); (JK)
| |
Collapse
|
29
|
Patil D, Dash RP, Thakur SK, Pandya AN, Venkatesh P, Vasu KK, Nivsarkar M. Implication of novel thiazolo-thiophene derivative (MCD-KV-10) for management of asthma. J Enzyme Inhib Med Chem 2014; 30:229-39. [PMID: 24939098 DOI: 10.3109/14756366.2014.913035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role. OBJECTIVE MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma. MATERIALS AND METHODS This compound showed good affinity and selectivity towards A(2A)/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs. RESULTS The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies. DISCUSSION These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation. CONCLUSION Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.
Collapse
Affiliation(s)
- Dhiraj Patil
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Ahmedabad, C/O - B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , S. G. Highway, Thaltej, Ahmedabad, Gujarat , India
| | | | | | | | | | | | | |
Collapse
|
30
|
Yeh CY, Jung CJ, Huang CN, Huang YC, Lien HT, Wang WB, Wang LF, Chia JS. A legume product fermented by Saccharomyces cerevisiae modulates cutaneous atopic dermatitis-like inflammation in mice. Altern Ther Health Med 2014; 14:194. [PMID: 24939647 PMCID: PMC4074418 DOI: 10.1186/1472-6882-14-194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
Abstract
Background Isoflavone-containing soy products modulate allergic inflammation in mice. In our previously study, IFN-γ and IL-10 production increased in mice fed with Saccharomyces cerevisiae legume fermented product (SCLFP), demonstrating that SCLFP had immunomodulatory activity. In this study, we tested the anti-inflammatory effects of SCLFP in a mouse model of cutaneous atopic dermatitis inflammation induced by epicutaneous sensitization. Methods Epicutaneous exposure to protein allergens plus Staphylococcal enterotoxin B induced a T helper (Th)-2–dominant immune response as well as cutaneous atopic dermatitis-like inflammation in BALB/c mice. The thickness of the skin epithelium, eosinophil migration, and T helper responses were determined in patched skin and draining lymph nodes of mice fed with and without SCLFP. Results Epicutaneous exposure to protein allergens plus Staphylococcal enterotoxin B induced a T helper (Th)-2–dominant immune response as well as cutaneous atopic dermatitis-like inflammation in BALB/c mice. SCLFP feeding attenuated this cutaneous Th2 response, as evidenced by decreased thickening of the epidermis, less eosinophil infiltration, and lower levels of IL-5, IL-13, and CXCL11 expression compared to controls. Oral administration of SCLFP also modulated Th1 responses in draining lymph nodes, with lower levels of IFN-γ, IL-4, and IL-17 expression. Conclusion Oral intake of SCLFP modulated the induced Th2 inflammatory responses in skin and might have potential applications for the prevention and treatment of atopic dermatitis.
Collapse
|
31
|
Structure-activity association of flavonoids in lung diseases. Molecules 2014; 19:3570-95. [PMID: 24662074 PMCID: PMC6271797 DOI: 10.3390/molecules19033570] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are polyphenolic compounds classified into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins, and chalcones according to their chemical structures. They are abundantly found in Nature and over 8,000 flavonoids have from different sources, mainly plant materials, have been described. Recently reports have shown the valuable effects of flavonoids as antiviral, anti-allergic, antiplatelet, antitumor, antioxidant, and anti-inflammatory agents and interest in these compounds has been increasing since they can be helpful to human health. Several mechanisms of action are involved in the biological properties of flavonoids such as free radical scavenging, transition metal ion chelation, activation of survival genes and signaling pathways, regulation of mitochondrial function and modulation of inflammatory responses. The anti-inflammatory effects of flavonoids have been described in a number of studies in the literature, but not frequently associated to respiratory disease. Thus, this review aims to discuss the effects of different flavonoids in the control of lung inflammation in some disorders such as asthma, lung emphysema and acute respiratory distress syndrome and the possible mechanisms of action, as well as establish some structure-activity relationships between this biological potential and chemical profile of these compounds.
Collapse
|
32
|
Bae MJ, Shin HS, See HJ, Chai OH, Shon DH. Cheonggukjang ethanol extracts inhibit a murine allergic asthma via suppression of mast cell-dependent anaphylactic reactions. J Med Food 2014; 17:142-9. [PMID: 24456365 PMCID: PMC3901352 DOI: 10.1089/jmf.2013.2997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022] Open
Abstract
Cheonggukjang (CGJ), a traditional Korean fermented soybean food, exerts immunomodulatory effects. Asthma is the most common chronic allergic disease to be associated with immune response to environmental allergens. In the pathogenesis of asthma, histamine is one of the important inflammatory mediators released from granules of mast cells. In this study, we evaluated the therapeutic effect of CGJ on a mouse model of ovalbumin (OVA)-induced asthma via the suppression of histamine release. C57BL/6 mice were sensitized by intraperitoneal injection of OVA or a phosphate-buffered saline (PBS) control and then challenged with OVA inhalation. Mice were treated intraperitoneally with either 70% ethanol-extracted CGJ (CGJE) (100 mg/kg/day) or equivalent PBS. Asthma-related inflammation was assessed by bronchoalveolar lavage fluid cell counts and histopathological and immunohistochemical analysis of lung tissues. To elucidate the mechanisms of asthma inhibition by CGJE treatment, we also examined degranulation and histamine release of compound 48/80-induced rat peritoneal mast cells (RPMCs). Treatment with CGJE downregulated the number of eosinophils and monocytes in the lungs of mice challenged with OVA and suppressed histopathological changes, such as eosinophil infiltration, mucus accumulation, goblet cell hyperplasia, and collagen fiber deposits. Moreover, CGJE alleviated compound 48/80-induced mast cell degranulation and histamine release from RPMCs through inhibition of calcium (Ca²⁺) uptake as well as ear swelling by infiltration of inflammatory cells. These findings demonstrated that CGJE can be used as an antiasthmatic dietary supplements candidate for histamine-mediated asthma.
Collapse
Affiliation(s)
- Min-Jung Bae
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hee Soon Shin
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye-Jeong See
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dong-Hwa Shon
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Cui S, Wienhoefer N, Bilitewski U. Genistein induces morphology change and G2/M cell cycle arrest by inducing p38 MAPK activation in macrophages. Int Immunopharmacol 2013; 18:142-50. [PMID: 24290959 DOI: 10.1016/j.intimp.2013.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023]
Abstract
Genistein is a well known natural compound which is present in soy foods and exerts many beneficial functions such as anticancer, anti-inflammatory and antioxidant. However, until now little is known about the effects of genistein on the function of macrophages. The murine macrophage cell line RAW264.7 was used as target cell line. The results show that at concentrations of 50-100μM, genistein reduced cell viability to 70%-80% (after 24h) and 50%-60% (after 48h), which was due to G2/M phase cell cycle arrest. Treatment of the macrophages with genistein for 24 or 48h also led to significant morphological changes, such as elongation of the cells and development of long pseudopodia-like protrusions. By staining the F-actin cytoskeleton, we observed accumulation of actin-filaments at the edges of the cells. The morphology change and G2/M phase arrest after genistein treatment is due to the activation of the phosphorylation of MAP kinase p38. The morphology change and cell cycle arrest can be significantly reverted when treatment is combined with p38 inhibitor SB203580. Moreover, after treatment of the macrophages with genistein for 24 and 48h, the phagocytotic efficiency for Candida albicans was decreased in a time- and dose-dependent manner which correlates to the morphology change. The production of cytokines (TNF-α) stimulated by C. albicans was strongly inhibited by genistein. In conclusion, genistein showed a strong immune modulatory effect on the macrophages.
Collapse
Affiliation(s)
- Shuna Cui
- Medical College of Yangzhou University, Huaihai Road 11, 225001, Yangzhou, China; Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Nina Wienhoefer
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany.
| |
Collapse
|
34
|
Bagheri M, Rezakhani A, Nyström S, Turkina MV, Roghani M, Hammarström P, Mohseni S. Amyloid beta(1-40)-induced astrogliosis and the effect of genistein treatment in rat: a three-dimensional confocal morphometric and proteomic study. PLoS One 2013; 8:e76526. [PMID: 24130779 PMCID: PMC3793933 DOI: 10.1371/journal.pone.0076526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are highly involved in regulation and homeostasis of the extracellular environment in the healthy brain. In pathological conditions, these cells play a major role in the inflammatory response seen in CNS tissues, which is called reactive astrogliosis and includes hypertrophy and proliferation of astrocytes. Here, we performed 3D confocal microscopy to evaluate the morphological response of reactive astrocytes positive for glial fibrillary acidic protein (GFAP) in rats, to the presence of Aβ(1-40) in the rat brain before and after treatment with genistein. In 50 astrocytes per animal, we measured the volume and surface area for the nucleus, cell body, the entire cell, the tissue covered by single astrocytes and quantified the number and length of branches, the density of the astrocytes and the intensity of GFAP immunoreactivity. Injecting Aβ(1-40) into the brain of rats caused astrogliosis indicated by increased values for all measured parameters. Mass spectrometric analysis of hippocampal tissue in Aβ(1-40)-injected brain showed decreased amounts of tubulins, enolases and myelin basic protein, and increased amounts of dihydropyrimidinase-related protein 2. In Aβ(1-40)-injected rats pretreated with genistein, GFAP intensity was decreased to the sham-operated group level, and Aβ(1-40)-induced astrogliosis was significantly ameliorated.
Collapse
Affiliation(s)
- Maryam Bagheri
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Arjang Rezakhani
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Maria V. Turkina
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mehrdad Roghani
- Department of Physiology, Neurophysiology Research Group, Shahed University, Tehran, Iran
| | - Per Hammarström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Simin Mohseni
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
35
|
Chan TK, Ng DSW, Cheng C, Guan SP, Koh HM, Wong WSF. Anti-allergic actions of rottlerin from Mallotus philippinensis in experimental mast cell-mediated anaphylactic models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:853-860. [PMID: 23632085 DOI: 10.1016/j.phymed.2013.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 03/09/2013] [Indexed: 05/28/2023]
Abstract
Allergy is an acquired hypersensitivity reaction of the immune system mediated by cross-linking of the allergen-specific IgE-bound high-affinity IgE receptors, leading to immediate mast cell degranulation. Rottlerin is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine System for anti-allergic and anti-helminthic treatments. The present study investigated potential anti-allergic effects of rottlerin in animal models of IgE-dependent anaphylaxis and the anti-allergic mechanisms of action of rottlerin in mast cells. Anti-allergic actions of rottlerin were evaluated in passive cutaneous anaphylaxis and passive systemic anaphylaxis mouse models, and in anaphylactic contraction of bronchial rings isolated from sensitized guinea pigs. Direct mast cell-stabilizing effect of rottlerin was examined in RBL-2H3 mast cell line. Anti-allergic signaling mechanisms of action of rottlerin in mast cells were also examined. Rottlerin prevented IgE-mediated cutaneous vascular extravasation, hypothermia, elevation in plasma histamine level and tracheal tissue mast cell degranulation in mice in a dose-dependent manner. In addition, rottlerin suppressed ovalbumin-induced guinea pig bronchial smooth muscle contraction. Furthermore, rottlerin concentration-dependently blocked IgE-mediated immediate release of β-hexosaminidase from RBL-2H3 mast cells. Rottlerin was found to inhibit IgE-induced PLCγ1 and Akt phosphorylation, production of IP3 and rise in cytosolic Ca²⁺ level in mast cells. We report here for the first time that rottlerin possesses anti-allergic activity by blocking IgE-induced mast cell degranulation, providing a foundation for developing rottlerin for the treatment of allergic asthma and other mast cell-mediated allergic disorders.
Collapse
Affiliation(s)
- Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | | | | | | | | | | |
Collapse
|
36
|
Karieb S, Fox SW. Suppression of T cell-induced osteoclast formation. Biochem Biophys Res Commun 2013; 436:619-24. [DOI: 10.1016/j.bbrc.2013.05.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
37
|
Milara J, Martinez-Losa M, Sanz C, Almudéver P, Peiró T, Serrano A, Morcillo EJ, Zaragozá C, Cortijo J. Bafetinib inhibits functional responses of human eosinophils in vitro. Eur J Pharmacol 2013; 715:172-80. [PMID: 23747655 DOI: 10.1016/j.ejphar.2013.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/08/2013] [Accepted: 05/24/2013] [Indexed: 01/21/2023]
Abstract
Eosinophils play a prominent role in the process of allergic inflammation. Non-receptor associated Lyn tyrosine kinases generate key initial signals in eosinophils. Bafetinib, a specific Abl/Lyn tyrosine kinase inhibitor has shown a potent antiproliferative activity in leukemic cells, but its effects on eosinophils have not been reported. Therefore, we studied the effects of bafetinib on functional and mechanistic responses of isolated human eosinophils. Bafetinib was more potent than non-specific tyrosin kinase comparators genistein and tyrphostin inhibiting superoxide anion triggered by N-formyl-Met-Leu-Phe (fMLF; 100 nM) (-log IC50=7.25 ± 0.04 M; 6.1 ± 0.04 M; and 6.55 ± 0.03 M, respectively). Bafetinib, genistein and tyrphostin did not modify the [Ca(2+)]i responses to fMLF. Bafetinib inhibited the release of EPO induced by fMLF with higher potency than genistein and tyrphostin (-log IC50=7.24 ± 0.09 M; 5.36 ± 0.28 M; and 5.37 ± 0.19 M, respectively), and nearly suppressed LTC4, ECP and chemotaxis. Bafetinib, genistein and tyrphostin did not change constitutive apoptosis. However bafetinib inhibited the ability of granulocyte-monocyte colony-stimulating factor to prevent apoptosis. The activation of Lyn tyrosine kinase, p-ERK1/2 and p-38 induced by fMLF was suppressed by bafetinib and attenuated by genistein and tyrphostin. In conclusion, bafetinib inhibits oxidative burst and generation of inflammatory mediators, and reverses the eosinophil survival. Therefore, future anti-allergic therapies based on bafetinib, could help to suppress excessive inflammatory response of eosinophils at inflammatory sites.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit (UIC), University General Hospital Consortium, Av. tres cruces s/n, Valencia E-46014, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bime C, Wei CY, Holbrook J, Smith LJ, Wise RA. Association of dietary soy genistein intake with lung function and asthma control: a post-hoc analysis of patients enrolled in a prospective multicentre clinical trial. PRIMARY CARE RESPIRATORY JOURNAL : JOURNAL OF THE GENERAL PRACTICE AIRWAYS GROUP 2013; 21:398-404. [PMID: 22885561 DOI: 10.4104/pcrj.2012.00073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Broad dietary patterns have been linked to asthma but the relative contribution of specific nutrients is unclear. Soy genistein has important anti-inflammatory and other biological effects that might be beneficial in asthma. A positive association was previously reported between soy genistein intake and lung function but not with asthma exacerbations. AIMS To conduct a post-hoc analysis of patients with inadequately controlled asthma enrolled in a prospective multicentre clinical trial to replicate this association. METHODS A total of 300 study participants were included in the analysis. Dietary soy genistein intake was measured using the Block Soy Foods Screener. The level of soy genistein intake (little or no intake, moderate intake, or high intake) was compared with baseline lung function (pre-bronchodilator forced expiratory volume in 1 second (FEV(1))) and asthma control (proportion of participants with an episode of poor asthma control (EPAC) and annualised rates of EPACs over a 6-month follow-up period. RESULTS Participants with little or no genistein intake had a lower baseline FEV(1) than those with a moderate or high intake (2.26 L vs. 2.53 L and 2.47 L, respectively; p=0.01). EPACs were more common among those with no genistein intake than in those with a moderate or high intake (54% vs. 35% vs. 40%, respectively; p<0.001). These findings remained significant after adjustment for patient demographics and body mass index. CONCLUSIONS In patients with asthma, consumption of a diet with moderate to high amounts of soy genistein is associated with better lung function and better asthma control.
Collapse
Affiliation(s)
- Christian Bime
- Johns Hopkins University School of Medicine-Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224-6801, USA.
| | | | | | | | | |
Collapse
|
39
|
Cheng C, Ng DSW, Chan TK, Guan SP, Ho WE, Koh AHM, Bian JS, Lau HYA, Wong WSF. Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy 2013; 68:195-203. [PMID: 23253152 DOI: 10.1111/all.12077] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Allergy is an acquired hypersensitivity reaction of the immune system mediated by cross-linking of allergen-specific IgE-bound high-affinity IgE receptors, leading to immediate mast cell degranulation. Artesunate is a semi-synthetic derivative of artemisinin, an active component of the medicinal plant Artemisia annua. Artesunate is a clinically effective anti-malarial drug and has recently been shown to attenuate allergic asthma in mouse models. This study investigated potential anti-allergic effects of artesunate in animal models of IgE-dependent anaphylaxis. METHODS Anti-allergic actions of artesunate were evaluated in passive cutaneous anaphylaxis and passive systemic anaphylaxis mouse models, and in ovalbumin-induced contraction of bronchial rings isolated from sensitized guinea pigs. Direct mast cell-stabilizing effect of artesunate was examined in RBL-2H3 mast cell line and in mature human cultured mast cells. Anti-allergic signaling mechanisms of action of artesunate in mast cells were also investigated. RESULTS Artesunate prevented IgE-mediated cutaneous vascular hyperpermeability, hypothermia, elevation in plasma histamine level, and tracheal tissue mast cell degranulation in mice in a dose-dependent manner. In addition, artesunate suppressed ovalbumin-mediated guinea pig bronchial smooth muscle contraction. Furthermore, artesunate concentration-dependently blocked IgE-mediated degranulation of RBL-2H3 mast cells and human culture mast cells. Artesunate was found to inhibit IgE-induced Syk and PLCγ1 phosphorylation, production of IP(3) , and rise in cytosolic Ca(+2) level in mast cells. CONCLUSIONS We report here for the first time that artesunate possesses anti-allergic activity by blocking IgE-induced mast cell degranulation, providing a foundation for developing artesunate for the treatment of allergic asthma and other mast cell-mediated allergic disorders.
Collapse
Affiliation(s)
- C. Cheng
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - D. S. W. Ng
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - T. K. Chan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - S. P. Guan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - W. E. Ho
- Saw Swee Hock School of Public Health; National University Health System; Singapore City; Singapore
| | - A. H. M. Koh
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - J. S. Bian
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Singapore City; Singapore
| | - H. Y. A. Lau
- Faculty of Medicine; School of Biomedical Sciences; Chinese University of Hong Kong; Hong Kong; China
| | | |
Collapse
|
40
|
Abstract
Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Anbg 17-40G, Mount Sinai School of Medicine, The Jaffe Food Allergy Institute, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
41
|
Levitzki A. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu Rev Pharmacol Toxicol 2012; 53:161-85. [PMID: 23043437 DOI: 10.1146/annurev-pharmtox-011112-140341] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the manufacture of imatinib, researchers introduced tyrosine kinase inhibitors (TKIs) into the clinical setting in 2000 to treat cancers; approximately fifteen other TKIs soon followed. Imatinib remains the most successful agent, whereas all the others have had modest effects on the cancers that they target. The current challenge is to identify the agents that need to be combined with TKIs to maximize their efficacy. One of the most promising approaches is to combine immune therapy with TKI treatment. In this review, the therapeutic potential of TKIs for treatment is discussed.
Collapse
Affiliation(s)
- Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Siberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904 Israel.
| |
Collapse
|
42
|
Animal models, prophylaxis, and therapeutics for arenavirus infections. Viruses 2012; 4:1802-29. [PMID: 23170184 PMCID: PMC3499831 DOI: 10.3390/v4091802] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are enveloped, bipartite negative single-stranded RNA viruses that can cause a wide spectrum of disease in humans and experimental animals including hemorrhagic fever. The majority of these viruses are rodent-borne and the arenavirus family can be divided into two groups: the Lassa-Lymphocytic choriomeningitis serocomplex and the Tacaribe serocomplex. Arenavirus-induced disease may include characteristic symptoms ranging from fever, malaise, body aches, petechiae, dehydration, hemorrhage, organ failure, shock, and in severe cases death. Currently, there are few prophylactic and therapeutic treatments available for arenavirus-induced symptoms. Supportive care and ribavirin remain the predominant strategies for treating most of the arenavirus-induced diseases. Therefore, efficacy testing of novel therapeutic and prophylactic strategies in relevant animal models is necessary. Because of the potential for person-to-person spread, the ability to cause lethal or debilitating disease in humans, limited treatment options, and potential as a bio-weapon, the development of prophylactics and therapeutics is essential. This article reviews the current arenavirus animal models and prophylactic and therapeutic strategies under development to treat arenavirus infection.
Collapse
|
43
|
Siddiqui S, Redhu NS, Ojo OO, Liu B, Irechukwu N, Billington C, Janssen L, Moir LM. Emerging airway smooth muscle targets to treat asthma. Pulm Pharmacol Ther 2012; 26:132-44. [PMID: 22981423 DOI: 10.1016/j.pupt.2012.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/28/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.
Collapse
Affiliation(s)
- Sana Siddiqui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain, Montréal, Québec H2X 2P2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gao F, Wei D, Bian T, Xie P, Zou J, Mu H, Zhang B, Zhou X. Genistein attenuated allergic airway inflammation by modulating the transcription factors T-bet, GATA-3 and STAT-6 in a murine model of asthma. Pharmacology 2012; 89:229-36. [PMID: 22508471 DOI: 10.1159/000337180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genistein, a flavonoid in legumes and some herbal medicines, has various biological actions. Previous studies have shown that genistein decreased airway inflammation in allergic asthma. However, studies on how genistein affects immunoreactions in asthma are very limited. OBJECTIVE It was the aim of this study to investigate the effect of genistein on T helper 1 (Th1)/Th2 cytokines in a murine asthma model and to explore its underlying mechanisms. METHODS The asthma model was set up both in vivo and in vitro: the mice were divided into four groups in vivo, i.e. control group, ovalbumin-sensitized (OVA) group, Gen20 group (20 mg/kg genistein) and Gen40 group (40 mg/kg genistein), and into three groups in vitro, i.e. control group, OVA group, genistein group. Changes in lung histology were observed and concentrations of interleukin-4, interleukin-5 and interferon-γ in bronchoalveolar lavage fluid and serum were measured by enzyme-linked immunosorbent assay. The mRNA expression of GATA binding protein 3 (GATA-3), signal transducer and activator of transcription 6 (STAT-6) and T-box transcription factor (T-bet) in the lungs and CD4+ T cells of each group were detected by real-time PCR and the corresponding proteins were detected by Western blot. RESULTS The results showed that genistein attenuated OVA-induced airway inflammation, decreased Th2-type cytokines and increased Th1-type cytokines. Additionally, our data suggested that genistein may modulate the Th1/Th2 reaction by inhibiting GATA-3 and STAT-6 production while increasing T-bet production. CONCLUSION Genistein may modulate the immunomodulatory actions caused by Th1/Th2 cytokines in asthma, at least partially, by the down-regulation of GATA-3 and STAT-6 and the up-regulation of T-bet.
Collapse
Affiliation(s)
- Fei Gao
- Emergency Department, Wuxi People's Hospital, Nanjing Medical University, Wuxi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol 2011; 128:1242-1250.e1. [PMID: 21696815 DOI: 10.1016/j.jaci.2011.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although peanut and soybean proteins share extensive amino acid sequence homology, the incidence and severity of allergic reactions to soy are much less than those to peanut. Soybeans are rich in anti-inflammatory isoflavones and are the most common source of isoflavones in the human food supply. OBJECTIVE We hypothesized that the active isoflavones in the gut milieu are capable of modulating immune responses to dietary antigens by regulating dendritic cell (DC) function. METHODS We tested this hypothesis in a murine model of peanut allergy and in human monocyte-derived dendritic cells (MDDCs). C3H/HeJ mice were fed a diet containing genistein and daidzein. The mice were sensitized and challenged with peanut, and the anaphylactic symptoms were compared with those of mice fed a soy-free diet. Human MDDCs were activated with cholera toxin in the presence of isoflavones. The surface expression of DC activation markers and DC-mediated effector functions were analyzed by means of flow cytometry. RESULTS Dietary isoflavones significantly reduced the anaphylactic symptoms and mast cell degranulation in vivo after peanut challenge. Serum peanut-specific antibodies were markedly reduced in mice fed the isoflavone diet. Isoflavones inhibited cholera toxin-induced DC maturation in the mesenteric lymph nodes and human MDDCs and subsequent DC-mediated CD4(+) T-cell function in vitro. CONCLUSIONS These data suggest that dietary isoflavones suppress allergic sensitization and protect against peanut allergy in vivo. Dietary supplementation of soybean isoflavones could be a novel strategy to prevent the development of allergic reactions to food.
Collapse
Affiliation(s)
- Madhan Masilamani
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Mohammad-Shahi M, Haidari F, Rashidi B, Saei AA, Mahboob S, Rashidi MR. Comparison of the effects of genistein and daidzein with dexamethasone and soy protein on rheumatoid arthritis in rats. BIOIMPACTS : BI 2011; 1:161-70. [PMID: 23678422 DOI: 10.5681/bi.2011.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 01/16/2023]
Abstract
INTRODUCTION We have already shown the protective effects of soy protein on rheumatoid arthritis in rats. In this study, the effects of genistein and daidzein, two isoflavones from soy on rheumatoid arthritis prognosis and prevention in rats have been investigated. METHODS Rheumatoid arthritis was induced in female Sprague-Dawley rats using collagen type II plus adjuvant. Rats were then treated with soy protein (7 g/kg), dexamethasone (1 mg/kg), genistein (20 mg/kg genistein), daidzein (20 mg/kg genistein) and casein (in control groups) by daily gavage feedings for 50 days. Scores of arthritis were recorded every day for each paw of animal. Serum concentrations of TNF-α, IL-6, adiponectin and leptin were characterized. Tibiotarsal tissue was used for histopathologic analyses. RESULTS Treatment with genistein and daidzein resulted in not only a reduction in disease symptoms but also a delay in the onset of symptoms. Results from delayed-type hypersensitivity test demonstrated that the ear thickness in treated rats was significantly lower than that in the control group (p<0.05). There was a reduction in TNF-α, IL-6, adiponectin and leptin serum concentrations after treatment with genistein and daidzein. Dexamethasone reduced the serum concentrations of TNF-α, IL-6 and adiponectin but increased leptin serum level. Prevention of the tissue damage and joint inflammation was also observed following treatment with two soy isoflavones. CONCLUSION soy isoflavones, daidzein and especially genistein, could significantly improve rheumatoid arthritis symptoms in rats. The structural similarity of isoflavones to estrogen could be the possible underlying mechanism involved in the function.
Collapse
Affiliation(s)
- Majid Mohammad-Shahi
- Nutrition Research Center, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Yang HY, Tzeng YH, Chai CY, Hsieh AT, Chen JR, Chang LS, Yang SS. Soy protein retards the progression of non-alcoholic steatohepatitis via improvement of insulin resistance and steatosis. Nutrition 2011; 27:943-8. [PMID: 21333494 DOI: 10.1016/j.nut.2010.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/11/2010] [Accepted: 09/03/2010] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is a common cause of liver disease, and it may progress to fibrosis or cirrhosis. The aim of this study was to investigate the effects of soy protein on hepatic steatosis and insulin resistance in NASH. METHODS Forty male Sprague-Dawley rats were fed a high-fat diet for 4 wk to induce NASH and then were allocated to one of four diets: a NASH-inducing diet, a standard diet, a NASH-inducing diet plus soy protein, and a standard diet plus soy protein. RESULTS After the 10-wk experimental period, the results showed that soy protein significantly lowered plasma cholesterol concentrations and body fat accumulation. Soy protein intake also decreased the hepatic lipid depots of triacylglycerols and cholesterol and decreased the concentrations of lipid peroxides. In an analysis of antioxidative status, rats fed the soy protein diet showed improved antioxidative potential due to increases in superoxide dismutase and catalase activities and a decrease in the protein expression of cytochrome P450 2E1. CONCLUSION Soy protein may improve the liver function in patients with NASH by lowering lipid levels in the blood and liver, increasing the antioxidative capacity, and improving insulin resistance.
Collapse
Affiliation(s)
- Hsin-Yi Yang
- Department of Medical Nutrition, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
49
|
Bao ZS, Hong L, Guan Y, Dong XW, Zheng HS, Tan GL, Xie QM. Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma. Int Immunopharmacol 2011; 11:899-906. [PMID: 21354484 DOI: 10.1016/j.intimp.2011.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/09/2010] [Accepted: 02/01/2011] [Indexed: 12/28/2022]
Abstract
Epidemiologic studies have associated higher dietary consumption of soy isoflavones with decreased self-report of cough and allergic respiratory symptoms, but the pharmacodynamic effects of soy isoflavone on asthmatic model have not been well-described. Here, we hypothesized that soy isoflavone may have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for inflammatory cell counts, and for cytokine levels. Lung tissues were examined for cell infiltration, mucus hypersecretion and airway remodeling, and for the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Oral administration of soy isoflavone significantly reduced ovalbumin-induced airway hyperresponsiveness to intravenous methacholine, and inhibited ovalbumin-induced increases in eosinophil counts. RT-PCR analysis of whole lung lysates revealed that soy isoflavone markedly suppressed ovalbumin-induced mRNA expression of eotaxin, interleukin(IL)-5, IL-4 and matrix metalloproteinase-9, and increased mRNA expression of interferon (IFN)-γ and tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. Soy isoflavone also substantially recovered IFN-γ/IL-4 (Th1/Th2) levels in bronchoalveolar lavage fluid. In addition, histologic studies showed that soy isoflavone dramatically inhibited ovalbumin-induced lung tissue eosinophil infiltration, airway mucus production and collagen deposition in lung tissues. Our findings suggest that soy isoflavone as nutritional supplement may provide a novel means for the treatment of airway inflammatory disease.
Collapse
Affiliation(s)
- Zhao-Seng Bao
- Taizhou University School of Medicine, Jiaojiang 371000, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Biochanin a, a phytoestrogenic isoflavone with selective inhibition of phosphodiesterase 4, suppresses ovalbumin-induced airway hyperresponsiveness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:635058. [PMID: 21437195 PMCID: PMC3062156 DOI: 10.1155/2011/635058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/03/2011] [Indexed: 01/05/2023]
Abstract
The present study investigated the potential of biochanin A, a phytoestrogenic
isoflavone of red clover (Triflolium pratense), for use in treating asthma or chronic
obstructive pulmonary disease (COPD). Biochanin A (100 μmol/kg, orally (p.o.))
significantly attenuated airway resistance (RL), enhanced pause (Penh), and increased lung dynamic compliance (Cdyn) values induced by methacholine (MCh) in sensitized and challenged mice. It also significantly suppressed an increase in the number of total inflammatory cells, neutrophils, and eosinophils, and levels of cytokines,
including interleukin (IL)-2, IL-4, IL-5, and tumor necrosis factor (TNF)-α in
bronchoalveolar lavage fluid (BALF) of the mice. However, it did not influence
interferon (IFN)-γ levels. Biochanin A (100 μmol/kg, p.o.) also significantly
suppressed the total and ovalbumin (OVA)-specific immunoglobulin E (IgE) levels in
the serum and BALF, and enhanced the total IgG2a level in the serum of these mice.
The PDE4H/PDE4L value of biochanin A was calculated as >35. Biochanin A did not influence xylazine/ketamine-induced anesthesia. Biochanin A (10~30 μM) significantly reduced cumulative OVA (10~100 μg/mL)-induced contractions in the isolated guinea pig trachealis, suggesting that it inhibits degranulation of mast cells.
In conclusion, red clover containing biochanin A has the potential for treating allergic asthma and COPD.
Collapse
|