1
|
Yao Z, Feng Z, Zhang H, Zhang B. ScRNA-Seq reveals T cell immunity in COVID-19 patients and implications for immunotherapy. Int Immunopharmacol 2025; 155:114663. [PMID: 40233451 DOI: 10.1016/j.intimp.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
SARS-CoV-2, the virus causing COVID-19, poses significant health threats due to its high transmissibility and potential for severe respiratory complications. T cells, central to adaptive immunity, also interact with innate immunity, playing a pivotal role in coordinating defenses and eliminating infected cells. Single-cell RNA sequencing (scRNA-seq) has provided more subtle heterogeneity, rare subpopulations, or new subpopulations that are at the district differentiation stage or with specific function. Thus, elucidating how T cell heterogeneity impacts COVID-19 disease severity remains a critical question requiring comprehensive analysis. This review revealed the heterogeneity of the host T cells, including conventional T cells (CD8+, CD4+ T cells) and unconventional T cells, including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells in COVID-19 patients with different clinical manifestations. Severe COVID-19 had marked lymphopenia, excessive activation, elevated exhaustion and reduced functional diversity of T cells. Pathogenic contributions arise from dysregulated cytotoxic T cells, Treg cells and unconventional T cells collectively driving systemic hyperinflammation and tissue injury. Current therapeutic strategies targeting T cells-such as enhancing virus-specific T cell responses, reverting T-cell exhaustion and alleviating inflammation-exhibit inconsistent efficacy, underscoring the need for combinatorial approaches. This review highlights how scRNA-seq deciphers T cell heterogeneity and dysfunction in COVID-19. By targeting T cell exhaustion, inflammation, and subset-specific deficits, these insights pave the way for therapies and vaccines.
Collapse
Affiliation(s)
- Zhihong Yao
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong 723002, China; Affiliated Hospital, Hanzhong Vocational and Technical College, Hanzhong 723012, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Markey G, McLaughlin J, McDaid D, Lynch SM, English A, Alexander HD, Kelly M, Bhavsar M, McGilligan V, Zhang SD, Murray EK, Rai TS, Walsh C, Bjourson AJ, Shukla P, Gibson DS. Distinct Omicron longitudinal memory T cell profile and T cell receptor repertoire associated with COVID-19 hospitalisation. Front Immunol 2025; 16:1549570. [PMID: 40242761 PMCID: PMC12000046 DOI: 10.3389/fimmu.2025.1549570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/20/2025] [Indexed: 04/18/2025] Open
Abstract
SARS-CoV-2 has claimed more than 7 million lives worldwide and has been associated with prolonged inflammation, immune dysregulation and persistence of symptoms following severe infection. Understanding the T cell mediated immune response and factors impacting development and continuity of SARS-CoV-2 specific memory T cells is pivotal for developing better therapeutic and monitoring strategies for those most at risk from COVID-19. Here we present a comprehensive analysis of memory T cells in a convalescent cohort (n=20), three months post Omicron infection. Utilising flow cytometry to investigate CD4+CD45RO+ and CD8+CD45RO+ memory T cell IL-2 expression following Omicron (B.1.1.529/BA.1) peptide pool stimulation, alongside T cell receptor repertoire profiling and RNA-Seq analysis, we have identified several immunological features associated with hospitalised status. We observed that while there was no significant difference in median CD4+CD45RO+ IL-2+ and CD8+ CD45RO+ IL-2+ memory T cell count between subgroups, the hospitalised subgroup expressed significantly more IL-2 per cell following Omicron peptide pool exposure in the CD8+CD45RO+ population (p <0.03) and trended towards significance in CD4+CD45RO+ cells (p <0.06). T cell receptor repertoire analysis found that the non-hospitalised subgroup had a much higher number of circulating clonotypes, targeting a wider range of predominantly MHC-I epitopes across the SARS-CoV-2 genome. Several immunodominant epitopes, conserved between both subgroups, were observed, however hospitalised individuals were less likely to express putative HLA alleles responsible for pMHC presentation which may impact TCR affinity. We observed a bias towards shorter CDR3 segments in TCRβ repertoire analysis within the hospitalised subgroup, alongside lower rates of repertoire overlap in CDR3 sequences compared to the non-hospitalised subgroup. We found a significant proportion of TCRs targeted epitopes along the SARS-CoV-2 genome including non-structural proteins, responsible for viral replication and immune evasion. These findings highlight how the continuity of T cell based protective immunity is impacted by both the viral replication cycle of SARS-CoV-2 upon intracellular and innate immune responses, and HLA-type upon TCR affinity and clonotype formation. Our novel Epitope Target Analysis Pipeline (Epi-TAP) could prove beneficial in development of new therapeutic strategies through rapid identification of shared immunodominant epitopes across non-hospitalised and hospitalised subgroups.
Collapse
Affiliation(s)
- Gavin Markey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Joseph McLaughlin
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
- Medical Directorate, Clinical and Translational Research and Innovation Centre, Londonderry, United Kingdom
| | - Darren McDaid
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Seodhna M. Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Andrew English
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
- School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - H. Denis Alexander
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Martin Kelly
- Intensive Care Unit, Western Health Social Care Trust, Londonderry, United Kingdom
| | - Manav Bhavsar
- Intensive Care Unit, Western Health Social Care Trust, Londonderry, United Kingdom
| | - Victoria McGilligan
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Elaine K. Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Taranjit Singh Rai
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Colum Walsh
- Genomic Medicine Research Group, School of Biomedical Science, Ulster University, Coleraine, United Kingdom
- Biomedical and Clinical Sciences Division, Department for Cell and Neurobiology, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Anthony J. Bjourson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - Priyank Shukla
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| | - David S. Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, United Kingdom
| |
Collapse
|
3
|
Hu Y, Huang J, Wang S, Sun X, Wang X, Yu H. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation 2025; 48:676-695. [PMID: 38914737 DOI: 10.1007/s10753-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.
Collapse
Affiliation(s)
- Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
4
|
Wen X, Hu AK, Presnell SR, Ford ES, Koelle DM, Kwok WW. Longitudinal single cell profiling of epitope specific memory CD4+ T cell responses to recombinant zoster vaccine. Nat Commun 2025; 16:2332. [PMID: 40057520 PMCID: PMC11890790 DOI: 10.1038/s41467-025-57562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Vaccination leads to rapid expansion of antigen-specific T cells within in the first few days. However, understanding of transcriptomic changes and fates of antigen-specific T cells upon vaccination remains limited. Here, we investigate the fate of memory CD4+ T cells upon reactivation to recombinant zoster vaccine for shingles at cellular and transcriptional levels. We show that glycoprotein E-specific memory CD4+ T cells respond strongly, their frequencies remain high, and they retain markers of cell activation one year following vaccination. Memory T cells with the most dominant TCR clonotype pre-vaccination remain prevalent at year one post-vaccination. These data implicate a major role for pre-existing memory T cells in perpetuating immune repertoires upon re-encountering cognate antigens. Differential gene expression indicates that cells post-vaccination are distinct from cells at baseline, suggesting committed memory T cells display transcriptional changes upon vaccination that could alter their responses against cognate immunogens.
Collapse
Affiliation(s)
- Xiaomin Wen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA
| | - Alex K Hu
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Scott R Presnell
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Emily S Ford
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Fujitani M, Lu X, Shinnakasu R, Inoue T, Kidani Y, Seki NM, Ishida S, Mitsuki S, Ishihara T, Aoki M, Suzuki A, Takahashi K, Takayama M, Ota T, Iwata S, Shibata RY, Sonoyama T, Ariyasu M, Kitano A, Terooatea T, Kelly Villa J, Yamashita K, Yamasaki S, Kurosaki T, Omoto S. Longitudinal analysis of immune responses to SARS-CoV-2 recombinant vaccine S-268019-b in phase 1/2 prime-boost study. Front Immunol 2025; 16:1550279. [PMID: 40109335 PMCID: PMC11919840 DOI: 10.3389/fimmu.2025.1550279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Background The durability of vaccine-induced immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing infection, especially severe disease. Methods This follow-up report from a phase 1/2 study of S-268019-b (a recombinant spike protein vaccine) after homologous booster vaccination confirms its long-term safety, tolerability, and immunogenicity. Results Booster vaccination with S-268019-b resulted in an enhancement of serum neutralizing antibody (NAb) titers and a broad range of viral neutralization. Single-cell immune profiling revealed persistent and mature antigen-specific memory B cells and T follicular helper cells, with increased B-cell receptor diversity. The expansion of B- and T-cell repertoires and presence of cross-reactive NAbs targeting conserved epitopes within the receptor-binding domain following a booster accounted for the broad-spectrum neutralizing activity. Conclusion These findings highlight the potential of S-268019-b to provide broad and robust protection against a range of SARS-CoV-2 variants, addressing a critical challenge in the ongoing fight against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Masaya Fujitani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yujiro Kidani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Naomi M. Seki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoru Ishida
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Shungo Mitsuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Miwa Aoki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Akio Suzuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Koji Takahashi
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Masahiro Takayama
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Ota
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Iwata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Risa Yokokawa Shibata
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takuhiro Sonoyama
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Mari Ariyasu
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | | | | | - Sho Yamasaki
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Shinya Omoto
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
6
|
Ghosh S, Chatterjee A, Maitra A. An insight into COVID-19 host immunity at single-cell resolution. Int Rev Immunol 2024:1-16. [PMID: 39707914 DOI: 10.1080/08830185.2024.2443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Host immunity helps the body to fight against COVID-19. Single-cell transcriptomics has provided the scope of investigating cellular and molecular underpinnings of host immune response against SARS-CoV-2 infection at high resolution. In this review, we have systematically described the virus-induced dysregulation of relative abundance as well as molecular behavior of each innate and adaptive immune cell type and cell state during COVID-19 infection and for different vaccinations, based on single-cell studies published in last three-four years. Identification and characterization of these disease-associated specific cell populations might help to design better, efficient, and targeted therapeutic avenues.
Collapse
Affiliation(s)
- Supratim Ghosh
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Chatterjee
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
- John C. Martin Center for Liver Research and Innovations, Kolkata, India
| | - Arindam Maitra
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
7
|
Yang WS, Kim D, Kang S, Lai CJ, Cha I, Chang PC, Jung JU. Development of KSHV vaccine platforms and chimeric MHV68-K-K8.1 glycoprotein for evaluating the in vivo immunogenicity and efficacy of KSHV vaccine candidates. mBio 2024; 15:e0291324. [PMID: 39475238 PMCID: PMC11633179 DOI: 10.1128/mbio.02913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 is an etiological agent of Kaposi's Sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Considering the high seroprevalence reaching up to 80% in sub-Saharan Africa, an effective vaccine is crucial for preventing KSHV infection. However, vaccine development has been limited due to the lack of an effective animal model that supports KSHV infection. Murine Herpesvirus 68 (MHV68), a natural mouse pathogen persisting lifelong post-infection, presents a promising model for KSHV infection. In this study, we developed KSHV vaccine and a chimeric MHV68 carrying the KSHV glycoprotein, serving as a surrogate challenge virus for testing KSHV vaccines in a mouse model. Among KSHV virion glycoproteins, K8.1 is the most abundant envelope glycoprotein with the highest immunogenicity. We developed two K8.1 vaccines: K8.1 mRNA-lipid nanoparticle (LNP) vaccine and K8.126-87-Ferritin (FT) nanoparticle vaccines. Both induced humoral responses in immunized mice, whereas K8.1 mRNA LNP also induced T cell responses. Using BACmid-mediated homologous recombination, the MHV68 M7 (gp150) gene was replaced with KSHV K8.1 gene to generate chimeric MHV68-K-K8.1. MHV68-K-K8.1 established acute and latent infection in the lungs and spleens of infected mice, respectively. Mice immunized with K8.1 mRNA LNP or K8.126-87-FT showed a reduction of MHV68-K-K8.1 titer but not MHV68 wild type (WT) titer in the lung. In addition, viral reactivation of MHV68-K-K8.1 was also significantly reduced in K8.1 mRNA LNP-immunized mice. This study demonstrates the effectiveness of two vaccine candidates in providing immunity against KSHV K8.1 and introduces a surrogate MHV68 system for evaluating vaccine efficacy in vivo.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is a prevalent virus that establishes lifelong persistent infection in humans and is linked to several malignancies. While antiretroviral therapy has reduced Kaposi's Sarcoma (KS) complications in people with HIV, KS still affects individuals with well-controlled HIV, older men without HIV, and transplant recipients. Despite its significant impact on human health, however, research on KSHV vaccine has been limited, mainly due to the lack of interest and the absence of a suitable animal model. This study addresses these challenges by developing KSHV K8.1 vaccine with two platforms, mRNA lipid nanoparticle (LNP) and FT nanoparticle. Additionally, chimeric virus, MHV68-K-K8.1, was created to evaluate KSHV vaccine efficacy in vivo. Vaccination of K8.1 mRNA LNP or K8.126-87-FT significantly reduced MHV68-K-K8.1 titers. Developing an effective KSHV vaccine requires an innovative approach to ensure safety and efficacy, especially for the immunocompromised population and people with limited healthcare resources. This study could be a potential blueprint for future KSHV vaccine development.
Collapse
MESH Headings
- Animals
- Mice
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Disease Models, Animal
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Female
- Vaccine Development
- Rhadinovirus/genetics
- Rhadinovirus/immunology
- Nanoparticles/chemistry
- Humans
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Immunogenicity, Vaccine
- Herpesvirus Vaccines/immunology
- Herpesvirus Vaccines/administration & dosage
- Herpesvirus Vaccines/genetics
- Vaccine Efficacy
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Mice, Inbred C57BL
- Sarcoma, Kaposi/virology
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/prevention & control
- Liposomes
- Viral Proteins
Collapse
Affiliation(s)
- Wan-Shan Yang
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute ,Cleveland Clinic, Cleveland, Ohio, USA
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Dokyun Kim
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute ,Cleveland Clinic, Cleveland, Ohio, USA
| | - Soowon Kang
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute ,Cleveland Clinic, Cleveland, Ohio, USA
| | - Chih-Jen Lai
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute ,Cleveland Clinic, Cleveland, Ohio, USA
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Inho Cha
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jae U. Jung
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute ,Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Davis-Porada J, George AB, Lam N, Caron DP, Gray JI, Huang J, Hwu J, Wells SB, Matsumoto R, Kubota M, Lee Y, Morrison-Colvin R, Jensen IJ, Ural BB, Shaabani N, Weiskopf D, Grifoni A, Sette A, Szabo PA, Teijaro JR, Sims PA, Farber DL. Maintenance and functional regulation of immune memory to COVID-19 vaccines in tissues. Immunity 2024; 57:2895-2913.e8. [PMID: 39510068 PMCID: PMC11634668 DOI: 10.1016/j.immuni.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Memory T and B cells in tissues are essential for protective immunity. Here, we performed a comprehensive analysis of the tissue distribution, phenotype, durability, and transcriptional profile of COVID-19 mRNA vaccine-induced immune memory across blood, lymphoid organs, and lungs obtained from 63 vaccinated organ donors aged 23-86, some of whom experienced SARS-CoV-2 infection. Spike (S)-reactive memory T cells were detected in lymphoid organs and lungs and variably expressed tissue-resident markers based on infection history, and S-reactive B cells comprised class-switched memory cells resident in lymphoid organs. Compared with blood, S-reactive tissue memory T cells persisted for longer times post-vaccination and were more prevalent with age. S-reactive T cells displayed site-specific subset compositions and functions: regulatory cell profiles were enriched in tissues, while effector and cytolytic profiles were more abundant in circulation. Our findings reveal functional compartmentalization of vaccine-induced T cell memory where surveilling effectors and in situ regulatory responses confer protection with minimal tissue damage.
Collapse
Affiliation(s)
- Julia Davis-Porada
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alex B George
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jenny Huang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer Hwu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rory Morrison-Colvin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak B Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024; 15:2421987. [PMID: 39468707 PMCID: PMC11540089 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Raybould MIJ, Greenshields-Watson A, Agarwal P, Aguilar-Sanjuan B, Olsen TH, Turnbull OM, Quast NP, Deane CM. The Observed T Cell Receptor Space database enables paired-chain repertoire mining, coherence analysis, and language modeling. Cell Rep 2024; 43:114704. [PMID: 39216000 DOI: 10.1016/j.celrep.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
T cell activation is governed through T cell receptors (TCRs), heterodimers of two sequence-variable chains (often an α and β chain) that synergistically recognize antigen fragments presented on cell surfaces. Despite this, there only exist repositories dedicated to collecting single-chain, not paired-chain, TCR sequence data. We addressed this gap by creating the Observed TCR Space (OTS) database, a source of consistently processed and annotated, full-length, paired-chain TCR sequences. Currently, OTS contains 5.35 million redundant (1.63 million non-redundant), predominantly human sequences from across 50 studies and at least 75 individuals. Using OTS, we identify pairing biases, public TCRs, and distinct chain coherence patterns relative to antibodies. We also release a paired-chain TCR language model, providing paired embedding representations and a method for residue in-filling conditional on the partner chain. OTS will be updated as a central community resource and is freely downloadable and available as a web application.
Collapse
Affiliation(s)
- Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| | - Alexander Greenshields-Watson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Parth Agarwal
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Broncio Aguilar-Sanjuan
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Oliver M Turnbull
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Nele P Quast
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| |
Collapse
|
12
|
Karmaus PWF. Application of Single Cell Methods in Immunometabolism and Immunotoxicology. CURRENT OPINION IN TOXICOLOGY 2024; 39:100488. [PMID: 39091379 PMCID: PMC11290472 DOI: 10.1016/j.cotox.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Recent developments of novel single-cell analysis techniques have rapidly advanced the fields of immunotoxicology and immunometabolism. Single-cell analyses enable the characterization of immune cells, unraveling heterogeneity, and population dynamics in response to cellular perturbations, including toxicant insults and changes in cellular metabolism. This review provides an overview of current technologies and recent discoveries, illustrating an emerging role of single-cell analyses in the field of immunotoxicology and immunometabolism. Various single-cell techniques, including flow cytometry, mass cytometry, multiplexed imaging, and sequencing, together with their applications to studying immunotoxicology and immunometabolism are discussed. This review emphasizes the potential for single-cell analyses to revolutionize our understanding of immune cell heterogeneity, uncover novel cellular therapeutic targets, and pave the way for novel mechanistic insights.
Collapse
Affiliation(s)
- Peer W F Karmaus
- National Institute of Environmental Health Sciences, US
- Institute for Integrative Toxicology, Michigan State University, US
| |
Collapse
|
13
|
Xu Y, Zhu F, Zhou Z, Ma S, Zhang P, Tan C, Luo Y, Qin R, Chen J, Pan P. A novel mRNA multi-epitope vaccine of Acinetobacter baumannii based on multi-target protein design in immunoinformatic approach. BMC Genomics 2024; 25:791. [PMID: 39160492 PMCID: PMC11334330 DOI: 10.1186/s12864-024-10691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.
Collapse
Affiliation(s)
- Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caixia Tan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Martín-Martín C, del Riego ES, Castiñeira JRV, Zapico-Gonzalez MS, Rodríguez-Pérez M, Corte-Iglesias V, Saiz ML, Diaz-Bulnes P, Escudero D, Suárez-Alvarez B, López-Larrea C. Assessing Predictive Value of SARS-CoV-2 Epitope-Specific CD8 + T-Cell Response in Patients with Severe Symptoms. Vaccines (Basel) 2024; 12:679. [PMID: 38932408 PMCID: PMC11209605 DOI: 10.3390/vaccines12060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cristina Martín-Martín
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Estefanía Salgado del Riego
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain
| | - Jose R. Vidal Castiñeira
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Rodríguez-Pérez
- Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (M.S.Z.-G.); (M.R.-P.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Dolores Escudero
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Carlos López-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| |
Collapse
|
15
|
Xiao R, Lin M, Liu M, Ma Q. Single cells and TRUST4 reveal immunological features of the HFRS transcriptome. Front Med (Lausanne) 2024; 11:1403335. [PMID: 38803345 PMCID: PMC11128564 DOI: 10.3389/fmed.2024.1403335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
The etiology of hemorrhagic fever with renal syndrome (HFRS) is significantly impacted by a variety of immune cells. Nevertheless, the existing techniques for sequencing peripheral blood T cell receptor (TCR) or B cell receptor (BCR) libraries in HFRS are constrained by both limitations and high costs. In this investigation, we utilized the computational tool TRUST4 to generate TCR and BCR libraries utilizing comprehensive RNA-seq data from peripheral blood specimens of HFRS patients. This facilitated the examination of clonality and diversity within immune libraries linked to the condition. Despite previous research on immune cell function, the underlying mechanisms remain intricate, and differential gene expression across immune cell types and cell-to-cell interactions within immune cell clusters have not been thoroughly explored. To address this gap, we performed clustering analysis on 11 cell subsets derived from raw single-cell RNA-seq data, elucidating characteristic changes in cell subset proportions under disease conditions. Additionally, we utilized CellChat, a tool for cell-cell communication analysis, to investigate the impact of MIF family, CD70 family, and GALECTIN family cytokines-known to be involved in cell communication-on immune cell subsets. Furthermore, hdWGCNA analysis identified core genes implicated in HFRS pathogenesis within T cells and B cells. Trajectory analysis revealed that most cell subsets were in a developmental stage, with high expression of transcription factors such as NFKB and JUN in Effector CD8+ T cells, as well as in Naive CD4+ T cells and Naive B cells. Our findings provide a comprehensive understanding of the dynamic changes in immune cells during HFRS pathogenesis, identifying specific V genes and J genes in TCR and BCR that contribute to advancing our knowledge of HFRS. These insights offer potential implications for the diagnosis and treatment of this autoimmune disease.
Collapse
Affiliation(s)
| | | | | | - Qingqing Ma
- The Central Laboratory of Guizhou Aerospace Hospital, Zunyi, China
| |
Collapse
|
16
|
Ningoo M, Cruz-Encarnación P, Khilnani C, Heeger PS, Fribourg M. T-cell receptor sequencing reveals selected donor-reactive CD8 + T cell clones resist antithymocyte globulin depletion after kidney transplantation. Am J Transplant 2024; 24:755-764. [PMID: 38141722 PMCID: PMC11070313 DOI: 10.1016/j.ajt.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor β-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.
Collapse
Affiliation(s)
- Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Cruz-Encarnación
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Calla Khilnani
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
17
|
Kapten K, Orczyk K, Maeser A, Smolewska E. Interferon-γ Release Assay in the Assessment of Cellular Immunity-A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis. J Clin Med 2024; 13:2523. [PMID: 38731052 PMCID: PMC11084224 DOI: 10.3390/jcm13092523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Background: As the SARS-CoV-2 virus remains one of the main causes of severe respiratory system infections, the Food and Drug Administration strongly advises the continuation of current vaccination programs, including the distribution of updated boosters, especially in high-risk groups of patients. Therefore, there is an unceasing need for further research on the safety and, no less importantly, the clinical effectivity of the vaccines, with an extra focus on cohorts of patients with underlying health problems. This study aimed to assess the efficacy of the SARS-CoV-2 vaccine in possibly immunocompromised children with rheumatic disease while utilizing the interferon-gamma release assay (IGRA) as a marker for COVID-19 immunity in the study follow-up. Methods: This prospective study was performed in a group of 55 pediatric patients diagnosed with juvenile idiopathic arthritis. Eight participants were immunized with the Comirnaty mRNA vaccine before the research commenced, while the rest of the group (n = 47) had not been vaccinated against SARS-CoV-2. At the study baseline, the cellular response to the virus antigen was measured using a specific quantitative IGRA in whole blood; subsequently, the anti-SARS-CoV-2 test was performed, marking the antibodies' levels in serum. Around four months after the enrollment of the last patient in the study, a follow-up survey regarding the events of COVID-19 infection within the cohort was conducted. Results: The study confirmed that all the vaccinated children developed specific T-cell (p = 0.0016) and humoral (p = 0.001 for IgA antibodies, p = 0.008 for IgG antibodies) responses to the inoculation, including those receiving biological treatment and those on conventional disease-modifying anti-rheumatic drugs. The study also showed the different patterns of immunity elicited both after infection and post-vaccination, with higher levels of antibodies and T-cell response after inoculation than after natural exposure to the pathogen. According to the follow-up survey, six children developed PCR-confirmed SARS-CoV-2 infection, whereas the additional 10 patients admitted to having COVID-like symptoms with no laboratory verification. Conclusions: SARS-CoV-2 vaccinations elicit valid immune responses in pediatric rheumatic patients. Including the assessment of T-cell immunity in the evaluation of inoculation-induced immunization can enhance the accuracy of sole humoral response assays.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Krzysztof Orczyk
- Department of Pediatric Infectious Diseases, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Anna Maeser
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, 91-738 Lodz, Poland;
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, 91-738 Lodz, Poland;
| |
Collapse
|
18
|
Sheetikov SA, Khmelevskaya AA, Zornikova KV, Zvyagin IV, Shomuradova AS, Serdyuk YV, Shakirova NT, Peshkova IO, Titov A, Romaniuk DS, Shagina IA, Chudakov DM, Kiryukhin DO, Shcherbakova OV, Khamaganova EG, Dzutseva V, Afanasiev A, Bogolyubova AV, Efimov GA. Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein. Front Immunol 2024; 15:1369436. [PMID: 38629062 PMCID: PMC11018901 DOI: 10.3389/fimmu.2024.1369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Collapse
Affiliation(s)
- Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra A. Khmelevskaya
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V. Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alina S. Shomuradova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana V. Serdyuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Naina T. Shakirova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Iuliia O. Peshkova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Aleksei Titov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Dmitrii S. Romaniuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Irina A. Shagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M. Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Dmitry O. Kiryukhin
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Olga V. Shcherbakova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ekaterina G. Khamaganova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Vitalina Dzutseva
- Novosibirsk State University, Medical School, Novosibirsk, Russia
- NPO Petrovax Pharm LLC, Moscow, Russia
| | | | | | - Grigory A. Efimov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
19
|
Ho VWT, Boon LH, Cui J, Juequn Z, Shunmuganathan B, Gupta R, Tan NYJ, Qian X, Purushotorman K, Fong S, Renia L, Ng LFP, Angeli V, Chen J, Kennedy BK, Ong CWM, Macary PA. Relative deficiency in interferon-γ-secreting CD4+ T cells is strongly associated with poorer COVID-19 vaccination responses in older adults. Aging Cell 2024; 23:e14099. [PMID: 38317404 PMCID: PMC11019126 DOI: 10.1111/acel.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.
Collapse
Affiliation(s)
- Vanda W. T. Ho
- Division of Geriatric Medicine, Department of MedicineNational University HospitalSingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Low Heng Boon
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS Immunology Program, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Zhou Juequn
- Metabolic Core, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Bhuvaneshwari Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Nikki Y. J. Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Xinlei Qian
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Siew‐Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Veronique Angeli
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biochemistry and Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Catherine W. M. Ong
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingaporeSingapore
- Division of Infectious Diseases, Department of MedicineNational University HospitalSingaporeSingapore
| | - Paul A. Macary
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
20
|
He S, Liu SQ, Teng XY, He JY, Liu Y, Gao JH, Wu Y, Hu W, Dong ZJ, Bei JX, Xu JH. Comparative single-cell RNA sequencing analysis of immune response to inactivated vaccine and natural SARS-CoV-2 infection. J Med Virol 2024; 96:e29577. [PMID: 38572977 DOI: 10.1002/jmv.29577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.
Collapse
Affiliation(s)
- Shuai He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang-Yun Teng
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Jin-Yong He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Hui Gao
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wei Hu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Hua Xu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
21
|
Terzoli S, Marzano P, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Balin S, Calvi M, Carletti A, Cancellara A, Coianiz N, Franzese S, Frigo A, Voza A, Calcaterra F, Di Vito C, Della Bella S, Mikulak J, Mavilio D. Expansion of memory Vδ2 T cells following SARS-CoV-2 vaccination revealed by temporal single-cell transcriptomics. NPJ Vaccines 2024; 9:63. [PMID: 38509155 PMCID: PMC10954735 DOI: 10.1038/s41541-024-00853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
γδ T cells provide rapid cellular immunity against pathogens. Here, we conducted matched single-cell RNA-sequencing and γδ-TCR-sequencing to delineate the molecular changes in γδ T cells during a longitudinal study following mRNA SARS-CoV-2 vaccination. While the first dose of vaccine primes Vδ2 T cells, it is the second administration that significantly boosts their immune response. Specifically, the second vaccination uncovers memory features of Vδ2 T cells, shaped by the induction of AP-1 family transcription factors and characterized by a convergent central memory signature, clonal expansion, and an enhanced effector potential. This temporally distinct effector response of Vδ2 T cells was also confirmed in vitro upon stimulation with SARS-CoV-2 spike-peptides. Indeed, the second challenge triggers a significantly higher production of IFNγ by Vδ2 T cells. Collectively, our findings suggest that mRNA SARS-CoV-2 vaccination might benefit from the establishment of long-lasting central memory Vδ2 T cells to confer protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michela Calvi
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Assunta Cancellara
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Alessandro Frigo
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
22
|
Kashima Y, Reteng P, Haga Y, Yamagishi J, Suzuki Y. Single-cell analytical technologies: uncovering the mechanisms behind variations in immune responses. FEBS J 2024; 291:819-831. [PMID: 36082537 DOI: 10.1111/febs.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.
Collapse
Affiliation(s)
- Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Patrick Reteng
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
23
|
Xiao J, Luo Y, Li Y, Yao X. The characteristics of BCR-CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccinated volunteers. J Med Virol 2024; 96:e29488. [PMID: 38415507 DOI: 10.1002/jmv.29488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The global COVID-19 pandemic has caused more than 1 billion infections, and numerous SARS-CoV-2 vaccines developed rapidly have been administered over 10 billion doses. The world is continuously concerned about the cytokine storms induced by the interaction between SARS-CoV-2 and host, long COVID, breakthrough infections postvaccination, and the impact of SARS-CoV-2 variants. BCR-CDR3 repertoire serves as a molecular target for monitoring the antiviral response "trace" of B cells, evaluating the effects, mechanisms, and memory abilities of individual responses to B cells, and has been successfully applied in analyzing the infection mechanisms, vaccine improvement, and neutralizing antibodies preparation of influenza virus, HIV, MERS, and Ebola virus. Based on research on BCR-CDR3 repertoire of COVID-19 patients and volunteers who received different SARS-CoV-2 vaccines in multiple laboratories worldwide, we focus on analyzing the characteristics and changes of BCR-CDR3 repertoire, such as diversity, clonality, V&J genes usage and pairing, SHM, CSR, shared CDR3 clones, as well as the summary on BCR sequences targeting virus-specific epitopes in the preparation and application research of SARS-CoV-2 potential therapeutic monoclonal antibodies. This review provides comparative data and new research schemes for studying the possible mechanisms of differences in B cell response between SARS-CoV-2 infection or vaccination, and supplies a foundation for improving vaccines after SARS-CoV-2 mutations and potential antibody therapy for infected individuals.
Collapse
Affiliation(s)
- Jiaping Xiao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
- Fushun People's Hospital, Zigong, Sichuan, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
24
|
Tranter E, Frentsch M, Hütter-Krönke ML, Vuong GL, Busch D, Loyal L, Henze L, Rosnev S, Blau IW, Thiel A, Beule D, Bullinger L, Obermayer B, Na IK. Comparable CD8 + T-cell responses to SARS-CoV-2 vaccination in single-cell transcriptomics of recently allogeneic transplanted patients and healthy individuals. J Med Virol 2024; 96:e29539. [PMID: 38516755 DOI: 10.1002/jmv.29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Despite extensive research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination responses in healthy individuals, there is comparatively little known beyond antibody titers and T-cell responses in the vulnerable cohort of patients after allogeneic hematopoietic stem cell transplantation (ASCT). In this study, we assessed the serological response and performed longitudinal multimodal analyses including T-cell functionality and single-cell RNA sequencing combined with T cell receptor (TCR)/B cell receptor (BCR) profiling in the context of BNT162b2 vaccination in ASCT patients. In addition, these data were compared to publicly available data sets of healthy vaccinees. Protective antibody titers were achieved in 40% of patients. We identified a distorted B- and T-cell distribution, a reduced TCR diversity, and increased levels of exhaustion marker expression as possible causes for the poorer vaccine response rates in ASCT patients. Immunoglobulin heavy chain gene rearrangement after vaccination proved to be highly variable in ASCT patients. Changes in TCRα and TCRβ gene rearrangement after vaccination differed from patterns observed in healthy vaccinees. Crucially, ASCT patients elicited comparable proportions of SARS-CoV-2 vaccine-induced (VI) CD8+ T-cells, characterized by a distinct gene expression pattern that is associated with SARS-CoV-2 specificity in healthy individuals. Our study underlines the impaired immune system and thus the lower vaccine response rates in ASCT patients. However, since protective vaccine responses and VI CD8+ T-cells can be induced in part of ASCT patients, our data advocate early posttransplant vaccination due to the high risk of infection in this vulnerable group.
Collapse
Affiliation(s)
- Eva Tranter
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Frentsch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Luise Hütter-Krönke
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giang Lam Vuong
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Busch
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucie Loyal
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stanislav Rosnev
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center of Immunomics-Regenerative Immunology and Aging, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Si-M/"Der Simulierte Mensch", A Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Chang JT, Liu LB, Wang PG, An J. Single-cell RNA sequencing to understand host-virus interactions. Virol Sin 2024; 39:1-8. [PMID: 38008383 PMCID: PMC10877424 DOI: 10.1016/j.virs.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has allowed for the profiling of host and virus transcripts and host-virus interactions at single-cell resolution. This review summarizes the existing scRNA-seq technologies together with their strengths and weaknesses. The applications of scRNA-seq in various virological studies are discussed in depth, which broaden the understanding of the immune atlas, host-virus interactions, and immune repertoire. scRNA-seq can be widely used for virology in the near future to better understand the pathogenic mechanisms and discover more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
26
|
Enssle JC, Campe J, Moter A, Voit I, Gessner A, Yu W, Wolf S, Steffen B, Serve H, Bremm M, Huenecke S, Lohoff M, Vehreschild M, Rabenau HF, Widera M, Ciesek S, Oellerich T, Imkeller K, Rieger MA, von Metzler I, Ullrich E. Cytokine-responsive T- and NK-cells portray SARS-CoV-2 vaccine-responders and infection in multiple myeloma patients. Leukemia 2024; 38:168-180. [PMID: 38049509 PMCID: PMC10776400 DOI: 10.1038/s41375-023-02070-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.
Collapse
Affiliation(s)
- Julius C Enssle
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Campe
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alina Moter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Isabel Voit
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alec Gessner
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
| | - Hubert Serve
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie Bremm
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Infectious Diseases, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
- German Centre for Infection Research, external partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Imkeller
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Edinger Institute (Neurological Institute), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, MSNZ Group of Computational Immunology, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Ivana von Metzler
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany.
- University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Pateev I, Seregina K, Ivanov R, Reshetnikov V. Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and Animal Studies. Biomedicines 2023; 12:59. [PMID: 38255166 PMCID: PMC10812935 DOI: 10.3390/biomedicines12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Explosive developments in mRNA vaccine technology in the last decade have made it possible to achieve great success in clinical trials of mRNA vaccines to prevent infectious diseases and develop cancer treatments and mRNA-based gene therapy products. The approval of the mRNA-1273 and BNT162b2 mRNA vaccines against SARS-CoV-2 by the U.S. Food and Drug Administration has led to mass vaccination (with mRNA vaccines) of several hundred million people around the world, including children. Despite its effectiveness in the fight against COVID-19, rare adverse effects of the vaccination have been shown in some studies, including vascular microcirculation disorders and autoimmune and allergic reactions. The biodistribution of mRNA vaccines remains one of the most poorly investigated topics. This mini-review discussed the results of recent experimental studies on humans and rodents regarding the biodistribution of mRNA vaccines, their constituents (mRNA and lipid nanoparticles), and their encoded antigens. We focused on the dynamics of the biodistribution of mRNA vaccine products and on the possibility of crossing the blood-brain and blood-placental barriers as well as transmission to infants through breast milk. In addition, we critically assessed the strengths and weaknesses of the detection methods that have been applied in these articles, whose results' reliability is becoming a subject of debate.
Collapse
Affiliation(s)
- Ildus Pateev
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.P.)
| | - Kristina Seregina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.P.)
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.P.)
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.P.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection. iScience 2023; 26:108572. [PMID: 38213787 PMCID: PMC10783604 DOI: 10.1016/j.isci.2023.108572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
Collapse
Affiliation(s)
- Ellie N. Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jasmine Shwetar
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Terkild B. Buus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sophie Gray-Gaillard
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Akiko Koide
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Amber Cornelius
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Marie I. Samanovic
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Chenzhen Zhang
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Trishala Karmacharya
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Ludovic Desvignes
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- High Containment Laboratories, Office of Science and Research, New York University Langone Health, New York, NY 10016, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Robert J. Ulrich
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mark J. Mulligan
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramin S. Herati
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall NE, Messaoudi I. Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses. JCI Insight 2023; 8:e172658. [PMID: 37698937 PMCID: PMC10629812 DOI: 10.1172/jci.insight.172658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, and
- Institute for Immunology, University of California, Irvine, California, USA
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Cernera G, Gelzo M, De Placido P, Ottaviano M, Pietroluongo E, Raia M, Scalia G, Tortora M, Castaldo G, Formisano P, Palmieri G, Giuliano M. Immunocytometric analysis of patients with thymic epithelial tumors revealed that COVID-19 vaccine booster strongly enhanced the immune response. Front Immunol 2023; 14:1233056. [PMID: 37705978 PMCID: PMC10495582 DOI: 10.3389/fimmu.2023.1233056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background Thymic epithelial tumors (TETs) are rare malignancies with heterogeneous clinical manifestations. The high frequency of autoimmune paraneoplastic disorders observed in such patients requires caution when using COVID-19 vaccines. Furthermore, TETs are often associated with severe immunodeficiency, making it difficult to predict vaccine immunization. Therefore, we aimed to evaluate immune response to COVID-19 vaccine in patients with TETs. Methods We conducted a prospective study enrolling patients who underwent the SARS-Cov-2 mRNA full vaccine cycle (two doses plus a booster after 6 months of BNT162b2). All patients were enrolled before receiving 1st vaccine dose and were followed over the vaccination cycle for up to 6 months after the booster dose to i) assess humoral and cellular responses, ii) define biomarkers predictive of effective immunization, and iii) evaluate the safety of the vaccine. Results At the end of the full vaccine cycle, 27 (61.4%) patients developed humoral and 38 (86.4%) cellular responses (IFN γ release by stimulated cells) and showed an increase in activated TH1 and TH17 cells, particularly significant after the booster dose. The number of B and T lymphocytes at baseline was predictive of humoral and cellular responses, respectively. Patients with no evidence of tumor lesions had a higher probability of achieving a humoral response than those with evidence of the disease. Furthermore, the percentage of patients with immune-related disorders (75%), particularly Good's syndrome (47.7%) and myasthenia gravis (29.5%), did not change over the entire vaccine cycle. Overall, 19 of the 44 enrolled patients (43.2%) had COVID-19 during the observation period; none required hospitalization or oxygen support, and no fatalities were observed. Conclusion SARS-Cov-2 mRNA vaccine determines the immune responses in patients with TET, particularly after the booster dose, and in patients with no evidence of tumor lesions. Preliminary analysis of B and T lymphocytes may help identify patients who have a lower probability of achieving effective humoral and cellular responses and thus may need passive immunization. The vaccine prevented severe COVID-19 infection and is safe.
Collapse
Affiliation(s)
- Gustavo Cernera
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Pietro De Placido
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Margaret Ottaviano
- Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, IRCCS Fondazione G. Pascale, Naples, Italy
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Erica Pietroluongo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | | | | | - Marianna Tortora
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie avanzate, scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Naples, Italy
| | - Giovannella Palmieri
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| | - Mario Giuliano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
- Centro Regionale di Coordinamento Tumori Rari Regione Campania (CRCTR), Naples, Italy
| |
Collapse
|
32
|
Almeida B, Dias TR, Teixeira AL, Dias F, Medeiros R. MicroRNAs Derived from Extracellular Vesicles: Keys to Understanding SARS-CoV-2 Vaccination Response in Cancer Patients? Cancers (Basel) 2023; 15:4017. [PMID: 37627045 PMCID: PMC10452664 DOI: 10.3390/cancers15164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a global pandemic identified as coronavirus disease (COVID-19), with millions of deaths worldwide. However, several important questions regarding its impact on public health remain unanswered, such as the impact of vaccination on vulnerable subpopulations such as cancer patients. Cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, being manifested in most immunocompromised individuals. This strong immunosuppression can lead to a dysfunctional antiviral response to natural viral infection and compromised vaccination response. Extracellular vesicles (EVs) are membrane-bound vesicles released from cells that are involved in intercellular communication. EVs carry various molecules including microRNAs that play a crucial role in COVID-19 pathophysiology, influencing cellular responses. This review summarizes the state of the art concerning the role of EV-derived miRNAs in COVID-19 infection and their potential use as prognosis biomarkers for vaccination response in cancer patients.
Collapse
Affiliation(s)
- Beatriz Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia R. Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
- Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Research Inovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, Portuguese League against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| |
Collapse
|
33
|
Jiang M, Yu H, Luo L, Zhang L, Xiong A, Wang J, Wang Q, Liu Y, Liu S, Xiong Y, Yang P, Chang C, Zhang J, He X, Li G. Single cell characteristics of patients with vaccine-related adverse reactions following inactivated COVID-19 vaccination. Hum Vaccin Immunother 2023; 19:2246542. [PMID: 37614152 PMCID: PMC10453975 DOI: 10.1080/21645515.2023.2246542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023] Open
Abstract
A good safety and immunogenicity profile was reported in Phase I and II clinical trials of inactivated SARS-CoV-2 vaccines. Here, we report two cases associated with vaccine-associated adverse events, including one patient with fever and another with anaphylactic shock resulting from inactivated SARS-CoV-2 vaccination. Cell sub-types and the importance of genetic characteristics were assessed using single-cell mRNA sequencing and machine learning. Overall, the patient with fever showed a significant increase in the numbers of cytotoxic CD8 T cells and MKI67high CD8 T cells. A potential concurrent infection with the Epstein-Barr virus enhanced interferon type I responses to vaccination against the virus. STAT1, E2F1, YBX1, and E2F7 played a key role in the transcription regulation of MKI67high CD8 T cells. In contrast, the patient with allergic shock displayed predominant increases in the numbers of S100A9high monocytes, activated CD4 T cells, and PPBPhigh megakaryocytes. The decision tree showed that LYZ and S100A8 in S100A9high monocytes contributed to the degranulation of neutrophils and activation of neutrophils involved in allergic shock. PPBP and PF4 were major contributors to platelet degranulation. These findings highlight the diversity of adverse reactions following inactivated SARS-CoV-2 vaccination and show the emerging role of cellular subtypes and central genes in vaccine-associated adverse reactions.
Collapse
Affiliation(s)
- Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Haiqiong Yu
- Department of Pulmonary and Critical Care Medicine, The Eight Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Qianhui Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, China
| | - Pingchang Yang
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Christopher Chang
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Jianquan Zhang
- Department of Pulmonary and Critical Care Medicine, The Eight Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
34
|
Wang H, Yuan Y, Wu B, Xiao M, Wang Z, Diao T, Zeng R, Chen L, Lei Y, Long P, Guo Y, Lai X, Wen Y, Li W, Cai H, Song L, Ni W, Zhao Y, Ouyang K, Wang J, Wang Q, Liu L, Wang C, Pan A, Li X, Gong R, Wu T. Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents. Front Med 2023; 17:747-757. [PMID: 36738428 PMCID: PMC9898702 DOI: 10.1007/s11684-022-0954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.
Collapse
Affiliation(s)
- Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bihao Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhong Xiao
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingyue Diao
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Zeng
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanshou Lei
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Guo
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuefeng Lai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuying Wen
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenhui Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lulu Song
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Ni
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Youyun Zhao
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Kani Ouyang
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Jingzhi Wang
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Qi Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaolong Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - An Pan
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaodong Li
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Tangchun Wu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
35
|
Funakoshi Y, Yakushijin K, Ohji G, Matsutani T, Hojo W, Sakai H, Matsumoto S, Watanabe M, Kitao A, Saito Y, Kawamoto S, Yamamoto K, Koyama T, Nagatani Y, Kimbara S, Imamura Y, Kiyota N, Ito M, Minami H. Response to mRNA SARS-CoV-2 vaccination evaluated by B-cell receptor repertoire after tixagevimab/cilgavimab administration. Br J Haematol 2023; 202:504-516. [PMID: 37349876 DOI: 10.1111/bjh.18932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
The use of anti-SARS-CoV-2 antibody products like tixagevimab/cilgavimab represents an important strategy to protect immunocompromised patients with haematological malignancies from COVID-19. Although patients who receive these agents should still be vaccinated, the use of tixagevimab/cilgavimab can mask the production of anti-spike antibody after vaccination, making it hard to assess vaccine response. We have newly established a quantification method to assess the response to SARS-CoV-2 vaccination at the mRNA level using B-cell receptor (BCR) repertoire assay and the Coronavirus Antibody Database (CoV-AbDab). Repeated blood samples before and after vaccination were analysed for the BCR repertoire, and BCR sequences were searched in the database. We analysed the number and percentage frequency of matched sequences. We found that the number of matched sequences increased 2 weeks after the first vaccination and quickly decreased. Meanwhile, the number of matched sequences more rapidly increased after the second vaccination. These results show that the postvaccine immune response can be assessed at the mRNA level by analysing the fluctuation in matching sequences. Finally, BCR repertoire analysis with CoV-AbDab clearly demonstrated the response to mRNA SARS-CoV-2 vaccination even after tixagevimab/cilgavimab administration in haematological malignancy patients who underwent allogeneic haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yohei Funakoshi
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Goh Ohji
- Division of Infection Disease Therapeutics, Department of Microbiology and Infectious Diseases, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Takaji Matsutani
- Research & Development Department, Repertoire Genesis Inc., Ibaraki, Japan
| | | | | | - Sakuya Matsumoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Marika Watanabe
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichiro Kawamoto
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Kobe, Japan
| | - Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Taiji Koyama
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Nagatani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Shiro Kimbara
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Imamura
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
- Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Mitsuhiro Ito
- Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
- Cancer Center, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
36
|
Wu Y, Huang P, Xu M, Zhao Q, Xu Y, Han S, Li H, Wang Y. Immunogenicity and reactogenicity of inactivated SARS-CoV-2 vaccines in healthy adults. Front Immunol 2023; 14:1152899. [PMID: 37559719 PMCID: PMC10407550 DOI: 10.3389/fimmu.2023.1152899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly pathogenic to humans and has caused the ongoing coronavirus disease 2019 (COVID-19) pandemic. Vaccines are one of the efficient ways to prevent the viral infection. After COVID-19 vaccination, the monitoring of the dynamic change in neutralizing antibodies is necessary to determine booster requirements. Methods We estimated the effectiveness of the inactivated vaccines by monitoring dynamic SARS-CoV-2 neutralizing antibodies for over 2 years. Additionally, we also investigated the activation of T lymphocytes (CD3+ T cells) after three doses of the inactivated vaccine. Result The results showed that the rate of reduction of SARS-CoV-2 neutralizing antibody levels gradually showed after each booster dose. The IgG/IgM level at 9 months after the third vaccination were significantly higher than those at 6 months after the second dose (p<0.0001). The expression of CD25+T cell in 18-35 age group was significantly higher than that in the other groups. Nine months after the third dose (the time of last blood sample collection), the expression of CD25+T cell in the 18-35 age group was significantly higher than that at 6 months after the second dose. CD25+T cell in the 18-35 years old group was significantly higher than 6 months after the second vaccination. Conclusion CD25, a late activation marker of lymphocytes and high-activity memory T cell subgroup, exhibited higher levels at the later stages after vaccination. COVID-19 booster vaccination in older adults and regular testing of SARS-CoV-2 neutralizing antibodies are recommended. Booster doses should be administered if the antibody level falls below the 30% inhibition rate.
Collapse
Affiliation(s)
- Yufei Wu
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Huang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Mingjie Xu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Qianqian Zhao
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Yihui Xu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Shuyi Han
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Huanjie Li
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
37
|
Xue VW, Wong SCC, Li B, Cho WCS. The discovery and development of mRNA vaccines for the prevention of SARS-CoV-2 infection. Expert Opin Drug Discov 2023; 18:769-780. [PMID: 37237360 DOI: 10.1080/17460441.2023.2218083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION COVID-19 pandemic is one of the most serious public health events of this century. There have been more than 670 million confirmed cases and more than 6 million deaths worldwide. From the emergence of the Alpha variant to the later rampant Omicron variant, the high transmissibility and pathogenicity of SARS-CoV-2 accelerate the research and development of effective vaccines. Against this background, mRNA vaccines stepped onto the historical stage and became an important tool for COVID-19 prevention. AREAS COVERED This article introduces the characteristics of different mRNA vaccines in the prevention of COVID-19, including antigen selection, therapeutic mRNA design and modification, and different delivery systems of mRNA molecules. It also summarizes and discusses the mechanisms, safety, effectiveness, side effects, and limitations of current COVID-19 mRNA vaccines. EXPERT OPINION Therapeutic mRNA molecules have plenty of advantages, including flexible design, rapid production, sufficient immune activation, safety without the risk of genome insertion in the host cells, and no viral vectors or particles involved, making them an important tool to fight diseases in the future. However, the application of COVID-19 mRNA vaccines also faces many challenges, such as storage and transportation, mass production, and nonspecific immunity.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, China
| | | |
Collapse
|
38
|
He X, Cao Y, Lu Y, Qi F, Wang H, Liao X, Xu G, Yang B, Ma J, Li D, Tang X, Zhang Z. Breakthrough infection evokes the nasopharyngeal innate immune responses established by SARS-CoV-2-inactivated vaccine. Front Immunol 2023; 14:1181121. [PMID: 37457721 PMCID: PMC10349640 DOI: 10.3389/fimmu.2023.1181121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Nasopharyngeal immune responses are vital for defense against SARS-CoV-2 infection. Although vaccination via muscle immunization has shown a high efficacy in reducing severity and death in COVID-19 infection, breakthrough infection frequently happens because of mutant variants and incompletely established mucosal immunity, especially in the upper respiratory tract. Here, we performed a single-cell RNA and T-cell receptor repertoire sequencing and delineated a high-resolution transcriptome landscape of nasopharyngeal mucosal immune and epithelial cells in vaccinated persons with breakthrough infection and non-vaccinated persons with natural infection as control. The epithelial cells showed anti-virus gene expression diversity and potentially recruited innate immune cells into the nasopharyngeal mucous of vaccinated patients. Upon infection, they released significant pro-inflammatory cytokines and chemokines by macrophages and monocytes and expressed antigen-presenting relevant genes by dendritic cells. Such immune responses of nasopharyngeal innate immune cells would facilitate the strengthened expression of cytotoxic genes in virus-specific T-cell or B-cell differentiation into antibody-secreting cells at the early stage of breakthrough infection through cell interaction between innate and adaptive immune cells. Notably, these alterations of nasopharyngeal immune cells in breakthrough infection depended on the activated Nuclear factor-κB (NF-κB) and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) signaling rather than type I interferon responses due to the general reduction in interferon-stimulated gene expression. Our findings suggest that vaccination potentially strengthens innate immune barriers and virus-specific memory immune cell responses, which could be quickly activated to defend against variant breakthrough infection and maintain nasopharyngeal epithelial cell integrity. Thus, this study highlights the necessity of a boost via nasal mucous after intramuscular immunization.
Collapse
Affiliation(s)
- Xiaomeng He
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yingyin Cao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanmei Lu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Furong Qi
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haiyan Wang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xuejiao Liao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Biao Yang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Junhua Ma
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dapeng Li
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xian Tang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall N, Messaoudi I. Mild/Asymptomatic Maternal SARS-CoV-2 Infection Leads to Immune Paralysis in Fetal Circulation and Immune Dysregulation in Fetal-Placental Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540233. [PMID: 37214938 PMCID: PMC10197637 DOI: 10.1101/2023.05.10.540233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Few studies have addressed the impact of maternal mild/asymptomatic SARS-CoV-2 infection on the developing neonatal immune system. In this study, we analyzed umbilical cord blood and placental chorionic villi from newborns of unvaccinated mothers with mild/asymptomatic SARSCoV-2 infection during pregnancy using flow cytometry, single-cell transcriptomics, and functional assays. Despite the lack of vertical transmission, levels of inflammatory mediators were altered in cord blood. Maternal infection was also associated with increased memory T, B cells, and non-classical monocytes as well as increased activation. However, ex vivo responses to stimulation were attenuated. Finally, within the placental villi, we report an expansion of fetal Hofbauer cells and infiltrating maternal macrophages and rewiring towards a heightened inflammatory state. In contrast to cord blood monocytes, placental myeloid cells were primed for heightened antiviral responses. Taken together, this study highlights dysregulated fetal immune cell responses in response to mild maternal SARS-CoV-2 infection during pregnancy.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine CA 92697
- Institute for Immunology, University of California, Irvine CA 92697
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington KY 40536
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Nicole Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| |
Collapse
|
40
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Kavazović I, Dimitropoulos C, Gašparini D, Rončević Filipović M, Barković I, Koster J, Lemmermann NA, Babić M, Cekinović Grbeša Đ, Wensveen FM. Vaccination provides superior in vivo recall capacity of SARS-CoV-2-specific memory CD8 T cells. Cell Rep 2023; 42:112395. [PMID: 37099427 PMCID: PMC10070771 DOI: 10.1016/j.celrep.2023.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Memory CD8 T cells play an important role in the protection against breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether the route of antigen exposure impacts these cells at a functional level is incompletely characterized. Here, we compare the memory CD8 T cell response against a common SARS-CoV-2 epitope after vaccination, infection, or both. CD8 T cells demonstrate comparable functional capacity when restimulated directly ex vivo, independent of the antigenic history. However, analysis of T cell receptor usage shows that vaccination results in a narrower scope than infection alone or in combination with vaccination. Importantly, in an in vivo recall model, memory CD8 T cells from infected individuals show equal proliferation but secrete less tumor necrosis factor (TNF) compared with those from vaccinated people. This difference is negated when infected individuals have also been vaccinated. Our findings shed more light on the differences in susceptibility to re-infection after different routes of SARS-CoV-2 antigen exposure.
Collapse
Affiliation(s)
- Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Igor Barković
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, 1105AZ Amsterdam, the Netherlands
| | - Niels A Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marina Babić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, 10117 Berlin, Germany
| | | | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
42
|
Xiao C, Ren Z, Zhang B, Mao L, Zhu G, Gao L, Su J, Ye J, Long Z, Zhu Y, Chen P, Su X, Zhou T, Huang Y, Chen X, Xie C, Yuan J, Hu Y, Zheng J, Wang Z, Lou J, Yang X, Kuang Z, Zhang H, Wang P, Liang X, Luo OJ, Chen G. Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults. NATURE AGING 2023; 3:418-435. [PMID: 37117789 PMCID: PMC10154213 DOI: 10.1038/s43587-023-00379-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 04/30/2023]
Abstract
Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.
Collapse
Affiliation(s)
- Chanchan Xiao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zhiyao Ren
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Bei Zhang
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guodong Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
| | - Lijuan Gao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Su
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Jiezhou Ye
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Ze Long
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Pengfei Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangmeng Su
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Tong Zhou
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhao Huang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiongfei Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chaojun Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yutian Hu
- Meng Yi Center Limited, Macau, China
| | - Jingshan Zheng
- Shenzhen Kangtai Biological Products Co. Ltd, Shenzhen, China
| | - Zhigang Wang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | | | - Xiang Yang
- Leidebio Bioscience Co., Ltd., Guangzhou, China
| | - Zhiqiang Kuang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Pengcheng Wang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| | - Oscar Junhong Luo
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Guobing Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou, China.
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
43
|
Tong R, Luo L, Zhao Y, Sun M, Li R, Zhong J, Chen Y, Hu L, Li Z, Shi J, Lyu Y, Hu L, Guo X, Liu Q, Shuang T, Zhang C, Yuan A, Sun L, Zhang Z, Qian K, Chen L, Lin W, Chen AF, Wang F, Pu J. Characterizing the cellular and molecular variabilities of peripheral immune cells in healthy recipients of BBIBP-CorV inactivated SARS-CoV-2 vaccine by single-cell RNA sequencing. Emerg Microbes Infect 2023; 12:e2187245. [PMID: 36987861 PMCID: PMC10171127 DOI: 10.1080/22221751.2023.2187245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Over 3 billion doses of inactivated vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been administered globally. However, our understanding of the immune cell functional transcription and T cell receptor (TCR)/B cell receptor (BCR) repertoire dynamics following inactivated SARS-CoV-2 vaccination remains poorly understood. Here, we performed single-cell RNA and TCR/BCR sequencing on peripheral blood mononuclear cells at four time points after immunization with the inactivated SARS-CoV-2 vaccine BBIBP-CorV. Our analysis revealed an enrichment of monocytes, central memory CD4+ T cells, type 2 helper T cells and memory B cells following vaccination. Single-cell TCR-seq and RNA-seq comminating analysis identified a clonal expansion of CD4+ T cells (but not CD8+ T cells) following a booster vaccination that corresponded to a decrease in the TCR diversity of central memory CD4+ T cells and type 2 helper T cells. Importantly, these TCR repertoire changes and CD4+ T cell differentiation were correlated with the biased VJ gene usage of BCR and the antibody-producing function of B cells post-vaccination. Finally, we compared the functional transcription and repertoire dynamics in immune cells elicited by vaccination and SARS-CoV-2 infection to explore the immune responses under different stimuli. Our data provide novel molecular and cellular evidence for the CD4+ T cell-dependent antibody response induced by inactivated vaccine BBIBP-CorV. This information is urgently needed to develop new prevention and control strategies for SARS-CoV-2 infection. (ClinicalTrials.gov Identifier: NCT04871932).Trial registration: ClinicalTrials.gov identifier: NCT04871932..
Collapse
|
44
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
45
|
Hernandez SPA, Hersby DS, Munk KK, Tamhane T, Trubach D, Tagliamonte M, Buonaguro L, Gang AO, Hadrup SR, Saini SK. Three doses of BNT162b2 COVID-19 mRNA vaccine establish long-lasting CD8 + T cell immunity in CLL and MDS patients. Front Immunol 2023; 13:1035344. [PMID: 36703960 PMCID: PMC9873231 DOI: 10.3389/fimmu.2022.1035344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Patients with hematological malignancies are prioritized for COVID-19 vaccine due to their high risk for severe SARS-CoV-2 infection-related disease and mortality. To understand T cell immunity, its long-term persistence, and its correlation with antibody response, we evaluated the BNT162b2 COVID-19 mRNA vaccine-specific immune response in chronic lymphocytic leukemia (CLL) and myeloid dysplastic syndrome (MDS) patients. Longitudinal analysis of CD8+ T cells using DNA-barcoded peptide-MHC multimers covering the full SARS-CoV-2 Spike-protein (415 peptides) showed vaccine-specific T cell activation and persistence of memory T cells up to six months post-vaccination. Surprisingly, a higher frequency of vaccine-induced antigen-specific CD8+ T cells was observed in the patient group compared to a healthy donor group. Furthermore, and importantly, immunization with the second booster dose significantly increased the frequency of antigen-specific CD8+ T cells as well as the total number of T cell specificities. Altogether 59 BNT162b2 mRNA vaccine-derived immunogenic responses were identified, of which 23 established long-term CD8+ T cell memory response with a strong immunodominance for NYNYLYRLF (HLA-A24:02) and YLQPRTFLL (HLA-A02:01) epitopes. In summary, we mapped the vaccine-induced antigen-specific CD8+ T cells and showed a booster-specific activation and enrichment of memory T cells that could be important for long-term disease protection in this patient group.
Collapse
Affiliation(s)
- Susana Patricia Amaya Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ditte Stampe Hersby
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla Kjærgaard Munk
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Darya Trubach
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, National Cancer Institute Pascale Foundation – IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, National Cancer Institute Pascale Foundation – IRCCS, Napoli, Italy
| | - Anne Ortved Gang
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark,*Correspondence: Sunil Kumar Saini,
| |
Collapse
|
46
|
Katoh H, Komura D, Furuya G, Ishikawa S. Immune repertoire profiling for disease pathobiology. Pathol Int 2023; 73:1-11. [PMID: 36342353 PMCID: PMC10099665 DOI: 10.1111/pin.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Lymphocytes consist of highly heterogeneous populations, each expressing a specific cell surface receptor corresponding to a particular antigen. Lymphocytes are both the cause and regulator of various diseases, including autoimmune/allergic diseases, lifestyle diseases, neurodegenerative diseases, and cancers. Recently, immune repertoire sequencing has attracted much attention because it helps obtain global profiles of the immune receptor sequences of infiltrating T and B cells in specimens. Immune repertoire sequencing not only helps deepen our understanding of the molecular mechanisms of immune-related pathology but also assists in discovering novel therapeutic modalities for diseases, thereby shedding colorful light on otherwise tiny monotonous cells when observed under a microscope. In this review article, we introduce and detail the background and methodology of immune repertoire sequencing and summarize recent scientific achievements in association with human diseases. Future perspectives on this genetic technique in the field of histopathological research will also be discussed.
Collapse
Affiliation(s)
- Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Li H, Cai D, Jiang D, Li X, Liao X, Liu D, Liu Z, Zhu P, Yin G, Ming J, Peng M, Chen M, Ling N, Lan Y, Zhang D, Hu P, Ren H. Risk of waning humoral responses after inactivated or subunit recombinant SARS-CoV-2 vaccination in patients with chronic diseases: Findings from a prospective observational study in China. J Med Virol 2023; 95:e28434. [PMID: 36571260 PMCID: PMC9880742 DOI: 10.1002/jmv.28434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Heterogeneity of antibody responses has been reported in SARS-CoV-2 vaccination recipients with underlying diseases. We investigated the impact of the presence of comorbidities on the humoral response to SARS-CoV-2 vaccination in patients with chronic disease (PWCD) and assessed the effect of the number of comorbidities on the humoral response to vaccination. In this study, neutralizing antibodies (NAbs) and IgG antibodies against the receptor-binding domain (RBD-IgG) were monitored following a full-course vaccination. In total, 1400 PWCD (82.7%, inactivated vaccines; 17.3%, subunit recombinant vaccine) and 245 healthy controls (65.7% inactivated vaccines, 34.3% subunit recombinant vaccine) vaccinated with inactivated or subunit recombinant SARS-CoV-2 vaccines, were included. The seroconversion and antibody levels of the NAbs and RBD-IgG were different in the PWCD group compared with those in the control group. Chronic hepatitis B (odds ratio [OR]: 0.65; 95% confidence interval [CI]: 0.46-0.93), cancer (OR: 0.65; 95% CI: 0.42-0.99), and diabetes (OR: 0.50; 95% CI: 0.28-0.89) were associated with lower seroconversion of NAbs. Chronic kidney disease (OR: 0.29; 95% CI: 0.11-0.76), cancer (OR: 0.38; 95% CI: 0.23-0.62), and diabetes (OR: 0.37; 95% CI: 0.20-0.69) were associated with lower seroconversion of RBD-IgG. Only the presence of autoimmune disease showed significantly lower NAbs and RBD-IgG titers. Patients with most types of chronic diseases showed similar responses to the controls, but humoral responses were still significantly associated with the presence of ≥2 coexisting diseases. Our study suggested that humoral responses following SARS-CoV-2 vaccination are impaired in patients with certain chronic diseases.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Depeng Jiang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xingsheng Li
- Department of GerontologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zuojin Liu
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Peng Zhu
- Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Guobing Yin
- Department of Breast and Thyroid SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jia Ming
- Department of Breast and Thyroid SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinghua Lan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dazhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
48
|
Zhou Y, Qu J, Sun X, Yue Z, Liu Y, Zhao K, Yang F, Feng J, Pan X, Jin Y, Cheng Z, Yang L, Ha UH, Wu W, Li L, Bai F. Delivery of spike-RBD by bacterial type three secretion system for SARS-CoV-2 vaccine development. Front Immunol 2023; 14:1129705. [PMID: 36895557 PMCID: PMC9988893 DOI: 10.3389/fimmu.2023.1129705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4+and CD8+T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8+T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens.
Collapse
Affiliation(s)
- Yuchen Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomeng Sun
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingzi Liu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Keli Zhao
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
49
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
50
|
He B, Liu S, Xu M, Hu Y, Lv K, Wang Y, Ma Y, Zhai Y, Yue X, Liu L, Lu H, Zhou S, Li P, Mai G, Huang X, Li C, Chen S, Ye S, Zhao P, Yang Y, Li X, Jie Y, Shi M, Yang J, Shu Y, Chen YQ. Comparative global B cell receptor repertoire difference induced by SARS-CoV-2 infection or vaccination via single-cell V(D)J sequencing. Emerg Microbes Infect 2022; 11:2007-2020. [PMID: 35899581 PMCID: PMC9377262 DOI: 10.1080/22221751.2022.2105261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023]
Abstract
Dynamic changes of the paired heavy and light chain B cell receptor (BCR) repertoire provide an essential insight into understanding the humoral immune response post-SARS-CoV-2 infection and vaccination. However, differences between the endogenous paired BCR repertoire kinetics in SARS-CoV-2 infection and previously recovered/naïve subjects treated with the inactivated vaccine remain largely unknown. We performed single-cell V(D)J sequencing of B cells from six healthy donors with three shots of inactivated SARS-CoV-2 vaccine (BBIBP-CorV), five people who received the BBIBP-CorV vaccine after having recovered from COVID-19, five unvaccinated COVID-19 recovered patients and then integrated with public data of B cells from four SARS-CoV-2-infected subjects. We discovered that BCR variable (V) genes were more prominently used in the SARS-CoV-2 exposed groups (both in the group with active infection and in the group that had recovered) than in the vaccinated groups. The VH gene that expanded the most after SARS-CoV-2 infection was IGHV3-33, while IGHV3-23 in the vaccinated groups. SARS-CoV-2-infected group enhanced more BCR clonal expansion and somatic hypermutation than the vaccinated healthy group. A small proportion of public clonotypes were shared between the SARS-CoV-2 infected, vaccinated healthy, and recovered groups. Moreover, several public antibodies had been identified against SARS-CoV-2 spike protein. We comprehensively characterize the paired heavy and light chain BCR repertoire from SARS-CoV-2 infection to vaccination, providing further guidance for the development of the next-generation precision vaccine.
Collapse
Affiliation(s)
- Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Siwei Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Guoqin Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Chenhang Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Shifeng Chen
- Department of Respiratory and Critical Care Medicine, The 74(th) Group Army Hospital, Guangzhou, People’s Republic of China
| | - Shupei Ye
- SSL Central Hospital of Dongguan City, Dongguan, People’s Republic of China
| | - Pingsen Zhao
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, People’s Republic of China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xinhua Li
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Jingyi Yang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- b School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- k Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, People’s Republic of China
| |
Collapse
|