1
|
Odendaal ML, Taenzer J, de Rooij MMT, Kuiling S, Bogaert D, Franz E, Smit LAM. Nasopharyngeal microbiota is influenced by agricultural air pollution in individuals with and without COPD. Sci Rep 2025; 15:15653. [PMID: 40325057 PMCID: PMC12053623 DOI: 10.1038/s41598-025-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Respiratory health in chronic obstructive pulmonary disease (COPD) is influenced by environmental factors such as air pollution, yet the role of the airway microbiota in this relationship remains unclear. We investigated the association between exposure to air pollution from livestock farms and the nasopharyngeal microbiota in individuals with COPD compared to healthy control subjects. The study included nasopharyngeal swabs from 186 currently non-smoking participants in the Netherlands, including 65 individuals with COPD and 121 without from a regional rural cohort. Additionally, 116 individuals from a population-wide cohort were included as national controls. Samples were taken at three time points over 12 weeks. The nasopharyngeal microbiota was studied using 16 S rRNA gene-based sequencing for all baseline samples and a random selection of 6-weeks and 12-weeks samples. Dispersion models were used to determine the average concentrations of livestock-related PM10, endotoxin, and ammonia at the participants' home addresses. Individuals with COPD had a higher absolute abundance of anaerobic bacteria, such as Peptoniphilus, Anaerococcus, Finegoldia magna, and Prevotella. Importantly, residential exposure to ammonia was identified as the most important driver of the microbial community composition, explaining 6.6% of the variation in nasopharyngeal microbiota in individuals with COPD. Higher ammonia concentrations were associated with decreased levels of key commensals and increased abundance of anaerobic bacteria. Furthermore, individuals living in areas with high livestock density exhibited greater microbial diversity compared to the broader national population. The study highlights the influence of residential exposure to livestock-related air pollution, particularly ammonia, on nasopharyngeal microbiota composition in individuals with COPD. Our findings suggest that environmental factors significantly impact microbial communities and underscore the potential role of anaerobic bacteria in COPD pathology. Future research should further investigate the mechanisms by which environmental air pollutants affect microbial communities and explore potential interventions to mitigate their effects on respiratory health.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | - Julia Taenzer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Schwaiger G, Matt M, Bromann S, Clauß M, Elsner M, Seidel M. Rapid quantification of Legionella in agricultural air purification systems from fattening pig houses with culture-independent methods. Int J Hyg Environ Health 2025; 266:114547. [PMID: 40031410 DOI: 10.1016/j.ijheh.2025.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Fattening pig houses often utilize biological agricultural exhaust air purification systems (APS) that employ an active microbiome to degrade nitrogen. Consequently, disinfection cannot be applied, and a neutral pH value must be maintained. However, the biofilm in biotrickling filters and a higher temperature can potentially facilitate the growth of Legionella spp. To investigate the occurrence of Legionella spp. or even the pathogen Legionella pneumophila in these systems, traditional cultivation methods proved impractical due to overgrowth and long turnaround times from sampling in the field to results in the laboratory. Therefore, innovative concepts for rapid and cultivation-independent analysis of Legionella spp. are highly demanded. In this study, two rapid analysis methods were applied using a standard addition qPCR method for the detection of L. pneumophila Sg1 and Legionella spp. as well as flow cytometry coupled with immunomagnetic separation (IMS-FCM) for the detection of viable L. pneumophila. Three APS were monitored over a period of more than a year during summer, winter, and intermediate seasons. While cultivation failed to quantify any Legionella spp., the standard addition qPCR quantified 230 to 9500 Legionella spp. cells per m3 in air passing through the APS (clean gas). In process water that is used for circulating washing of the APS a high occurrence of 104 to 2.9 × 105Legionella spp. cells/mL was measured. By IMS-FCM it was confirmed that viable L. pneumophila in concentrations higher than 100 cells/mL for process water and higher than 100 cells/m3 in clean gas were found in all seasons. In contrast, Legionella spp. or L. pneumophila were rarely found in air directly from the barn (raw gas). We see no risk coming from the closed barn itself but there is a health risk, because the contamination of viable L. pneumophila in process water is not efficiently reduced in clean gas.
Collapse
Affiliation(s)
- Gerhard Schwaiger
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Marco Matt
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Sarah Bromann
- Thuenen-Institute of Agricultural Technology, Bundesallee 47, D-38116, Braunschweig, Germany
| | - Marcus Clauß
- Thuenen-Institute of Agricultural Technology, Bundesallee 47, D-38116, Braunschweig, Germany
| | - Martin Elsner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany.
| |
Collapse
|
3
|
Cornu Hewitt B, Bossers A, van Kersen W, de Rooij MMT, Smit LAM. Associations between acquired antimicrobial resistance genes in the upper respiratory tract and livestock farm exposures: a case-control study in COPD and non-COPD individuals. J Antimicrob Chemother 2024; 79:3160-3168. [PMID: 39315772 PMCID: PMC11638102 DOI: 10.1093/jac/dkae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Livestock-related emissions have been associated with aggravations of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD), potentially by altering the respiratory resistome. OBJECTIVES This study investigates the structure of the acquired oropharyngeal (OP) resistome of patients with COPD and controls, its interplay with the respiratory microbiome and associations with residential livestock exposure. METHODS In a matched case-control study in the rural Netherlands, we analysed OP swabs from 35 patients with COPD and 34 controls, none of whom had used antibiotics in the preceding 4 weeks. Resistome profiling was performed using ResCap, complemented by prior characterization of the microbiome via 16S rRNA-based sequencing. Residential livestock farm exposure was defined using distance-based variables alongside modelled concentrations of livestock-emitted microbial pollutants. We compared resistome profiles between patients with COPD and controls, examining alpha and beta diversity as well as differential abundance. Additionally, we assessed the interplay between the resistome and microbiome using co-occurrence networks and Procrustes analysis. Variations in resistome profiles were also analysed based on residential livestock exposures. RESULTS Patients with COPD exhibited higher resistome diversity than controls (Shannon diversity, P = 0.047), though resistome composition remained similar between groups (PERMANOVA, P = 0.19). Significant correlations were observed between the OP resistome and microbiome compositions, with distinct patterns in co-occurrence networks. Residential exposure to livestock farms was not associated with resistome alterations. CONCLUSIONS Our findings reveal the COPD airway as a hospitable environment for antimicrobial resistance genes, irrespective of recent antimicrobial usage. Demonstrating the interplay between the resistome and microbiome, our study underscores the importance of a deeper understanding of the resistome in respiratory health.
Collapse
Affiliation(s)
- Beatrice Cornu Hewitt
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Warner van Kersen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80178, Utrecht 3508 TD, The Netherlands
| |
Collapse
|
4
|
Son JY, Heo S, Byun G, Foo D, Song Y, Lewis BM, Stewart R, Choi HM, Bell ML. A systematic review of animal feeding operations including concentrated animal feeding operations (CAFOs) for exposure, health outcomes, and environmental justice. ENVIRONMENTAL RESEARCH 2024; 259:119550. [PMID: 38964578 PMCID: PMC11365793 DOI: 10.1016/j.envres.2024.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Despite growing literature on animal feeding operations (AFOs) including concentrated animal feeding operations (CAFOs), research on disproportionate exposure and associated health burden is relatively limited and shows inconclusive findings. OBJECTIVE We systematically reviewed previous literature on AFOs/CAFOs, focusing on exposure assessment, associated health outcomes, and variables related to environmental justice (EJ) and potentially vulnerable populations. METHODS We conducted a systematic search of databases (MEDLINE/PubMed and Web of Science) and performed citation screening. Screening of titles, abstracts, and full-text articles and data extraction were performed independently by pairs of reviewers. We summarized information for each study (i.e., study location, study period, study population, study type, study design, statistical methods, and adjusted variables (if health association was examined), and main findings), AFO/CAFO characteristics and exposure assessment (i.e., animal type, data source, measure of exposure, and exposure assessment), health outcomes or symptoms (if health association was examined), and information related to EJ and potentially vulnerable populations (in relation to exposure and/or health associations, vulnerable populations considered, related variables, and main findings in relation to EJ and vulnerable populations). RESULTS After initial screening of 10,963 papers, we identified 76 eligible studies. This review found that a relatively small number of studies (20 studies) investigated EJ and vulnerability issues related to AFOs/CAFOs exposure and/or associated health outcomes (e.g., respiratory diseases/symptoms, infections). We found differences in findings across studies, populations, the metrics used for AFO/CAFO exposure assessment, and variables related to EJ and vulnerability. The most commonly used metric for AFO/CAFO exposure assessment was presence of or proximity to facilities or animals. The most investigated variables related to disparities were race/ethnicity and socioeconomic status. CONCLUSION Findings from this review provide suggestive evidence that disparities exist with some subpopulations having higher exposure and/or health response in relation to AFO/CAFO exposure, although results varied across studies.
Collapse
Affiliation(s)
- Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Seulkee Heo
- School of the Environment, Yale University, New Haven, CT, USA
| | - Garam Byun
- School of the Environment, Yale University, New Haven, CT, USA
| | - Damien Foo
- School of the Environment, Yale University, New Haven, CT, USA
| | - Yimeng Song
- School of the Environment, Yale University, New Haven, CT, USA
| | - Brandon M Lewis
- School of the Environment, Yale University, New Haven, CT, USA
| | - Rory Stewart
- School of the Environment, Yale University, New Haven, CT, USA
| | | | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA; School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Pouwels SD, Ter Haar EAMD, Heijink IH, Hylkema MN, Koster TD, Kuks PJM, Maassen S, Slebos DJ, Vasse GF, de Vries M, Woldhuis RR, Brandsma CA. Highlights from the 11th Bronchitis International Symposium: "Heterogeneity of Lung Disease in a Changing Environment," Groningen, The Netherlands, 2024. Respiration 2024; 103:765-776. [PMID: 39348815 DOI: 10.1159/000541655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024] Open
Abstract
This meeting report provides an overview of the highlights of the Bronchitis XI international symposium, held in June 2024 in Groningen, The Netherlands. The theme of this year's symposium was "heterogeneity of lung disease in a changing environment," and the symposium contained five different sessions focused on (i) heterogeneity of chronic lung disease, (ii) environmental changes with impact on lung disease, (iii) the aging lung, (iv) bronchitis, and (v) innovative therapy. The highlights from each of these sessions will be discussed separately, providing an overview of latest studies, new data, and enthralling discussions.
Collapse
Affiliation(s)
- Simon D Pouwels
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Else A M D Ter Haar
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - T David Koster
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Pauline J M Kuks
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Sjors Maassen
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Gwenda F Vasse
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
de Rooij MMT, Erbrink HJ, Smit LAM, Wouters IM, Hoek G, Heederik DJJ. Short-term residential exposure to endotoxin emitted from livestock farms in relation to lung function in non-farming residents. ENVIRONMENTAL RESEARCH 2024; 243:117821. [PMID: 38072102 DOI: 10.1016/j.envres.2023.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Wu B, Lou C, Chen Z, Chai T, Yu H. Combined 16S and Internal Transcribed Spacer analysis revealed the effect of time on microbial community in animal house. Poult Sci 2023; 102:103039. [PMID: 37729676 PMCID: PMC10514460 DOI: 10.1016/j.psj.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
The outbreak of COVID-19 reminds people that aerosols have an important impact on health. The concentration and composition of microbial aerosol in livestock and poultry houses are closely related to the environmental conditions of livestock and poultry houses, and also related to the healthy growth of livestock and poultry. In our study, 16S and ITS sequencing techniques were used to analyze the relation and difference of bacteria and fungi in the air samples of a chicken house. At the age of 7 to 42 d, the operation classification unit (OTU) numbers of bacteria and fungi identified in our results were 2,398 and 986, respectively, of which the shared OTU numbers were 410 and 141, respectively. At the phylum level, Firmicutes, Proteobacteria, and Actinomycetes were the 3 most abundant bacterial phyla, and Ascomycetes and Basidiomycetes were the top 2 phyla in fungi. At the genus level, 7 differential fungal genera were identified, including Debaryomyces, Trichosporon, Wallemia, Aspergillus, Nigrospora, Fusarium, and Vishniacozyma. Compared with other bacterial genera, Lactobacillus, Cetobacterium, and Romboutsia had the highest abundance (more than 5%). The result showed that the Alpha diversity and Beta diversity of fungi were significantly different in different growing periods. However, only Beta diversity showed significant differences among bacteria. In general, the bacterial and fungal diversity of microbial aerosols in the chicken house increased significantly at the age of 7 to 42 d. And the evenness and richness of airborne fungal communities also increased obviously. In a word, we must pay attention to the complex community composition in the chicken house, this is closely related to animal health and the health of surrounding residents. The cooperation and communication between bacteria and fungi in PM2.5 samples provides a new reference to analyze the influence of microbial aerosol.
Collapse
Affiliation(s)
- Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225 China
| | - Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225 China
| | - Zhuo Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225 China
| | - Tongjie Chai
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, Shandong Province 271000, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225 China.
| |
Collapse
|
8
|
Lotterman A, Baliatsas C, de Rooij MMT, Huss A, Jacobs J, Dückers M, Boender GJ, McCarthy C, Heederik D, Hagenaars TJ, Yzermans CJ, Smit LAM. Increased risk of pneumonia amongst residents living near goat farms in different livestock-dense regions in the Netherlands. PLoS One 2023; 18:e0286972. [PMID: 37405987 PMCID: PMC10321607 DOI: 10.1371/journal.pone.0286972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Previous studies, performed between 2009-2019, in the Netherlands observed an until now still unexplained increased risk for pneumonia among residents living close to goat farms. Since data were collected in the provinces Noord-Brabant and Limburg (NB-L), an area with relatively high air pollution levels and proximity to large industrial areas in Europe, the question remains whether the results are generalizable to other regions. In this study, a different region, covering the provinces Utrecht, Gelderland, and Overijssel (UGO) with a similar density of goat farms, was included to assess whether the association between goat farm proximity and pneumonia is consistently observed across the Netherlands. METHODS Data for this study were derived from the Electronic Health Records (EHR) of 21 rural general practices (GPs) in UGO, for 2014-2017. Multi-level analyses were used to compare annual pneumonia prevalence between UGO and data derived from rural reference practices ('control area'). Random-effects meta-analysis (per GP practice) and kernel analyses were performed to study associations of pneumonia with the distance between goat farms and patients' home addresses. RESULTS GP diagnoses of pneumonia occurred 40% more often in UGO compared to the control area. Meta-analysis showed an association at a distance of less than 500m (~70% more pneumonia compared to >500m) and 1000m (~20% more pneumonia compared to >1000m). The kernel-analysis for three of the four individual years showed an increased risk up to a distance of one or two kilometers (2-36% more pneumonia; 10-50 avoidable cases per 100,000 inhabitants per year). CONCLUSIONS The positive association between living in the proximity of goat farms and pneumonia in UGO is similar to the previously found association in NB-L. Therefore, we concluded that the observed associations are relevant for regions with goat farms in the entire country.
Collapse
Affiliation(s)
- Aniek Lotterman
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christos Baliatsas
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | - Myrna M. T. de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - José Jacobs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Michel Dückers
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - C. Joris Yzermans
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Burbank AJ, Hernandez ML, Jefferson A, Perry TT, Phipatanakul W, Poole J, Matsui EC. Environmental justice and allergic disease: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee and the Diversity, Equity and Inclusion Committee. J Allergy Clin Immunol 2023; 151:656-670. [PMID: 36584926 PMCID: PMC9992350 DOI: 10.1016/j.jaci.2022.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Environmental justice is the concept that all people have the right to live in a healthy environment, to be protected against environmental hazards, and to participate in decisions affecting their communities. Communities of color and low-income populations live, work, and play in environments with disproportionate exposure to hazards associated with allergic disease. This unequal distribution of hazards has contributed to health disparities and is largely the result of systemic racism that promotes segregation of neighborhoods, disinvestment in predominantly racial/ethnic minority neighborhoods, and discriminatory housing, employment, and lending practices. The AAAAI Environmental Exposure and Respiratory Health Committee and Diversity, Equity and Inclusion Committee jointly developed this report to improve allergy/immunology specialists' awareness of environmental injustice, its roots in systemic racism, and its impact on health disparities in allergic disease. We present evidence supporting the relationship between exposure to environmental hazards, particularly at the neighborhood level, and the disproportionately high incidence and poor outcomes from allergic diseases in marginalized populations. Achieving environmental justice requires investment in at-risk communities to increase access to safe housing, clean air and water, employment opportunities, education, nutrition, and health care. Through policies that promote environmental justice, we can achieve greater health equity in allergic disease.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina School of Medicine, Children's Research Institute, Chapel Hill, NC.
| | - Michelle L Hernandez
- Division of Pediatric Allergy and Immunology, University of North Carolina School of Medicine, Children's Research Institute, Chapel Hill, NC
| | - Akilah Jefferson
- University of Arkansas for Medical Sciences, Little Rock, Ark; Arkansas Children's Research Institute, Little Rock, Ark
| | - Tamara T Perry
- University of Arkansas for Medical Sciences, Little Rock, Ark; Arkansas Children's Research Institute, Little Rock, Ark
| | - Wanda Phipatanakul
- Division of Asthma, Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Jill Poole
- Department of Internal Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - Elizabeth C Matsui
- Departments of Population Health and Pediatrics, Dell Medical School at University of Texas at Austin, Austin, Tex
| |
Collapse
|
10
|
Kiss P, de Rooij MMT, Koppelman GH, Boer J, Vonk JM, Vermeulen R, Hogerwerf L, Sterk HAM, Huss A, Smit LAM, Gehring U. Residential exposure to livestock farms and lung function in adolescence - The PIAMA birth cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115134. [PMID: 36563981 DOI: 10.1016/j.envres.2022.115134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. OBJECTIVES To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 μm (PM10) from livestock farms with lung function in adolescence. METHODS We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. RESULTS Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. CONCLUSIONS Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Pauline Kiss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jolanda Boer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrika A M Sterk
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G, Wolska L. Intensive poultry farming: A review of the impact on the environment and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160014. [PMID: 36368402 DOI: 10.1016/j.scitotenv.2022.160014] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.
Collapse
Affiliation(s)
- Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland.
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Lidia Piechowicz
- Department of Microbiology, Faculty of Medicine, Medical University of Gdansk, Dębowa Str. 25, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
12
|
van Kersen W, Bossers A, de Steenhuijsen Piters WAA, de Rooij MMT, Bonten M, Fluit AC, Heederik D, Paganelli FL, Rogers M, Viveen M, Bogaert D, Leavis HL, Smit LAM. Air pollution from livestock farms and the oropharyngeal microbiome of COPD patients and controls. ENVIRONMENT INTERNATIONAL 2022; 169:107497. [PMID: 36088872 DOI: 10.1016/j.envint.2022.107497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.
Collapse
Affiliation(s)
- Warner van Kersen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marc Bonten
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad C Fluit
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Malbert Rogers
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Viveen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debby Bogaert
- University Medical Center Utrecht, Utrecht, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen L Leavis
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
|
14
|
Yue D, Sarkar A, Guang C. Impacts of Incentive and Disincentive Mechanisms for Ensuring Environmentally Friendly Livestock Waste Management. Animals (Basel) 2022; 12:2121. [PMID: 36009712 PMCID: PMC9404974 DOI: 10.3390/ani12162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmentally friendly waste management (EFWM) is a safer way of waste disposal that can foster a cleaner environment for both farms and their surroundings. It may lessen land, air, and water pollution, as well as moderate ecological footprints, and aid in sustainable agricultural development, which has become one of the major concerns of the modern era. To achieve these outcomes, incentives and control mechanisms initiated by the government may alter farmers' behavior. The study involved a review of relevant literature and the conduct of interviews with 499 pig breeders to evaluate the impacts of government incentives and control mechanisms on fostering the adoption of environmentally friendly waste management practices by farmers. A theoretical framework based on existing studies is proposed, utilizing a structural equation modeling (SEM) approach to analyze the data and illustrate the relationships among incentives and control mechanisms. The results show that: (i) overall the impacts of incentive mechanisms were stronger and more effective than those of control mechanisms. Among them, subsidy policy and discount policy were the most influential for farmers' adoption behavior. However, penalty and disincentive policy also impacted the outcome variables; (ii) a significant relationship was observed among regulatory, disincentive, and subsidy policies and a moderate relationship among penalty, insurance, and discount policies. However, bonus-community service and social critic policies did not show any significant relationship with any other variables. The research findings can assist the Chinese government in gaining a comprehensive understanding of the impacts of two crucial mechanisms and promoting the adoption of environmentally friendly practices by farmers. The government should highlight and strengthen the importance of social obligations and orientation, as well as providing monetary support at the rural level to improve farmers' ability to adapt to environmentally friendly waste management practices.
Collapse
Affiliation(s)
- Deng Yue
- School of Management, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Apurbo Sarkar
- College of Economics and Management, Northwest A&F University, 3 Taicheng Road, Xianyang 712100, China
| | - Chen Guang
- College of Economics and Management, Northwest A&F University, 3 Taicheng Road, Xianyang 712100, China
| |
Collapse
|
15
|
Hogerwerf L, Post PM, Bom B, van der Hoek W, van de Kassteele J, Stemerding AM, de Vries W, Houthuijs D. Proximity to livestock farms and COVID-19 in the Netherlands, 2020-2021. Int J Hyg Environ Health 2022; 245:114022. [PMID: 35987164 PMCID: PMC9376334 DOI: 10.1016/j.ijheh.2022.114022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
Abstract
Objectives In the Netherlands, during the first phase of the COVID-19 epidemic, the hotspot of COVID-19 overlapped with the country's main livestock area, while in subsequent phases this distinct spatial pattern disappeared. Previous studies show that living near livestock farms influence human respiratory health and immunological responses. This study aimed to explore whether proximity to livestock was associated with SARS-CoV-2 infection. Methods The study population was the population of the Netherlands excluding the very strongly urbanised areas and border areas, on January 1, 2019 (12, 628, 244 individuals). The cases are the individuals reported with a laboratory-confirmed positive SARS-CoV-2 test with onset before January 1, 2022 (2, 223, 692 individuals). For each individual, we calculated distance to nearest livestock farm (cattle, goat, sheep, pig, poultry, horse, rabbit, mink). The associations between residential (6-digit postal-code) distance to the nearest livestock farm and individuals' SARS-CoV-2 status was studied with multilevel logistic regression models. Models were adjusted for individuals' age categories, the social status of the postal code area, particulate matter (PM10)- and nitrogen dioxide (NO2)-concentrations. We analysed data for the entire period and population as well as separately for eight time periods (Jan–Mar, Apr–Jun, Jul–Sep and Oct–Dec in 2020 and 2021), four geographic areas of the Netherlands (north, east, west and south), and for five age categories (0–14, 15–24, 25–44, 45–64 and > 65 years). Results Over the period 2020–2021, individuals' SARS-CoV-2 status was associated with living closer to livestock farms. This association increased from an Odds Ratio (OR) of 1.01 (95% Confidence Interval [CI] 1.01–1.02) for patients living at a distance of 751–1000 m to a farm to an OR of 1.04 (95% CI 1.04–1.04), 1.07 (95% CI 1.06–1.07) and 1.11 (95% CI 1.10–1.12) for patients living in the more proximate 501–750 m, 251–500m and 0–250 m zones around farms, all relative to patients living further than 1000 m around farms. This association was observed in three out of four quarters of the year in both 2020 and 2021, and in all studied geographic areas and age groups. Conclusions In this exploratory study with individual SARS-CoV-2 notification data and high-resolution spatial data associations were found between living near livestock farms and individuals' SARS-CoV-2 status in the Netherlands. Verification of the results in other countries is warranted, as well as investigations into possible underlying exposures and mechanisms.
Collapse
Affiliation(s)
- Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Pim M Post
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O Box 217, Enschede, 7500 AE, the Netherlands.
| | - Ben Bom
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Wim van der Hoek
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Jan van de Kassteele
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | | | - Wilco de Vries
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Danny Houthuijs
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| |
Collapse
|
16
|
Simões M, Janssen N, Heederik DJJ, Smit LAM, Vermeulen R, Huss A. Residential proximity to livestock animals and mortality from respiratory diseases in The Netherlands: A prospective census-based cohort study. ENVIRONMENT INTERNATIONAL 2022; 161:107140. [PMID: 35189407 DOI: 10.1016/j.envint.2022.107140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is increasing evidence of associations between residential proximity to livestock farms and respiratory morbidity, but less is known about potential effects on respiratory mortality among residents. OBJECTIVES We aimed to assess potential associations between respiratory mortality and residential proximity to (intensive) livestock farming. METHODS In DUELS, a national census-based cohort, we selected all inhabitants from rural and semi-urban areas of the Netherlands, aged ≥30 years and living at the same address for five years up to baseline (2004). We followed these ∼4 million individuals for respiratory mortality (respiratory system diseases, chronic lower respiratory diseases, pneumonia) from 2005 to 2012. We computed the average number of cattle, pigs, chicken, and mink present in 500 m, 1000 m, 1500 m and 2000 m of each individual's residence in the period 1999-2003. Analyses were conducted using Cox proportional hazards regression, adjusting for potential confounders at individual and neighbourhood level. RESULTS We found evidence that living up to 2000 m of pig farms was associated with respiratory mortality, namely from chronic lower respiratory diseases, with Hazard Ratios ranging from 1.06 (1.02, 1.10) in people living close to low numbers (<median number of animals) of pigs in 1000 m and 1.18 (1.13, 1.24) in those living near high numbers (≥median) of pigs in 2000 m. We also found indications of higher pneumonia mortality in people living near mink farms. CONCLUSION Our results are in line with previous findings of adverse respiratory effects in people living near livestock farms. Little is known about the physical, chemical, and biological exposures leading to respiratory morbidity and mortality warranting further explorations of air contaminants in the vicinity of livestock farms.
Collapse
Affiliation(s)
- Mariana Simões
- Department Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Nicole Janssen
- Centre for Sustainability, Environment and Health (DMG), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick J J Heederik
- Department Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Department Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Department Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anke Huss
- Department Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Ulu A, Velazquez JV, Burr A, Sveiven SN, Yang J, Bravo C, Hammock BD, Nordgren TM. Sex-Specific Differences in Resolution of Airway Inflammation in Fat-1 Transgenic Mice Following Repetitive Agricultural Dust Exposure. Front Pharmacol 2022; 12:785193. [PMID: 35095496 PMCID: PMC8793679 DOI: 10.3389/fphar.2021.785193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
In agriculture industries, workers are at increased risk for developing pulmonary diseases due to inhalation of agricultural dusts, particularly when working in enclosed confinement facilities. Agricultural dusts inhalation leads to unresolved airway inflammation that precedes the development and progression of lung disease. We have previously shown beneficial effects of the omega-3 polyunsaturated fatty acid (ω-3 PUFA) DHA in protecting against the negative inflammatory effects of repetitive dust exposure in the lung. Dietary manipulation of pulmonary disease risk is an attractive and timely approach given the contribution of an increased ω-6 to ω-3 PUFA ratio to low grade inflammation and chronic disease in the Western diet. To prevent any confounding factors that comes with dietary supplementation of ω-3 PUFA (different sources, purity, dose, and duration), we employed a Fat-1 transgenic mouse model that convert ω-6 PUFA to ω-3 PUFA, leading to a tissue ω-6 to ω-3 PUFA ratio of approximately 1:1. Building on our initial findings, we hypothesized that attaining elevated tissue levels of ω-3 PUFA would attenuate agricultural dust-induced lung inflammation and its resolution. To test this hypothesis, we compared wild-type (WT) and Fat-1 transgenic mice in their response to aqueous extracts of agricultural dust (DE). We also used a soluble epoxide hydrolase inhibitor (sEH) to potentiate the effects of ω-3 PUFA, since sEH inhibitors have been shown to stabilize the anti-inflammatory P450 metabolites derived from both ω-3 and ω-6 PUFA and promote generation of specialized pro-resolving lipid mediators from ω-3 PUFA. Over a three-week period, mice were exposed to a total of 15 intranasal instillations of DE obtained from swine confinement buildings in the Midwest. We observed genotype and sex-specific differences between the WT vs. Fat-1 transgenic mice in response to repetitive dust exposure, where three-way ANOVA revealed significant main effects of treatment, genotype, and sex. Also, Fat-1 transgenic mice displayed reduced lymphoid aggregates in the lung following DE exposure as compared to WT animals exposed to DE, suggesting improved resilience to the DE-induced inflammatory effects. Overall, our data implicate a protective role of ω-3 FA in the lung following repetitive dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
18
|
Son JY, Miranda ML, Bell ML. Exposure to concentrated animal feeding operations (CAFOs) and risk of mortality in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149407. [PMID: 34365264 PMCID: PMC8530906 DOI: 10.1016/j.scitotenv.2021.149407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Concentrated animal feeding operations (CAFOs) have emerged as an environmental justice issue due to disproportionate siting in low-income and minority communities. However, CAFOs' impact on health is not fully understood. We examined risk of cause-specific mortality associated with CAFOs in North Carolina (NC) for 2000-2017 and health disparities. We obtained data on individual-level cause-specific mortality and on permitted animal facilities. We estimated associations between exposure to CAFOs and cause-specific mortality using logistic regression, controlling for demographics (e.g., age) and area-level covariates. To estimate exposure to CAFOs, we considered (1) a binary indicator (presence or absence) of CAFOs within a buffer around individual residence based on several buffer sizes, and (2) four levels of exposure (no, low, medium, and high) based on the number of CAFOs within 15 km around each residence. We considered individual-level (sex, race/ethnicity, age, education) and community-level (median household income, urbanicity, and region) factors. Under all buffer sizes used to estimate CAFOs exposure, people living near CAFOs had significantly higher risk of cardiovascular mortality than other persons. Comparing those living near CAFOs to the no exposure group, odds ratios (ORs) for cardiovascular mortality were 1.01 (95% confidence interval (CI) 1.00, 1.03), 1.04 (1.03, 1.06), and 1.06 (1.05, 1.07) for low, medium, and high CAFOs exposure, respectively, indicating a trend of higher risk with higher exposure. Those in the high CAFOs exposure group had significantly higher risk of anemia and kidney disease mortality than those with no exposure. Results suggest higher mortality risk from CAFOs for some subpopulations, however differences were not statistically significant. Findings provide evidence of excess mortality risk from CAFOs in NC. These results have implications for future studies of environmental justice and CAFOs.
Collapse
Affiliation(s)
- Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Marie Lynn Miranda
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Roof I, van der Hoek W, Oude Boerrigter L, Wielders CCH, Smit LAM. Use of Antibiotics among Residents Living Close to Poultry or Goat Farms: A Nationwide Analysis in The Netherlands. Antibiotics (Basel) 2021; 10:1346. [PMID: 34827284 PMCID: PMC8614970 DOI: 10.3390/antibiotics10111346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
Prior regional studies found a high risk of pneumonia for people living close to poultry and goat farms. This epidemiological study in the Netherlands used nationwide antibiotic prescription data as a proxy for pneumonia incidence to investigate whether residents of areas with poultry and goat farms use relatively more antibiotics compared to areas without such farms. We used prescription data on antibiotics most commonly prescribed to treat pneumonia in adults and livestock farming data, both with nationwide coverage. Antibiotic use was expressed as defined daily doses per (4-digit Postal Code (PC4) area)-(age group)-(gender)-(month) combination for the year 2015. We assessed the associations between antibiotic use and farm exposure using negative binomial regression. The amoxicillin, doxycycline, and co-amoxiclav use was significantly higher (5-10% difference in use) in PC4 areas with poultry farms present compared to areas without, even after adjusting for age, gender, smoking, socio-economic status, and goat farm presence. The adjusted models showed no associations between antibiotic use and goat farm presence. The variables included in this study could only partly explain the observed regional differences in antibiotic use. This was an ecological study that precludes inference about causal relations. Further research using individual-level data is recommended.
Collapse
Affiliation(s)
- Inge Roof
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (W.v.d.H.); (L.O.B.); (C.C.H.W.)
| | - Wim van der Hoek
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (W.v.d.H.); (L.O.B.); (C.C.H.W.)
| | - Lisette Oude Boerrigter
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (W.v.d.H.); (L.O.B.); (C.C.H.W.)
| | - Cornelia C. H. Wielders
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (W.v.d.H.); (L.O.B.); (C.C.H.W.)
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands;
| |
Collapse
|
20
|
Coffman VR, Hall DJ, Pisanic N, Nadimpalli M, McCormack M, Diener‐West M, Davis MF, Heaney CD. Personal protective equipment use during industrial hog operation work activities and acute lung function changes in a prospective worker cohort, North Carolina 2014-2015. Am J Ind Med 2021; 64:688-698. [PMID: 34091939 DOI: 10.1002/ajim.23260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Occupational activities related to industrial hog operation (IHO) worker lung function are not well defined. Therefore, we aimed to identify IHO work activities associated with diminished respiratory function and the effectiveness, if any, of personal protective equipment (PPE) use on IHOs. METHODS From 2014 to 2015, 103 IHO workers were enrolled and followed for 16 weeks. At each biweekly visit, work activities and PPE use were self-reported via questionnaire and lung function measurements were collected via spirometry. Generalized linear and linear fixed-effects models were fitted to cross-sectional and longitudinal data. RESULTS Increasing years worked on an IHO were associated with diminished lung function, but baseline and longitudinal work activities were largely inconsistent in direction and magnitude. Unexpectedly, a -0.3 L (95% confidence interval: -0.6, -0.04) difference in forced expiratory volume in the first second (FEV1 ) was estimated when workers wore PPE consistently (≥80% of the time at work) versus those weeks they did not. In post-hoc analyses, we found that coveralls and facemasks were worn less consistently when workers experienced worse barn conditions and had more contact with pigs, but coveralls were worn more consistently as cleaning activities increased. CONCLUSIONS Similar to past studies, baseline estimates were likely obscured by healthy worker effect bias, but showed decrements in worker lung function as years of work increased. A challenge to disentangling the effect of work activities on lung function was the discovery that IHO workers used PPE differently according to the work task. These data suggest that interventions may be targeted toward improving barn conditions so that workers can consistently utilize IHO-provided PPE.
Collapse
Affiliation(s)
- Vanessa R. Coffman
- Division of Epidemiology and Biostatistics, School of Public Health University of Illinois at Chicago Chicago Illinois USA
| | - Devon J. Hall
- Rural Empowerment Association for Community Help (REACH) Warsaw North Carolina USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Maya Nadimpalli
- Department of Civil and Environmental Engineering Tufts University Medford Massachusetts USA
- Center for Integrated Management of Antimicrobial Resistance (CIMAR) Tufts University Boston Massachusetts USA
| | - Meredith McCormack
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Medicine Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
| | - Marie Diener‐West
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Nursing Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Clinical Trials and Evidence Synthesis, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Meghan F. Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- School of Medicine Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for Global Health Johns Hopkins University Baltimore Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
21
|
Hong SW, Park J, Jeong H, Kim M. Evaluation of the microbiome composition in particulate matter inside and outside of pig houses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:640-650. [PMID: 34189511 PMCID: PMC8203996 DOI: 10.5187/jast.2021.e52] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM) produced in pig houses may contain microbes which can
spread by airborne transmission, and PM and microbes in PM adversely affect
human and animal health. To investigate the microbiome in PM from pig houses,
nine PM samples were collected in summer 2020 inside and outside of pig houses
located in Jangseong-gun, Jeollanam-do Province, Korea, comprising three PM
samples from within a nursery pig house (I-NPH), three samples from within a
finishing pig house (I-FPH), and three samples from outside of the pig houses
(O-PH). Microbiomes were analyzed using 16S rRNA gene amplicon sequencing.
Firmicutes was the most dominant phylum and accounted for 64.8%–97.5% of
total sequences in all the samples, followed by Proteobacteria
(1.4%–21.8%) and Bacteroidetes (0.3%–13.7%). In total, 31 genera
were represented by > 0.3% of all sequences, and only
Lactobacillus, Turicibacter, and
Aerococcus differed significantly among the three PM sample
types. All three genera were more abundant in the I-FPH samples than in the O-PH
samples. Alpha diversity indices did not differ significantly among the three PM
types, and a principal coordinate analysis suggested that overall microbial
communities were similar across PM types. The concentration of PM did not
significantly differ among the three PM types, and no significant correlation of
PM concentration with the abundance of any potential pathogen was observed. The
present study demonstrates that microbial composition in PM inside and outside
of pig houses is similar, indicating that most microbe-containing PM inside pig
houses leaks to the outside from where it, along with microbe-containing PM on
the outside, may re-enter the pig houses. Our results may provide useful
insights regarding strategies to mitigate potential risk associated with pig
farming PM and pathogens in PM.
Collapse
Affiliation(s)
- Se-Woon Hong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea.,AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Jinseon Park
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Hanna Jeong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea
| | - Minseok Kim
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea.,Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
22
|
Son JY, Muenich RL, Schaffer-Smith D, Miranda ML, Bell ML. Distribution of environmental justice metrics for exposure to CAFOs in North Carolina, USA. ENVIRONMENTAL RESEARCH 2021; 195:110862. [PMID: 33581087 PMCID: PMC7987827 DOI: 10.1016/j.envres.2021.110862] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Several studies have reported environmental disparities regarding exposure to concentrated animal feeding operations (CAFOs). Public health implications of environmental justice from the intensive livestock industry are of great concern in North Carolina (NC), USA, a state with a large number and extensive history of CAFOs. OBJECTIVES We examined disparities by exposure to CAFOs using several environmental justice metrics and considering potentially vulnerable subpopulations. METHODS We obtained data on permitted animal facilities from NC Department of Environmental Quality (DEQ). Using ZIP code level variables from the 2010 Census, we evaluated environmental disparities by eight environmental justice metrics (i.e., percentage of Non-Hispanic White, Non-Hispanic Black, or Hispanic; percentage living below the poverty level; median household income; percentage with education less than high school diploma; racial residential isolation (RI) for Non-Hispanic Black; and educational residential isolation (ERI) for population without college degree). We applied two approaches to assign CAFOs exposure for each ZIP code: (1) a count method based on the number of CAFOs within ZIP code; and (2) a buffer method based on the area-weighted number of CAFOs using a 15 km buffer. RESULTS Spatial distributions of CAFOs exposure generally showed similar patterns between the two exposure methods. However, some ZIP codes had different estimated CAFOs exposure for the different approaches, with higher exposure when using the buffer method. Our findings indicate that CAFOs are located disproportionately in communities with higher percentage of minorities and in low-income communities. Distributions of environmental justice metrics generally showed similar patterns for both exposure methods, however starker disparities were observed using a buffer method. CONCLUSIONS Our findings of the disproportionate location of CAFOs provide evidence of environmental disparities with respect to race and socioeconomic status in NC and have implications for future studies of environmental and health impacts of CAFOs.
Collapse
Affiliation(s)
- Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Rebecca L Muenich
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | | | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
The Impact of Bushfire Smoke on Cattle-A Review. Animals (Basel) 2021; 11:ani11030848. [PMID: 33802695 PMCID: PMC8002418 DOI: 10.3390/ani11030848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary In 2019–2020, Australia had a particularly bad bushfire season which resulted in large numbers of people and animals being exposed to smoke haze for several weeks. We conducted a literature review to examine the evidence for effects of prolonged exposure to bushfire smoke on cattle. There was general agreement that small airborne particulate matter in smoke is the substance most likely to cause problems. There was indirect evidence about effects on cattle caused by other types of pollution containing particulate matter. We found little evidence to support severe effects on cattle. This may be because cattle do not tend to suffer from the co-morbidities that, in the human population, seem to be made worse by smoke and pollution. However, small changes to death rates or disease that is not severe may go unreported, so further study is warranted. Abstract In 2019–2020, a particularly bad bushfire season in Australia resulted in cattle being exposed to prolonged periods of smoke haze and reduced air quality. Bushfire smoke contains many harmful pollutants, and impacts on regions far from the fire front, with smoke haze persisting for weeks. Particulate matter (PM) is one of the major components of bushfire smoke known to have a negative impact on human health. However, little has been reported about the potential effects that bushfire smoke has on cattle exposed to smoke haze for extended periods. We explored the current literature to investigate evidence for likely effects on cattle from prolonged exposure to smoke generated from bushfires in Australia. We conducted a search for papers related to the impacts of smoke on cattle. Initial searching returned no relevant articles through either CAB Direct or PubMed databases, whilst Google Scholar provided a small number of results. The search was then expanded to look at two sub-questions: the type of pollution that is found in bushfire smoke, and the reported effects of both humans and cattle being exposed to these types of pollutants. The primary mechanism for damage due to bushfire smoke is due to small airborne particulate matter (PM). Although evidence demonstrates that PM from bushfire smoke has a measurable impact on both human mortality and cardiorespiratory morbidities, there is little evidence regarding the impact of chronic bushfire smoke exposure in cattle. We hypothesize that cattle are not severely affected by chronic exposure to smoke haze, as evidenced by the lack of reports. This may be because cattle do not tend to suffer from the co-morbidities that, in the human population, seem to be made worse by smoke and pollution. Further, small changes to background mortality rates or transient morbidity may also go unreported.
Collapse
|
24
|
Coffman VR, Hall DJ, Pisanic N, Nadimpalli M, McCormack M, Diener-West M, Davis MF, Heaney CD. The use of personal protective equipment during common industrial hog operation work activities and acute lung function changes in a prospective worker cohort, North Carolina, USA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173898 DOI: 10.1101/2020.11.03.20205252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction As occupational activities related to acute industrial hog operation (IHO) worker lung function are not well defined, we aimed to identify IHO work activities associated with diminished respiratory function and the effectiveness, if any, of personal protective equipment (PPE) on IHOs. Methods From 2014-2015, 103 IHO workers were enrolled and followed for 16 weeks. At each bi-weekly visit, lung function measurements were collected via spirometry and work activities and PPE use were self-reported via questionnaire. Generalized linear and linear fixed-effects models were fitted to cross-sectional and longitudinal data. Results At baseline, increasing years worked on an IHO were associated with diminished lung function, but other activities were less consistent in direction and magnitude. In longitudinal models, only reports of working in feeding/finisher barns, showed a consistent association. However, a -0.3 L (95% confidence interval: -0.6, -0.04) difference in FEV 1 was estimated when workers wore PPE consistently versus those weeks they did not. In post-hoc analyses, we found that coveralls and facemasks were worn less consistently when workers experienced worse barn conditions and had more contact with pigs, but coveralls were worn more consistently as cleaning activities increased. Conclusions Similar to past studies, baseline estimates were likely obscured by healthy worker bias. Also making it challenging to disentangle the effect of work activities on lung function was the discovery that IHO workers used PPE differently according to work task. These data suggest that interventions may be targeted toward improving barn conditions so that workers can consistently utilize IHO-provided PPE. KEY MESSAGES What is already known about this subject?: Working on industrial hog operations may be deleterious to long- and short-term respiratory health due to airborne bacteria, endotoxin, hazardous gases, dust, and dander in barns. In efficacy studies PPE has been shown to be protective, but studies have shown that PPE utilization among hog workers has historically been sub-optimal.What are the new findings?: As barn conditions worsened and contact with pigs increased, workers in this cohort reported wearing coveralls and face masks less often; however, they reported increased PPE use as they conducted more cleaning activities at work. During weeks when workers wore PPE their lung function declined, a possible cause being the improper use of the equipment leading to a false sense of protection or re-exposure to hazardous contaminants.How might this impact on policy or clinical practice in the foreseeable future?: Given COVID-19, the H1N1 "swine flu" pandemic, our knowledge of antimicrobial resistant pathogens, and increasing awareness about how food systems are linked to the spread of emerging infectious diseases, occupational health intervention research and workplace policies may focus on creating barn environments that are more conducive to PPE use which could help protect workers and consequently the community.
Collapse
|
25
|
Post PM, Houthuijs D, Sterk HAM, Marra M, van de Kassteele J, van Pul A, Smit LAM, van der Hoek W, Lebret E, Hogerwerf L. Proximity to livestock farms and exposure to livestock-related particulate matter are associated with lower probability of medication dispensing for obstructive airway diseases. Int J Hyg Environ Health 2020; 231:113651. [PMID: 33129168 DOI: 10.1016/j.ijheh.2020.113651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of this study is to assess whether medication use for obstructive airway diseases is associated with environmental exposure to livestock farms. Previous studies in the Netherlands at a regional level suggested that asthma and chronic obstructive pulmonary disease (COPD) are less prevalent among persons living near livestock farms. METHODS A nationwide population-based cross-sectional study was conducted among 7,735,491 persons, with data on the dispensing of drugs for obstructive airway diseases in the Netherlands in 2016. Exposure was based on distances between home addresses and farms and on modelled atmospheric particulate matter (PM10) concentrations from livestock farms. Data were analysed for different regions by logistic regression analyses and adjusted for several individual-level variables, as well as modelled PM10 concentration of non-farm-related air pollution. Results for individual regions were subsequently pooled in meta-analyses. RESULTS The probability of medication for asthma or COPD being dispensed to adults and children was lower with decreasing distance of their homes to livestock farms, particularly cattle and poultry farms. Increased concentrations of PM10 from cattle were associated with less dispensing of medications for asthma or COPD, as well (meta-analysis OR for 10th-90th percentile increase in concentration of PM10 from cattle farms, 95%CI: 0.92, 0.86-0.97 for adults). However, increased concentrations of PM10 from non-farm sources were positively associated (meta-analysis OR for 10th-90th percentile increase in PM10-concentration, 95%CI: 1.29, 1.09-1.52 for adults). CONCLUSIONS The results show that the probability of dispensing medication for asthma or COPD is inversely associated with proximity to livestock farms and modelled exposure to livestock-related PM10 in multiple regions within the Netherlands. This finding implies a notable prevented risk: under the assumption of absence of livestock farms in the Netherlands, an estimated 2%-5% more persons (an increase in tens of thousands) in rural areas would receive asthma or COPD medication.
Collapse
Affiliation(s)
- Pim M Post
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands.
| | - Danny Houthuijs
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Hendrika A M Sterk
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Marten Marra
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Jan van de Kassteele
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Addo van Pul
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Wim van der Hoek
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Erik Lebret
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| |
Collapse
|
26
|
Aerts R, Dujardin S, Nemery B, Van Nieuwenhuyse A, Van Orshoven J, Aerts JM, Somers B, Hendrickx M, Bruffaerts N, Bauwelinck M, Casas L, Demoury C, Plusquin M, Nawrot TS. Residential green space and medication sales for childhood asthma: A longitudinal ecological study in Belgium. ENVIRONMENTAL RESEARCH 2020; 189:109914. [PMID: 32980008 DOI: 10.1016/j.envres.2020.109914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Living in green environments has been associated with various health benefits, but the evidence for positive effects on respiratory health in children is ambiguous. OBJECTIVE To investigate if residential exposure to different types of green space is associated with childhood asthma prevalence in Belgium. METHODS Asthma prevalence was estimated from sales data of reimbursed medication for obstructive airway disease (OAD) prescribed to children between 2010 and 2014, aggregated at census tract level (n = 1872) by sex and age group (6-12 and 13-18 years). Generalized log-linear mixed effects models with repeated measures were used to estimate effects of relative covers of forest, grassland and garden in the census tract of the residence on OAD medication sales. Models were adjusted for air pollution (PM10), housing quality and administrative region. RESULTS Consistent associations between OAD medication sales and relative covers of grassland and garden were observed (unadjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, β = 0.15-0.17; garden, β = 0.13-0.17). The associations remained significant after adjusting for housing quality and chronic air pollution (adjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, β = 0.10-0.14; garden, β = 0.07-0.09). There was no association between OAD medication sales and forest cover. CONCLUSIONS Based on aggregated data, we found that living in close proximity to areas with high grass cover (grasslands, but also residential gardens) may negatively impact child respiratory health. Potential allergic and non-allergic mechanisms that underlie this association include elevated exposure to grass pollen and fungi and reduced exposure to environmental biodiversity. Reducing the dominance of grass in public and private green space might be beneficial to reduce the childhood asthma burden and may simultaneously improve the ecological value of urban green space.
Collapse
Affiliation(s)
- Raf Aerts
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium; Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium; Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium; Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium.
| | - Sebastien Dujardin
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium; Department of Geography, Institute of Life Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Benoit Nemery
- Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| | - An Van Nieuwenhuyse
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| | - Jos Van Orshoven
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium
| | - Jean-Marie Aerts
- Division Animal and Human Health Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ben Somers
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium
| | - Marijke Hendrickx
- Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Nicolas Bruffaerts
- Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Pleinlaan 5, BE-1050, Brussels, Belgium
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium; Epidemiology and Social Medicine, University of Antwerp, Universiteitsplein 1-R.232, BE-2610, Wilrijk, Antwerp, Belgium
| | - Claire Demoury
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Michelle Plusquin
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium; Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| |
Collapse
|
27
|
Prevalence of non-specific health symptoms in livestock dense areas: Looking beyond respiratory conditions. Int J Hyg Environ Health 2020; 230:113603. [PMID: 32882646 DOI: 10.1016/j.ijheh.2020.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
The aim of this study was to gain more insight in the association between prevalence of diverse acute non-specific symptoms (NSS) and livestock density as a possible risk factor among residents of livestock-dense and non-dense regions, taking into account socio-demographic factors and psychological morbidity. Prevalence of NSS and psychological morbidity were assessed for the year 2017, based on electronic health records from 39 general practices in the Netherlands. The study group consisted of people who lived in rural areas with high numbers of livestock (n = 74093), while the control group included people in rural areas with low numbers of livestock (n = 50139). For a large portion of the study group, exposure estimates (to livestock) were calculated. Multiple logistic multilevel regression analyses were performed. Two methods were used: 1) area comparisons between study and control areas in relation to health problems, and 2) estimates of livestock exposure (to goats, poultry, pigs, and cattle) within the study area. It was found that prevalence of diarrhea, headache, sleep disturbance, respiratory symptoms, and skin problems were higher in the study group. The data suggest that there may be a protective effect of livestock exposure: in general, there was a lower risk of NSS closer to livestock (within the exposure analyses). The study suggests that the previously identified higher risk of respiratory health problems in livestock dense areas might also apply to the prevalence of various other NSS. Longitudinal research taking into account different or more individual and contextual characteristics could possibly elucidate why prevalence of NSS in closer proximity to livestock is lower compared to people who live further away, whilst a more overarching analysis indicated that living in livestock dense areas was associated with more NSS.
Collapse
|
28
|
Eguiluz‐Gracia I, Mathioudakis AG, Bartel S, Vijverberg SJH, Fuertes E, Comberiati P, Cai YS, Tomazic PV, Diamant Z, Vestbo J, Galan C, Hoffmann B. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020; 75:2170-2184. [PMID: 31916265 DOI: 10.1111/all.14177] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Air pollution and climate change have a significant impact on human health and well-being and contribute to the onset and aggravation of allergic rhinitis and asthma among other chronic respiratory diseases. In Westernized countries, households have experienced a process of increasing insulation and individuals tend to spend most of their time indoors. These sequelae implicate a high exposure to indoor allergens (house dust mites, pets, molds, etc), tobacco smoke, and other pollutants, which have an impact on respiratory health. Outdoor air pollution derived from traffic and other human activities not only has a direct negative effect on human health but also enhances the allergenicity of some plants and contributes to global warming. Climate change modifies the availability and distribution of plant- and fungal-derived allergens and increases the frequency of extreme climate events. This review summarizes the effects of indoor air pollution, outdoor air pollution, and subsequent climate change on asthma and allergic rhinitis in children and adults and addresses the policy adjustments and lifestyle changes required to mitigate their deleterious effects.
Collapse
Affiliation(s)
- Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA‐Hospital Regional Universitario de Malaga‐UMA Malaga Spain
| | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel Leibniz Lung Center Member of the German Research Center for Lung Research (DZL) Borstel Germany
- Department of Pathology and Medical Biology University Medical Center Groningen GRIAC Research Institute University of Groningen Groningen The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Elaine Fuertes
- National Heart and Lung Institute Imperial College London London UK
| | - Pasquale Comberiati
- Section of Paediatrics Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
| | - Yutong Samuel Cai
- Department of Epidemiology and Biostatistics MRC Centre for Environment and Health School of Public Health Imperial College London London UK
- The George Institute for Global Health University of Oxford Oxford UK
| | - Peter Valentin Tomazic
- Department of General ORL, Head and Neck Surgery Medical University of Graz Graz Austria
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Carmen Galan
- Department of Botany, Ecology and Plant Physiology International Campus of Excellence on Agrifood (ceiA3) University of Córdoba Córdoba Spain
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine Medical Faculty University of Düsseldorf Düsseldorf Germany
| |
Collapse
|
29
|
A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbes are widespread and have been much more studied in recent years. In this review, we describe detailed information on airborne microbes that commonly originate from soil and water through liquid–air and soil–air interface. The common bacteria and fungi in the atmosphere are the phyla of Firmicutes, Proteobacteria, Bacteroides, Actinobacteria, Cyanobacteria and Ascomycota, Basidiomycota, Chytridiomycota, Rozellomycota that include most pathogens leading to several health problems. In addition, the stability of microbial community structure in bioaerosols could be affected by many factors and some special weather conditions like dust events even can transport foreign pathogens to other regions, affecting human health. Such environments are common for a particular place and affect the nature and interaction of airborne microbes with them. For instance, meteorological factors, haze and foggy days greatly influence the concentration and abundance of airborne microbes. However, as microorganisms in the atmosphere are attached on particulate matters (PM), the high concentration of chemical pollutants in PM tends to restrain the growth of microbes, especially gathering atmospheric pollutants in heavy haze days. Moreover, moderate haze concentration and/or common chemical components could provide suitable microenvironments and nutrition for airborne microorganism survival. In summary, the study reviews much information and characteristics of airborne microbes for further study.
Collapse
|
30
|
Abstract
The aim of this study was to find out if the typical spread of hospitalized patients with COVID-19 in The Netherlands, with significantly higher levels in the Dutch Bible belt and the southern, traditionally Catholic provinces, is related to the specific religious composition of the country. To do this, government statistics regarding the level of hospitalized patients with COVID-19 per municipality were combined with statistics regarding church attendance and church membership rates. Results showed that in the Dutch Bible belt the level of patients with COVID-19 was strongly related to church attendance, but in the southern, traditionally Catholic part of The Netherlands nominal church membership mattered more than church attendance. On the basis of these findings, the conclusion was drawn that religion probably facilitates the spread of the virus in both a direct and indirect way. It facilitates the spread of the virus directly through worship services but also indirectly by way of endorsing more general cultural festivities like carnival and maybe even by strengthening certain non-religious social bonds. Epidemiologists monitoring the spread of the virus are called upon to focus more on these possible indirect or latent effects of religion.
Collapse
|
31
|
Tang Q, Huang K, Liu J, Shen D, Dai P, Li Y, Li C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134921. [PMID: 31771854 DOI: 10.1016/j.scitotenv.2019.134921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The microorganisms contained in PM2.5 from livestock houses can spread over long distances through airborne transmission. As such, the potential bacterial pathogens and fungal allergens within can pose a formidable threat to nearby residents' health and the overall environment. However, little is known about the microbial assemblage contained in PM2.5 from pig houses. In this study, 16S and 18S rRNA gene sequencing was employed to analyze the bacterial and fungal assemblage contained in PM2.5 from a nursery pig house across four seasons, respectively. The results showed that alpha diversity was higher in summer and autumn compared to the spring and winter. The bacterial and fungal assemblage varied according to season. At the phylum level, the dominant bacteria and fungi were Firmicutes and Basidiomycota, respectively, across the four seasons. At the genus level, a total of five potential bacterial pathogen and 20 potential fungal allergen genera were identified across the samples. The most abundant bacterial pathogen and fungal allergen genera were observed in summer and autumn, respectively, but neither had a significant correlation with PM2.5 concentration. Moreover, microbial diversity and the relative abundance of fungal allergen genera were positively correlated with temperature and relative humidity. It can be concluded that microbial diversity and assemblage varied significantly among the seasons in a nursery pig house, and this can be useful in exploring the potential risks of PM2.5 from pig houses across all four seasons.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junze Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Baliatsas C, Dückers M, Smit LA, Heederik D, Yzermans J. Morbidity Rates in an Area with High Livestock Density: A Registry-Based Study Including Different Groups of Patients with Respiratory Health Problems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1591. [PMID: 32121551 PMCID: PMC7084699 DOI: 10.3390/ijerph17051591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/12/2023]
Abstract
There is continuing debate and public health concern regarding the previously confirmed association between high livestock density and human health. The primary aim of the current study is to assess the prevalence of respiratory and other health problems in a livestock dense area in the Netherlands, based on recent longitudinal health data and a large sample. Analyses are expanded with the investigation of different subgroups of patients with respiratory health problems and the inclusion of various chronic and acute health outcomes, as well as prescribed medication. Prevalence of health symptoms and chronic conditions was assessed for the period 2014-2016, based on electronic health records registered in 26 general practices located in areas with intensive livestock farming in the Netherlands ("livestock dense area", n = 117,459 unique residents in total). These were compared with corresponding health data from general practices (n = 22) in different rural regions with a low density of livestock farms or other major environmental exposures ("control area", n = 85,796 unique residents in total). Multilevel regression models showed a significantly higher prevalence of pneumonia in the total sample in the livestock dense area, which was also observed among susceptible subgroups of children, the elderly, and patients with chronic obstructive pulmonary disease (COPD). Lower respiratory tract infections, respiratory symptoms, vertigo, and depression were also more common in the livestock dense area compared to the control area. In general, there were no significant differences in chronic conditions such as asthma, COPD, or lung cancer. Prescription rates for broad-spectrum antibiotics were more common among patients with pneumonia in the livestock dense area. Acute respiratory infections and symptoms, but not chronic conditions, were considerably more common in areas with a high livestock density. Identification of causal pathogens on the basis of serological analyses could further elucidate the underlying mechanisms behind the observed health effects.
Collapse
Affiliation(s)
- Christos Baliatsas
- Department of Disasters and Environmental Hazards, Netherlands Institute for Health Services Research (NIVEL), 3513 CR Utrecht, The Netherlands; (M.D.)
| | - Michel Dückers
- Department of Disasters and Environmental Hazards, Netherlands Institute for Health Services Research (NIVEL), 3513 CR Utrecht, The Netherlands; (M.D.)
| | - Lidwien A.M. Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.M.S.)
| | - Dick Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands; (L.A.M.S.)
| | - Joris Yzermans
- Department of Disasters and Environmental Hazards, Netherlands Institute for Health Services Research (NIVEL), 3513 CR Utrecht, The Netherlands; (M.D.)
| |
Collapse
|
33
|
de Rooij MMT, Smit LAM, Erbrink HJ, Hagenaars TJ, Hoek G, Ogink NWM, Winkel A, Heederik DJJ, Wouters IM. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. ENVIRONMENT INTERNATIONAL 2019; 132:105009. [PMID: 31387023 DOI: 10.1016/j.envint.2019.105009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Living in livestock-dense areas has been associated with health effects, suggesting airborne exposures to livestock farm emissions to be relevant for public health. Livestock farm emissions involve complex mixtures of various gases and particles. Endotoxin, a pro-inflammatory agent of microbial origin, is a constituent of livestock farm emitted particulate matter (PM) that is potentially related to the observed health effects. Quantification of livestock associated endotoxin exposure at residential addresses in relation to health outcomes has not been performed earlier. OBJECTIVES We aimed to assess exposure-response relations for a range of respiratory endpoints and atopic sensitization in relation to livestock farm associated PM10 and endotoxin levels. METHODS Self-reported respiratory symptoms of 12,117 persons participating in a population-based cross-sectional study were analyzed. For 2494 persons, data on lung function (spirometry) and serologically assessed atopic sensitization was additionally available. Annual-average PM10 and endotoxin concentrations at home addresses were predicted by dispersion modelling and land-use regression (LUR) modelling. Exposure-response relations were analyzed with generalized additive models. RESULTS Health outcomes were generally more strongly associated with exposure to livestock farm emitted endotoxin compared to PM10. An inverse association was observed for dispersion modelled exposure with atopic sensitization (endotoxin: p = .004, PM10: p = .07) and asthma (endotoxin: p = .029, PM10: p = .022). Prevalence of respiratory symptoms decreased with increasing endotoxin concentration at the lower range, while at the higher range prevalence increased with increasing concentration (p < .05). Associations between lung function parameters with exposure to PM10 and endotoxin were not statistically significant (p > .05). CONCLUSIONS Exposure to livestock farm emitted particulate matter is associated with respiratory health effects and atopic sensitization in non-farming residents. Results indicate endotoxin to be a potentially plausible etiologic agent, suggesting non-infectious aspects of microbial emissions from livestock farms to be important with respect to public health.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | | | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Nico W M Ogink
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Albert Winkel
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
34
|
Liu D, Mariman R, Gerlofs-Nijland ME, Boere JF, Folkerts G, Cassee FR, Pinelli E. Microbiome composition of airborne particulate matter from livestock farms and their effect on innate immune receptors and cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1298-1307. [PMID: 31726559 DOI: 10.1016/j.scitotenv.2019.06.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Patients with respiratory diseases in rural areas have been reported to have enhanced responsiveness to ambient particulate matter (PM). In addition to the physical and chemical components, ambient PM can contain microorganisms or parts thereof, referred here as BioPM, that can also contribute to the adverse health effects. This study aimed to characterize the microbial composition of BioPM originating from livestock, and to investigate whether these BioPM can trigger the activation of innate receptors and cells. Coarse (PM2.5-10 μm) and fine (PM<2.5 μm) BioPM samples were collected from indoor chicken, pig and goat farms using the versatile aerosol concentration enrichment system (VACES) connected to a Biosampler. The fungal and bacterial communities were assessed with an amplicon based approach using Next Generation Sequencing (NGS). In parallel, HEK-Blue cells expressing different pattern recognition receptors (Toll like receptors (TLR) 2, 3, 4, 5, 7, 8, 9 and NOD 1, 2) and a human monocytic cell line (MM6) were exposed to BioPM samples from these sites. Distinct airborne microbiota profiles associated with the corresponding animal farm were observed. Moreover, the various BioPM contained mainly ligands for TLR2 and TLR4 resulting in a concentration-dependent increase of pro-inflammatory cytokine secreted by MM6 cells. In addition, we show for the first time that only the pig-derived BioPM induced TLR5 activation. These findings suggest that animal farm specific BioPM trigger distinct inflammatory responses, which may contribute to airway diseases in humans.
Collapse
Affiliation(s)
- Dingyu Liu
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rob Mariman
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - John F Boere
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Elena Pinelli
- National Institute for Public Health and the Environment, Bilthoven, Netherlands.
| |
Collapse
|
35
|
Schultz AA, Peppard P, Gangnon RE, Malecki KMC. Residential proximity to concentrated animal feeding operations and allergic and respiratory disease. ENVIRONMENT INTERNATIONAL 2019; 130:104911. [PMID: 31238264 DOI: 10.1016/j.envint.2019.104911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Air emissions from concentrated animal feeding operations (CAFO) have been associated with respiratory and allergic symptoms among farm workers, primarily on swine farms. Despite the increasing prevalence of CAFOs, few studies have assessed respiratory health implications among residents living near CAFOs and few have looked at the health impacts of dairy CAFOs. OBJECTIVES The goal of this study was to examine objective and subjective measures of respiratory and allergic health among rural residents living near dairy CAFOs in a general population living in the Upper Midwest of the United States. METHODS Data were from the 2008-2016 Survey of the Health of Wisconsin (SHOW) cohort (n = 5338), a representative, population based sample of rural adults (age 18+). The association between distance to the nearest CAFO and the prevalence of self-reported physician-diagnosed allergies, asthma, episodes of asthma in the last 12 months, and asthma medication use was examined using logistic regression, adjusting for covariates and sampling design. Similarly, the association between distance to the nearest CAFO and lung function, measured using spirometry, was examined using multivariate linear regression. Restricted cubic splines accounted for nonlinear relationships between distance to the nearest CAFO and the aforementioned outcomes. RESULTS Living 1.5 miles from a CAFO was associated with increased odds of self-reported nasal allergies (OR = 2.08; 95% CI: 1.38, 3.14), lung allergies (OR = 2.72; 95% CI: 1.59, 4.66), asthma (OR = 2.67; 95% CI: 1.39, 5.13), asthma medication (OR = 3.31; 95% CI: 1.65 6.62), and uncontrolled asthma, reported as an asthma episode in last 12 months (OR = 2.34; 95% CI: 1.11, 4.92) when compared to living 5 miles from a CAFO. Predicted FEV1 was 7.72% (95% CI: -14.63, -0.81) lower at a residential distance 1.5 miles from a CAFO when compared with a residence distance of 3 miles from a CAFO. CONCLUSIONS Results suggest CAFOs may be an important source of adverse air quality associated with reduced respiratory and allergic health among rural residents living in close proximity to a CAFO.
Collapse
Affiliation(s)
- Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Paul Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Ron E Gangnon
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, WI, United States of America
| | - Kristen M C Malecki
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, United States of America.
| |
Collapse
|
36
|
Chronic Asthma and Bronchitis without Persistent Airflow Limitation May Have Been Misclassified as Chronic Obstructive Pulmonary Disease Using Administrative Data. Ann Am Thorac Soc 2019; 15:1496-1497. [PMID: 30216740 DOI: 10.1513/annalsats.201808-569le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
de
Rooij MMT, Hoek G, Schmitt H, Janse I, Swart A, Maassen CBM, Schalk M, Heederik DJJ, Wouters IM. Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7746-7758. [PMID: 31081619 PMCID: PMC6611074 DOI: 10.1021/acs.est.8b07029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Microbial air pollution from livestock farms has raised concerns regarding public health. Little is known about airborne livestock-related microbial levels in residential areas. We aimed to increase insights into this issue. Air measurements were performed in 2014 and 2015 at 61 residential sites in The Netherlands. Quantitative-PCR was used to assess DNA concentrations of selected bacteria (commensals: Escherichia coli and Staphylococcus spp.; a zoonotic pathogen: Campylobacter jejuni) and antimicrobial resistance (AMR) genes ( tetW, mecA) in airborne dust. Mixed models were used to explore spatial associations (temporal adjusted) with livestock-related characteristics of the surroundings. DNA from commensals and AMR genes was detectable even at sites furthest away from farms (1200 m), albeit at lower levels. Concentrations, distinctly different between sites, were strongly associated with the density of farms in the surroundings especially with poultry and pigs. C. jejuni DNA was less prevalent (42% of samples positive). Presence of C. jejuni was solely associated with poultry (OR: 4.7 (95% CI: 1.7-14), high versus low poultry density). Residential exposure to livestock-related bacteria and AMR genes was demonstrated. Identified associations suggest contribution of livestock farms to microbial air pollution in general and attribution differences between farm types. This supports the plausibility of recent studies showing health effects in relation to residential proximity to farms.
Collapse
Affiliation(s)
- Myrna M. T. de
Rooij
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- Phone: +31302532539; e-mail:
| | - Gerard Hoek
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Heike Schmitt
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Ingmar Janse
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Arno Swart
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Catharina B. M. Maassen
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Marjolijn Schalk
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Dick J. J. Heederik
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Inge M. Wouters
- Institute
for Risk Assessment Sciences (IRAS), Utrecht
University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
38
|
Edginton S, O'Sullivan DE, King W, Lougheed MD. Effect of outdoor particulate air pollution on FEV 1 in healthy adults: a systematic review and meta-analysis. Occup Environ Med 2019; 76:583-591. [PMID: 31189694 DOI: 10.1136/oemed-2018-105420] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 01/16/2023]
Abstract
The effect of acute and long-term exposures to outdoor particulate air pollution on lung function in healthy adults is not well established. The objective of this study was to conduct a systematic literature review and meta-analysis of studies that assessed the relationship of outdoor particulate air pollution and lung function in healthy adults. Studies that contained data on outdoor air particulate matter levels (PM10 or PM2.5) and forced expiratory volume in 1 s (FEV1) in healthy adults were eligible for inclusion. Effect estimates, in relation to long-term and acute exposures, were quantified separately using random effects models. A total of 27 effect estimates from 23 studies were included in this review. Acute exposures were typically assessed with PM2.5, while long-term exposures were predominantly represented by PM10 A 10 µg/m3 increase in short-term PM2.5 exposure (days) was associated with a -7.02 mL (95% CI -11.75 to -2.29) change in FEV1 A 10 µg/m3 difference in long-term PM10 exposure was associated with a -8.72 mL (95% CI -15.39 to -2.07) annual change in FEV1 and an absolute difference in FEV1 of -71.36 mL (95% CI -134.47 to -8.24). This study provides evidence that acute and long-term exposure to outdoor particulate air pollution are associated with decreased FEV1 in healthy adults. Residual confounding from other risk factors, such as smoking, may explain some of the effect for long-term exposures. More studies are required to determine the relationship of long-term exposure to PM2.5 and short-term exposure to PM10, which may have different biologic mechanisms.
Collapse
Affiliation(s)
- Stefan Edginton
- Asthma Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | | | - Will King
- Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Diane Lougheed
- Asthma Research Unit, Kingston General Hospital, Kingston, Ontario, Canada.,Public Health Sciences, Queen's University, Kingston, Ontario, Canada.,Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Baliatsas C, Smit LAM, Dückers MLA, van Dijk CE, Heederik D, Yzermans CJ. Patients with overlapping diagnoses of asthma and COPD: is livestock exposure a risk factor for comorbidity and coexisting symptoms and infections? BMC Pulm Med 2019; 19:105. [PMID: 31182085 PMCID: PMC6558812 DOI: 10.1186/s12890-019-0865-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epidemiological research on health effects of livestock exposure in population subgroups with compromised respiratory health is still limited. The present study explored the association between livestock exposure and comorbid/concurrent conditions in patients with overlapping diagnoses of asthma and COPD. METHODS Electronic health record data from 23 general practices in the Netherlands were collected from 425 patients diagnosed with both asthma and COPD, living in rural areas with high livestock density ("study area"). Data of 341 patients with the same overlapping diagnoses, living in rural areas with lower livestock density ("control areas") were obtained from 19 general practices. First, the prevalence of comorbid disorders and symptoms/infections were compared between the study and control area. Second, the examined health outcomes were analyzed in relation to measures of individual livestock exposure. RESULTS Pneumonia was twice as common among patients living in areas with a high livestock density (OR 2.29, 99% CI 0.96-5.47); however, there were generally no statistically significant differences in the investigated outcomes between the study and control area. Significant associations were observed between presence of goats within 1000 m and allergic rhinitis (OR 5.71, 99% CI 1.11-29.3, p < 0.01), number of co-occurring symptoms (IRR 1.69, 99% CI 1.03-2.77, p < 0.01) and anxiety (OR 8.18, 99% 1.5-44.7, p < 0.01). Presence of cattle within 500 m was associated with pneumonia prevalence (OR 2.48, 99% CI 1.05-5.84, p < 0.01). CONCLUSION Livestock exposure is not associated with comorbid chronic conditions but appears to be a risk factor for symptomatic effects in patients with overlapping diagnoses of asthma and COPD.
Collapse
Affiliation(s)
- Christos Baliatsas
- Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, 3513 CR Utrecht, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Michel L. A. Dückers
- Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, 3513 CR Utrecht, The Netherlands
| | - Christel E. van Dijk
- Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, 3513 CR Utrecht, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - C. Joris Yzermans
- Netherlands Institute for Health Services Research (NIVEL), Otterstraat 118-124, 3513 CR Utrecht, The Netherlands
| |
Collapse
|
40
|
Trabelsi S, Casas L, Nemery B, Nawrot TS, Thomas I. Geographies of asthma medication purchase for pre-schoolers in Belgium. Respir Res 2019; 20:90. [PMID: 31088461 PMCID: PMC6518669 DOI: 10.1186/s12931-019-1052-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 02/08/2023] Open
Affiliation(s)
- Sonia Trabelsi
- Center for Operations Research and Econometrics, Voie du Roman Pays, 34 bte L1.03.01, B-1348, Louvain-la-Neuve, Belgium.
| | - Lidia Casas
- Centre for Environment and Health, KULeuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, KULeuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environment and Health, KULeuven, Leuven, Belgium.,Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Isabelle Thomas
- Center for Operations Research and Econometrics, Voie du Roman Pays, 34 bte L1.03.01, B-1348, Louvain-la-Neuve, Belgium.,National Fund for Scientific Research, Brussels, Belgium
| |
Collapse
|
41
|
Borlée F, Yzermans CJ, Oostwegel FSM, Schellevis F, Heederik D, Smit LAM. Attitude toward livestock farming does not influence the earlier observed association between proximity to goat farms and self-reported pneumonia. Environ Epidemiol 2019; 3:e041. [PMID: 33778336 PMCID: PMC7952105 DOI: 10.1097/ee9.0000000000000041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/13/2019] [Indexed: 11/26/2022] Open
Abstract
Attitudes toward environmental risks may be a source of bias in environmental health studies because concerns about environmental hazards may influence self-reported outcomes. OBJECTIVE The main aim was to assess whether earlier observed associations between proximity to goat farms and self-reported pneumonia were biased by participants' attitude toward farming. METHODS We developed an attitude-score for 2,457 participants of the Dutch Livestock Farming and Neighbouring Residents' Health Study (veehouderij en gezondheid omwonenden) by factor analysis of 13 questionnaire items related to attitude toward livestock farming. Linear regression analysis was used to assess associations between attitude and potential determinants. The effect of attitude on the association between goat farm proximity and pneumonia was analyzed by evaluating (1) misclassification of the outcome, (2) effect modification by attitude, and (3) exclusion of participants reporting health problems due to farms in their environment. RESULTS In general, the study population had a positive attitude toward farming, especially if participants were more familiar with farming. Older participants, females, ex-smokers, and higher-educated individuals had a more negative attitude. Both self-reported respiratory symptoms and exposure to livestock farms were associated with a more negative attitude. Misclassification of self-reported pneumonia was nondifferential with regard to participants' attitude. Furthermore, no indication was found that the association between proximity to goat farms and pneumonia was modified by attitude. Excluding subjects who attributed their health symptoms to livestock farms did also not change the association. CONCLUSIONS The association between goat farm proximity and pneumonia was not substantially biased by study participants' attitude toward livestock farming.
Collapse
Affiliation(s)
- Floor Borlée
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Institute for Health Services Research, NIVEL, Utrecht, The Netherlands
| | - C. Joris Yzermans
- Netherlands Institute for Health Services Research, NIVEL, Utrecht, The Netherlands
| | - Floor S. M. Oostwegel
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - François Schellevis
- Netherlands Institute for Health Services Research, NIVEL, Utrecht, The Netherlands
- Department of General Practice & Elderly Care Medicine, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Dodmane PR, Schulte NA, Heires AJ, Band H, Romberger DJ, Toews ML. Biphasic changes in airway epithelial cell EGF receptor binding and phosphorylation induced by components of hogbarn dust. Exp Lung Res 2019; 44:443-454. [PMID: 30862200 DOI: 10.1080/01902148.2019.1575931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Workers in enclosed hogbarns experience an increased incidence of airway inflammation and obstructive lung disease, and an aqueous hogbarn dust extract (HDE) induces multiple inflammation-related responses in cultured airway epithelial cells. Epidermal growth factor receptor (EGFR) phosphorylation and activation has been identified as one important mediator of inflammatory cytokine release from these cells. The studies here investigated both early and late phase adaptive changes in EGFR binding properties and subcellular localization induced by exposure of cells to HDE. MATERIALS AND METHODS Cell surface EGFRs were quantified as binding to intact cells on ice. EGFR phosphorylation, expression, and localization were assessed with anti-EGFR antibodies and either blotting or confocal microscopy. RESULTS In BEAS-2B and primary human bronchial epithelial cells, HDE induced decreases in cell surface EGFR binding following both 15-min and 18-h exposures. In contrast, H292 cells exhibited only the 15-min decrease, with binding near the control level at 18 hr. Confocal microscopy showed that the 15-min decrease in binding is due to EGFR endocytosis. Although total EGFR immunoreactivity decreased markedly at 18 hr in confocal microscopy with BEAS-2B cells, immunoblots showed no loss of EGFR protein. HDE stimulated EGFR phosphorylation at both 15 min and 18 hr in BEAS-2B cells and primary cells, but only at 15 min in H292 cells, indicating that the different EGFR binding changes among these cell types is likely related to their different time-dependent changes in phosphorylation. CONCLUSIONS These studies extend the evidence for EGFRs as important cellular targets for components of HDE and they reveal novel patterns of EGFR phosphorylation and binding changes that vary among airway epithelial cell types. The results provide both impetus and convenient assays for identifying the EGFR-activating components and pathways that likely contribute to hogbarn dust-induced lung disease in agricultural workers.
Collapse
Affiliation(s)
- Puttappa R Dodmane
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Nancy A Schulte
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Art J Heires
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hamid Band
- d Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA
| | - Debra J Romberger
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Myron L Toews
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
43
|
Dai C, Huang S, Zhou Y, Xu B, Peng H, Qin P, Wu G. Concentrations and emissions of particulate matter and ammonia from extensive livestock farm in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1871-1879. [PMID: 30460646 DOI: 10.1007/s11356-018-3766-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric particulate matter (PM) and ammonia pollution from livestock feeding have gradually become the environmental concerns due to the spring up of livestock farms in worldwide. However, researches about the formation of atmospheric particulate matter related to ammonia are still limited. Therefore, a study to survey the total suspended particles (TSP), PM with the diameter less than 10 μm (PM10), PM4, PM2.5, PM1, and ammonia was conducted at four types of hog houses distinguished by its building design as well as manure handling methods in South China. Four hog houses were monitored during three fattening periods from 2016 to 2017. The emissions of NH3 per hog house averaged 210.42 μg s-1. The emissions of PM per hog house averaged 2.017 μg h-1 for PM1, 2.149 μg h-1 for PM2.5, 2.305 μg h-1 for PM4, 3.950 μg h-1 for PM10, and 9.317 μg h-1 for TSP. The emissions of PM per hog house average 2.017 μg h-1, 2.149 μg h-1, 2.305 μg h-1, 3.950 μg h-1, and 9.317 μg h-1, respectively for PM1, PM2.5, PM4, PM10, and PM10. In each hog house, while the quantity of manure determined the concentration of NH3, biological fermentation bed was able to control the ammonia volatilization compared with other three manure handling methods. The largest percentage of fine PM (< 10 μm) is produced by the manual waterless method for manure handling. When it came to the manual waterless method, largest amount of fine PM (< 10 μm) was founded to form. Among various contributions of secondary inorganic PM to PM1, the NH3 was a dominant factor. Based on our experiment, the absolute concentration of NH3 was inversely proportional to the concentration of PM1 when the background influence was removed.
Collapse
Affiliation(s)
- Chunhao Dai
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shaojian Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Bin Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Pufeng Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
44
|
[Prevalence and characteristics of chronic obstructive pulmonary disease in non-smokers]. Aten Primaria 2018; 51:602-609. [PMID: 30454958 PMCID: PMC6930941 DOI: 10.1016/j.aprim.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Objetivo Conocer el perfil y las características de los enfermos diagnosticados de enfermedad pulmonar obstructiva crónica (EPOC) y que nunca han sido fumadores. Diseño Estudio descriptivo transversal. Emplazamiento Área Básica de Salud del Pla d’Urgell (Atención Primaria de Lleida, España). Participantes Se incluyeron los 512 pacientes mayores de 40 años diagnosticados de EPOC del Área Básica de Salud con una espirometría compatible al inicio del estudio [cociente < 0,7 entre el volumen de espiración forzada en el primer segundo (FEV1) y la capacidad vital forzada (FVC)]. Mediciones principales La variable dependiente fue la EPOC en no fumadores y las independientes fueron variables recogidas a partir de la información sobre la historia clínica respiratoria, los factores de riesgo del enfermo y sobre calidad vida. Se diseñó un modelo predictor de padecer EPOC en no fumadores en comparación con los fumadores. Resultados El 33,2% de los pacientes EPOC nunca habían sido fumadores y de estos, el 59,4% eran mujeres. La media del FEV1 de los no fumadores fue de 70,5 (DE = 17,1), superior a los 62,6 (DE = 18,5) en los fumadores/exfumadores (p < 0,001). La cobertura de la vacunación antineumocócica 23V era mejor en los no fumadores (75,3%), p < 0,001. Los EPOC en no fumadores (respecto a los fumadores/exfumadores) eran: mayormente mujeres (OR = 16,46), de mayor edad (OR = 1,1), con mejor FEV1 (OR = 1,1), mejor percepción de calidad de vida, EuroQoL-5D (OR = 0,8), con menor prevalencia de diabetes (OR = 0,5), menor nivel de estudios (OR = 0,2), y con menos hospitalizaciones previas (OR = 0,3). Conclusiones El estudio evidencia una alta proporción de no fumadores en enfermos EPOC. Nuestro trabajo objetiva que las mujeres de mayor edad y con menor gravedad se asociarían a un mayor riesgo de EPOC en no fumadores. Parece indicar que la EPOC en no fumadores aparecería en edades más tardías y sería más leve que la EPOC relacionada con el tabaquismo.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Agriculture environments contain a variety of inflammatory aerosols that may increase risk for lung inflammation and disease in exposed individuals. In addition, epidemiological studies have also identified protective effects of rural environments and farming exposures. RECENT FINDINGS In this review, we will discuss recent literature published since 2016 that investigates the impact of differing agricultural exposures on respiratory health. Discussions include the impact of farming modernization, education, and personal protective equipment usage among workers, timing and duration in mediating lung health outcomes, and population studies investigating the association between exposure and risk for numerous lung diseases.
Collapse
|
46
|
Kalkowska DA, Boender GJ, Smit LAM, Baliatsas C, Yzermans J, Heederik DJJ, Hagenaars TJ. Associations between pneumonia and residential distance to livestock farms over a five-year period in a large population-based study. PLoS One 2018; 13:e0200813. [PMID: 30016348 PMCID: PMC6049940 DOI: 10.1371/journal.pone.0200813] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
In a recent study of electronic health records (EHR) of general practitioners in a livestock-dense area in The Netherlands in 2009, associations were found between residential distance to poultry farms and the occurrence of community-acquired pneumonia (CAP). In addition, in a recent cross-sectional study in 2494 adults in 2014/2015 an association between CAP and proximity to goat farms was observed. Here, we extended the 2009 EHR analyses across a wider period of time (2009–2013), a wider set of health effects, and a wider set of farm types as potential risk sources. A spatial (transmission) kernel model was used to investigate associations between proximity to farms and CAP diagnosis for the period from 2009 to 2013, obtained from EHR of in total 140,059 GP patients. Also, associations between proximity to farms and upper respiratory infections, inflammatory bowel disease, and (as a control disease) lower back pain were analysed. Farm types included as potential risk sources in these analyses were cattle, (dairy) goats, mink, poultry, sheep, and swine. The previously found association between CAP occurrence and proximity to poultry farms was confirmed across the full 5-year study period. In addition, we found an association between increased risk for pneumonia and proximity to (dairy) goat farms, again consistently across all years from 2009 to 2013. No consistent associations were found for any of the other farm types (cattle, mink, sheep and swine), nor for the other health effects considered. On average, the proximity to poultry farms corresponds to approximately 119 extra patients with CAP each year per 100,000 people in the research area, which accounts for approximately 7.2% extra cases. The population attributable risk percentage of CAP cases in the research area attributable to proximity to goat farms is approximately 5.4% over the years 2009–2013. The most probable explanation for the association of CAP with proximity to poultry farms is thought to be that particulate matter and its components are making people more susceptible to respiratory infections. The causes of the association with proximity to goat farms is still unclear. Although the 2007–2010 Q-fever epidemic in the area probably contributed Q-fever related pneumonia cases to the observed additional cases in 2009 and 2010, it cannot explain the association found in later years 2011–2013.
Collapse
Affiliation(s)
| | | | - Lidwien A. M. Smit
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Christos Baliatsas
- NIVEL, Netherlands Institute for Health Services Research, Utrecht, The Netherlands
| | - Joris Yzermans
- NIVEL, Netherlands Institute for Health Services Research, Utrecht, The Netherlands
| | - Dick J. J. Heederik
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
47
|
|
48
|
Borlée F, Yzermans CJ, Krop EJM, Maassen CBM, Schellevis FG, Heederik DJJ, Smit LAM. Residential proximity to livestock farms is associated with a lower prevalence of atopy. Occup Environ Med 2018; 75:453-460. [DOI: 10.1136/oemed-2017-104769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 11/03/2022]
Abstract
ObjectivesExposure to farm environments during childhood and adult life seems to reduce the risk of atopic sensitisation. Most studies have been conducted among farmers, but people living in rural areas may have similar protective effects for atopy. This study aims to investigate the association between residential proximity to livestock farms and atopy among non-farming adults living in a rural area in the Netherlands.MethodsWe conducted a cross-sectional study among 2443 adults (20–72 years). Atopy was defined as specific IgE to common allergens and/or total IgE ≥100 IU/mL. Residential proximity to livestock farms was assessed as 1) distance to the nearest pig, poultry, cattle or any farm, 2) number of farms within 500 m and 1000 m, and 3) modelled annual average fine dust emissions from farms within 500 m and 1000 m. Data were analysed with multiple logistic regression and generalised additive models.ResultsThe prevalence of atopy was 29.8%. Subjects living at short distances from farms (<327 m, first tertile) had a lower odds for atopy compared with subjects living further away (>527 m, third tertile) (OR 0.79, 95% CI 0.63 to 0.98). Significant associations in the same direction were found with distance to the nearest pig or cattle farm. The associations between atopy and livestock farm exposure were somewhat stronger in subjects who grew up on a farm.ConclusionsLiving in close proximity to livestock farms seems to protect against atopy. This study provides evidence that protective effects of early-life and adult farm exposures may extend beyond farming populations.
Collapse
|
49
|
Farokhi A, Heederik D, Smit LAM. Respiratory health effects of exposure to low levels of airborne endotoxin - a systematic review. Environ Health 2018; 17:14. [PMID: 29422043 PMCID: PMC5806377 DOI: 10.1186/s12940-018-0360-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Elevated endotoxin levels have been measured in ambient air around livestock farms, which is a cause of concern for neighbouring residents. There is clear evidence that occupational exposure to high concentrations of airborne endotoxin causes respiratory inflammation, respiratory symptoms and lung function decline. However, health effects of exposure to low levels of endotoxin are less well described. The aim of this systematic review is to summarize published associations between exposure to relatively low levels of airborne endotoxin and respiratory health endpoints. METHODS Studies investigating respiratory effects of measured or modelled exposure to low levels of airborne endotoxin (average < 100 EU/m3) were eligible for inclusion. In total, 1362 articles were identified through a Pubmed database search, of which 31 articles were included in this review. Studies were included up to February 2017. Overview tables and forest plots were created, and study quality was assessed. RESULTS Twenty-two included studies had a cross-sectional design, others were designed as longitudinal observational (n = 7) or experimental (n = 2) studies. Most studies (n = 23) were conducted in an occupational setting, some involved domestic or experimental exposure. Several studies reported statistically significant effects of exposure to low levels of endotoxin on respiratory symptoms and lung function. However, considerable heterogeneity existed in the outcomes of the included studies and no overall estimate could be provided by meta-analysis to quantify the possible relationship. Instead, a best evidence synthesis was performed among studies examining the exposure-response relationship between endotoxin and respiratory outcomes. Significant exposure-response relationships between endotoxin and symptoms and FEV1 were shown in several studies, with no conflicting findings in the studies included in the best evidence synthesis. Significantly different effects of endotoxin exposure were also seen in vulnerable subgroups (atopics and patients with broncho-obstructive disease) and smokers. CONCLUSIONS Respiratory health effects of exposure to low levels of airborne endotoxin (< 100 EU/m3) seem plausible. Future studies are needed to investigate ambient exposure to endotoxin and potential respiratory health effects, especially in vulnerable subgroups of the population.
Collapse
Affiliation(s)
- Azadèh Farokhi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Sigsgaard T, Balmes J. Environmental Effects of Intensive Livestock Farming. Am J Respir Crit Care Med 2017. [DOI: 10.1164/rccm.201706-1075ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - John Balmes
- Department of MedicineUniversity of California, San FranciscoSan Francisco, Californiaand
- School of Public HealthUniversity of California, BerkeleyBerkeley, California
| |
Collapse
|