1
|
Caballero I, Mbouamboua Y, Weise S, López-Gálvez R, Couralet M, Fleurot I, Pons N, Barrera-Conde M, Quílez-Playán N, Keller M, Klymiuk N, Robledo P, Hummel T, Barbry P, Chamero P. Cystic fibrosis alters the structure of the olfactory epithelium and the expression of olfactory receptors affecting odor perception. SCIENCE ADVANCES 2025; 11:eads1568. [PMID: 40020072 PMCID: PMC11870070 DOI: 10.1126/sciadv.ads1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
A reduced sense of smell is a common condition in people with cystic fibrosis (CF) that negatively affects their quality of life. While often attributed to nasal mucosa inflammation, the underlying causes of the olfactory loss remain unknown. Here, we characterized gene expression in olfactory epithelium cells from patients with CF using single-nuclei RNA sequencing and found altered expression of olfactory receptors (ORs) and genes related to progenitor cell proliferation. We confirmed these findings in newborn, inflammation-free samples of a CF animal model and further identified ultrastructural alterations in the olfactory epithelium and bulbs of these animals. We established that CFTR, the anion channel whose dysfunction causes CF, is dispensable for odor-evoked signaling in sensory neurons, yet CF animals displayed defective odor-guided behaviors consistent with the morphological and molecular alterations. Our study highlights CF's major role in modulating epithelial structure and OR expression, shedding light on the mechanisms contributing to olfactory loss in CF.
Collapse
Affiliation(s)
- Ignacio Caballero
- Infectiologie et Santé Publique, UMR1282, INRAE, University of Tours, 37380 Nouzilly, France
| | - Yvon Mbouamboua
- Université Côte d’Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Susanne Weise
- Department of Otorhinolaryngology, Smell & Taste Clinic, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Raquel López-Gálvez
- Infectiologie et Santé Publique, UMR1282, INRAE, University of Tours, 37380 Nouzilly, France
- Laboratoire de Physiologie de la Reproduction et des Comportements, CNRS, INRAE, University of Tours, 37380 Nouzilly, France
| | - Marie Couralet
- Université Côte d’Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Isabelle Fleurot
- Infectiologie et Santé Publique, UMR1282, INRAE, University of Tours, 37380 Nouzilly, France
| | - Nicolas Pons
- Université Côte d’Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Nayima Quílez-Playán
- Laboratoire de Physiologie de la Reproduction et des Comportements, CNRS, INRAE, University of Tours, 37380 Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, CNRS, INRAE, University of Tours, 37380 Nouzilly, France
| | - Nikolai Klymiuk
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell & Taste Clinic, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pascal Barbry
- Université Côte d’Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
- 3IA-Côte d’Azur, 06560 Sophia Antipolis, France
- IHU Respirera, 06560 Sophia Antipolis, France
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, CNRS, INRAE, University of Tours, 37380 Nouzilly, France
| |
Collapse
|
2
|
Kennelly SS, Hovland V, Matthews IL, Reinholt FP, Skjerven H, Heimdal K, Crowley S. Tracheobronchomalacia is common in children with primary ciliary dyskinesia-A case note review. Pediatr Pulmonol 2024; 59:3560-3568. [PMID: 39291788 PMCID: PMC11600996 DOI: 10.1002/ppul.27262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/06/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND The estimated prevalence of tracheobronchomalacia (TBM) in children is about 1:2100. Prevalence of intrathoracic malacia is higher in children with chronic lung disease such as bronchiectasis and cystic fibrosis (CF) and may contribute to increased morbidity. OBJECTIVE To determine the prevalence and assess clinical features of tracheomalacia (TM), TBM and bronchomalacia (BM) in patients with primary ciliary dyskinesia (PCD). METHODS We performed a retrospective case-note review of all children with a confirmed or highly likely diagnosis of PCD attending Oslo University Hospital between 2000 and 2021. We selected those who had undergone flexible fiberoptic bronchoscopy (FB) and in whom the presence of TBM was assessed. We retrieved demographic and clinical data, including airway symptoms, PCD-diagnostic criteria, indication for bronchoscopy, the presence of lobar atelectasis, microbiology and the descriptive and unblinded video-recorded results of FB. Complications occurring during and after bronchoscopy were noted. RESULTS Of 71 children with PCD, 32 underwent FB and were included in the review. The remaining 39 were included for TBM prevalence calculation only. Median age at FB was 6.0 years (3.1-11.9). Twenty-two children (69%) had intrathoracic airway malacia. Four (13%) had isolated TM, seven (22%) had TBM, and 11 (34%) had isolated BM affecting either main (n = 4) or lobar bronchi (n = 7) (LBM), including four with associated lobar atelectasis. FB related complications, one major, 12 minor, were documented in 13 children (41%). CONCLUSION We found a high prevalence of TBM among children with PCD undergoing FB. This may represent a significant comorbidity and have implications for patient management.
Collapse
Affiliation(s)
- Synne S. Kennelly
- Paediatric Department of Allergy and Lung DiseasesOslo University HospitalOsloNorway
- Division of Paediatric and Adolescent Medicine, Department of Paediatric Training and EducationOslo University HospitalOsloNorway
- Institute of Clinical Medicine, University of OsloOsloNorway
| | - Vegard Hovland
- Paediatric Department of Allergy and Lung DiseasesOslo University HospitalOsloNorway
| | - Iren Lindbak Matthews
- Paediatric Department of Allergy and Lung DiseasesOslo University HospitalOsloNorway
| | - Finn P. Reinholt
- Department of PathologyCore Facility of Electron Microscopy, Oslo University HospitalOsloNorway
| | - Håvard Skjerven
- Paediatric Department of Allergy and Lung DiseasesOslo University HospitalOsloNorway
- Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Paediatric and Adolescent Medicine, Department of Paediatric Research, RikshospitaletOslo University HospitalOsloNorway
| | - Ketil Heimdal
- Department of Medical GeneticsOslo University HospitalOsloNorway
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung DiseasesOslo University HospitalOsloNorway
- Norwegian Center for Cystic Fibrosis, Oslo University HospitalOsloNorway
| |
Collapse
|
3
|
Lin B, Gong J, Keenan K, Lin F, Lin YC, Mésinèle J, Calmel C, Mohand Oumoussa B, Boëlle PY, Guillot L, Corvol H, Waters V, Sun L, Strug LJ. Genome-wide association study of susceptibility to Pseudomonas aeruginosa infection in cystic fibrosis. Eur Respir J 2024; 64:2400062. [PMID: 39117430 PMCID: PMC11540985 DOI: 10.1183/13993003.00062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pseudomonas aeruginosa is a common pathogen that contributes to progressive lung disease in cystic fibrosis (CF). Genetic factors other than CF-causing CFTR (CF transmembrane conductance regulator) variations contribute ∼85% of the variation in chronic P. aeruginosa infection age in CF according to twin studies, but the susceptibility loci remain unknown. Our objective is to advance understanding of the genetic basis of host susceptibility to P. aeruginosa infection. MATERIALS AND METHODS We conducted a genome-wide association study of chronic P. aeruginosa infection age in 1037 Canadians with CF. We subsequently assessed the genetic correlation between chronic P. aeruginosa infection age and lung function through polygenic risk score (PRS) analysis and inferred their causal relationship through bidirectional Mendelian randomisation analysis. RESULTS Two novel genome-wide significant loci with lead single nucleotide polymorphisms (SNPs) rs62369766 (chr5p12; p=1.98×10-8) and rs927553 (chr13q12.12; p=1.91×10-8) were associated with chronic P. aeruginosa infection age. The rs62369766 locus was validated using an independent French cohort (n=501). Furthermore, the PRS constructed from CF lung function-associated SNPs was significantly associated with chronic P. aeruginosa infection age (p=0.002). Finally, our analysis presented evidence for a causal effect of lung function on chronic P. aeruginosa infection age (β=0.782 years, p=4.24×10-4). In the reverse direction, we observed a moderate effect (β=0.002, p=0.012). CONCLUSIONS We identified two novel loci that are associated with chronic P. aeruginosa infection age in individuals with CF. Additionally, we provided evidence of common genetic contributors and a potential causal relationship between P. aeruginosa infection susceptibility and lung function in CF. Therapeutics targeting these genetic factors may delay the onset of chronic infections, which account for significant remaining morbidity in CF.
Collapse
Affiliation(s)
- Boxi Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu-Chung Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Inovarion, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé (PASS), Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Sorbonne Université, AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Valerie Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
4
|
Soleimani M. Metabolic alkalosis in cystic fibrosis: from vascular volume depletion to impaired bicarbonate excretion. Front Endocrinol (Lausanne) 2024; 15:1411317. [PMID: 39170739 PMCID: PMC11335532 DOI: 10.3389/fendo.2024.1411317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening genetic disease in the United States and among people of European descent. Despite the widespread distribution of the cystic fibrosis transmembrane conductance regulator (CFTR) along kidney tubules, specific renal phenotypes attributable to CF have not been well documented. Recent studies have demonstrated the downregulation of the apical Cl-/HCO3 - exchanger pendrin (Slc26a4) in kidney B-intercalated cells of CF mouse models. These studies have shown that kidneys of both mice and humans with CF have an impaired ability to excrete excess HCO3 -, thus developing metabolic alkalosis when subjected to excess HCO3 - intake. The purpose of this minireview is to discuss the latest advances on the role of pendrin as a molecule with dual critical roles in acid base regulation and systemic vascular volume homeostasis, specifically in CF. Given the immense prevalence of vascular volume depletion, which is primarily precipitated via enhanced chloride loss through perspiration, we suggest that the dominant presentation of metabolic alkalosis in CF is due to the impaired function of pendrin, which plays a critical role in systemic vascular volume and acid base homeostasis.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, University of New Mexico, Albuquerque, NM, United States
- Research Services, New Mexico Veteran's Healthcare System, Albuquerque, NM, United States
| |
Collapse
|
5
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
6
|
Burgel PR, Ballmann M, Drevinek P, Heijerman H, Jung A, Mainz JG, Peckham D, Plant BJ, Schwarz C, Taccetti G, Smyth A. Considerations for the use of inhaled antibiotics for Pseudomonas aeruginosa in people with cystic fibrosis receiving CFTR modulator therapy. BMJ Open Respir Res 2024; 11:e002049. [PMID: 38702073 PMCID: PMC11086488 DOI: 10.1136/bmjresp-2023-002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.
Collapse
Affiliation(s)
- Pierre-Régis Burgel
- Université Paris Cité, Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- ERN-lung CF Network, Frankfurt, Germany
| | - Manfred Ballmann
- Kinder- und Jugendklinik der Universitätsmedizin Rostock, Rostock, Germany
| | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Harry Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andreas Jung
- Division of Respiratory Medicine, University Children's Hospital, Zurich, Switzerland
| | - Jochen G Mainz
- Medizinische Hochschule Brandenburg (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Daniel Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Barry J Plant
- Cork Adult Cystic Fibrosis Centre, Cork University Hospital, University College, Cork, Republic of Ireland
| | - Carsten Schwarz
- HMU-Health and Medical University Potsdam, Internal Medicine and Pneumology, Clinic Westbrandenburg, Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Potsdam, Germany
| | - Giovanni Taccetti
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, Department of Paediatric Medicine, Florence, Italy
| | - Alan Smyth
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Genkin D, Zanette B, Grzela P, Benkert T, Subbarao P, Moraes TJ, Katz S, Ratjen F, Santyr G, Kirby M. Semiautomated Segmentation and Analysis of Airway Lumen in Pediatric Patients Using Ultra Short Echo Time MRI. Acad Radiol 2024; 31:648-659. [PMID: 37550154 DOI: 10.1016/j.acra.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
RATIONALE AND OBJECTIVES Ultra short echo time (UTE) magnetic resonance imaging (MRI) pulse sequences have shown promise for airway assessment, but the feasibility and repeatability in the pediatric lung are unknown. The purpose of this work was to develop a semiautomated UTE MRI airway segmentation pipeline from the trachea-to-tertiary airways in pediatric participants and assess repeatability and lumen diameter correlations to lung function. MATERIALS AND METHODS A total of 29 participants (n = 7 healthy, n = 11 cystic fibrosis, n = 6 asthma, and n = 5 ex-preterm), aged 7-18 years, were imaged using a 3D stack-of-spirals UTE examination at 3 T. Two independent observers performed airway segmentations using a pipeline developed in-house; observer 1 repeated segmentations 1 month later. Segmentations were extracted using region-growing with leak detection, then manually edited if required. The airway trees were skeletonized, pruned, and labeled. Airway lumen diameter measurements were extracted using ray casting. Intra- and interobserver variability was assessed using the Sørensen-Dice coefficient (DSC) and intra-class correlation coefficient (ICC). Correlations between lumen diameter and pulmonary function were assessed using Spearman's correlation coefficient. RESULTS For airway segmentations and lumen diameter, intra- and interobserver DSCs were 0.88 and 0.80, while ICCs were 0.95 and 0.89, respectively. The variability increased from the trachea-to-tertiary airways for intra- (DSC: 0.91-0.64; ICC: 0.91-0.49) and interobserver (DSC: 0.84-0.51; ICC: 0.89-0.21) measurements. Lumen diameter was significantly correlated with forced expiratory volume in 1 second and forced vital capacity (P < .05). CONCLUSION UTE MRI airway segmentation from the trachea-to-tertiary airways in pediatric participants across a range of diseases is feasible. The UTE MRI-derived lumen measurements were repeatable and correlated with lung function.
Collapse
Affiliation(s)
- Daniel Genkin
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada (D.G.)
| | - Brandon Zanette
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Patrick Grzela
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany (T.B.)
| | - Padmaja Subbarao
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Sherri Katz
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada (S.K.); Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada (S.K.)
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Giles Santyr
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada (G.S.)
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Kerr Hall South Bldg., Room KHS-344, 350 Victoria St., Toronto, ON M5B 2K3, Canada (M.K.).
| |
Collapse
|
8
|
Russell NX, Burra K, Shah RM, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. Am J Physiol Lung Cell Mol Physiol 2023; 325:L788-L802. [PMID: 37873566 PMCID: PMC11068408 DOI: 10.1152/ajplung.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.
Collapse
Affiliation(s)
- Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ronak M Shah
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
9
|
Depiazzi J, Bourke C, Stick S, Withers A. Prevalence of tracheobronchomalacia is higher than previously reported in children with cystic fibrosis. Pediatr Pulmonol 2023; 58:2568-2573. [PMID: 37294078 DOI: 10.1002/ppul.26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Tracheobronchomalacia (TBM) is estimated to be present in 1 in 2100 children. Previous reports suggest the prevalence is higher in children with cystic fibrosis (CF). This has clinical implications with potential to influence airway clearance and lung health. AIM To determine the prevalence and clinical associations of TBM in Western Australian children with CF. METHODS Children with CF born between 2001 and 2016 were included. Operation reports from bronchoscopies performed until the age of 4 were retrospectively reviewed. Data were collected on the presence, persistence defined as a repeat diagnosis, and severity of TBM. Data on genotype, pancreatic status, and symptoms at CF diagnosis were extracted from the medical record. Associations between categorical variables were compared using χ2 and Fisher's exact test. RESULTS Of 167 children (79 male), 68 (41%) were diagnosed with TBM at least once, with TBM persistent in 37 (22%) and severe in 31 (19%). TBM was significantly associated with pancreatic insufficiency (χ2 = 7.874, p < 0.05, odds ratio [OR] 3.4), delta F508 gene mutation (χ2 = 6.489, p < 0.05, OR 2.3), and a presentation of meconium ileus (χ2 = 8.615, p < 0.05, OR 5.0). Severe malacia was less likley in females (χ2 = 4.523, p < 0.05, OR 0.42) . No significant relationship was found with respiratory symptoms at the time of CF diagnosis (χ2 = 0.742, p = 0.39). CONCLUSIONS TBM was common in this group of children under the age of 4 with CF. A high index of suspicion for airway malacia should be considered in children with CF, particularly those who present with meconium ileus and have gastrointestinal symptoms at diagnosis.
Collapse
Affiliation(s)
- Julie Depiazzi
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Crystal Bourke
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Stephen Stick
- Perth Children's Hospital, Nedlands, Western Australia, Australia
- Wal-yan Respiratory Research Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Adelaide Withers
- Perth Children's Hospital, Nedlands, Western Australia, Australia
- Wal-yan Respiratory Research Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
10
|
Russell NX, Burra K, Shah R, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523309. [PMID: 36711918 PMCID: PMC9882072 DOI: 10.1101/2023.01.10.523309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.
Collapse
Affiliation(s)
- Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Ronak Shah
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program Current Affiliation: Renaissance School of Medicine at Stony Brook University
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: P&G Cincinnati, OH
| | - Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
11
|
Kramer EL, Hudock KM, Davidson CR, Clancy JP. CFTR dysfunction in smooth muscle drives TGFβ dependent airway hyperreactivity. Respir Res 2023; 24:198. [PMID: 37568151 PMCID: PMC10416378 DOI: 10.1186/s12931-023-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The primary underlying defect in cystic fibrosis (CF) is disrupted ion transport in epithelia throughout the body. It is unclear if symptoms such as airway hyperreactivity (AHR) and increased airway smooth muscle (ASM) volume in people with CF are due to inherent abnormalities in smooth muscle or are secondary to epithelial dysfunction. Transforming Growth Factor beta 1 (TGFβ) is an established genetic modifier of CF lung disease and a known driver of abnormal ASM function. Prior studies have demonstrated that CF mice develop greater AHR, goblet cell hyperplasia, and ASM hypertrophy after pulmonary TGFβ exposure. However, the mechanism driving these abnormalities in CF lung disease, specifically the contribution of CFTR loss in ASM, was unknown. METHODS In this study, mice with smooth muscle-specific loss of CFTR function (Cftrfl/fl; SM-Cre mice) were exposed to pulmonary TGFβ. The impact on lung pathology and physiology was investigated through examination of lung mechanics, Western blot analysis, and pulmonary histology. RESULTS Cftrfl/fl; SM-Cre mice treated with TGFβ demonstrated greater methacholine-induced AHR than control mice. However, Cftrfl/fl; SM-Cre mice did not develop increased inflammation, ASM area, or goblet cell hyperplasia relative to controls following TGFβ exposure. CONCLUSIONS These results demonstrate a direct smooth muscle contribution to CF airway obstruction mediated by TGFβ. Dysfunction in non-epithelial tissues should be considered in the development of CF therapeutics, including potential genetic therapies.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| | - Kristin M Hudock
- Division of Adult Pulmonary & Critical Care Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cynthia R Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | |
Collapse
|
12
|
Meyerholz DK, Leidinger MR, Adam Goeken J, Businga TR, Vizuett S, Akers A, Evans I, Zhang Y, Engelhardt JF. Immunohistochemical detection of MUC5AC and MUC5B mucins in ferrets. BMC Res Notes 2023; 16:111. [PMID: 37349833 PMCID: PMC10286488 DOI: 10.1186/s13104-023-06388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Cystic fibrosis (CF) is a genetic condition that causes abnormal mucus secretions in affected organs. MUC5AC and MUC5B are gel-forming mucins and frequent targets for investigations in CF tissues. Our objective was to qualify MUC5AC and MUC5B immunohistochemical techniques to provide a useful tool to identify, localize and interpret mucin expression in ferret tissues. RESULTS MUC5AC and MUC5B mucins were detected most commonly in large airways and least in small airways, consistent with reported goblet cell density in airway surface epithelia. We evaluated whether staining method affected the detection of goblet cell mucins in serial sections of bronchial surface epithelia. Significant differences between stains were not observed suggesting common co-expression MUC5AC and MUC5B proteins in goblet cells of airway surface epithelia. Gallbladder and stomach tissues are reported to have differential mucin enrichment, so we tested these tissues in wildtype ferrets. Stomach tissues were enriched in MUC5AC and gallbladder tissues enriched in MUC5B, mucin enrichment similar to human tissues. Mucin immunostaining techniques were further qualified for specificity using lung tissue from recently generated MUC5AC-/- and MUC5B-/- ferrets. Qualified techniques for MUC5AC and MUC5B immunohistochemistry will be useful tools for mucin tissue studies in CF and other ferret models.
Collapse
Affiliation(s)
- David K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah R. Leidinger
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - J. Adam Goeken
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Thomas R. Businga
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Sebastian Vizuett
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Allison Akers
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Idil Evans
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Yan Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
13
|
Jennings S, Hu Y, Wellems D, Luo M, Scull C, Taylor CM, Nauseef WM, Wang G. Neutrophil defect and lung pathogen selection in cystic fibrosis. J Leukoc Biol 2023; 113:604-614. [PMID: 36976023 DOI: 10.1093/jleuko/qiad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Cystic fibrosis is a life-threatening genetic disorder caused by mutations in the CFTR chloride channel. Clinically, over 90% of patients with cystic fibrosis succumb to pulmonary complications precipitated by chronic bacterial infections, predominantly by Pseudomonas aeruginosa and Staphylococcus aureus. Despite the well-characterized gene defect and clearly defined clinical sequelae of cystic fibrosis, the critical link between the chloride channel defect and the host defense failure against these specific pathogens has not been established. Previous research from us and others has uncovered that neutrophils from patients with cystic fibrosis are defective in phagosomal production of hypochlorous acid, a potent microbicidal oxidant. Here we report our studies to investigate if this defect in hypochlorous acid production provides P. aeruginosa and S. aureus with a selective advantage in cystic fibrosis lungs. A polymicrobial mixture of cystic fibrosis pathogens (P. aeruginosa and S. aureus) and non-cystic fibrosis pathogens (Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli) was exposed to varied concentrations of hypochlorous acid. The cystic fibrosis pathogens withstood higher concentrations of hypochlorous acid than did the non-cystic fibrosis pathogens. Neutrophils derived from F508del-CFTR HL-60 cells killed P. aeruginosa less efficiently than did the wild-type counterparts in the polymicrobial setting. After intratracheal challenge in wild-type and cystic fibrosis mice, the cystic fibrosis pathogens outcompeted the non-cystic fibrosis pathogens and exhibited greater survival in the cystic fibrosis lungs. Taken together, these data indicate that reduced hypochlorous acid production due to the absence of CFTR function creates an environment in cystic fibrosis neutrophils that provides a survival advantage to specific microbes-namely, S. aureus and P. aeruginosa-in the cystic fibrosis lungs.
Collapse
Affiliation(s)
- Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Yawen Hu
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Dianne Wellems
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Callie Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, 501 EMRB, 431 Newton Road, Iowa City, IA, United States
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| |
Collapse
|
14
|
Li D, Han X, Habgood M, Schneider-Futschik EK. In Utero Mapping and Development Role of CFTR in Lung and Gastrointestinal Tract of Cystic Fibrosis Patients. ACS Pharmacol Transl Sci 2023; 6:355-360. [PMID: 36926454 PMCID: PMC10012249 DOI: 10.1021/acsptsci.2c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 02/16/2023]
Abstract
In cystic fibrosis (CF) the ability of the CF transmembrane conductance regulator (CFTR) protein to mediate chloride and water transport is disrupted. While much progress has been made in CF research leading to effective treatments to improve CFTR function, including small molecule modulators, patients present with varying disease manifestations and responses to therapy. For many CF-affected organs, disease onset is known to occur during in utero development before treatments can be administered and progresses over time leading to irreversible damage to these organs. Thus, the role of functional CFTR protein, in particular, during early development needs to be further elucidated. Studies have detected CFTR proteins at very early gestational stages and revealed temporally and spatially variable CFTR expression patterns in fetuses, suggesting a potential role of CFTR in fetal development. However, the actual mechanisms of how defective CFTR in CF results in fetal morphogenetic abnormalities are yet to be established. This review aims to summarize fetal CFTR expression patterns specifically in the lung, pancreas, and gastrointestinal tract (GIT), as compared to adult patterns. Case studies of structural abnormalities in CF fetuses and newborns and the role of CFTR in fetal development will also be discussed.
Collapse
Affiliation(s)
| | | | - Mark Habgood
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
16
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
17
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
19
|
Galodé F, Ladipo O, Andrieux A, Feghali H, Bui S, Fayon M. Prevalence and Determinants of Wheezing and Bronchodilatation in Children With Cystic Fibrosis: A Retrospective Cohort Study. Front Pediatr 2022; 10:856840. [PMID: 35633979 PMCID: PMC9133441 DOI: 10.3389/fped.2022.856840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many patients with cystic fibrosis (CF) wheeze, and are dubbed as having CF-asthma. Understanding the determinants of such wheezing may avoid unnecessary treatments and open newer treatment avenues. OBJECTIVES Main: To evaluate the prevalence and characteristics of wheezing and a positive bronchodilatory response (BDR) in children with CF. Secondary: To identify the predictive markers and the impact of current wheezing a positive BDR. METHODS A retrospective single-center study in children with CF. We determined the characteristics of physician-reported wheeze in patients <6 years, and a BDR in patients aged 6-17 years. Anthropometric, lung function, laboratory, genetic and microbiological data were recorded in all groups. Variables were compared using the Chi2 and Student t-tests, and ANOVA. RESULTS 125 preschool and 69 school-aged children and adolescents with CF were included in the study. 71.2% of patients <6 years of age had had at least one episode of wheezing: 26.3% of patients were Transient Early Wheezers, 12.6% Late Onset Wheezers and 37.9% were Persistent Wheezers. The prevalence of a positive BDR was 73.5, 48.5, and 52.9% in the 6-8 years, 10-12 years, and 15-17 years age groups, respectively. Allergic factors were not predictive of wheezing in preschoolers. In the 6-8 years age group, the sum of wheal diameters of allergic skin prick tests (SPT, house dust mite + cat + dog dander) was greater in those with a BDR vs. no BDR (4 [2.0-8.8] vs. 1 [0-7.0] mm, p = 0.01). The presence of Pseudomonas aeruginosa in the bronchial secretions before 3 years of age was not significantly associated with either the presence of wheezing at the age of 6 years or a BDR in school-aged children and adolescents. The proportion of homozygous p.F508del patients was significantly lower in the group of patients who had wheezed by 6 years of age (60% vs. 72.7%, p = 0.009), but higher in the 6-8 years old group with a BDR vs. no BDR (64% vs. 36%, p = 0.04). Current wheezers at 6 years had a lower mean FEV1 vs. the non-current wheezers (91.5 ± 4.4% vs. 100.9 ± 2.4%; p = 0.047). Similarly, forced vital capacity (FVC) was significantly lower in the 6-8 years old group with BDR vs. no BDR (85 ± 19 vs. 101 ± 21%, p = 0.015). CONCLUSION Wheezing and BDR are very frequent findings in children with CF. Current wheeze at the age of 6 years was associated with worse lung function. Labeling wheezing in CF as "CF-Asthma" is misleading since the determinants are different, and may lead to inappropriate prescriptions of inhaled steroids.
Collapse
Affiliation(s)
- Francois Galodé
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - O. Ladipo
- Service de Pédiatrie, CHU de la Mère et de l’Enfant Lagune, Cotonou, Benin
| | - A. Andrieux
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - H. Feghali
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S. Bui
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - Michael Fayon
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
- INSERM, Centre d’Investigation Clinique (CIC 1401), University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
21
|
Yaşar PA, Köse M, Erdem S, Hangül M, Karaman ZF, Eken A. Circulating fibrocyte level in children with cystic fibrosis. Pediatr Int 2022; 64:e15058. [PMID: 34779084 DOI: 10.1111/ped.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study aimed to evaluate circulating fibrocyte levels in cystic fibrosis (CF) patients during stable and exacerbation periods of the condition. METHODS The study group consisted of 39 patients diagnosed with CF and 20 healthy controls. Individuals included in the study were divided into three groups: CF, CF exacerbated, and a healthy control group. Their circulating fibrocyte levels were compared. Findings from a pulmonary function test and high-resolution computed tomography of the lung were evaluated and compared. RESULTS The circulating fibrocyte count was found to be significantly higher in patients with CF compared with the exacerbated and control groups. No correlation was found between the forced expiratory volume in 1 s and forced vital capacity values in the pulmonary function test and the circulating fibrocyte count. The circulating fibrocyte count in patients (in the CF group) with positive findings in the high-resolution computed tomography was statistically significantly lower. CONCLUSIONS The circulating fibrocyte level in the peripheral blood of the patients with CF was increased.
Collapse
Affiliation(s)
| | - Mehmet Köse
- Division of Pediatric Pulmonology, Erciyes University, Kayseri, Turkey
| | - Serife Erdem
- Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Melih Hangül
- Division of Pediatric Pulmonology, Erciyes University, Kayseri, Turkey
| | | | - Ahmet Eken
- Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Evaluating Drug Deposition Patterns from Turbuhaler® in Healthy and Diseased Lung Models of Preschool Children. JOURNAL OF PULMONARY MEDICINE & RESPIRATORY CARE 2022; 4:1008. [PMID: 35224564 PMCID: PMC8871561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The efficacy of pediatric oral drug delivery using dry powder inhalers, such as Turbuhaler®, is dependent on the age and health of the test subjects. The available clinical data for these studies is scant and rarely provide correlations between the health condition and the regional lung deposition. In particular, the data and the correlations for pre-school children are minimal. Deposition simulations were performed using the newly developed Quasi-3D whole lung model to analyze the effect of health conditions on the regional lung deposition from the Turbuhaler® in 3-year-old children. The healthy lung model was created from CT scan data. Cystic-fibrosis models were created by uniformly constricting the airways to various degrees. The simulated drug deposition outcomes were validated against the available experimental data. The results show that, while the dose deposited in the lungs exhibits minor variations, the Peripheral:Central (P/C) ratio is strongly affected by both the health condition and the inflow variations. The above ratio is reduced by ~30% for the severely diseased case, compared to its healthy counterpart, for the same inhalation profile. This indicates that lower doses reach the peripheral lung, in pediatric cystic-fibrosis subjects, thus requiring a larger therapeutic dose.
Collapse
|
23
|
DeBoer EM, Kimbell JS, Pickett K, Hatch JE, Akers K, Brinton J, Hall GL, King L, Ramanauskas F, Rosenow T, Stick SM, Tiddens HA, Ferkol TW, Ranganathan SC, Davis SD. Lung inflammation and simulated airway resistance in infants with cystic fibrosis. Respir Physiol Neurobiol 2021; 293:103722. [PMID: 34157384 PMCID: PMC8330801 DOI: 10.1016/j.resp.2021.103722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is characterized by small airway disease; but central airways may also be affected. We hypothesized that airway resistance estimated from computational fluid dynamic (CFD) methodology in infants with CF was higher than controls and that early airway inflammation in infants with CF is associated with airway resistance. Central airway models with a median of 51 bronchial outlets per model (interquartile range 46,56) were created from chest computed tomography scans of 18 infants with CF and 7 controls. Steady state airflow into the trachea was simulated to estimate central airway resistance in each model. Airway resistance was increased in the full airway models of infants with CF versus controls and in models trimmed to 33 bronchi. Airway resistance was associated with markers of inflammation in bronchoalveolar lavage fluid obtained approximately 8 months earlier but not with markers obtained at the same time. In conclusion, airway resistance estimated by CFD modeling is increased in infants with CF compared to controls and may be related to early airway inflammation.
Collapse
Affiliation(s)
- Emily M DeBoer
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Breathing Institute at Children's Hospital Colorado, Aurora, CO, United States.
| | - Julia S Kimbell
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kaci Pickett
- Colorado School of Public Health, Aurora, CO, United States
| | - Joseph E Hatch
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kathryn Akers
- Washington University School of Medicine, St. Louis, MO, United States
| | - John Brinton
- Breathing Institute at Children's Hospital Colorado, Aurora, CO, United States; Colorado School of Public Health, Aurora, CO, United States
| | - Graham L Hall
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Louise King
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Fiona Ramanauskas
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Tim Rosenow
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia
| | - Harm A Tiddens
- Erasmus MC and Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas W Ferkol
- Washington University School of Medicine, St. Louis, MO, United States
| | - Sarath C Ranganathan
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Stephanie D Davis
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Long C, Qi M, Wang J, Luo J, Qin X, Gao G, Xiang Y. Respiratory syncytial virus persistent infection causes acquired CFTR dysfunction in human bronchial epithelial cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:949-957. [PMID: 34707004 PMCID: PMC10930179 DOI: 10.11817/j.issn.1672-7347.2021.210210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Many studies have shown that respiratory syncytial virus persistent infection may be the main cause of chronic respiratory pathology.However, the mechanism is unclear. Cystic fibrosis transmembrane conduction regulator (CFTR) is an apical membrane chloride channel, which is very important for the regulation of epithelial fluid, chloride ion, and bicarbonate transport. CFTR dysfunction will lead to changes in bronchial secretions and impair mucus clearance, which is related to airway inflammation. In our previous study, we observed the down-regulation of CFTR in airway epithelial cells in respiratory syncytial virus (RSV) infected mouse model. In this study, we further investigated the expression and function of CFTR by constructing an airway epithelial cell model of RSV persistent infection. METHODS 16HBE14o- cells were infected with RSV at 0.01 multiplicity of infection (MOI). The expression of CFTR was detected by real-time RT-PCR, immunofluorescence, and Western blotting. The intracellular chloride concentration was measured by N-(ethoxycarbonylmethyl)-6-methoxyquinolium bromide (MQAE) and the chloride current was measured by whole-cell patch clamp recording. RESULTS 16HBE14o- cells infected with RSV were survived to successive passages of the third generation (G3), while the expression and function of CFTR was progressively decreased upon RSV infection from the first generation (G1) to G3. Exposure of 16HBE14o- cells to RSV led to the gradual increase of TGF-β1 as well as phosphorylation of Smad2 following progressive RSV infection. Disruption of TGF-β1 signaling by SB431542 prevented Smad2 phosphorylation and rescued the expression of CFTR. CONCLUSIONS RSV infection can lead to defective CFTR function in airway epithelial cells, which may be mediated via activation of TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Chunjiao Long
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013.
- Department of Nephrology Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Central Hospital/Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou Hunan 412007
| | - Jinmei Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Jinhua Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Ge Gao
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013.
| |
Collapse
|
25
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
Huang EN, Quach H, Lee JA, Dierolf J, Moraes TJ, Wong AP. A Developmental Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Cystic Fibrosis Lung Disease Pathogenesis. Front Cell Dev Biol 2021; 9:742891. [PMID: 34708042 PMCID: PMC8542926 DOI: 10.3389/fcell.2021.742891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein is a cAMP-activated anion channel that is critical for regulating fluid and ion transport across the epithelium. This process is disrupted in CF epithelia, and patients harbouring CF-causing mutations experience reduced lung function as a result, associated with the increased rate of mortality. Much progress has been made in CF research leading to treatments that improve CFTR function, including small molecule modulators. However, clinical outcomes are not necessarily mutation-specific as individuals harboring the same genetic mutation may present with varying disease manifestations and responses to therapy. This suggests that the CFTR protein may have alternative functions that remain under-appreciated and yet can impact disease. In this mini review, we highlight some notable research implicating an important role of CFTR protein during early lung development and how mutant CFTR proteins may impact CF airway disease pathogenesis. We also discuss recent novel cell and animal models that can now be used to identify a developmental cause of CF lung disease.
Collapse
Affiliation(s)
- Elena N Huang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua Dierolf
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Hanssens LS, Duchateau J, Casimir GJ. CFTR Protein: Not Just a Chloride Channel? Cells 2021; 10:2844. [PMID: 34831067 PMCID: PMC8616376 DOI: 10.3390/cells10112844] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in a gene encoding a protein called Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). The CFTR protein is known to acts as a chloride (Cl-) channel expressed in the exocrine glands of several body systems where it also regulates other ion channels, including the epithelial sodium (Na+) channel (ENaC) that plays a key role in salt absorption. This function is crucial to the osmotic balance of the mucus and its viscosity. However, the pathophysiology of CF is more challenging than a mere dysregulation of epithelial ion transport, mainly resulting in impaired mucociliary clearance (MCC) with consecutive bronchiectasis and in exocrine pancreatic insufficiency. This review shows that the CFTR protein is not just a chloride channel. For a long time, research in CF has focused on abnormal Cl- and Na+ transport. Yet, the CFTR protein also regulates numerous other pathways, such as the transport of HCO3-, glutathione and thiocyanate, immune cells, and the metabolism of lipids. It influences the pH homeostasis of airway surface liquid and thus the MCC as well as innate immunity leading to chronic infection and inflammation, all of which are considered as key pathophysiological characteristics of CF.
Collapse
Affiliation(s)
- Laurence S. Hanssens
- Department of Pediatric Pulmonology and Cystic Fibrosis Clinic, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| | - Jean Duchateau
- Laboratoire Académique de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| | - Georges J. Casimir
- Department of Pediatric Pulmonology and Cystic Fibrosis Clinic, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
- Laboratoire Académique de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 15, 1020 Brussels, Belgium;
| |
Collapse
|
28
|
Cystic Fibrosis Human Organs-on-a-Chip. MICROMACHINES 2021; 12:mi12070747. [PMID: 34202364 PMCID: PMC8305167 DOI: 10.3390/mi12070747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene: the gene product responsible for transporting chloride and bicarbonate ions through the apical membrane of most epithelial cells. Major clinical features of CF include respiratory failure, pancreatic exocrine insufficiency, and intestinal disease. Many CF animal models have been generated, but some models fail to fully capture the phenotypic manifestations of human CF disease. Other models that better capture the key characteristics of the human CF phenotype are cost prohibitive or require special care to maintain. Important differences have been reported between the pathophysiology seen in human CF patients and in animal models. These limitations present significant limitations to translational research. This review outlines the study of CF using patient-derived organs-on-a-chip to overcome some of these limitations. Recently developed microfluidic-based organs-on-a-chip provide a human experimental model that allows researchers to manipulate environmental factors and mimic in vivo conditions. These chips may be scaled to support pharmaceutical studies and may also be used to study organ systems and human disease. The use of these chips in CF discovery science enables researchers to avoid the barriers inherent in animal models and promote the advancement of personalized medicine.
Collapse
|
29
|
Arora K, Yang F, Brewington J, McPhail G, Cortez AR, Sundaram N, Ramananda Y, Ogden H, Helmrath M, Clancy JP, Naren AP. Patient personalized translational tools in cystic fibrosis to transform data from bench to bed-side and back. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1123-G1130. [PMID: 33949881 PMCID: PMC8285588 DOI: 10.1152/ajpgi.00095.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis is a deadly multiorgan disorder caused by loss of function mutations in the gene that encodes for the cystic fibrosis transmembrane conductance regulator (CFTR) chloride/bicarbonate ion channel. More than 1,700 CFTR genetic variants exist that can cause CF, and majority of these are extremely rare. Because of genetic and environmental influences, CF patients exhibit large phenotypic variation. These factors make clinical trials difficult and largely impractical due to limited and heterogeneous patient pools. Also, the benefit of approved small-molecule CF modulators in a large number of rare mutation patients remains unknown. The goal of this study is to perform a comprehensive bench-side study using in vitro patient enteroids and in vivo mice implanted human intestinal organoids (HIOs) to test CF modulator-Ivacaftor response for a rare CF mutation patient. Based on the positive Ivacaftor response in the enteroids, the patient was enrolled in a (N = 1) clinical trial and showed improved clinical outcomes upon Ivacaftor treatment. HIO implantation model allowed in vivo modulator dosing and provided an elegant human organ-based demonstration of bench-to-bedside testing of modulator effects. Additionally, using the CF HIO model the role of CFTR function in the maturation of human intestine was reported for the first time. In all, we demonstrate that these models effectively serve to translate data from the lab to the clinic and back so that patient-specific therapies could be easily identified and disease-relevant developmental abnormalities in CF organs could be studied and addressed.NEW & NOTEWORTHY In this study, we report an example of laboratory models informing clinical care for rare CF mutation patient, with subsequent recapitulation of clinical benefit in a unique and disease relevant, human-derived in vivo model, effectively translating data from the lab to the clinic and back. This extensive work outlines a potential platform to identify patient-specific therapies and to understand relevant developmental abnormalities associated with CF disease.
Collapse
Affiliation(s)
- Kavisha Arora
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fanmuyi Yang
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John Brewington
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gary McPhail
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexander R. Cortez
- 3Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nambirajan Sundaram
- 3Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yashaswini Ramananda
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Herbert Ogden
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Helmrath
- 3Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John P. Clancy
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio,4Cystic Fibrosis Foundation, Bethesda, Maryland
| | - Anjaparavanda P. Naren
- 1Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
30
|
Gibson-Corley KN, Engelhardt JF. Animal Models and Their Role in Understanding the Pathophysiology of Cystic Fibrosis-Associated Gastrointestinal Lesions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:51-67. [PMID: 33497264 DOI: 10.1146/annurev-pathol-022420-105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.,Current affiliation: Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA;
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
31
|
Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021; 6:139813. [PMID: 33232302 PMCID: PMC7821608 DOI: 10.1172/jci.insight.139813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF–like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | - Hui Wang
- Department of Oncology, Karmanos Cancer Institute
| | | | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, and
| | - Youming Xie
- Department of Oncology, Karmanos Cancer Institute
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Sharon McClellan
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Hongmei Mou
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen J Wilkinson
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Research University School of Medicine, Cleveland, Ohio, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | - Linda Hazlett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | | | - Raymond A Frizzell
- Department of Pediatrics and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvnia, USA
| | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
32
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
33
|
Sharma J, Abbott J, Klaskala L, Zhao G, Birket SE, Rowe SM. A Novel G542X CFTR Rat Model of Cystic Fibrosis Is Sensitive to Nonsense Mediated Decay. Front Physiol 2020; 11:611294. [PMID: 33391025 PMCID: PMC7772197 DOI: 10.3389/fphys.2020.611294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense mutations that lead to the insertion of a premature termination codon (PTC) in the cystic fibrosis transmembrane conductance regulator (CFTR) transcript affect 11% of patients with cystic fibrosis (CF) worldwide and are associated with severe disease phenotype. While CF rat models have contributed significantly to our understanding of CF disease pathogenesis, there are currently no rat models available for studying CF nonsense mutations. Here we created and characterized the first homozygous CF rat model that bears the CFTR G542X nonsense mutation in the endogenous locus using CRISPR/Cas9 gene editing. In addition to displaying severe CF manifestations and developmental defects such as reduced growth, abnormal tooth enamel, and intestinal obstruction, CFTR G542X knockin rats demonstrated an absence of CFTR function in tracheal and intestinal sections as assessed by nasal potential difference and transepithelial short-circuit current measurements. Reduced CFTR mRNA levels in the model further suggested sensitivity to nonsense-mediated decay, a pathway elicited by the presence of PTCs that degrades the PTC-bearing transcripts and thus further diminishes the level of CFTR protein. Although functional restoration of CFTR was observed in G542X rat tracheal epithelial cells in response to single readthrough agent therapy, therapeutic efficacy was not observed in G542X knockin rats in vivo. The G542X rat model provides an invaluable tool for the identification and in vivo validation of potential therapies for CFTR nonsense mutations.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph Abbott
- Horizon Discovery Group, PLC, St. Louis, MO, United States
| | | | - Guojun Zhao
- Horizon Discovery Group, PLC, St. Louis, MO, United States
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
36
|
Transport properties in CFTR-/- knockout piglets suggest normal airway surface liquid pH and enhanced amiloride-sensitive Na + absorption. Pflugers Arch 2020; 472:1507-1519. [PMID: 32712714 PMCID: PMC7476968 DOI: 10.1007/s00424-020-02440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Previous analysis of CFTR-knockout (CFTR-/-) in piglets has provided important insights into the pathology of cystic fibrosis. However, controversies exist as to the true contribution of CFTR to the pH balance in airways and intestine. We therefore compared ion transport properties in newborn wild-type (CFTR+/+) and CFTR-knockout (CFTR-/- piglets). Tracheas of CFTR-/- piglets demonstrated typical cartilage malformations and muscle cell bundles. CFTR-/- airway epithelial cells showed enhanced lipid peroxidation, suggesting inflammation early in life. CFTR was mainly expressed in airway submucosal glands and was absent in lungs of CFTR-/- piglets, while expression of TMEM16A was uncompromised. mRNA levels for TMEM16A, TMEM16F, and αβγENaC were unchanged in CFTR-/- airways, while mRNA for SLC26A9 appeared reduced. CFTR was undetectable in epithelial cells of CFTR-/- airways and intestine. Small intestinal epithelium of CFTR-/- piglets showed mucus accumulation. Secretion of both electrolytes and mucus was activated by stimulation with prostaglandin E2 and ATP in the intestine of CFTR+/+, but not of CFTR-/- animals. pH was measured inside small bronchi using a pH microelectrode and revealed no difference between CFTR+/+ and CFTR-/- piglets. Intracellular pH in porcine airway epithelial cells revealed only a small contribution of CFTR to bicarbonate secretion, which was absent in cells from CFTR-/- piglets. In contrast to earlier reports, our data suggest a minor impact of CFTR on ASL pH. In contrast, enhanced amiloride-sensitive Na+ absorption may contribute to lung pathology in CFTR-/- piglets, along with a compromised CFTR- and TMEM16A-dependent Cl- transport.
Collapse
|
37
|
What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int J Mol Sci 2020; 21:ijms21093133. [PMID: 32365523 PMCID: PMC7246864 DOI: 10.3390/ijms21093133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.
Collapse
|
38
|
Margaroli C, Garratt LW, Horati H, Dittrich AS, Rosenow T, Montgomery ST, Frey DL, Brown MR, Schultz C, Guglani L, Kicic A, Peng L, Scholte BJ, Mall MA, Janssens HM, Stick SM, Tirouvanziam R. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2020; 199:873-881. [PMID: 30281324 DOI: 10.1164/rccm.201803-0442oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Neutrophils are recruited to the airways of individuals with cystic fibrosis (CF). In adolescents and adults with CF, airway neutrophils actively exocytose the primary granule protease elastase (NE), whose extracellular activity correlates with lung damage. During childhood, free extracellular NE activity is measurable only in a subset of patients, and the exocytic function of airway neutrophils is unknown. OBJECTIVES To measure NE exocytosis by airway neutrophils in relation to free extracellular NE activity and lung damage in children with CF. METHODS We measured lung damage using chest computed tomography coupled with the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis scoring system. Concomitantly, we phenotyped blood and BAL fluid leukocytes by flow and image cytometry, and measured free extracellular NE activity using spectrophotometric and Förster resonance energy transfer assays. Children with airway inflammation linked to aerodigestive disorder were enrolled as control subjects. MEASUREMENTS AND MAIN RESULTS Children with CF but not disease control children harbored BAL fluid neutrophils with high exocytosis of primary granules, before the detection of bronchiectasis. This measure of NE exocytosis correlated with lung damage (R = 0.55; P = 0.0008), whereas the molecular measure of free extracellular NE activity did not. This discrepancy may be caused by the inhibition of extracellular NE by BAL fluid antiproteases and its binding to leukocytes. CONCLUSIONS NE exocytosis by airway neutrophils occurs in all children with CF, and its cellular measure correlates with early lung damage. These findings implicate live airway neutrophils in early CF pathogenesis, which should instruct biomarker development and antiinflammatory therapy in children with CF.
Collapse
Affiliation(s)
- Camilla Margaroli
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - Hamed Horati
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - A Susanne Dittrich
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and.,6 Department of Pulmonology, and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | | | | | - Dario L Frey
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and
| | - Milton R Brown
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Carsten Schultz
- 7 Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Lokesh Guglani
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Anthony Kicic
- 3 Telethon Kids Institute, Perth, Australia.,8 Department of Respiratory Medicine, Perth Children's Hospital, Perth, Western Australia, Australia.,9 Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Limin Peng
- 10 Department of Biostatistics, Emory University School of Public Health, Atlanta, Georgia
| | - Bob J Scholte
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Marcus A Mall
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and.,11 Berlin Institute of Health, Berlin, Germany; and.,12 Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Hettie M Janssens
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Stephen M Stick
- 3 Telethon Kids Institute, Perth, Australia.,8 Department of Respiratory Medicine, Perth Children's Hospital, Perth, Western Australia, Australia.,9 Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Rabindra Tirouvanziam
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
39
|
Jung JA. Cystic fibrosis lung disease: Current perspectives. ALLERGY ASTHMA & RESPIRATORY DISEASE 2020. [DOI: 10.4168/aard.2020.8.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jin-A Jung
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
40
|
Matusovsky OS, Kachmar L, Ijpma G, Panariti A, Benedetti A, Martin JG, Lauzon AM. Contractile Properties of Intrapulmonary Airway Smooth Muscle in Cystic Fibrosis. Am J Respir Cell Mol Biol 2019; 60:434-444. [PMID: 30359078 DOI: 10.1165/rcmb.2018-0005oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in β-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced β-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Linda Kachmar
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Gijs Ijpma
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Alice Panariti
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center
| | - Andrea Benedetti
- 2 Department of Medicine, and.,3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; and.,4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montréal, Québec, Canada
| | - James G Martin
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| | - Anne-Marie Lauzon
- 1 Meakins-Christie Laboratories, Research Institute of the McGill University Health Center.,2 Department of Medicine, and
| |
Collapse
|
41
|
Braux J, Jourdain ML, Guillaume C, Untereiner V, Piot O, Baehr A, Klymiuk N, Winter N, Berri M, Buzoni-Gatel D, Caballero I, Guillon A, Si-Tahar M, Jacquot J, Velard F. CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. J Cyst Fibros 2019; 19:466-475. [PMID: 31787573 DOI: 10.1016/j.jcf.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR -/- pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract. METHODS We compared bone parameters of CFTR -/- male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (μCT), and their chemical compositions were examined using Raman microspectroscopy. RESULTS The integrity of the CFTR -/- bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR -/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR -/- trabecular bone, but not in CFTR -/- cortical bone. CONCLUSIONS The loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.
Collapse
Affiliation(s)
- Julien Braux
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Marie-Laure Jourdain
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Christine Guillaume
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Valérie Untereiner
- Université de Reims Champagne Ardenne (URCA), PICT Platform, Reims, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT (Translational BioSpectroscopy) EA 7506, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nathalie Winter
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Mustapha Berri
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | | | - Ignaccio Caballero
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Antoine Guillon
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Mustapha Si-Tahar
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Jacky Jacquot
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| | - Frédéric Velard
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| |
Collapse
|
42
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Ferkol TW. Prevention of cystic fibrosis: The beginning of the end? Sci Transl Med 2019; 11:eaax2361. [PMID: 30918110 DOI: 10.1126/scitranslmed.aax2361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023]
Abstract
Prenatal and postnatal treatment with a CFTR modifier attenuates pathological changes in a ferret model of cystic fibrosis (Sun et al., this issue).
Collapse
Affiliation(s)
- Thomas W Ferkol
- Department of Pediatrics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
45
|
Prince LS. FGF10 and Human Lung Disease Across the Life Spectrum. Front Genet 2018; 9:517. [PMID: 30429870 PMCID: PMC6220039 DOI: 10.3389/fgene.2018.00517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/12/2018] [Indexed: 02/01/2023] Open
Abstract
Lung diseases impact patients across the lifespan, from infants in the first minutes of life through the aged population. Congenital abnormalities of lung structure can cause lung disease at birth or make adults more susceptible to chronic disease. Continuous inhalation of atmospheric components also requires the lung to be resilient to cellular injury. Fibroblast growth factor 10 (FGF10) regulates multiple stages of structural lung morphogenesis, cellular differentiation, and the response to injury. As a driver of lung airway branching morphogenesis, FGF10 signaling defects during development lead to neonatal lung disease. Alternatively, congenital airway abnormalities attributed to FGF10 mutations increase the risk of chronic airway disease in adulthood. FGF10 also maintains progenitor cell populations in the airway and promotes alveolar type 2 cell expansion and differentiation following injury. Here we review the cellular and molecular mechanisms linking FGF10 to multiple lung diseases, from bronchopulmonary dysplasia in extremely preterm neonates, cystic fibrosis in children, and chronic adult lung disorders. Understanding the connections between FGF10 and lung diseases may lead to exciting new therapeutic strategies.
Collapse
Affiliation(s)
- Lawrence S. Prince
- Department of Pediatrics, University of California, San Diego, Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
46
|
Meyerholz DK, Beck AP, Goeken JA, Leidinger MR, Ofori-Amanfo GK, Brown HC, Businga TR, Stoltz DA, Reznikov LR, Flaherty HA. Glycogen depletion can increase the specificity of mucin detection in airway tissues. BMC Res Notes 2018; 11:763. [PMID: 30359291 PMCID: PMC6203197 DOI: 10.1186/s13104-018-3855-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Objective Mucin is an important parameter for detection and assessment in studies of airway disease including asthma and cystic fibrosis. Histochemical techniques are often used to evaluate mucin in tissues sections. Periodic acid Schiff (PAS) is a common technique to detect neutral mucins in tissue, but this technique also detects other tissue components including cellular glycogen. We tested whether depletion of glycogen, a common cellular constituent, could impact the detection of mucin in the surface epithelium of the trachea. Results Normal tissues stained by PAS had significantly more staining than serial sections of glycogen-depleted tissue with PAS staining (i.e. dPAS technique) based on both quantitative analysis and semiquantitative scores. Most of the excess stain by the PAS technique was detected in ciliated cells adjacent to goblet cells. We also compared normal tissues using the Alcian blue technique, which does not have reported glycogen staining, with the dPAS technique. These groups had similar amounts of staining consistent with a high degree of mucin specificity. Our results suggest that when using PAS techniques to stain airways, the dPAS approach is preferred as it enhances the specificity for airway mucin.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Adam Goeken
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Mariah R Leidinger
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Georgina K Ofori-Amanfo
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hannah C Brown
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Thomas R Businga
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Heather A Flaherty
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
47
|
Principles and approaches for reproducible scoring of tissue stains in research. J Transl Med 2018; 98:844-855. [PMID: 29849125 DOI: 10.1038/s41374-018-0057-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023] Open
Abstract
Evaluation of tissues is a common and important aspect of translational research studies. Labeling techniques such as immunohistochemistry can stain cells/tissues to enhance identification of specific cell types, cellular activation states, and protein expression. While qualitative evaluation of labeled tissues has merit, use of semiquantitative and quantitative scoring approaches can greatly enhance the rigor of the tissue data. Adhering to key principles for reproducible scoring can enhance the quality and reproducibility of the tissue data so as to maximize its biological relevance and scientific impact.
Collapse
|
48
|
White KA, Swier VJ, Cain JT, Kohlmeyer JL, Meyerholz DK, Tanas MR, Uthoff J, Hammond E, Li H, Rohret FA, Goeken A, Chan CH, Leidinger MR, Umesalma S, Wallace MR, Dodd RD, Panzer K, Tang AH, Darbro BW, Moutal A, Cai S, Li W, Bellampalli SS, Khanna R, Rogers CS, Sieren JC, Quelle DE, Weimer JM. A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight 2018; 3:120402. [PMID: 29925695 DOI: 10.1172/jci.insight.120402] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.
Collapse
Affiliation(s)
- Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | | | | | | | - Johanna Uthoff
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA
| | - Emily Hammond
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA
| | - Hua Li
- Department of Molecular Genetics and Microbiology and.,University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | | | | | - Chun-Hung Chan
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | | | | | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology and.,University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Karin Panzer
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Song Cai
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Wennan Li
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | | - Jessica C Sieren
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Dawn E Quelle
- Molecular Medicine Program.,Department of Pathology, and.,Department of Pharmacology and.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
49
|
Meyerholz DK, Stoltz DA, Gansemer ND, Ernst SE, Cook DP, Strub MD, LeClair EN, Barker CK, Adam RJ, Leidinger MR, Gibson-Corley KN, Karp PH, Welsh MJ, McCray PB. Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. J Transl Med 2018; 98:825-838. [PMID: 29467455 PMCID: PMC6019641 DOI: 10.1038/s41374-018-0026-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 11/15/2022] Open
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nick D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah E Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel P Cook
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew D Strub
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erica N LeClair
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Carrie K Barker
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan J Adam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|