1
|
Jia L, Qin Y, Li X, Liu H, He Z, Wang Y. STING-activating layered double hydroxide nano-adjuvants for enhanced cancer immunotherapy. Biomaterials 2025; 321:123294. [PMID: 40164041 DOI: 10.1016/j.biomaterials.2025.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Cancer vaccines represent a promising therapeutic strategy in oncology, yet their effectiveness is often hampered by suboptimal antigen targeting, insufficient induction of cellular immunity, and the immunosuppressive tumor microenvironment. Advanced delivery systems and potent adjuvants are needed to address these challenges, though a restricted range of adjuvants for human vaccines that are approved, and even fewer are capable of stimulating robust cellular immune response. In this work, we engineered a unique self-adjuvanted platform (MLDHs) by integrating STING agonists manganese into a layered double hydroxide nano-scaffold, encapsulating the model antigen ovalbumin (OVA). The MLDHs platform encompasses Mn-doped MgAl-LDH (MLMA) and Mn-doped MgFe-LDH (MLMF). Upon subcutaneous injection, OVA/MLDHs specifically accumulated within lymph nodes (LNs), where they were internalized by resident antigen-presenting cells. The endosomal degradation of MLDHs facilitated the cytoplasmic release of antigen and Mn2+, promoting cross-presentation and triggering the STING pathway, which in turn induced a potent cellular immune response against tumors. Notably, OVA/MLMF induced stronger M1 macrophage polarization and a more potent T-cell response within tumor-infiltrating lymphocytes compared to OVA/MLMA, leading to significant tumor regression in B16F10-OVA bearing mice with minimal adverse effects. Additionally, combining MLMF with the vascular disrupting agent Vadimezan disrupted the tumor's central region, typically resistant to immune cell infiltration, further extending survival in tumor-bearing mice. This innovative strategy may show great potential for improving cancer immunotherapy and offers hope for more effective treatments in the future.
Collapse
Affiliation(s)
- Lirui Jia
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yang Qin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xin Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Hongzhuo Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Qiao Y, Wei L, Su Y, Tan Q, Yang X, Li S. Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:5429-5456. [PMID: 40308645 PMCID: PMC12042967 DOI: 10.2147/ijn.s515893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in triggering innate and adaptive immune responses through type I interferon activation and immune cell recruitment, holding significant promise for cancer therapy. While STING activators targeting this pathway have been developed, their clinical application is hindered by challenges such as poor membrane permeability, rapid degradation, suboptimal pharmacokinetics, off-target biodistribution, and toxicity. Nanoparticle-based delivery systems offer a promising solution by enhancing the stability, circulation time, tumor accumulation, and intracellular release of STING activators. Furthermore, combining nanoparticle-delivered STING activators with radiotherapy, chemotherapy, phototherapy, and other immunotherapies enables synergistic antitumor effects through multimodal mechanisms, addressing resistance to monotherapies and reducing risks of recurrence and metastasis. This review outlines the immunomodulatory mechanisms of the cGAS-STING pathway, surveys current STING-targeted activators, and comprehensively discusses recent advances in nanoparticle-mediated delivery strategies for STING activation. Additionally, we explore combinatorial approaches that integrate STING-targeted nanotherapies with conventional and emerging treatments. Finally, we highlight the current status, prospects, and challenges of nanoparticle-based STING activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingyu Wei
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yinjie Su
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qinyuan Tan
- Department of Urology, The People’s Hospital of Jimo, Qingdao, People’s Republic of China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shengxian Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Shen Y, Huang W, Nie J, Zhang L. Progress Update on STING Agonists as Vaccine Adjuvants. Vaccines (Basel) 2025; 13:371. [PMID: 40333245 PMCID: PMC12030840 DOI: 10.3390/vaccines13040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Low antigen immunogenicity poses a significant challenge in vaccine development, often leading to inadequate immune responses and reduced vaccine efficacy. Therefore, the discovery of potent immune-enhancing adjuvants is crucial. STING (stimulator of interferon genes) agonists are a promising class of adjuvants which have been identified in various immune cells and are activated in response to DNA fragments, triggering a broad range of type-I interferon-dependent immune responses. Integrating STING agonists with vaccine components is an ideal strategy to bolster vaccine-induced immunity to infections and cancer cells. Several STING agonists are currently under investigation in preclinical studies and clinical trials; however, some have shown limited efficacy, while others exhibit off-target effects. To ensure safety, they are typically delivered with carriers that exhibit high biocompatibility and insolubility. In this review, we present the latest research on natural and synthetic STING agonists that have been effectively used in vaccine development, and summarize their application in adjuvant preventive and therapeutic vaccines. Additionally, we discuss the safety of STING agonists as vaccine adjuvants by reviewing potential delivery strategies. Overall, incorporating STING agonists into vaccine formulations represents a significant advancement in vaccine research with the potential to significantly enhance immune responses and improve vaccine efficacy. However, ongoing research is still required to identify the most effective and safe delivery strategies for STING agonists, as well as to evaluate their long-term safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Yanru Shen
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| |
Collapse
|
5
|
Svensson M, Limeres MJ, Zeyn Y, Gambaro RC, Islan GA, Berti IR, Fraude-El Ghazi S, Pretsch L, Hilbert K, Schneider P, Kaps L, Bros M, Gehring S, Cacicedo ML. mRNA-LNP vaccine strategies: Effects of adjuvants on non-parenchymal liver cells and tolerance. Mol Ther Methods Clin Dev 2025; 33:101427. [PMID: 40027262 PMCID: PMC11872076 DOI: 10.1016/j.omtm.2025.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
The liver, which plays pivotal roles in metabolism and immunity, often confers tolerance, suppressing immune responses to pathogens. Adjuvanted, lipid nanoparticle-encapsulated mRNA vaccines (mRNA-LNPs) offer a promising approach to overcome immune tolerance. In this study, the immunostimulatory activity of well-documented adjuvants, i.e., 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), resiquimod (R848), and polyinosinic:polycytidylic acid (Poly I:C), on non-parenchymal liver cells was determined. When co-applied with mRNA-loaded LNPs, these adjuvants enhanced immune responses at variable extents. Moreover, the efficiency of mRNA translation in the presence of cGAMP was comparable with the non-adjuvanted control. Repetitive co-application of adjuvants with mRNA-LNPs showed improvement in cellular responses when R848 or R848/cGAMP treatments were used. These findings emphasize the need to delineate the delicate balance between immunomodulatory properties and the efficiency of mRNA translation when selecting adjuvants for mRNA-LNP vaccines and offer insights on how to enhance immunity to infectious diseases and cancers that affect the liver.
Collapse
Affiliation(s)
- Malin Svensson
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - María José Limeres
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rocio C. Gambaro
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - German A. Islan
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ignacio Rivero Berti
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Silvia Fraude-El Ghazi
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Leah Pretsch
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katja Hilbert
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Department of Medicine II Saarland University Medical Center Saarland University 66421 Homburg, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Ben-Akiva E, Chapman A, Mao T, Irvine DJ. Linking vaccine adjuvant mechanisms of action to function. Sci Immunol 2025; 10:eado5937. [PMID: 39951545 DOI: 10.1126/sciimmunol.ado5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Vaccines deliver an immunogen in a manner designed to safely provoke an immune response, leading to the generation of memory T and B cells and long-lived antibody-producing plasma cells. Adjuvants play a critical role in vaccines by controlling how the immune system is exposed to the immunogen and providing inflammatory cues that enable productive immune priming. However, mechanisms of action underlying adjuvant function at the molecular, cell, and tissue levels are diverse and often poorly understood. Here, we review the current understanding of mechanisms of action underlying adjuvants used in subunit protein/polysaccharide vaccines and mRNA vaccines, discuss where possible how these mechanisms of action link to downstream effects on the immune response, and identify knowledge gaps that will be important to fill in order to enable the continued development of more effective adjuvants for challenging pathogens such as HIV and emerging threats.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Asheley Chapman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
7
|
Gao Y, Xu G, Maimaiti M, Chen S, Zhang X, Hu J, Wang C, Hong Z, Hu H. Transcriptome-based characterization of 3'2'-cGAMP signaling mediated immune responses. Comput Struct Biotechnol J 2024; 23:4131-4142. [PMID: 39634080 PMCID: PMC11615530 DOI: 10.1016/j.csbj.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Cyclic dinucleotides (CDNs) are critical adjuvants in antiviral vaccines and cancer immunotherapy, primarily through the activation of the cGAS-STING signaling pathway. Evaluating the immune responses triggered by CDNs is essential for the development of effective adjuvants. In this study, we performed a comparative transcriptome analysis to characterize the immune responses elicited by the recently identified nuclease-resistant Drosophila and bacterial CDN, 3'2'-cGAMP, in mammalian immune cells. We detected a robust induction of innate immune gene signature following 3'2'-cGAMP stimulation in digitonin-permeabilized mouse primary macrophages, comparable to the response observed with the canonical mammalian CDN, 2'3'-cGAMP. STING deficiency remarkably reduced 3'2'-cGAMP-induced phosphorylation of TBK1 and IRF3 and the induction of IFN-β, indicating that 3'2'-cGAMP signaling-mediated immune responses were mainly STING dependent. In comparison to 2'3'-cGAMP signaling, 3'2'-cGAMP signaling preferentially elicited many STING-dependent genes involved in transcription and nucleosome positioning and assembly in the nucleus, which are likely associated with several enriched pathways, including cellular senescence, HDACs deacetylate histones, and epigenetic regulation of gene expression. The integrative analysis further revealed that 3'2'-cGAMP signaling preferentially induced genes were associated with autoimmune disease-related processes, suggesting a potential side effect that requires monitoring when used as an adjuvant. In conclusion, this study provides the first transcriptional landscape of 3'2'-cGAMP signaling in mammals and reveals the immune response characteristics and potential side effects mediated by 3'2'-cGAMP signaling. These findings may aid in the development of 3'2'-cGAMP-based adjuvants for antiviral vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Gao
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Gucheng Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Saihua Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| |
Collapse
|
8
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024; 13:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
9
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
10
|
Wang MM, Choi MR, Battistella C, Gattis B, Qiao B, Evangelopoulos M, Mirkin CA, Olvera de la Cruz M, Zhang B, Gianneschi NC. Proteomimetic Polymers Trigger Potent Antigen-Specific T Cell Responses to Limit Tumor Growth. J Am Chem Soc 2024; 146:14959-14971. [PMID: 38781575 DOI: 10.1021/jacs.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.
Collapse
Affiliation(s)
- Max M Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mi-Ran Choi
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Brayley Gattis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York 10010, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60208, United States
| |
Collapse
|
11
|
Rezabakhsh A, Sadaie MR, Ala A, Roosta Y, Habtemariam S, Sahebnasagh A, Khezri MR. STING agonists as promising vaccine adjuvants to boost immunogenicity against SARS-related coronavirus derived infection: possible role of autophagy. Cell Commun Signal 2024; 22:305. [PMID: 38831299 PMCID: PMC11145937 DOI: 10.1186/s12964-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS‑CoV‑2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Reza Sadaie
- NovoMed Consulting, Biomedical Sciences, Germantown, Maryland, USA
| | - Alireza Ala
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, University of Greenwich, Kent, UK
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5715799313, Iran.
| |
Collapse
|
12
|
Sibal PA, Matsumura S, Ichinose T, Bustos‐Villalobos I, Morimoto D, Eissa IR, Abdelmoneim M, Aboalela MAM, Mukoyama N, Tanaka M, Naoe Y, Kasuya H. STING activator 2'3'-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol Oncol 2024; 18:1259-1277. [PMID: 38400597 PMCID: PMC11076993 DOI: 10.1002/1878-0261.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.
Collapse
Affiliation(s)
- Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | | | - Daishi Morimoto
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Ibrahim R. Eissa
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Faculty of ScienceTanta UniversityEgypt
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Department of Microbiology, Faculty of Veterinary MedicineZagazig UniversityEgypt
| | - Mona Alhussein Mostafa Aboalela
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Medical Microbiology and Immunology Department, Faculty of MedicineZagazig UniversityEgypt
| | - Nobuaki Mukoyama
- Department of Otolaryngology Graduate School of MedicineNagoya UniversityJapan
| | | | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| |
Collapse
|
13
|
Yoon M, Choi Y, Wi T, Choi YS, Choi J. The role of cGAMP via the STING pathway in modulating germinal center responses and CD4 T cell differentiation. Front Immunol 2024; 15:1340001. [PMID: 38680492 PMCID: PMC11045936 DOI: 10.3389/fimmu.2024.1340001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-β blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.
Collapse
Affiliation(s)
- Mijung Yoon
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yurim Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taeuk Wi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Baljon J, Kwiatkowski AJ, Pagendarm HM, Stone PT, Kumar A, Bharti V, Schulman JA, Becker KW, Roth EW, Christov PP, Joyce S, Wilson JT. A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists. ACS NANO 2024; 18:6845-6862. [PMID: 38386282 PMCID: PMC10919087 DOI: 10.1021/acsnano.3c04471] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8+ T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8+ cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8+ T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.
Collapse
Affiliation(s)
- Jessalyn
J. Baljon
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hayden M. Pagendarm
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Payton T. Stone
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Amrendra Kumar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Vijaya Bharti
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eric W. Roth
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Plamen P. Christov
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
| | - Sebastian Joyce
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Veteran Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram
Cancer Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Zhang C, Cao Q, Li Y, Lu J, Xiong S, Yue Y. Exosome co-delivery of a STING agonist augments immunogenicity elicited by CVB3 VP1 vaccine via promoting antigen cross-presentation of CD8 + DCs. Int J Biol Macromol 2024; 261:129518. [PMID: 38244740 DOI: 10.1016/j.ijbiomac.2024.129518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
The induction of a robust CD8+ T cell response is critical for the success of an antiviral vaccine. In this study, we incorporated a STING agonist (SA) 2'3'-cGAMP into a previously developed exosome-based CVB3 viral myocarditis vaccine (Exo-VP1) to enhance its ability to induce CD8+ T cell responses and immunoprotection. Our results showed that compared to free SA adjuvant, exosome-mediated co-delivery (ExoSA-VP1) significantly enhanced SA uptake by dendritic cells (DCs) and more potently stimulated DC maturation. Immunization of mice showed that the ExoSA-VP1 vaccine-induced higher levels of CVB3-specific T cell proliferation and cytotoxicity, significantly increased the percentage of IFN-γ+CD8+ rather than CD4+ T cells, effectively reduced cardiac viral loads, attenuated myocarditis and improved survival in mice compared to the previous Exo-VP1 vaccine. Further investigation showed that ExoSA-VP1 significantly increased both the percentage and antigen cross-presentation capacity of splenic CD8+ DCs. Depletion of these CD8+ DCs by cytochrome C administration nearly abolished the advantage of ExoSA-VP1 in dominantly inducing IFN-γ+CD8+ cytotoxic T lymphocyte (CTL) production in immunized mice. Taken together, our results demonstrated the potential of ExoSA-VP1 as a promising candidate for anti-CVB3 vaccines and provide insights into immune-enhancing strategies aiming at augmenting antigen cross-presentation by DCs and enhancing potent CTL responses.
Collapse
Affiliation(s)
- Changwei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qinghui Cao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyu Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juan Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 PMCID: PMC12001822 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Castro Eiro MD, Hioki K, Li L, Wilmsen MEP, Kiernan CH, Brouwers-Haspels I, van Meurs M, Zhao M, de Wit H, Grashof DGB, van de Werken HJG, Mueller YM, Schliehe C, Temizoz B, Kobiyama K, Ishii KJ, Katsikis PD. TLR9 plus STING Agonist Adjuvant Combination Induces Potent Neopeptide T Cell Immunity and Improves Immune Checkpoint Blockade Efficacy in a Tumor Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:455-465. [PMID: 38063488 PMCID: PMC10784725 DOI: 10.4049/jimmunol.2300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024]
Abstract
Immune checkpoint blockade (ICB) immunotherapies have emerged as promising strategies for the treatment of cancer; however, there remains a need to improve their efficacy. Determinants of ICB efficacy are the frequency of tumor mutations, the associated neoantigens, and the T cell response against them. Therefore, it is expected that neoantigen vaccinations that boost the antitumor T cell response would improve ICB therapy efficacy. The aim of this study was to develop a highly immunogenic vaccine using pattern recognition receptor agonists in combination with synthetic long peptides to induce potent neoantigen-specific T cell responses. We determined that the combination of the TLR9 agonist K-type CpG oligodeoxynucleotides (K3 CpG) with the STING agonist c-di-AMP (K3/c-di-AMP combination) significantly increased dendritic cell activation. We found that immunizing mice with 20-mer of either an OVA peptide, low-affinity OVA peptides, or neopeptides identified from mouse melanoma or lung mesothelioma, together with K3/c-di-AMP, induced potent Ag-specific T cell responses. The combined K3/c-di-AMP adjuvant formulation induced 10 times higher T cell responses against neopeptides than the TLR3 agonist polyinosinic:polycytidylic acid, a derivative of which is the leading adjuvant in clinical trials of neoantigen peptide vaccines. Moreover, we demonstrated that our K3/c-di-AMP vaccine formulation with 20-mer OVA peptide was capable of controlling tumor growth and improving survival in B16-F10-OVA tumor-bearing C57BL/6 mice and synergized with anti-PD-1 treatment. Together, our findings demonstrate that the K3/c-di-AMP vaccine formulation induces potent T cell immunity against synthetic long peptides and is a promising candidate to improve neoantigen vaccine platform.
Collapse
Affiliation(s)
- Melisa D. Castro Eiro
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kou Hioki
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ling Li
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Merel E. P. Wilmsen
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Caoimhe H. Kiernan
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjan van Meurs
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manzhi Zhao
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Harm de Wit
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dwin G. B. Grashof
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher Schliehe
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Peter D. Katsikis
- Department of Immunology; Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
19
|
Dou Y, Chen R, Liu S, Lee YT, Jing J, Liu X, Ke Y, Wang R, Zhou Y, Huang Y. Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy. Nat Commun 2023; 14:5461. [PMID: 37673917 PMCID: PMC10482946 DOI: 10.1038/s41467-023-41164-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
Collapse
Affiliation(s)
- Yaling Dou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Chen
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Tsang Lee
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ji Jing
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Xiaoxuan Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yuepeng Ke
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4127. [PMID: 37627155 PMCID: PMC10453198 DOI: 10.3390/cancers15164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Mukul Raj Gupta
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
21
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
22
|
Liu Y, Fei Y, Wang X, Yang B, Li M, Luo Z. Biomaterial-enabled therapeutic modulation of cGAS-STING signaling for enhancing antitumor immunity. Mol Ther 2023; 31:1938-1959. [PMID: 37002605 PMCID: PMC10362396 DOI: 10.1016/j.ymthe.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bingbing Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
23
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
24
|
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
25
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
26
|
Waanders L, van der Donk LEH, Ates LS, Maaskant J, van Hamme JL, Eldering E, van Bruggen JAC, Rietveld JM, Bitter W, Geijtenbeek TBH, Kuijl CP. Ectopic expression of cGAS in Salmonella typhimurium enhances STING-mediated IFN-β response in human macrophages and dendritic cells. J Immunother Cancer 2023; 11:jitc-2022-005839. [PMID: 37072345 PMCID: PMC10124277 DOI: 10.1136/jitc-2022-005839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Interferon (IFN)-β induction via activation of the stimulator of interferon genes (STING) pathway has shown promising results in tumor models. STING is activated by cyclic dinucleotides such as cyclic GMP-AMP dinucleotides with phosphodiester linkages 2'-5' and 3'-5' (cGAMPs), that are produced by cyclic GMP-AMP synthetase (cGAS). However, delivery of STING pathway agonists to the tumor site is a challenge. Bacterial vaccine strains have the ability to specifically colonize hypoxic tumor tissues and could therefore be modified to overcome this challenge. Combining high STING-mediated IFN-β levels with the immunostimulatory properties of Salmonella typhimurium could have potential to overcome the immune suppressive tumor microenvironment. METHODS We have engineered S. typhimurium to produce cGAMP by expression of cGAS. The ability of cGAMP to induce IFN-β and its IFN-stimulating genes was addressed in infection assays of THP-I macrophages and human primary dendritic cells (DCs). Expression of catalytically inactive cGAS is used as a control. DC maturation and cytotoxic T-cell cytokine and cytotoxicity assays were conducted to assess the potential antitumor response in vitro. Finally, by making use of different S. typhimurium type III secretion (T3S) mutants, the mode of cGAMP transport was elucidated. RESULTS Expression of cGAS in S. typhimurium results in a 87-fold stronger IFN-β response in THP-I macrophages. This effect was mediated by cGAMP production and is STING dependent. Interestingly, the needle-like structure of the T3S system was necessary for IFN-β induction in epithelial cells. DC activation included upregulation of maturation markers and induction of type I IFN response. Coculture of challenged DCs with cytotoxic T cells revealed an improved cGAMP-mediated IFN-γ response. In addition, coculture of cytotoxic T cells with challenged DCs led to improved immune-mediated tumor B-cell killing. CONCLUSION S. typhimurium can be engineered to produce cGAMPs that activate the STING pathway in vitro. Furthermore, they enhanced the cytotoxic T-cell response by improving IFN-γ release and tumor cell killing. Thus, the immune response triggered by S. typhimurium can be enhanced by ectopic cGAS expression. These data show the potential of S. typhimurium-cGAS in vitro and provides rationale for further research in vivo.
Collapse
Affiliation(s)
- Lisette Waanders
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| | - Lieve E H van der Donk
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Janneke Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - John L van Hamme
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Eric Eldering
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- The Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
| | - Jaco A C van Bruggen
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Joanne M Rietveld
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Amsterdam institute for Life and Environment, Vrije Universiteit, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| |
Collapse
|
27
|
Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbé-Tuana FM. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol 2023; 14:1132653. [PMID: 36926349 PMCID: PMC10011111 DOI: 10.3389/fimmu.2023.1132653] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is associated with an increased incidence of autoimmune diseases, despite the progressive decline of immune responses (immunosenescence). This apparent paradox can be explained by the age-related chronic low-grade systemic inflammation (inflammaging) and progressive dysregulation of innate signaling. During cellular aging, there is an accumulation of damaged DNA in the cell's cytoplasm, which serves as ubiquitous danger-associated molecule, promptly recognized by DNA sensors. For instance, the free cytoplasmic DNA can be recognized, by DNA-sensing molecules like cGAS-STING (cyclic GMP-AMP synthase linked to a stimulator of interferon genes), triggering transcriptional factors involved in the secretion of pro-inflammatory mediators. However, the contribution of this pathway to the aging immune system remains largely unknown. Here, we highlight recent advances in understanding the biology of the cGAS-STING pathway, its influence on the senescence-associated secretory phenotype (SASP), and its modulation of the immune system during sterile inflammation. We propose that this important stress sensor of DNA damage is also a trigger of immunosenescence and inflammaging.
Collapse
Affiliation(s)
- Carine Raquel Richter Schmitz
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fatima T C R Guma
- Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés Evandro Bauer
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia - Neuroimunomodulação (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.,Programa de Pós-Graduação em Gerontologia Biomédica, Escola de Medicina, Pontifícia Universidade do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Florencia Maria Barbé-Tuana
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Pediatria e Saúde da Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Takahama S, Ishige K, Nogimori T, Yasutomi Y, Appay V, Yamamoto T. Model for predicting age-dependent safety and immunomodulatory effects of STING ligands in non-human primates. Mol Ther Methods Clin Dev 2022; 28:99-115. [PMID: 36620070 PMCID: PMC9813482 DOI: 10.1016/j.omtm.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Stimulator of interferon genes (STING) is a cytoplasmic dinucleotide sensor used as an immunomodulatory agent for cancer treatment. The efficacy of the STING ligand (STING-L) against various tumors has been evaluated in mouse models; however, its safety and efficacy in non-human primates have not been reported. We examined the effects of escalating doses of cyclic-di-adenosine monophosphate (c-di-AMP) or cyclic [G (3',5')pA (3',5'p] (3'-3'-cGAMP) administered intramuscularly or intravenously to cynomolgus macaques. Both ligands induced transient local and systemic inflammatory responses and systemic immunomodulatory responses, including the upregulation of interferon-α (IFN-α) and IFN-γ expression and the activation of multiple immunocompetent cell subsets. Better immunological responses were observed in animals that received c-di-AMP compared with those that received 3'-3'-cGAMP. Multi-parameter analysis using a dataset obtained before administering the ligands predicted the efficacy outcome partially. Importantly, the efficacy of these ligands was reduced in older macaques. We propose that 0.5 mg/kg c-di-AMP via intramuscular administration should be the optimal starting point for clinical studies. Our study is the first to demonstrate the age-dependent safety and efficacy of STING-L in non-human primates and supports the potential of STING-L use as a direct immunomodulator in vivo.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba 288-0056, Japan
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Victor Appay
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan,Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan,Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan,Corresponding author: Takuya Yamamoto, Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan.
| |
Collapse
|
29
|
Xiao R, Zhang A. Involvement of the STING signaling in COVID-19. Front Immunol 2022; 13:1006395. [PMID: 36569928 PMCID: PMC9772435 DOI: 10.3389/fimmu.2022.1006395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has cast a notorious damage to the public health and global economy. The Stimulator of Interferon Genes (STING) is a crucial element of the host antiviral pathway and plays a pivotal but complex role in the infection and development of COVID-19. Herein, we discussed the antagonistic mechanism of viral proteins to the STING pathway as well as its activation induced by host cells. Specifically, we highlighted that the persistent activation of STING by SARS-CoV-2 led to abnormal inflammation, and STING inhibitors could reduce the excessive inflammation. In addition, we also emphasized that STING agonists possessed antiviral potency against diverse coronavirus and showed adjuvant efficacy in SARS-CoV-2 vaccines by inducing IFN responses.
Collapse
Affiliation(s)
- Ruoxuan Xiao
- Research Center for Small Molecule Immunological Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China,Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Research Center for Small Molecule Immunological Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China,Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Ao Zhang,
| |
Collapse
|
30
|
Barman S, Borriello F, Brook B, Pietrasanta C, De Leon M, Sweitzer C, Menon M, van Haren SD, Soni D, Saito Y, Nanishi E, Yi S, Bobbala S, Levy O, Scott EA, Dowling DJ. Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants via Nanocarriers. ACS Chem Biol 2022; 17:2559-2571. [PMID: 36028220 PMCID: PMC9486804 DOI: 10.1021/acschembio.2c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (TFH) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.
Collapse
Affiliation(s)
- Soumik Barman
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Francesco Borriello
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Department
of Translational Medical Sciences and Center for Basic and Clinical
Immunology Research (CISI), University of
Naples Federico II, Naples 80131, Italy
- WAO
Center of Excellence, Naples 80131, Italy
| | - Byron Brook
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Carlo Pietrasanta
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, NICU, Milan 20122, Italy
- Department
of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Maria De Leon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Cali Sweitzer
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Manisha Menon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Simon D. van Haren
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Dheeraj Soni
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Yoshine Saito
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Etsuro Nanishi
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Sijia Yi
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - Sharan Bobbala
- Department
of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ofer Levy
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT & Harvard, Cambridge, Massachusetts 02142, United States
| | - Evan A. Scott
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - David J. Dowling
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Kang J, Lee HJ, Lee J, Hong J, Hong Kim Y, Disis ML, Gim JA, Park KH. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J Immunother Cancer 2022; 10:jitc-2022-004702. [PMID: 36109084 PMCID: PMC9478831 DOI: 10.1136/jitc-2022-004702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a protein chaperone for most of the important signal transduction pathways in human epidermal growth factor receptor 2-positive (HER2+) breast cancer, including human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor and Akt. The aim of our study is to identify peptide-based vaccines and to develop an effective immunotherapeutics for the treatment of HER2+ breast cancer. Methods HSP90-derived major histocompatibility complex (MHC) class II epitopes were selected using in silico algorithms and validated by enzyme-linked immunospot (ELISPOT). In vivo antitumor efficacy was evaluated in MMTVneu-transgenic mice. HSP90 peptide-specific systemic T-cell responses were assessed using interferon gamma ELISPOT assay, and immune microenvironment in tumors was evaluated using multiplex immunohistochemistry and TCRβ sequencing. Results First, candidate HSP90-derived MHC class II epitopes with high binding affinities across multiple human HLA class II genotypes were identified using in silico algorithms. Among the top 10 peptides, p485 and p527 were selected as promising Th1 immunity-inducing epitopes with low potential for Th2 immunity induction. The selected MHC class II HSP90 peptides induced strong antigen-specific T cell responses, which was induced by cross-priming of CD8+ T cells in vivo. The HSP90 peptide vaccines were effective in the established tumor model, and their efficacy was further enhanced when combined with stimulator of interferon genes (STING) agonist and/or anticytotoxic T lymphocyte-associated antigen-4 antibody in MMTVneu-transgenic mice. Increased tumor rejection was associated with increased systemic HSP90-specific T-cell responses, increased T-cell recruitment in tumor microenvironment, intermolecular epitope spreading, and increased rearrangement of TCRβ by STING agonist. Conclusions In conclusion, we have provided the first preclinical evidence of the action mechanism of HSP90 peptide vaccines with a distinct potential for improving breast cancer treatment.
Collapse
Affiliation(s)
- Jinho Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hye-Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jimin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jinhwa Hong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Mary L Disis
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-An Gim
- Center for Research Support, Korea University College of Medicine, Seoul, South Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Padron-Regalado E, Ulaszewska M, Douglas AD, Hill AVS, Spencer AJ. STING-pathway modulation to enhance the immunogenicity of adenoviral-vectored vaccines. Sci Rep 2022; 12:14464. [PMID: 36002507 PMCID: PMC9401198 DOI: 10.1038/s41598-022-18750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Traditional chemical adjuvants remain a practical means of enhancing the immunogenicity of vaccines. Nevertheless, it is recognized that increasing the immunogenicity of viral vectors is challenging. Recently, STING ligands have been shown to enhance the efficacy of different vaccine platforms, but their affectivity on viral-vectored vaccination has not been fully assessed. In this study we used a multi-pronged approach to shed light on the immunological properties and potential mechanisms of action of this type of adjuvant and focused our study on replication-deficient human adenovirus serotype 5 (AdHu5). When the STING ligand 2'3'-cGAMP was mixed with AdHu5, the adjuvant enhanced anti-vector immune responses while decreasing the transgene-specific CD8+ T cell response. Studies employing STING-knockout mice and a 2'3'-cGAMP inactive analogue confirmed the aforementioned effects were STING dependent. In vitro assays demonstrated 2'3'-cGAMP induced the production of IFN-β which in turn negatively affected AdHu5 transgene expression and CD8+ T cell immunogenicity. In an effort to overcome the negative impact of early 2'3'-cGAMP signaling on AdHu5 transgene immunogenicity, we generated a bicistronic vector encoding the 2'3'-cGAMP together with a model antigen. Intracellular production of 2'3'-cGAMP after AdHu5 infection was able to enhance transgene-specific CD8+ T cell immunogenicity, although not to a level that would warrant progression of this adjuvant to clinical assessment. This work highlights the importance of timing of 2'3'-cGAMP administration when assessing its adjuvant capacity with different vaccine modalities.
Collapse
Affiliation(s)
- Eriko Padron-Regalado
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Taylor D, Meyer CT, Graves D, Sen R, Fu J, Tran E, Mirza B, Rodriguez G, Lang C, Feng H, Quaranta V, Wilson JT, Kim YJ, Korrer MJ. MuSyC dosing of adjuvanted cancer vaccines optimizes antitumor responses. Front Immunol 2022; 13:936129. [PMID: 36059502 PMCID: PMC9437625 DOI: 10.3389/fimmu.2022.936129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
With the clinical approval of T-cell-dependent immune checkpoint inhibitors for many cancers, therapeutic cancer vaccines have re-emerged as a promising immunotherapy. Cancer vaccines require the addition of immunostimulatory adjuvants to increase vaccine immunogenicity, and increasingly multiple adjuvants are used in combination to bolster further and shape cellular immunity to tumor antigens. However, rigorous quantification of adjuvants' synergistic interactions is challenging due to partial redundancy in costimulatory molecules and cytokine production, leading to the common assumption that combining both adjuvants at the maximum tolerated dose results in optimal efficacy. Herein, we examine this maximum dose assumption and find combinations of these doses are suboptimal. Instead, we optimized dendritic cell activation by extending the Multidimensional Synergy of Combinations (MuSyC) framework that measures the synergy of efficacy and potency between two vaccine adjuvants. Initially, we performed a preliminary in vitro screening of clinically translatable adjuvant receptor targets (TLR, STING, NLL, and RIG-I). We determined that STING agonist (CDN) plus TLR4 agonist (MPL-A) or TLR7/8 agonist (R848) as the best pairwise combinations for dendritic cell activation. In addition, we found that the combination of R848 and CDN is synergistically efficacious and potent in activating both murine and human antigen-presenting cells (APCs) in vitro. These two selected adjuvants were then used to estimate a MuSyC-dose optimized for in vivo T-cell priming using ovalbumin-based peptide vaccines. Finally, using B16 melanoma and MOC1 head and neck cancer models, MuSyC-dose-based adjuvating of cancer vaccines improved the antitumor response, increased tumor-infiltrating lymphocytes, and induced novel myeloid tumor infiltration changes. Further, the MuSyC-dose-based adjuvants approach did not cause additional weight changes or increased plasma cytokine levels compared to CDN alone. Collectively, our findings offer a proof of principle that our MuSyC-extended approach can be used to optimize cancer vaccine formulations for immunotherapy.
Collapse
Affiliation(s)
- David Taylor
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian T. Meyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Diana Graves
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rupashree Sen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juan Fu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emily Tran
- College Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | - Bilal Mirza
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gabriel Rodriguez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cara Lang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hanwen Feng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Young J. Kim
- Oncology Chair, Global Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Michael J. Korrer
- Department of Otolaryngology Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
34
|
Li X, Khorsandi S, Wang Y, Santelli J, Huntoon K, Nguyen N, Yang M, Lee D, Lu Y, Gao R, Kim BYS, de Gracia Lux C, Mattrey RF, Jiang W, Lux J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. NATURE NANOTECHNOLOGY 2022; 17:891-899. [PMID: 35637356 PMCID: PMC9378430 DOI: 10.1038/s41565-022-01134-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
The cytosolic innate immune sensor cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is crucial for priming adaptive antitumour immunity through antigen-presenting cells (APCs). Natural agonists, such as cyclic dinucleotides (CDNs), activate the cGAS-STING pathway, but their clinical translation is impeded by poor cytosolic entry and serum stability, low specificity and rapid tissue clearance. Here we developed an ultrasound (US)-guided cancer immunotherapy platform using nanocomplexes composed of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) electrostatically bound to biocompatible branched cationic biopolymers that are conjugated onto APC-targeting microbubbles (MBs). The nanocomplex-conjugated MBs engaged with APCs and efficiently delivered cGAMP into the cytosol via sonoporation, resulting in activation of cGAS-STING and downstream proinflammatory pathways that efficiently prime antigen-specific T cells. This bridging of innate and adaptive immunity inhibited tumour growth in both localized and metastatic murine cancer models. Our findings demonstrate that targeted local activation of STING in APCs under spatiotemporal US stimulation results in systemic antitumour immunity and improves the therapeutic efficacy of checkpoint blockade, thus paving the way towards novel image-guided strategies for targeted immunotherapy of cancer.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sina Khorsandi
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julien Santelli
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nhu Nguyen
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruoqi Gao
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline de Gracia Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert F Mattrey
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jacques Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
36
|
Congy-Jolivet N, Cenac C, Dellacasagrande J, Puissant-Lubrano B, Apoil PA, Guedj K, Abbas F, Laffont S, Sourdet S, Guyonnet S, Nourhashemi F, Guéry JC, Blancher A. Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine 2022; 80:104047. [PMID: 35561451 PMCID: PMC9108881 DOI: 10.1016/j.ebiom.2022.104047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type I interferon (IFN-I) production by plasmacytoid dendritic cells (pDCs) occurs during viral infection, in response to Toll-like receptor 7 (TLR7) stimulation and is more vigorous in females than in males. Whether this sex bias persists in ageing people is currently unknown. In this study, we investigated the effect of sex and aging on IFN-α production induced by PRR agonist ligands. METHODS In a large cohort of individuals from 19 to 97 years old, we measured the production of IFN-α and inflammatory cytokines in whole-blood upon stimulation with either R-848, ODN M362 CpG-C, or cGAMP, which activate the TLR7/8, TLR9 or STING pathways, respectively. We further characterized the cellular sources of IFN-α. FINDINGS We observed a female predominance in IFN-α production by pDCs in response to TLR7 or TLR9 ligands. The higher TLR7-driven IFN-α production in females was robustly maintained across ages, including the elderly. The sex-bias in TLR9-driven interferon production was lost after age 60, which correlated with the decline in circulating pDCs. By contrast, STING-driven IFN-α production was similar in both sexes, preserved with aging, and correlated with circulating monocyte numbers. Indeed, monocytes were the primary cellular source of IFN-α in response to cGAMP. INTERPRETATION We show that the sex bias in the TLR7-induced IFN-I production is strongly maintained through ages, and identify monocytes as the main source of IFN-I production via STING pathway. FUNDING This work was supported by grants from Région Occitanie/Pyrénées-Méditerranée (#12052910, Inspire Program #1901175), University Paul Sabatier, and the European Regional Development Fund (MP0022856).
Collapse
Affiliation(s)
- Nicolas Congy-Jolivet
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Bénédicte Puissant-Lubrano
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Pol André Apoil
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Kevin Guedj
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sophie Laffont
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sandrine Sourdet
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France
| | - Fati Nourhashemi
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France; Maintain Aging Research team, CERPOP, INSERM, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| | - Antoine Blancher
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
37
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022; 122:5977-6039. [PMID: 35107989 PMCID: PMC8994686 DOI: 10.1021/acs.chemrev.1c00750] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - Taylor L Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
| |
Collapse
|
39
|
Self-degradable poly(β-amino ester)s promote endosomal escape of antigen and agonist. J Control Release 2022; 345:91-100. [DOI: 10.1016/j.jconrel.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023]
|
40
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
41
|
Nicoli F, Cabral-Piccin MP, Papagno L, Gallerani E, Fusaro M, Folcher V, Dubois M, Clave E, Vallet H, Frere JJ, Gostick E, Llewellyn-Lacey S, Price DA, Toubert A, Dupré L, Boddaert J, Caputo A, Gavioli R, Appay V. Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8 + T Cells in Elderly Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:562-570. [PMID: 35031578 PMCID: PMC7615155 DOI: 10.4049/jimmunol.2100194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mariela P Cabral-Piccin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
| | - Victor Folcher
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Marion Dubois
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Emmanuel Clave
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
| | - Hélène Vallet
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan; and
- Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
42
|
Serrano R, Lettau M, Zarobkiewicz M, Wesch D, Peters C, Kabelitz D. Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncoimmunology 2022; 11:2030021. [PMID: 35127253 PMCID: PMC8812774 DOI: 10.1080/2162402x.2022.2030021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Ligands for Stimulator of Interferon Genes (STING) receptor are under investigation as adjuvants in cancer therapy. Multiple effects have been described, including induction of immunogenic cell death and enhancement of CD8 T-cell mediated anti-tumor immunity. However, the potential effects of STING ligands on activation and effector functions of tumor-reactive human γδ T cells have not yet been investigated. We observed that cyclic dinucleotide as well as novel non-dinucleotide STING ligands diABZI and MSA-2 co-stimulated cytokine induction in Vδ2 T cells within peripheral blood mononuclear cells but simultaneously inhibited their proliferative expansion in response to the aminobisphosphonate Zoledronate and to γδ T-cell specific phosphoantigen. In purified γδ T cells, STING ligands co-stimulated cytokine induction but required the presence of monocytes. STING ligands strongly stimulated IL-1β and TNF-α secretion in monocytes and co-stimulated cytokine induction in short-term expanded Vδ2 γδ T-cell lines. Simultaneously, massive cell death was triggered in both cell populations. Activation of STING as revealed by TBK1/IRF3 phosphorylation and IP-10 secretion varied among STING-expressing tumor cells. STING ligands modulated tumor cell killing by Vδ2 T cells as analyzed in Real-Time Cell Analyzer to variable degree, depending on the tumor target and time course kinetics. Our study reveals complex regulatory effects of STING ligands on human γδ T cells in vitro. These results help to define conditions where STING ligands might boost the efficacy of γδ T cell immunotherapy in vivo.
Collapse
Affiliation(s)
- Ruben Serrano
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, Medical University Hannover, Hannover, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Hematology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Daniela Wesch
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
43
|
Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev 2021; 179:114020. [PMID: 34756942 DOI: 10.1016/j.addr.2021.114020] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.
Collapse
Affiliation(s)
- Simon Van Herck
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Bing Feng
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
45
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
46
|
Abstract
Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.
Collapse
Affiliation(s)
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), Centre National de la Recherche Scientifique (CNRS), UMR7355 and University of Orleans, Orleans, France
| |
Collapse
|
47
|
|
48
|
Zhang Z, Liu Q, Sun Y, Li J, Liu J, Pan R, Cao L, Chen X, Li Y, Zhang Y, Xu K, Guo D, Zhou L, Lan K, Chen Y. Live attenuated coronavirus vaccines deficient in N7-Methyltransferase activity induce both humoral and cellular immune responses in mice. Emerg Microbes Infect 2021; 10:1626-1637. [PMID: 34365904 PMCID: PMC8381960 DOI: 10.1080/22221751.2021.1964385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coronaviruses (CoVs) can infect a variety of hosts, including humans, livestock and companion animals, and pose a serious threat to human health and the economy. The current COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed millions of people. Unfortunately, effective treatments for CoVs infection are still lacking, suggesting the importance of coronavirus vaccines. Our previous work showed that CoV nonstuctural protein 14 (nsp14) functions as (guanine-N7)-methyltransferase (N7-MTase), which is involved in RNA cap formation. Moreover, we found that N7-MTase is well conserved among different CoVs and is a universal target for developing antivirals against CoVs. Here, we show that N7-MTase of CoVs can be an ideal target for designing live attenuated vaccines. Using murine hepatitis virus strain A59 (MHV-A59), a representative and well-studied model of coronaviruses, we constructed N7-MTase-deficient recombinant MHV D330A and Y414A. These two mutants are highly attenuated in mice and exhibit similar replication efficiency to the wild-type (WT) virus in the cell culture. Furthermore, a single dose immunization of D330A or Y414A can induce long-term humoral immune responses and robust CD4+ and CD8+ T cell responses, which can provide full protection against the challenge of a lethal-dose of MHV-A59. Collectively, this study provides an ideal strategy to design live attenuated vaccines for coronavirus by abolishing viral RNA N7-MTase activity. This approach may apply to other RNA viruses that encode their own conservative viral N7-methyltransferase.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ying Sun
- School of Chinese Medicine (Zhongjing School), Henan Univesity of Chinese Medicne, Zhengzhou, People's Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ruangang Pan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Liu Cao
- Center for Infection & Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yingjian Li
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yuzhen Zhang
- Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Deyin Guo
- Center for Infection & Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.,Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
50
|
Chauveau L, Bridgeman A, Tan TK, Beveridge R, Frost JN, Rijal P, Pedroza‐Pacheco I, Partridge T, Gilbert‐Jaramillo J, Knight ML, Liu X, Russell RA, Borrow P, Drakesmith H, Townsend AR, Rehwinkel J. Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity. EMBO Rep 2021; 22:e52447. [PMID: 34142428 PMCID: PMC8339669 DOI: 10.15252/embr.202152447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.
Collapse
Affiliation(s)
- Lise Chauveau
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Present address:
Institut de recherche en infectiologie de Montpellier (IRIM)CNRS UMR 9004MontpellierFrance
| | - Anne Bridgeman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Tiong K Tan
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ryan Beveridge
- MRC Molecular Hematology UnitMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
- Virus Screening FacilityMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Joe N Frost
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Pramila Rijal
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Thomas Partridge
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Javier Gilbert‐Jaramillo
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael L Knight
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xu Liu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC), Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Persephone Borrow
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Hal Drakesmith
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Alain R Townsend
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|