1
|
Yamamoto A, Sly PD, Khachatryan L, Begum N, Yeo AJ, Robinson PD, Cormier SA, Fantino E. Astaxanthin protects against environmentally persistent free radical-induced oxidative stress in well-differentiated respiratory epithelium. Redox Biol 2025; 81:103542. [PMID: 39952200 PMCID: PMC11875192 DOI: 10.1016/j.redox.2025.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Environmentally persistent free radicals (EPFRs) are combustion products present in substantial numbers on atmospheric particulate matter with half-lives of days to years. The mechanisms linking EPFR exposure and respiratory diseases are unclear, but likely involve oxidative stress. We investigated the mechanisms by which EPFR exposure impact on well-differentiated primary human nasal epithelial cells from subjects sensitive or resistant to oxidant stressors, cultured at an air-liquid interface. We found that EPFR exposure induced mitochondrial reactive oxygen species (mtROS) production; increased mitochondrial DNA copy number; down-regulated mucus production gene, Mucin-5AC (MUC5AC); up-regulated detoxifying gene, cytochrome P450 1A1 (CYP1A1), nuclear factor erythroid 2-related factor 2 (NRF2)-regulated antioxidant pathways including Sirtuin 1 (SIRT1)-Forkhead box O3 (FOXO3), mitophagy, PTEN-induced kinase 1 (PINK1), apoptosis, cyclin-dependent kinase inhibitor p21 (p21), and inflammation, C-C motif chemokine ligand 5 (CCL5). These results indicate that the well-differentiated respiratory epithelium can respond and activate redox reactions when exposed to sublethal concentrations of EPFRs. Increased susceptibility to EPFR exposure is conferred by failure to upregulate the mucin gene, MUC5AC, expression. Pre-treatment with astaxanthin prevented most of the negative impacts caused by EPFRs. Our results demonstrate that EPFRs can induce oxidative stress and cause damage to respiratory epithelium. A dietary antioxidant, astaxanthin, protected cells from EPFR-induced oxidant stress.
Collapse
Affiliation(s)
- Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia.
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Nelufa Begum
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - Abrey J Yeo
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia; Centre for Clinical Research, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Paul D Robinson
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - Stephania A Cormier
- Department of Biological Sciences, and Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia
| |
Collapse
|
2
|
Künstle N, Gorlanova O, Rüttimann C, Mostacci N, Röösli M, de Hoogh K, Flückiger B, Da Silva Sena CR, Steinberg R, Korten I, Yammine S, Schulzke S, Latzin P, Hilty M, Frey U. The association of increased pre- and postnatal NO 2 and PM 2.5 exposure with the infant nasal microbiome composition and respiratory symptoms. ENVIRONMENTAL RESEARCH 2025; 267:120694. [PMID: 39725140 DOI: 10.1016/j.envres.2024.120694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Little is known about the mediating role of nasal microbiome on the association between pre- and postnatal air pollution exposure and subsequent respiratory morbidity in infancy. We aimed to examine the impact of air pollution on microbiome and respiratory symptoms, and whether microbiome mediates the association between air pollution and symptoms. METHODS Nasal swabs from 270 infants in the prospective Basel-Bern Infant Lung Development cohort were analyzed by 16S ribosomal RNA gene sequencing. We investigated the association of pre- and postnatal nitrogen dioxide (NO2) and particulate matter ≤2.5 μm (PM2.5) with microbiome at 4-6 weeks and with respiratory symptoms during the first year of life. Hierarchical clustering and generalized structural equation modeling were used. RESULTS Mean prenatal air pollution levels were 21.54 μg/m3 (NO2) and 13.84 μg/m3 (PM2.5) (WHO guideline limits: NO2: 40 μg/m3 (2005), 10 μg/m3 (2021); PM2.5: 10 μg/m3 (2005), 5 μg/m3 (2021)). We identified two distinct microbiome clusters, characterized by high Corynebacterium/Dolosigranulum and high Staphylococcus abundance. Higher pre- and postnatal air pollution exposure was associated with Staphylococcus cluster (e.g., per 10 μg/m3 increase of prenatal NO2: odds ratio 1.58, 95% confidence interval 1.08; 2.29, padj = 0.034). Pre- and postnatal PM2.5 was associated with increased risk of severe respiratory symptoms. This association was not mediated by nasal microbiome. CONCLUSION Pre- and postnatal air pollution was associated with microbiome and respiratory symptoms in infancy. The microbiome did not mediate the association of air pollution with respiratory symptoms, which may indicate that other mechanisms are more relevant at this age.
Collapse
Affiliation(s)
- Noëmi Künstle
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Céline Rüttimann
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Carla Rebeca Da Silva Sena
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Asthma & Breathing Research Program, Hunter Medical Research Institute, Newcastle, University of Newcastle, Newcastle, Australia
| | - Ruth Steinberg
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Short M, Dobson J, Day G, Lefferts B, Singleton R, Keck J. "You can feel the fresh air … " Rural Alaska Native household perceptions of home air purifiers and health. Int J Circumpolar Health 2024; 83:2335702. [PMID: 38546171 PMCID: PMC10984226 DOI: 10.1080/22423982.2024.2335702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Alaska Native and American Indian children experience frequent respiratory illness. Indoor air quality is associated with the severity and frequency of respiratory infections in children. High efficiency particulate air (HEPA) purifiers effectively improve indoor air quality and may protect respiratory health. In 2019, the Yukon-Kuskokwim Health Corporation implemented a pilot programme that provided education and HEPA purifiers to households of children with chronic lung conditions. The team evaluated HEPA purifier acceptability and use by interviewing representatives from 11 households that participated in the pilot programme. All interviewees reported improvement in their child's health, and some believed that the health of other household members was also improved because of the HEPA purifier. Interviewees reported that the HEPA purifiers were easy to use, quiet, and not expensive to run. Five of 11 households were still using the HEPA purifier at the time of the interview, which was about three years after receipt of the unit. The most common reasons for discontinuing use were equipment failure and lack of replacement filter, suggesting that programme support could increase sustainability. Our evaluation suggests that HEPA purifiers are acceptable and feasible for use in rural Alaska Native households.
Collapse
Affiliation(s)
- Madilyn Short
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Jennifer Dobson
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
- Office of Environmental Health and Engineering, Yukon-Kuskokwim Health Corporation, Bethel, AK, USA
| | - Gretchen Day
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Brian Lefferts
- Office of Environmental Health and Engineering, Yukon-Kuskokwim Health Corporation, Bethel, AK, USA
| | - Rosalyn Singleton
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - James Keck
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| |
Collapse
|
4
|
Gorlanova O, Rüttimann C, Soti A, de Hoogh K, Vienneau D, Künstle N, Da Silva Sena CR, Steinberg R, Bovermann X, Schulzke S, Latzin P, Röösli M, Frey U, Müller L. TOLLIP and MUC5B modulate the effect of ambient NO 2 on respiratory symptoms in infancy. CHEMOSPHERE 2024; 363:142837. [PMID: 39009092 DOI: 10.1016/j.chemosphere.2024.142837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Current knowledge suggests that the gene region containing MUC5B and TOLLIP plays a role in airway defence and airway inflammation, and hence respiratory disease. It is also known that exposure to air pollution increases susceptibility to respiratory disease. We aimed to study whether the effect of air pollutants on the immune response and respiratory symptoms in infants may be modified by polymorphisms in MUC5B and TOLLIP genes. METHODS 359 healthy term infants from the prospective Basel-Bern Infant Lung Development (BILD) birth cohort were included in the study. The main outcome was the score of weekly assessed respiratory symptoms in the first year of life. Using the candidate gene approach, we selected 10 single nucleotide polymorphisms (SNPs) from the MUC5B and TOLLIP regions. Nitrogen dioxide (NO2) and particulate matter ≤10 μm in aerodynamic diameter (PM10) exposure was estimated on a weekly basis. We used generalised additive mixed models adjusted for known covariates. To validate our results in vitro, cells from a lung epithelial cell line were downregulated in TOLLIP expression and exposed to diesel particulate matter (DPM) and polyinosinic-polycytidylic acid. RESULTS Significant interaction was observed between modelled air pollution (weekly NO2 exposure) and 5 SNPs within MUC5B and TOLLIP genes regarding respiratory symptoms as outcome: E.g., infants carrying minor alleles of rs5744034, rs3793965 and rs3750920 (all TOLLIP) had an increased risk of respiratory symptoms with increasing NO2 exposure. In vitro experiments showed that cells downregulated for TOLLIP react differently to environmental pollutant exposure with DPM and viral stimulation. CONCLUSION Our findings suggest that the effect of air pollution on respiratory symptoms in infancy may be influenced by the genotype of specific SNPs from the MUC5B and TOLLIP regions. For validation of the findings, we provided in vitro evidence for the interaction of TOLLIP with air pollution.
Collapse
Affiliation(s)
- Olga Gorlanova
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Céline Rüttimann
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andras Soti
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Youth Medicine, Clinic Donaustadt, Vienna, Austria
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute Basel, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute Basel, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Noëmi Künstle
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carla Rebeca Da Silva Sena
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Priority Research Centre GrowUpWell® and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Ruth Steinberg
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xenia Bovermann
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute Basel, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Loretta Müller
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Lung Precision Medicine, Department for BioMedical Research (DBMR), University of Bern, Switzerland
| |
Collapse
|
5
|
Cowan K, Semmens EO, Lee JY, Walker ES, Smith PG, Fu L, Singleton R, Cox SM, Faiella J, Chassereau L, Lawrence L, Ying J, Baldner J, Garza M, Annett R, Chervinskiy SK, Snowden J. Bronchiolitis recovery and the use of High Efficiency Particulate Air (HEPA) Filters (The BREATHE Study): study protocol for a multi-center, parallel, double-blind, randomized controlled clinical trial. Trials 2024; 25:197. [PMID: 38504367 PMCID: PMC10953277 DOI: 10.1186/s13063-024-08012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION NCT05615870. Registered on November 14, 2022.
Collapse
Affiliation(s)
- Kelly Cowan
- Department of Pediatrics, Larner College of Medicine at the University of Vermont, 111 Colchester Ave, Smith 5, Burlington, VT, 05403, USA.
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jeannette Y Lee
- University of Arkansas for Medical Sciences, 4301 West Markham, #781, Little Rock, AR, 72205, USA
| | - Ethan S Walker
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Paul G Smith
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Linda Fu
- National Institutes of Health Environmental Influences On Child, Health Outcomes (ECHO) Program, 11601, Landsdown Street, Rockville, MD, 20852, USA
| | - Rosalyn Singleton
- Alaska Native Tribal Health Consortium, AIP-CDC, 4055 Tudor Centre Drive, Anchorage, AK, 99508, USA
| | - Sara McClure Cox
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jennifer Faiella
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Laurie Chassereau
- University of Vermont, Given C421, 89 Beaumont Ave, Burlington, VT, 05405, USA
| | - Lora Lawrence
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| | - Jun Ying
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop F496, Academic Office One L15-3407, 12631 E 17th Avenue, Aurora, CO, 80045, USA
| | - Jaime Baldner
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Maryam Garza
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Robert Annett
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Sheva K Chervinskiy
- Cook Children's Department of Immunology, 1500 Cooper St, Fort Worth, TX, 76104, USA
| | - Jessica Snowden
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| |
Collapse
|
6
|
Salem Y, Jakob J, Steinberg R, Gorlanova O, Fuchs O, Müller L, Usemann J, Frey U, Latzin P, Yammine S. Cohort Profile Update: The Bern Basel Infant Lung Development Cohort. Int J Epidemiol 2024; 53:dyad164. [PMID: 38061036 DOI: 10.1093/ije/dyad164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Affiliation(s)
- Yasmin Salem
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Ruth Steinberg
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Oliver Fuchs
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Allergology, Department of Medicine, Lucerne Cantonal Hospital and University of Lucerne, Lucerne, Switzerland
| | - Loretta Müller
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Rüttimann C, Nissen-Kratzert A, Mostacci N, Künstle N, Marten A, Gisler A, Bacher K, Yammine S, Steinberg R, Schulzke S, Röösli M, Latzin P, Hilty M, Frey U, Gorlanova O. Antibiotics in pregnancy influence nasal microbiome and respiratory morbidity in infancy. ERJ Open Res 2023; 9:00225-2023. [PMID: 37650088 PMCID: PMC10463034 DOI: 10.1183/23120541.00225-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 09/01/2023] Open
Abstract
Background The effects of prenatal antibiotic exposure on respiratory morbidity in infancy and the involved mechanisms are still poorly understood. We aimed to examine whether prenatal antibiotic exposure in the third trimester is associated with nasal microbiome and respiratory morbidity in infancy and at school age, and whether this association with respiratory morbidity is mediated by the nasal microbiome. Methods We performed 16S ribosomal RNA gene sequencing (regions V3-V4) on nasal swabs obtained from 296 healthy term infants from the prospective Basel-Bern birth cohort (BILD) at age 4-6 weeks. Information about antibiotic exposure was derived from birth records and standardised interviews. Respiratory symptoms were assessed by weekly telephone interviews in the first year of life and a clinical visit at age 6 years. Structural equation modelling was used to test direct and indirect associations accounting for known risk factors. Results α-Diversity indices were lower in infants with antibiotic exposure compared to nonexposed infants (e.g. Shannon index p-value 0.006). Prenatal antibiotic exposure was also associated with a higher risk of any, as well as severe, respiratory symptoms in the first year of life (risk ratio 1.38, 95% CI 1.03-1.84; adjusted p-value (padj)=0.032 and risk ratio 1.75, 95% CI 1.02-2.97; padj=0.041, respectively), but not with wheeze or atopy in childhood. However, we found no indirect mediating effect of nasal microbiome explaining these clinical symptoms. Conclusion Prenatal antibiotic exposure was associated with lower diversity of nasal microbiome in infancy and, independently of microbiome, with respiratory morbidity in infancy, but not with symptoms later in life.
Collapse
Affiliation(s)
- Céline Rüttimann
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annika Nissen-Kratzert
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Noëmi Künstle
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Marten
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amanda Gisler
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katharina Bacher
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ruth Steinberg
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland and University of Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Shared senior authorship
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Shared senior authorship
| |
Collapse
|
8
|
Gisler A, Eeftens M, de Hoogh K, Vienneau D, Salem Y, Yammine S, Jakob J, Gorlanova O, Decrue F, Gehrig R, Frey U, Latzin P, Fuchs O, Usemann J, Decrue F, Frey U, Fuchs O, Gisler A, Gorlanova O, Kentgens A, Korten I, Kurz J, Latzin P, Nissen A, Oestreich M, Röösli M, Salem Y, Usemann J, Vienneau D. Pollen exposure is associated with risk of respiratory symptoms during the first year of life. Allergy 2022; 77:3606-3616. [PMID: 35302662 PMCID: PMC10078730 DOI: 10.1111/all.15284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-value 0.003). CONCLUSION Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Primary Health Care (BIHAM), Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Regula Gehrig
- Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sly PD, Trottier B, Ikeda-Araki A, Vilcins D. Environmental Impacts on Infectious Disease: A Literature View of Epidemiological Evidence. Ann Glob Health 2022; 88:91. [PMID: 36348708 PMCID: PMC9585978 DOI: 10.5334/aogh.3670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 01/09/2023] Open
Abstract
Background This article summarises a session from the recent Pacific Basin Consortium for Environment and Health Focus meeting on Environmental Impacts on Infectious Disease. Objective To provide an overview of the literature underpinning the presentations from this session. Methods References used in developing the presentations were obtained from the presenters. Additional references were obtained from PubMed using key words from the presentations. Findings and Conclusions The Hokkaido longitudinal children's study has found that exposure to chemicals in early life, such as persistent organic pollutants and per/polyfluorinated compounds, is associated with a range of immunological outcomes such as decreased cord blood IgE, otitis media, wheeze, increased risk of infections and higher risk of food allergy.Epidemiological evidence links exposure to poor air quality to increased severity and mortality of Covid-19 in many parts of the world. Most studies suggest that long-term exposure has a more marked effect than acute exposure.Components of air pollution, such as a newly described combustion product known as environmentally persistent free radicals, induce oxidative stress in exposed individuals. Individuals with genetic variations predisposing them to oxidative stress are at increased risk of adverse health effects from poor air quality.
Collapse
Affiliation(s)
- Peter D. Sly
- Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Brittany Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences, USA
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, JP; Center for Environmental and Health Sciences, Hokkaido University, Japan
| | - Dwan Vilcins
- Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| |
Collapse
|
10
|
Cormier SA, Yamamoto A, Short KR, Vu L, Suk WA. Environmental Impacts on COVID-19: Mechanisms of Increased Susceptibility. Ann Glob Health 2022; 88:94. [PMID: 36348703 PMCID: PMC9585976 DOI: 10.5334/aogh.3907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in >554M cases and >6.3M deaths worldwide. The disease caused by SARS-CoV-2, COVID-19, has resulted in a broad range of clinical symptoms differing in severity. Initially, the elderly were identified as particularly susceptible to severe COVID-19, with children experiencing less severe disease. However, as new variants arise, the epidemiology of SARS-CoV-2 infection is changing, and the disease severity in children is increasing. While environmental impacts on COVID-19 have been described, the underlying mechanisms are poorly described. Objective The Pacific Basin Consortium for Environment and Health (PBC) held meeting on September 16, 2021, to explore environmental impacts on infectious diseases, including COVID-19. Methods The PBC is an international group of environmental scientists and those interested in health outcomes. The PBC met to present preliminary data and discuss the role of exposures to airborne pollutants in enhancing susceptibility to and severity of respiratory tract viral infections, including COVID-19. Findings Analysis of the literature and data presented identified age as an important factor in vulnerability to air pollution and enhanced COVID-19 susceptibility and severity. Mechanisms involved in increasing severity of COVID-19 were discussed, and gaps in knowledge were identified. Conclusions Exposure to particulate matter (PM) pollution enhanced morbidity and mortality to COVID-19 in a pediatric population associated with induction of oxidative stress. In addition, free radicals present on PM can induce rapid changes in the viral genome that can lead to vaccine escape, altered host susceptibility, and viral pathogenicity. Nutritional antioxidant supplements have been shown to reduce the severity of viral infections, inhibit the inflammatory cytokine storm, and boost host immunity and may be of benefit in combating COVID-19.
Collapse
Affiliation(s)
- Stephania A. Cormier
- Louisiana State University, Department of Biological Sciences, and Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ayaho Yamamoto
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Kirsty R. Short
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, Australia
| | - Luan Vu
- Louisiana State University, Department of Biological Sciences, and Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - William A. Suk
- National Institute of Environmental Health Sciences, Superfund Research Program, 530 Davis Drive, Durham, NC, USA
| |
Collapse
|
11
|
Pan J, Zhan C, Yuan T, Sun Y, Wang W, Chen L. Impact of the COVID-19 pandemic on infectious disease hospitalizations of neonates at a tertiary academic hospital: a cross-sectional study. BMC Infect Dis 2022; 22:206. [PMID: 35236317 PMCID: PMC8889870 DOI: 10.1186/s12879-022-07211-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/25/2022] [Indexed: 01/10/2023] Open
Abstract
Background To investigate the impact of the coronavirus disease 2019 (COVID-19) pandemic on hospitalizations for neonatal infectious diseases. Methods We analyzed data for neonatal inpatients admitted at a tertiary academic hospital with a principal diagnosis of an infectious disease during January 2015 to December 2020. We compared hospitalizations in 2020 (COVID-19 cohort), corresponding with the impact of COVID-19 pandemic and associated containment measures, and the comparable 2015 to 2019 (pre-COVID-19 cohort). Results 14,468 cases admitted for neonatal infectious diseases were included in our study, with 1201 cases in the COVID-19 cohort and 13,267 cases in the pre-COVID-19 cohort. The leading causes of hospitalizations for neonatal infectious diseases remain being respiratory tract infections (median ratio = 0.461, 95% CI 0.335–0.551), sepsis (median ratio = 0.292, 95% CI 0.263–0.361), gastric intestinal infections (median ratio = 0.095, 95% CI 0.078–0.118) and dermatologic infections (median ratio = 0.058, 95% CI 0.047–0.083). The seasonality of neonatal infectious disease hospitalizations could be obviously observed, with the total number and the overall rate of hospitalizations for neonatal infectious diseases in the first and fourth quarters greater than that of hospitalizations for neonatal infectious diseases in the second and third quarters in each year (1362.67 ± 360.54 vs 1048.67 ± 279.23, P = 0.001; 8176/20020 vs 6292/19369, P < 0.001, respectively). Both the numbers and the proportions of hospitalizations for neonatal infectious diseases in different quarters of the COVID-19 cohort significantly decreased as compared with those forecasted with the data from the pre-COVID-19 cohort: the numbers per quarter (300.25 ± 57.33 vs 546.64 ± 100.43, P-value = 0.006), the first quarter (0.34 vs 0.40, P = 0.002), the second quarter (0.24 vs 0.30, P = 0.001), the third quarter (0.24 vs 0.28, P = 0.024), and the fourth quarter (0.29 vs 0.35, P = 0.003). Conclusions Despite the outbreak of the COVID-19 pandemic, the leading causes of hospitalizations for neonatal infectious diseases remain unchanged. The seasonality of neonatal infectious disease hospitalizations could be obviously observed. The numbers as well as the overall rates of hospitalizations for neonatal infectious diseases in the COVID-19 cohort dramatically declined with the impact of the COVID-19 pandemic and its mitigation measures. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07211-x.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Canyang Zhan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Tianming Yuan
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China.
| | - Yi Sun
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Weiyan Wang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Lihua Chen
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Decrue F, Gorlanova O, Salem Y, Vienneau D, de Hoogh K, Gisler A, Usemann J, Korten I, Nahum U, Sinues P, Schulzke S, Fuchs O, Latzin P, Röösli M, Frey U. Increased Impact of Air Pollution on Lung Function in Preterm versus Term Infants: The BILD Study. Am J Respir Crit Care Med 2022; 205:99-107. [PMID: 34587471 DOI: 10.1164/rccm.202102-0272oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Infants born prematurely have impaired capacity to deal with oxidative stress shortly after birth. Objectives: We hypothesize that the relative impact of exposure to air pollution on lung function is higher in preterm than in term infants. Methods: In the prospective BILD (Basel-Bern Infant Lung Development) birth cohort of 254 preterm and 517 term infants, we investigated associations of particulate matter ⩽10 μm in aerodynamic diameter (PM10) and nitrogen dioxide with lung function at 44 weeks' postconceptional age and exhaled markers of inflammation and oxidative stress response (fractional exhaled nitric oxide [FeNO]) in an explorative hypothesis-driven study design. Multilevel mixed-effects models were used and adjusted for known confounders. Measurements and Main Results: Significant associations of PM10 during the second trimester of pregnancy with lung function and FeNO were found in term and preterm infants. Importantly, we observed stronger positive associations in preterm infants (born 32-36 wk), with an increase of 184.9 (95% confidence interval [CI], 79.1-290.7) ml/min [Formula: see text]e per 10-μg/m3 increase in PM10, than in term infants (75.3; 95% CI, 19.7-130.8 ml/min) (pprematurity × PM10 interaction = 0.04, after multiple comparison adjustment padj = 0.09). Associations of PM10 and FeNO differed between moderate to late preterm (3.4; 95% CI, -0.1 to 6.8 ppb) and term (-0.3; 95% CI, -1.5 to 0.9 ppb) infants, and the interaction with prematurity was significant (pprematurity × PM10 interaction = 0.006, padj = 0.036). Conclusions: Preterm infants showed significantly higher susceptibility even to low to moderate prenatal air pollution exposure than term infants, leading to increased impairment of postnatal lung function. FeNO results further elucidate differences in inflammatory/oxidative stress response when comparing preterm infants with term infants.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Danielle Vienneau
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | - Kees de Hoogh
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | | | - Jakob Usemann
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zürich, Zürich, Switzerland; and
| | - Insa Korten
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uri Nahum
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel UKBB.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Oliver Fuchs
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Röösli
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB.,Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
13
|
Sly PD, Vilcins D. Climate impacts on air quality and child health and wellbeing: Implications for Oceania. J Paediatr Child Health 2021; 57:1805-1810. [PMID: 34792251 DOI: 10.1111/jpc.15650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Despite the enormous gains in reducing child mortality resulting from the United Nations Millennium Development Goals, in some ways children's future wellbeing has never been under greater threat. Climate and environmental change, primarily driven by poor air quality, represents a major threat to child health and wellbeing, through both direct and indirect effects. Climate change has multiple environmental consequences impacting negatively on child health and wellbeing, including increases in ambient temperature, rising atmospheric carbon dioxide (CO2) , altered distribution of rainfall, ocean warming, rising sea level and more frequent and severe adverse weather events. Multiple pathways link these exposures to a wide variety of adverse health outcomes. Countries in Oceania are especially likely to be subjected to the effects of increases in ambient temperature, altered distribution of rainfall, ocean warming and sea level rise. These changes pose a significant risk to children and provide a moral imperative for us to act to protect child health.
Collapse
Affiliation(s)
- Peter D Sly
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Dwan Vilcins
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, Gorlanova O, Soti A, Hilty M, Latzin P, Usemann J. Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. ENVIRONMENTAL RESEARCH 2021; 202:111633. [PMID: 34256075 DOI: 10.1016/j.envres.2021.111633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Air pollution and greenness are associated with short- and long-term respiratory health in children but the underlying mechanisms are only scarcely investigated. The nasal microbiota during the first year of life has been shown to be associated with respiratory tract infections and asthma development. Thus, an interplay between greenness, air pollution and the early nasal microbiota may contribute to short- and long-term respiratory health. We aimed to examine associations between fine particulate matter (PM2.5), nitrogen dioxide (NO2) and greenness with the nasal microbiota of healthy infants during the first year of life in a European context with low-to-moderate air pollution levels. METHODS Microbiota characterization was performed using 16 S rRNA pyrosequencing of 846 nasal swabs collected fortnightly from 47 healthy infants of the prospective Basel-Bern Infant Lung Development (BILD) cohort. We investigated the association of satellite-based greenness and an 8-day-average exposure to air pollution (PM2.5, NO2) with the nasal microbiota during the first year of life. Exposures were individually estimated with novel spatial-temporal models incorporating satellite data. Generalized additive mixed models adjusted for known confounders and considering the autoregressive correlation structure of the data were used for analysis. RESULTS Mean (SD) PM2.5 level was 17.1 (3.8 μg/m3) and mean (SD) NO2 level was 19.7 (7.9 μg/m3). Increased PM2.5 and increased NO2 were associated with reduced within-subject Ružička dissimilarity (PM2.5: per 1 μg/m3 -0.004, 95% CI -0.008, -0.001; NO2: per 1 μg/m3 -0.004, 95% CI -0.007, -0.001). Whole microbial community comparison with nonmetric multidimensional scaling revealed distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was additionally associated with reduced abundance of Corynebacteriaceae (per 1 μg/m3: -0.027, 95% CI -0.053, -0.001). No associations were found between greenness and the nasal microbiota. CONCLUSION Air pollution was associated with Ružička dissimilarity and relative abundance of Corynebacteriaceae. This suggests that even low-to-moderate exposure to air pollution may impact the nasal microbiota during the first year of life. Our results will be useful for future studies assessing the clinical relevance of air-pollution-induced alterations of the nasal microbiota with subsequent respiratory disease development.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andras Soti
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Müller L, Usemann J, Alves MP, Latzin P. Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection. Physiol Rep 2021; 9:e14994. [PMID: 34542243 PMCID: PMC8451029 DOI: 10.14814/phy2.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nasal epithelial cells (NECs) are among the first cells to be exposed to air pollutants and respiratory viruses. Although it is known that air pollution exposure and rhinovirus infections increase the risk for asthma development independently, it is unclear how these risk factors interact on a cellular level. Therefore, we aimed to investigate how exposure to diesel particulate matter (DPM) modifies the response of primary NECs to rhinovirus (RV) infection in vitro. Exposure of re-differentiated, primary NECs (49 healthy children [0-7 years], 12 adults) to DPM modified the mRNA expression of viral cell-surface receptors, pattern recognition receptors, and pro-inflammatory response (also protein levels). After exposure to DPM, we additionally infected the NECs with RV-1b and RV-16. Viral loads (assessed by titration assays) were significantly higher in DPM-exposed compared with non-exposed NECs. Exposure to DPM prior to RV infection resulted in a significant upregulation of pro-inflammatory cytokines (mRNA and protein level) and β-defensins mRNA, and significant downregulation of pattern recognition receptors mRNA and CXCL10 (mRNA and protein levels). There was no difference between all outcomes of NECs from children and adults. We can conclude that exposure to DPM prior to RV infection increases viral loads by downregulation of viral defense receptors and upregulation of pro-inflammatory cytokines. Our findings indicate a strong interaction between air pollution and the antiviral response to RV infection in NECs. We provide mechanistic evidence that exposure to air pollution increases susceptibility to RV infection.
Collapse
Affiliation(s)
- Loretta Müller
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
| | - Jakob Usemann
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
- Division of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
| | - Marco P. Alves
- Institute of Virology and ImmunologyBernSwitzerland
- Department of Infectious Diseases and PathobiologyVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
| |
Collapse
|
16
|
Le HTCH, Dang TN, Ware R, Phung D, Thai PK, Sly PD, Le An P. Using the health beliefs model to explore children's attitudes and beliefs on air pollution. Public Health 2021; 196:4-9. [PMID: 34126559 DOI: 10.1016/j.puhe.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Traffic-related air pollution (TRAP) negatively impacts children's health. Self-protective measures are available, but population uptake is variable. It is essential to understand human beliefs and behaviours related to air pollution in order to understand the lack of self-protection in communities. As a prelude to undertaking a comprehensive assessment of children's attitudes and beliefs on the health effects of TRAP exposure, we sought to develop and validate an appropriate instrument. STUDY DESIGN This study used exploratory sequential mixed methods. METHODS This instrument, based on the constructs of the health belief model (HBM), aimed to determine factors predicting wearing a mask to protect against TRAP exposure. An initial literature-based questionnaire was modified using in-depth interviews, focus group discussions, and a quantitative survey pilot. This study included 121 school students and nine professional experts in Vietnam. The questionnaire was tested for content validity, agreement, test-retest reliability, and internal consistency. RESULTS The concordance of questionnaire items between two repeated assessments ranged from 47.2% to 78.3%, intraclass correlation coefficients ranged from 0.16 to 0.87 and Cronbach's internal reliability coefficient for the instrument was 0.60. CONCLUSION The self-administered instrument, based on the HBM, is suitable to understand health attitudes and beliefs related to self-protective behaviours to reduce TRAP exposure.
Collapse
Affiliation(s)
- H T C H Le
- Faculty of Medicine, The University of Queensland, Australia; Children's Health and Environment Program, Centre for Children's Health Research, Queensland, Australia
| | - T N Dang
- Department of Environmental Health, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - R Ware
- Menzies Health Institute Queensland, Griffith University, Australia
| | - D Phung
- Centre for Environment and Population Health, Griffith University, Australia
| | - P K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - P D Sly
- Children's Health and Environment Program, Centre for Children's Health Research, Queensland, Australia
| | - P Le An
- Centre for the Training of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Korten I, Oestreich MA, Frey U, Moeller A, Jung A, Spinas R, Mueller-Suter D, Trachsel D, Rochat I, Spycher B, Latzin P, Casaulta C, Ramsey K. Respiratory symptoms do not reflect functional impairment in early CF lung disease. J Cyst Fibros 2021; 20:957-964. [PMID: 34088612 DOI: 10.1016/j.jcf.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lung disease can develop within the first year of life in infants with cystic fibrosis (CF). However, the frequency and severity of respiratory symptoms in infancy are not known. METHODS We assessed respiratory symptoms in 50 infants with CF and 50 healthy matched controls from two prospective birth cohort studies. Respiratory symptoms and respiratory rate were documented by standardized weekly interviews throughout the first year. Infants performed multiple breath washout in the first weeks of life. RESULTS We analyzed 4552 data points (2217 in CF). Respiratory symptoms (either mild or severe) were not more frequent in infants with CF (OR:1.1;95% CI:[0.76, 1.59]; p=0.6). Higher lung clearance index and higher respiratory rate in infants with CF were not associated with respiratory symptoms. CONCLUSIONS We found no difference in respiratory symptoms between healthy and CF infants. These data indicate that early CF lung disease may not be captured by clinical presentation alone.
Collapse
Affiliation(s)
- Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern Unviersity Hospital, University of Bern, Switzerland
| | - Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern Unviersity Hospital, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Urs Frey
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital Zurich, Switzerland
| | - Andreas Jung
- Division of Respiratory Medicine, University Children's Hospital Zurich, Switzerland
| | - Renate Spinas
- Division of Respiratory Medicine, University Children's Hospital Zurich, Switzerland
| | | | - Daniel Trachsel
- University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Isabelle Rochat
- Department of Paediatrics, Respiratory Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Ben Spycher
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern Unviersity Hospital, University of Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern Unviersity Hospital, University of Bern, Switzerland
| | - Kathryn Ramsey
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern Unviersity Hospital, University of Bern, Switzerland.
| | | |
Collapse
|
18
|
Abstract
The burden imposed by pollution falls more on those living in low-income and middle-income countries, affecting children more than adults. Most air pollution results from incomplete combustion and contains a mixture of particulate matter and gases. Air pollution exposure has negative impacts on respiratory health. This article concentrates on air pollution in 2 settings, the child's home and the ambient environment. There is an inextricable 2-way link between air pollution and climate change, and the effects of climate change on childhood respiratory health also are discussed.
Collapse
|
19
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
20
|
Pompilio A, Di Bonaventura G. Ambient air pollution and respiratory bacterial infections, a troubling association: epidemiology, underlying mechanisms, and future challenges. Crit Rev Microbiol 2020; 46:600-630. [PMID: 33059504 DOI: 10.1080/1040841x.2020.1816894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The World Health Organization attributed more than four million premature deaths to ambient air pollution in 2016. Numerous epidemiologic studies demonstrate that acute respiratory tract infections and exacerbations of pre-existing chronic airway diseases can result from exposure to ambient (outdoor) air pollution. In this context, the atmosphere contains both chemical and microbial pollutants (bioaerosols), whose impact on human health remains unclear. Therefore, this review: summarises the findings from recent studies on the association between exposure to air pollutants-especially particulate matter and ozone-and onset or exacerbation of respiratory infections (e.g. pneumonia, cystic fibrosis lung infection, and tuberculosis); discusses the mechanisms underlying the relationship between air pollution and respiratory bacterial infections, which is necessary to define prevention and treatment strategies; demonstrates the relevance of air pollution modelling in investigating and preventing the impact of exposure to air pollutants on human health; and outlines future actions required to improve air quality and reduce morbidity and mortality related to air pollution.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Schulz AJ, Omari A, Ward M, Mentz GB, Demajo R, Sampson N, Israel BA, Reyes AG, Wilkins D. Independent and joint contributions of economic, social and physical environmental characteristics to mortality in the Detroit Metropolitan Area: A study of cumulative effects and pathways. Health Place 2020; 65:102391. [PMID: 32738606 PMCID: PMC7511424 DOI: 10.1016/j.healthplace.2020.102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Previous studies have demonstrated associations between race-based residential segregation, neighborhood socioeconomic and physical environmental characteristics, and mortality. Relatively few studies have examined independent and joint effects of these multiple neighborhood characteristics and mortality, including potential mediating pathways. In this study we examine the extent to which associations between race-based residential segregation and all-cause mortality may be explained by multiple socioeconomic indicators and exposure to air pollutants. METHODS Drawing on data from multiple sources, we assessed bivariate associations between race-based residential segregation (operationalized as percent non-Hispanic Black), education (percent with graduate equivalency degree), poverty (percent below poverty), income inequality (GINI coefficient) and air pollution (ambient PM2.5) and age adjusted all-cause, all race mortality (henceforth all cause mortality) at the census tract level in the Detroit Metropolitan Area. We used inequality curves to assess the (in)equitable distribution of economic and environmental characteristics by census tract racial composition. Finally, we used generalized estimating equations (GEE) to examine independent and joint associations among percent NHB, education, income inequality, and air pollution to all-cause mortality, and test for mediating effects. RESULTS Bivariate associations between racial composition, education, poverty, income inequality, PM2.5 and all-cause mortality were statistically significant. Census tracts with higher concentrations of NHB residents had significantly lower educational attainment, higher poverty, and greater exposure to PM2.5. In multivariate models, education, income inequality and PM2.5 fully attenuated associations between racial composition and all-cause mortality. CONCLUSIONS Results are consistent with the hypothesis that race-based residential segregation is associated with heightened all-cause mortality, and that those effects are mediated by education, income inequality, and exposure to air pollution at the census tract level. Public health and cross-sector interventions to eliminate race-based residential segregation or to eliminate the maldistribution of educational and economic resources, and environmental exposures, across census tracts could substantially reduce regional inequities in all-cause mortality.
Collapse
Affiliation(s)
- Amy J Schulz
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Amel Omari
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Melanie Ward
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Graciela B Mentz
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ricardo Demajo
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Natalie Sampson
- College of Education, Health and Human Services, University of Michigan Dearborn, Dearborn, MI, USA
| | - Barbara A Israel
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Angela G Reyes
- Detroit Hispanic Development Corporation, Detroit, MI, USA
| | | |
Collapse
|
22
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
23
|
Choi H, Song WM, Wang M, Sram RJ, Zhang B. Benzo[a]pyrene is associated with dysregulated myelo-lymphoid hematopoiesis in asthmatic children. ENVIRONMENT INTERNATIONAL 2019; 128:218-232. [PMID: 31059917 DOI: 10.1016/j.envint.2019.04.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The extent to which ambient benzo[a]pyrene (B[a]P) contributes to mechanistically distinct de novo asthma remains unknown. OBJECTIVES To identify molecular signatures and regulatory networks underlying childhood exposure to ambient B[a]P and asthma, using robust and unbiased systems biology approaches. METHODS Clinically confirmed asthmatic (n = 191) vs. control (n = 194) children (aged, 7-15) were enrolled from a polluted urban center and semi-rural region in Czech Republic. Contemporaneous B[a]P concentration, gene expressions, DNA methylation data were analyzed against asthma diagnosis, as well as a modified prognostic index of asthma, using integrative multiscale co-expression network analysis. Sample-wise cell type compositions were inferred by a machine learning approach (i.e. CIBERSORT) with reference gene expressions of purified 38 distinct hematopoietic cell states from umbilical cord (i.e. stem cell/progenitors) or peripheral blood (i.e. lymphocytes). RESULTS The median outdoor B[a]P was increased near the homes of the urban children with 'moderate' or 'severe' prognostic markers of asthma, but not in the urban controls. An elevated B[a]P induced epigenetic suppression of NF-κB inflammation, decreased Natural Killer T (NKT) cells and activated anti-inflammatory IL10-secreting CD8+ T effective memory cells. B[a]P was positively correlated with an increased expression of a heme biosynthesis gene, ALAS2, which in turn, appears to promote concurrent increase of neutrophilic metamyelocyte and mature CD71low erythroid cells. Furthermore, erythroid-specific master transcription regulator gene (GATA1), glutathione transferase genes (GSTM1 and GSTM3) and Eosinophil marker (IL5RA) were simultaneously activated in the urban asthma cases. CONCLUSIONS B[a]P might contribute to concurrent suppression of pro-inflammatory (e.g. NF-κB mediated NKT cells), and activation of anti-inflammatory pathways (e.g. IL10-secreting CD8+ T cells) in the urban asthmatic children. In addition, B[a]P appears to elevate heme biosynthesis, which in turn, promotes neutrophilic metamyelocyte expansion and reduction of CD71+ erythroids.
Collapse
Affiliation(s)
- Hyunok Choi
- Departments of Environmental Health Sciences, Epidemiology, and Biostatistics, State University of New York at Albany School of Public Health, Rensselaer, NY, USA.
| | - Won-Min Song
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Radim J Sram
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic; University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Bin Zhang
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Ali MU, Liu G, Yousaf B, Ullah H, Abbas Q, Munir MAM. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1131-1162. [PMID: 30298288 DOI: 10.1007/s10653-018-0203-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/29/2018] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, People's Republic of China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, People's Republic of China
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mehr Ahmad Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
25
|
Tajudin MABA, Khan MF, Mahiyuddin WRW, Hod R, Latif MT, Hamid AH, Rahman SA, Sahani M. Risk of concentrations of major air pollutants on the prevalence of cardiovascular and respiratory diseases in urbanized area of Kuala Lumpur, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:290-300. [PMID: 30612017 DOI: 10.1016/j.ecoenv.2018.12.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Rapid urbanisation in Malaysian cities poses risks to the health of residents. This study aims to estimate the relative risk (RR) of major air pollutants on cardiovascular and respiratory hospitalisations in Kuala Lumpur. Daily hospitalisations due to cardiovascular and respiratory diseases from 2010 to 2014 were obtained from the Hospital Canselor Tuanku Muhriz (HCTM). The trace gases, PM10 and weather variables were obtained from the Department of Environment (DOE) Malaysia in consistent with the hospitalisation data. The RR was estimated using a Generalised Additive Model (GAM) based on Poisson regression. A "lag" concept was used where the analysis was segregated into risks of immediate exposure (lag 0) until exposure after 5 days (lag 5). The results showed that the gases could pose significant risks towards cardiovascular and respiratory hospitalisations. However, the RR value of PM10 was not significant in this study. Immediate effects on cardiovascular hospitalisations were observed for NO2 and O3 but no immediate effect was found on respiratory hospitalisations. Delayed effects on cardiovascular and respiratory hospitalisations were found with SO2 and NO2. The highest RR value was observed at lag 4 for respiratory admissions with SO2 (RR = 1.123, 95% CI = 1.045-1.207), followed by NO2 at lag 5 for cardiovascular admissions (RR = 1.025, 95% CI = 1.005-1.046). For the multi-pollutant model, NO2 at lag 5 showed the highest risks towards cardiovascular hospitalisations after controlling for O3 8 h mean lag 1 (RR = 1.026, 95% CI = 1.006-1.047), while SO2 at lag 4 showed highest risks towards respiratory hospitalisations after controlling for NO2 lag 3 (RR = 1.132, 95% CI = 1.053-1.216). This study indicated that exposure to trace gases in Kuala Lumpur could lead to both immediate and delayed effects on cardiovascular and respiratory hospitalisations.
Collapse
Affiliation(s)
- Muhammad Abdul Basit Ahmad Tajudin
- Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Md Firoz Khan
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Hazuwan Hamid
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Sufian Abd Rahman
- Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mazrura Sahani
- Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Feng W, Li H, Wang S, Van Halm-Lutterodt N, An J, Liu Y, Liu M, Wang X, Guo X. Short-term PM 10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:213-221. [PMID: 30543969 DOI: 10.1016/j.scitotenv.2018.12.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Few studies have explored PM10's connection with specific respiratory and cardiovascular emergency department admissions (EDAs). This study aimed to examine the overall effects of PM10 on EDAs for cardiovascular and respiratory diseases, including specifically, cerebrovascular events (CVE), ischemic heart disease (IHD), arrhythmia, heart failure (HF), upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), chronic obstructive pulmonary disease (COPD) and asthma. METHODS We collected daily data for EDAs from the 10 largest hospitals in Beijing, between January 2013 and December 2013 as well as daily measurements of PM10 from 17 stations in Beijing. The generalized-additive model was utilized to evaluate the associations between daily PM10 and cardio-pulmonary disease admissions. Differences in gender, age, and season groups were also examined by models. Relative risks (RR) with 95% confidence interval (CI) were calculated based on subtype, age, gender and seasonal groups. In all, there were approximately 56,212 cardiovascular and 92,464 respiratory emergency admissions presented in this study. RESULTS The largest estimate effects in EDAs of total cardiovascular disease, CVE, IHD, total respiratory diseases, URTI, LRTI and COPD were found for PM10 at day 4 (accumulative) moving average, were 0.29% (95% CI:0.12%, 0.46%), 0.36% (95% CI:0.11%, 0.61%), 0.68% (95% CI:0.25%, 1.10%), 0.34% (95% CI:0.22%, 0.47%), 0.35% (95% CI:0.18%, 0.51%), 0.34% (95% CI:0.14%, 0.55%), 2.75% (95% CI:1.38%, 4.12%) respectively. In two-pollutant models and full-pollutant model modified confounding factors, the positive correlation remained unchanged. The elderly (age ≥ 65 years) and male subjects were more susceptible to specific respiratory diseases. PM10's impact on EDAs for HF was found higher during the hot season however, EDAs for COPD peaked during the cold season. CONCLUSION The study markedly informed that PM10 pollution was strongly associated with EDAs for cardio-pulmonary diseases. The effects of PM10 pollution on COPD and heart failure EDAs were clearly determined by seasonal-temperatures.
Collapse
Affiliation(s)
- Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Ji An
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Mengyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaonan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Usemann J, Xu B, Delgado-Eckert E, Korten I, Anagnostopoulou P, Gorlanova O, Kuehni C, Röösli M, Latzin P, Frey U. Dynamics of respiratory symptoms during infancy and associations with wheezing at school age. ERJ Open Res 2018; 4:00037-2018. [PMID: 30474038 PMCID: PMC6243079 DOI: 10.1183/23120541.00037-2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Children with frequent respiratory symptoms in infancy have an increased risk for later wheezing, but the association with symptom dynamics is unknown. We developed an observer-independent method to characterise symptom dynamics and tested their association with subsequent respiratory morbidity. In this birth-cohort of healthy neonates, we prospectively assessed weekly respiratory symptoms during infancy, resulting in a time series of 52 symptom scores. For each infant, we calculated the transition probability between two consecutive symptom scores. We used these transition probabilities to construct a Markov matrix, which characterised symptom dynamics quantitatively using an entropy parameter. Using this parameter, we determined phenotypes by hierarchical clustering. We then studied the association between phenotypes and wheezing at 6 years. In 322 children with complete data for symptom scores during infancy (16 864 observations), we identified three dynamic phenotypes. Compared to the low-risk phenotype, the high-risk phenotype, defined by the highest entropy parameter, was associated with an increased risk of wheezing (odds ratio (OR) 3.01, 95% CI 1.15-7.88) at 6 years. In this phenotype, infants were more often male (64%) and had been exposed to environmental tobacco smoke (31%). In addition, more infants had siblings (67%) and attended childcare (38%). We describe a novel method to objectively characterise dynamics of respiratory symptoms in infancy, which helps identify abnormal clinical susceptibility and recovery patterns of infant airways associated with persistent wheezing.
Collapse
Affiliation(s)
- Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,These authors contributed equally
| | - Binbin Xu
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,These authors contributed equally
| | | | - Insa Korten
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pinelopi Anagnostopoulou
- Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Claudia Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Dept of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| |
Collapse
|
28
|
Stochastic Modelling of Air Pollution Impacts on Respiratory Infection Risk. Bull Math Biol 2018; 80:3127-3153. [PMID: 30280301 DOI: 10.1007/s11538-018-0512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
The impact of air pollution on people's health and daily activities in China has recently aroused much attention. By using stochastic differential equations, variation in a 6 year long time series of air quality index (AQI) data, gathered from air quality monitoring sites in Xi'an from 15 November 2010 to 14 November 2016 was studied. Every year the extent of air pollution shifts from being serious to not so serious due to alterations in heat production systems. The distribution of such changes can be predicted by a Bayesian approach and the Gibbs sampler algorithm. The intervals between changes in a sequence indicate when the air pollution becomes increasingly serious. Also, the inflow rate of pollutants during the main pollution periods each year has an increasing trend. This study used a stochastic SEIS model associated with the AQI to explore the impact of air pollution on respiratory infections. Good fits to both the AQI data and the numbers of influenza-like illness cases were obtained by stochastic numerical simulation of the model. Based on the model's dynamics, the AQI time series and the daily number of respiratory infection cases under various government intervention measures and human protection strategies were forecasted. The AQI data in the last 15 months verified that government interventions on vehicles are effective in controlling air pollution, thus providing numerical support for policy formulation to address the haze crisis.
Collapse
|
29
|
Lupatsch JE, Kreis C, Korten I, Latzin P, Frey U, Kuehni CE, Spycher BD. Neighbourhood child population density as a proxy measure for exposure to respiratory infections in the first year of life: A validation study. PLoS One 2018; 13:e0203743. [PMID: 30208077 PMCID: PMC6135405 DOI: 10.1371/journal.pone.0203743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Assessing exposure to infections in early childhood is of interest in many epidemiological investigations. Because exposure to infections is difficult to measure directly, epidemiological studies have used surrogate measures available from routine data such as birth order and population density. However, the association between population density and exposure to infections is unclear. We assessed whether neighbourhood child population density is associated with respiratory infections in infants. Methods With the Basel-Bern lung infant development study (BILD), a prospective Swiss cohort study of healthy neonates, respiratory symptoms and infections were assessed by weekly telephone interviews with the mother throughout the first year of life. Using population census data, we calculated neighbourhood child density as the number of children < 16 years of age living within a 250 m radius around the residence of each child. We used negative binomial regression models to assess associations between neighbourhood child density and the number of weeks with respiratory infections and adjusted for potential confounders including the number of older siblings, day-care attendance and duration of breastfeeding. We investigated possible interactions between neighbourhood child population density and older siblings assuming that older siblings mix with other children in the neighbourhood. Results The analyses included 487 infants. We found no evidence of an association between quintiles of neighbourhood child density and number of respiratory symptoms (p = 0.59, incidence rate ratios comparing highest to lowest quintile: 1.15, 95%-confidence interval: 0.90–1.47). There was no evidence of interaction with older siblings (p = 0.44). Results were similar in crude and in fully adjusted models. Conclusions Our study suggests that in Switzerland neighbourhood child density is a poor proxy for exposure to infections in infancy.
Collapse
Affiliation(s)
- Judith E. Lupatsch
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Institute of Pharmaceutical Medicine, University of Basel, Basel Switzerland
| | - Christian Kreis
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University of Basel, Children’s Hospital (UKBB), Basel, Switzerland
| | - Urs Frey
- University of Basel, Children’s Hospital (UKBB), Basel, Switzerland
| | - Claudia E. Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ben D. Spycher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Schulz AJ, Mentz GB, Sampson N, Ward M, Dvonch JT, de Majo R, Israel BA, Reyes AG, Wilkins D. Independent and Joint Contributions of Fine Particulate Matter Exposure and Population Vulnerability to Mortality in the Detroit Metropolitan Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061209. [PMID: 29890666 PMCID: PMC6024972 DOI: 10.3390/ijerph15061209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023]
Abstract
Fine particulate matter is associated with adverse health outcomes. Exposure to fine particulate matter may disproportionately affect urban communities with larger numbers of vulnerable residents. We used multilevel logistic regression models to estimate the joint effects of fine particulate matter (PM2.5) and population vulnerabilities on cardiopulmonary mortality (CPM). We estimated the health benefits of reductions in PM2.5 across census tracts in the Detroit metropolitan area with varying levels of population vulnerability, using cluster-specific odds ratios scaled to reflect PM2.5-attributable cardiopulmonary risk. PM2.5 and population vulnerability were independently associated with odds of CPM. Odds of CPM and the number of deaths attributable to PM2.5 were greatest in census tracts with both high PM2.5 exposures and population vulnerability. Reducing PM2.5 in census tracts with high PM2.5 would lead to an estimated 18% annual reduction in PM2.5-attributable CPM. Between 78–79% of those reductions in CPM would occur within census tracts with high population vulnerabilities. These health benefits of reductions in PM2.5 occurred at levels below current U.S. reference concentrations. Focusing efforts to reduce PM2.5 in the Detroit metropolitan area in census tracts with currently high levels would also lead to greater benefits for residents of census tracts with high population vulnerabilities.
Collapse
Affiliation(s)
- Amy J Schulz
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - Graciela B Mentz
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - Natalie Sampson
- Department of Health and Human Services, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| | - Melanie Ward
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - Ricardo de Majo
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - Barbara A Israel
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA.
| | - Angela G Reyes
- Detroit Hispanic Development Corporation, Detroit, MI 48216, USA.
| | | |
Collapse
|
31
|
Yorifuji T, Tsukahara H, Kashima S, Doi H. Intrauterine and Early Postnatal Exposure to Particulate Air Pollution and Kawasaki Disease: A Nationwide Longitudinal Survey in Japan. J Pediatr 2018; 193:147-154.e2. [PMID: 29212623 DOI: 10.1016/j.jpeds.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To examine the effects of prenatal and postnatal exposure to particulate matter on Kawasaki disease (KD) occurrence, using data from a nationwide population-based longitudinal survey in Japan that began in 2010. STUDY DESIGN Prenatal and postnatal suspended particulate matter concentrations were obtained at municipality level and assigned to participants based on their municipality of birth. We analyzed data from 30 367 participants with data on either exposure period. We used hospital admission for KD from 6 to 30 months of age as the main outcome of interest. We conducted a multilevel logistic regression analysis, adjusting for individual and municipality-level variables. RESULTS Children who were exposed to higher levels of suspended particulate matter, in particular during pregnancy, were more likely to be hospitalized for KD. The ORs for ≥25 µg/m3 exposure compared with <20 µg/m3 exposure were 1.59 (95% CI 1.06, 2.38) for prenatal exposure and 1.41 (0.82, 2.41) for postnatal exposure. Prenatal exposure during mid-to-late gestation seemed to be more relevant for the increased risk. CONCLUSIONS Early life exposure to particulate air pollution, in particular during pregnancy, is associated with an increased risk of KD hospital admission in early childhood in a nationally representative sample in Japan.
Collapse
Affiliation(s)
- Takashi Yorifuji
- Department of Human Ecology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Hirokazu Tsukahara
- Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Saori Kashima
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Doi
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Fernández D, Sram RJ, Dostal M, Pastorkova A, Gmuender H, Choi H. Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E106. [PMID: 29320438 PMCID: PMC5800205 DOI: 10.3390/ijerph15010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.
Collapse
Affiliation(s)
- Daniel Fernández
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain.
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Radim J Sram
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Miroslav Dostal
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Hans Gmuender
- Genedata AG, Margarethenstrasse 38, CH-4053 Basel, Switzerland.
| | - Hyunok Choi
- Departments of Environmental Health Sciences, Epidemiology, and Biostatistics State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| |
Collapse
|
33
|
Choi H, Tabashidze N, Rossner P, Dostal M, Pastorkova A, Kong SW, Gmuender H, Sram RJ. Altered vulnerability to asthma at various levels of ambient Benzo[a]Pyrene by CTLA4, STAT4 and CYP2E1 polymorphisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1134-1144. [PMID: 28807506 DOI: 10.1016/j.envpol.2017.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Within fossil- and solid-fuel dependent geographic locations, mechanisms of air pollution-induced asthma remains unknown. In particular, sources of greater genetic susceptibility to airborne carcinogen, namely, benzo[a]pyrene (B[a]P) has never been investigated beyond that of a few well known genes. OBJECTIVES To deepen our understanding on how the genotypic variations within the candidate genes contribute to the variability in the children's susceptibility to ambient B[a]P on doctor-diagnosed asthma. METHODS Clinically confirmed asthmatic versus healthy control children (aged, 7-15) were enrolled from historically polluted and rural background regions in Czech Republic. Contemporaneous ambient B[a]P concentration was obtained from the routine monitoring network. The sputum DNA was genotyped for 95 genes. B[a]P interaction with SNPs was studied by two-stage, semi-agnostic screening of 621 SNPs. RESULTS The median B[a]P within the highly polluted urban center was 8-times higher than that in the background region (7.8 vs. 1.1 ng/m3) during the period of investigation. Within the baseline model, which considered B[a]P exposure-only, the second tertile range was associated with a significantly reduced odds (aOR = 0.28) of asthma (95% CI, 0.16 to 0.50) compared to those at the lowest range. However, the highest range of B[a]P was associated with 3.18-times greater odds of the outcome (95% CI, 1.77 to 5.71). Within the gene-environment interaction models, joint occurrence of a high B[a]P exposure range and having a high-risk genotype at CTLA4 gene (rs11571316) was associated with 9-times greater odds (95% CI, 4.56-18.36) of the asthma diagnosis. Similarly, rs11571319 at CTLA4 and a high B[a]P exposure range was associated with a 8-times greater odds (95% CI, 3.95-14.27) of asthma diagnosis. Furthermore, having TG + GG genotypes on rs1031509 near STAT4 was associated with 5-times (95% CI, 3.03-8.55) greater odds of asthma diagnosis at the highest B[a]P range, compared to the odds at the reference range. Also CYP2E1 AT + TT genotypes (rs2070673) was associated with 5-times (95% CI, 3.1-8.8) greater odds of asthma diagnosis at the highest B[a]P exposure. CONCLUSIONS The children, who jointly experience a high B[a]P exposure (6.3-8.5 ng/m3) as well as susceptible genotypes in CTLA4 (rs11571316 and rs11571319), STAT4 (rs1031509), and CYP2E1 (rs2070673), respectively, are associated with a significantly greater odds of having doctor-diagnosed asthma, compared to those with neither risk factors.
Collapse
Affiliation(s)
- Hyunok Choi
- Departments of Environmental Health Sciences, Epidemiology, and Biostatistics University at Albany School of Public Health, One University Place, Room 153, Rensselaer, NY 12144-3456, USA.
| | - Nana Tabashidze
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Rossner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Miroslav Dostal
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Sek Won Kong
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Hans Gmuender
- Genedata AG, Margarethenstrasse 38, CH-4053, Basel, Switzerland.
| | - Radim J Sram
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
34
|
Jilling T, Ren C, Yee A, Aggarwal S, Halloran B, Ambalavanan N, Matalon S. Exposure of neonatal mice to bromine impairs their alveolar development and lung function. Am J Physiol Lung Cell Mol Physiol 2017; 314:L137-L143. [PMID: 28912380 DOI: 10.1152/ajplung.00315.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The halogen bromine (Br2) is used extensively in industry and stored and transported in large quantities. Its accidental or malicious release into the atmosphere has resulted in significant casualties. The pathophysiology of Br2-induced lung injury has been studied in adult animals, but the consequences of Br2 exposure to the developing lung are completely unknown. We exposed neonatal mouse littermates on postnatal day 3 (P3) to either Br2 at 400 ppm for 30 min (400/30), to Br2 at 600 ppm for 30 min (600/30), or to room air, then returned them to their dams and observed until P14. Mice exposed to Br2 had decreased survival (S) and had decreased weight (W) at P14 in the 400/30 group (S = 63.5%, W = 6.67 ± 0.08) and in the 600/30 group (S = 36.1%, W = 5.13 ± 0.67) as compared with air breathing mice (S = 100%, W = 7.96 ± 0.30). Alveolar development was impaired, as evidenced by increased mean linear intercept at P14. At P14, Br2 exposed mice also exhibited a decrease of arterial partial pressure of oxygen, decreased quasi-static lung compliance, as well as increased alpha smooth muscle actin mRNA and protein and increased mRNA for IL-1β, IL-6, CXCL1, and TNFα. Global gene expression, evaluated by RNA sequencing and Ingenuity Pathway Analysis, revealed persistent abnormalities in gene expression profiles at P14 involving pathways of "formation of lung" and "pulmonary development." The data indicate that Br2 inhalation injury early in life results in severe lung developmental consequences, wherein persistent inflammation and global altered developmental gene expression are likely mechanistic contributors.
Collapse
Affiliation(s)
- Tamas Jilling
- Department of Pediatrics (Neonatology), University of Alabama at Birmingham , Birmingham, Alabama
| | - Changchun Ren
- Department of Pediatrics (Neonatology), University of Alabama at Birmingham , Birmingham, Alabama
| | - Aaron Yee
- Department of Pediatrics (Neonatology), University of Alabama at Birmingham , Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama at Birmingham , Birmingham, Alabama
| | - Brian Halloran
- Department of Pediatrics (Neonatology), University of Alabama at Birmingham , Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Department of Pediatrics (Neonatology), University of Alabama at Birmingham , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
35
|
Zeng X, Vonk JM, de Jong K, Xu X, Huo X, Boezen HM. No convincing association between genetic markers and respiratory symptoms: results of a GWA study. Respir Res 2017; 18:11. [PMID: 28073367 PMCID: PMC5223330 DOI: 10.1186/s12931-016-0495-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/17/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Respiratory symptoms are associated with accelerated lung function decline, and increased hospitalization and mortality rates in the general population. Although several environmental risk factors for respiratory symptoms are known, knowledge on genetic risk factors is lacking. We aim to identify genetic variants associated with respiratory symptoms by genome-wide association (GWA) analyses. METHODS We conducted the first GWA study on cough, dyspnea and phlegm among 7,976 participants in the LifeLines I cohort and used the LifeLines II cohort (n = 5,260) and the Vlagtwedde-Vlaardingen cohort (n = 1,529) for replication. RESULTS We identified 50 SNPs that were assessed for replication. Rs16918212, located in the alpha-2-macroglobulin pseudogene 1 (A2MP1), was associated with cough in both the identification (odds ratio (OR) = 0.72, p = 5.41 × 10-5) and the meta-analyzed replication cohorts (OR = 0.83, p = 0.033). No other significant replicated associations were found. CONCLUSIONS Given that only 1 out of 50 SNPs showed significant replication (i.e. 2%) we conclude that we did not find a convincing association between genetic markers and respiratory symptoms. Since, environmental exposures are important risk factors for respiratory symptoms, the next step is to perform a genome-wide interaction (GWI) study to identify genetic susceptibility loci for respiratory symptoms in interaction with known harmful environmental exposures.
Collapse
Grants
- This study was funded by the Groningen Research Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, the Netherlands. The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. The Vlagtwedde-Vlaardingen cohort study was supported by the Ministry of Health and Environmental Hygiene of the Netherlands and the Netherlands Asthma Fund (grant 187) and the Netherlands Asthma Fund grant no. 3.2.02.51, the Stichting Astma Bestrijding, BBMRI-NL (Complementiation project), and the European Respiratory Society COPD research award 2011 to H.M. Boezen.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
| | - Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Xia Huo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, China
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands.
| |
Collapse
|
36
|
Rhinovirus Infections and Associated Respiratory Morbidity in Infants: A Prospective Cohort Study. Pediatr Infect Dis J 2016; 35:1069-74. [PMID: 27254029 DOI: 10.1097/inf.0000000000001240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Risk factors promoting rhinovirus (RV) infections are inadequately described in healthy populations, especially infants. OBJECTIVES To determine the frequency of symptomatic and asymptomatic RV infections and identify possible risk factors from host and environment among otherwise healthy infants. METHODS In a prospective birth cohort, respiratory health was assessed in 41 term-born infants by weekly telephonic interviews during the first year of life, and weekly nasal swabs were collected to determine RV prevalence. In a multilevel logistic regression model, associations between prevalence and respiratory symptoms during RV infections and host/environmental factors were determined. RESULTS Twenty-seven percent of nasal swabs in 41 infants tested positive for RVs. Risk factors for RV prevalence were autumn months [odds ratio (OR) = 1.71, P = 0.01, 95% confidence interval (CI): 1.13-2.61], outdoor temperatures between 5 and 10°C (OR = 2.33, P = 0.001, 95% CI: 1.41-3.86), older siblings (OR = 2.60, P = 0.001, 95% CI: 1.50-4.51) and childcare attendance (OR = 1.53, P = 0.07, 95% CI: 0.96-2.44). Fifty-one percent of RV-positive samples were asymptomatic. Respiratory symptoms during RV infections were less likely during the first 3 months of life (OR = 0.34, P = 0.003, 95% CI: 0.17-0.69) and in infants with atopic mothers (OR = 0.44, P = 0.008, 95% CI: 0.24-0.80). Increased tidal volume (OR = 1.67, P = 0.03, 95% CI: 1.04-2.68) and outdoor temperatures between 2 and 5°C (OR = 2.79, P = 0.02, 95% CI: 1.17-6.61) were associated with more symptoms. CONCLUSIONS RVs are highly prevalent during the first year of life, and most infections are asymptomatic. Frequency of RV infections is associated with environmental factors, while respiratory symptoms during RV infections are linked to host determinants like infant age, maternal atopy or premorbid lung function.
Collapse
|
37
|
Gorlanova O, Thalmann S, Proietti E, Stern G, Latzin P, Kühni C, Röösli M, Frey U. Effects of Breastfeeding on Respiratory Symptoms in Infancy. J Pediatr 2016; 174:111-117.e5. [PMID: 27063808 DOI: 10.1016/j.jpeds.2016.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/17/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To assess the impact of potential risk factors on the development of respiratory symptoms and their specific modification by breastfeeding in infants in the first year of life. STUDY DESIGN We prospectively studied 436 healthy term infants from the Bern-Basel Infant Lung Development cohort. The breastfeeding status, and incidence and severity of respiratory symptoms (score) were assessed weekly by telephone interview during the first year of life. Risk factors (eg, pre- and postnatal smoking exposure, mode of delivery, gestational age, maternal atopy, and number of older siblings) were obtained using standardized questionnaires. Weekly measurements of particulate matter <10 μg were provided by local monitoring stations. The associations were investigated using generalized additive mixed model with quasi Poisson distribution. RESULTS Breastfeeding reduced the incidence and severity of the respiratory symptom score mainly in the first 27 weeks of life (risk ratio 0.70; 95% CI 0.55-0.88). We found a protective effect of breastfeeding in girls but not in boys. During the first 27 weeks of life, breastfeeding attenuated the effects of maternal smoking during pregnancy, gestational age, and cesarean delivery on respiratory symptoms. There was no evidence for an interaction between breastfeeding and maternal atopy, number of older siblings, child care attendance, or particulate matter <10 μg. CONCLUSIONS This study shows the risk-specific effect of breastfeeding on respiratory symptoms in early life using the comprehensive time-series approach.
Collapse
Affiliation(s)
- Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Simone Thalmann
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Elena Proietti
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland; Pediatric Respiratory Medicine, Inselspital and University of Bern, Bern, Switzerland
| | - Georgette Stern
- Pediatric Respiratory Medicine, Inselspital and University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland; Pediatric Respiratory Medicine, Inselspital and University of Bern, Bern, Switzerland
| | - Claudia Kühni
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland.
| |
Collapse
|
38
|
Proietti E, Delgado-Eckert E, Vienneau D, Stern G, Tsai MY, Latzin P, Frey U, Röösli M. Air pollution modelling for birth cohorts: a time-space regression model. Environ Health 2016; 15:61. [PMID: 27225793 PMCID: PMC4881180 DOI: 10.1186/s12940-016-0145-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/16/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND To investigate air pollution effects during pregnancy or in the first weeks of life, models are needed that capture both the spatial and temporal variability of air pollution exposures. METHODS We developed a time-space exposure model for ambient NO2 concentrations in Bern, Switzerland. We used NO2 data from passive monitoring conducted between 1998 and 2009: 101 rural sites (24,499 biweekly measurements) and 45 urban sites (4350 monthly measurements). We evaluated spatial predictors (land use; roads; traffic; population; annual NO2 from a dispersion model) and temporal predictors (meteorological conditions; NO2 from continuous monitoring station). Separate rural and urban models were developed by multivariable regression techniques. We performed ten-fold internal cross-validation, and an external validation using 57 NO2 passive measurements obtained at study participant's homes. RESULTS Traffic related explanatory variables and fixed site NO2 measurements were the most relevant predictors in both models. The coefficient of determination (R(2)) for the log transformed models were 0.63 (rural) and 0.54 (urban); cross-validation R(2)s were unchanged indicating robust coefficient estimates. External validation showed R(2)s of 0.54 (rural) and 0.67 (urban). CONCLUSIONS This approach is suitable for air pollution exposure prediction in epidemiologic research with time-vulnerable health effects such as those occurring during pregnancy or in the first weeks of life.
Collapse
Affiliation(s)
- Elena Proietti
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33 CH- 4056, Basel, Switzerland
- Division of Paediatric Pulmonology, Department of Paediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Edgar Delgado-Eckert
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33 CH- 4056, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Georgette Stern
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33 CH- 4056, Basel, Switzerland
- Division of Paediatric Pulmonology, Department of Paediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Ming-Yi Tsai
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33 CH- 4056, Basel, Switzerland
- Division of Paediatric Pulmonology, Department of Paediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33 CH- 4056, Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Zeng X, Xu X, Zheng X, Reponen T, Chen A, Huo X. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:346-53. [PMID: 26803791 DOI: 10.1016/j.envpol.2016.01.025] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 02/05/2023]
Abstract
This study was to investigate the levels of heavy metals in PM2.5 and in blood, the prevalence of respiratory symptoms and asthma, and the related factors to them. Lead and cadmium in both PM2.5 and blood were significant higher in Guiyu (exposed area) than Haojiang (reference area) (p < 0.05), however, no significant difference was found for chromium and manganese in PM2.5 and in blood. The prevalence of cough, phlegm, dyspnea, and wheeze of children was higher in Guiyu compared to Haojiang (p < 0.05). No significant difference was found for the prevalence of asthma in children between Guiyu and Haojiang. Living in Guiyu was positively associated with blood lead (B = 0.196, p < 0.001), blood cadmium (B = 0.148, p < 0.05) and cough (OR, 2.37; 95% CI, 1.30-4.32; p < 0.01). Blood lead>5 μg/dL was significantly associated with asthma (OR, 9.50; 95% CI, 1.16-77.49). Higher blood chromium and blood manganese were associated with more cough and wheeze, respectively. Our data suggest that living in e-waste exposed area may lead to increased levels of heavy metals, and accelerated prevalence of respiratory symptoms and asthma.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China; Department of Epidemiology, University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Sloan CD, Philipp TJ, Bradshaw RK, Chronister S, Barber WB, Johnston JD. Applications of GPS-tracked personal and fixed-location PM(2.5) continuous exposure monitoring. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:53-65. [PMID: 26512925 DOI: 10.1080/10962247.2015.1108942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m³ (stderr = 0.15) and 8.47 μg/m³ (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time-activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m³, stderr = 1.08, SidePak = 11.85 µg/m³, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m³, stderr = 0.39, SidePak = 24.93 µg/m³, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m³, stderr = 0.23, SidePak = 5.63 µg/m³, stderr = 0.08). Mean PM(2.5) at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m³ (stderr = 0.23) to 12.38 µg/m³ (stderr = 0.45). By comparison, mean 24-h PM(2.5) measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m³ during the study period. The range of average PM(2.5) exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m³ (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals' 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM(2.5) exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates. IMPLICATIONS Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.
Collapse
Affiliation(s)
- Chantel D Sloan
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Tyler J Philipp
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Rebecca K Bradshaw
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - Sara Chronister
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - W Bradford Barber
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| | - James D Johnston
- a Department of Health Science , Brigham Young University , Provo , Utah , USA
| |
Collapse
|
41
|
McKenzie Z, Kendall M, Mackay RM, Tetley TD, Morgan C, Griffiths M, Clark HW, Madsen J. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140049. [PMID: 25533100 PMCID: PMC4275912 DOI: 10.1098/rstb.2014.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations.
Collapse
Affiliation(s)
- Zofi McKenzie
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Michaela Kendall
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - Rose-Marie Mackay
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Cliff Morgan
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Mark Griffiths
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
42
|
Hirota JA, Marchant DJ, Singhera GK, Moheimani F, Dorscheid DR, Carlsten C, Sin D, Knight D. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposurein vitro. Exp Lung Res 2015; 41:353-62. [DOI: 10.3109/01902148.2015.1040528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Abstract
In this review, we discuss the impact of environmental tobacco smoke and particulate and gaseous air pollutants derived from fossil fuel combustion on a particularly vulnerable population, infants and children. Indoor and outdoor air pollutants exacerbate chronic respiratory diseases and lower respiratory tract infections. However, there is an even more alarming impact of antenatal air pollution exposures. There are several reports in rodents and monkeys that maternal exposure to tobacco smoke or fossil fuel-generated air pollutants causes in utero growth retardation, lung remodeling, and immune cell activation which increase the risk for asthma or the risk of morbidity with respiratory infections. Importantly, epidemiologic studies confirm that maternal exposure to air pollutants decreases lung function in infants and children which may persist to young adulthood. Thus, environmental air pollutants contribute to childhood origins of chronic obstructive lung disease by changing the capacity for normal lung development and repair, by promoting early lung inflammation which increases the susceptibility to pollution-triggered symptomatic lung disease in adulthood, and by limiting the capacity for later adaptive/repair responses to environmental and infectious insults.
Collapse
|
44
|
Vieira SE. The health burden of pollution: the impact of prenatal exposure to air pollutants. Int J Chron Obstruct Pulmon Dis 2015; 10:1111-21. [PMID: 26089661 PMCID: PMC4468952 DOI: 10.2147/copd.s40214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life.
Collapse
Affiliation(s)
- Sandra E Vieira
- Pediatrics Department, Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Adar SD, Kaufman JD, Diez-Roux AV, Hoffman EA, D'Souza J, Stukovsky KH, Rich SS, Rotter JI, Guo X, Raffel LJ, Sampson PD, Oron AP, Raghunathan T, Barr RG. Air pollution and percent emphysema identified by computed tomography in the Multi-Ethnic study of Atherosclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:144-51. [PMID: 25302408 PMCID: PMC4314244 DOI: 10.1289/ehp.1307951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 10/09/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND Air pollution is linked to low lung function and to respiratory events, yet little is known of associations with lung structure. OBJECTIVES We examined associations of particulate matter (PM2.5, PM10) and nitrogen oxides (NOx) with percent emphysema-like lung on computed tomography (CT). METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) recruited participants (45-84 years of age) in six U.S. states. Percent emphysema was defined as lung regions < -910 Hounsfield Units on cardiac CT scans acquired following a highly standardized protocol. Spirometry was also conducted on a subset. Individual-level 1- and 20-year average air pollution exposures were estimated using spatiotemporal models that included cohort-specific measurements. Multivariable regression was conducted to adjust for traditional risk factors and study location. RESULTS Among 6,515 participants, we found evidence of an association between percent emphysema and long-term pollution concentrations in an analysis leveraging between-city exposure contrasts. Higher concentrations of PM2.5 (5 μg/m3) and NOx (25 ppb) over the previous year were associated with 0.6 (95% CI: 0.1, 1.2%) and 0.5 (95% CI: 0.1, 0.9%) higher average percent emphysema, respectively. However, after adjustment for study site the associations were -0.6% (95% CI: -1.5, 0.3%) for PM2.5 and -0.5% (95% CI: -1.1, 0.02%) for NOx. Lower lung function measures (FEV1 and FVC) were associated with higher PM2.5 and NOx levels in 3,791 participants before and after adjustment for study site, though most associations were not statistically significant. CONCLUSIONS Associations between ambient air pollution and percentage of emphysema-like lung were inconclusive in this cross-sectional study, thus longitudinal analyses may better clarify these associations with percent emphysema.
Collapse
Affiliation(s)
- Sara D Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, Latzin P, Hilty M. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol 2015; 135:905-912.e11. [PMID: 25636948 DOI: 10.1016/j.jaci.2014.12.1909] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies.
Collapse
Affiliation(s)
- Moana Mika
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ines Mack
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland; University Children's Hospital (UKBB), Basel, Switzerland
| | - Insa Korten
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Weihong Qi
- Functional Genomics Center, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland; University Children's Hospital (UKBB), Basel, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Department of Infectious Diseases, University Hospital, Bern, Switzerland.
| |
Collapse
|
47
|
Thabethe NDL, Engelbrecht JC, Wright CY, Oosthuizen MA. Human health risks posed by exposure to PM10 for four life stages in a low socio-economic community in South Africa. Pan Afr Med J 2014; 18:206. [PMID: 25422691 PMCID: PMC4239458 DOI: 10.11604/pamj.2014.18.206.3393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/21/2013] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Mine ash dumps, industries and domestic fuel use have a great impact on air quality and PM10 (particles with a diameter equal to or less than 10 μm) is a pollutant of particular concern. METHODS The objective of this study was to assess the human health risks posed by exposure to PM10 among a low socio-economic community. The Human Health Risk Assessment (HHRA) framework (i.e. hazard assessment, dose-response assessment, exposure assessment and risk characterization) was applied. PM10 concentrations were monitored for one month during winter and summer, respectively. A HHRA was conducted to assess whether the community was exposed to PM10 concentrations that may pose carcinogenic and non-carcinogenic health risks. RESULTS Generally, the residents were exposed to higher concentrations of PM10 during winter than summer, resulting in a higher risk to health during winter. Results of the HHRA showed that infants were exposed to a higher dose of PM10 than the other life stages when exposed to the same concentration due to differences in inhalation rates and the ratio between inhalation and body weight. However, they were at the same risk of developing adverse effects from exposure to the same concentration of PM10 as the other life stages were exposed to, because the 'safe' dose was also higher for infants and since all life stages, in general, are similarly affected by PM unless the chemical composition of the PM is known. CONCLUSION This study recommends that infants and children, in particular, should not be exposed to air pollution from domestic fuel burning as one positive step to try and reduce their dose.
Collapse
Affiliation(s)
- Nomsa Duduzile Lina Thabethe
- Tshwane University of Technology, Faculty of Science, Department of Environmental Health, Private Bag X680, Pretoria. 0001. South Africa
| | - Jacobus Christoffel Engelbrecht
- Tshwane University of Technology, Faculty of Science, Department of Environmental Health, Private Bag X680, Pretoria. 0001. South Africa
| | - Caradee Yael Wright
- Council for Scientific and Industrial Research, Climate Studies, Modelling and Environmental Health, P.O Box 395, Pretoria, 0001. South Africa
| | - Maria Aletta Oosthuizen
- Council for Scientific and Industrial Research, Climate Studies, Modelling and Environmental Health, P.O Box 395, Pretoria, 0001. South Africa
| |
Collapse
|
48
|
Carlsten C, Georas SN. Update in environmental and occupational lung diseases 2013. Am J Respir Crit Care Med 2014; 189:1037-43. [PMID: 24787066 DOI: 10.1164/rccm.201401-0108up] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Chris Carlsten
- 1 Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | |
Collapse
|
49
|
Jobe AH, Tibboel D. Update in pediatric lung disease 2013. Am J Respir Crit Care Med 2014; 189:1031-6. [PMID: 24787065 DOI: 10.1164/rccm.201402-0230up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alan H Jobe
- 1 Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio; and
| | | |
Collapse
|
50
|
Fuchs O, von Mutius E. Prenatal and childhood infections: implications for the development and treatment of childhood asthma. THE LANCET RESPIRATORY MEDICINE 2013; 1:743-54. [PMID: 24429277 PMCID: PMC7104105 DOI: 10.1016/s2213-2600(13)70145-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial and viral infections occur early and recurrently in life and thereby impose a substantial disease burden. Besides causing clinical symptoms, a potential role of infection in the development of the asthma syndrome later in life has also been suggested. However, whether bacterial and viral infections unmask host factors in children at risk of asthma or whether they directly cause asthma remains unclear; both viewpoints could be justified, but the underlying mechanisms are complex and poorly understood. Recently, the role of the bacterial microbiome has been emphasised. But data are still sparse and future studies are needed for definitive conclusions to be made. In this Review, we discuss present knowledge of viruses and bacteria that infect and colonise the respiratory tract and mucosal surfaces, including their timepoint of action, host factors related to infection, and their effect on childhood asthma. Childhood asthma could be the result of a combination of altered host susceptibility and infectious agents.
Collapse
Affiliation(s)
- Oliver Fuchs
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Pneumology Centre Munich (CPC-M), Munich, Germany.
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Pneumology Centre Munich (CPC-M), Munich, Germany
| |
Collapse
|