1
|
Yang JL, Chen S, Xi JF, Lin XY, Xue RY, Ma LQ, Zhou D, Li HB. Sex-dependent effects of rice cadmium exposure on body weight, gut microflora, and kidney metabolomics based on a mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168498. [PMID: 37952668 DOI: 10.1016/j.scitotenv.2023.168498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Consumption of cadmium (Cd) contaminated rice is the main dietary source of Cd exposure and toxicity. To protect humans from Cd toxicity, it is pivotal to fully understand the sex-dependent toxicity of subchronic rice-Cd exposure. However, the sex-dependent effects of subchronic rice-Cd exposure on body weight gain, gut microflora, and kidney metabolomics are still unclear. In this study, a Cd-free and a Cd-contaminated rice (0.005 and 0.74 mg Cd kg-1) were fed to both female and male mice for one month, with changes in body weight gain, Cd accumulation in tissue, bone mineral concentration, expression of intestinal channels involving in Cd and calcium (Ca) absorption, gut microbiota, and kidney metabolites assessed for both genders. Results showed that female mice had normal body weight gain after rice-Cd exposure, while body weight of male mice was decreased from 19.8 to 17.5 g over the one-month consumption of the Cd-contaminated rice (0.74 mg kg-1), suggesting specific toxicity on growth of male mice. Rice-Cd exposure had limited effects on gut microbiota for both genders. However, higher Cd accumulation in liver and femur was observed in male mice than in females, which may be due to higher intestinal expression of Ca channels involving in intestinal Cd absorption in male mice with rice-Cd exposure. Greater risk of osteoporosis was also observed in male mice. In addition, kidney metabolomic profiling showed special disruption of adrenocortical hormone homeostasis for male mice with rice-Cd exposure. Particularly, expression of cortisol in kidneys of male mice was elevated 37.1-fold with rice-Cd exposure, likely resulting in Cushing's syndrome and contributing to growth retardation. This study advances our understanding of the sex-dependent toxicity of rice-Cd exposure, and highlights the priority of protecting males from the adrenocortical hormone disrupting effects of rice-Cd exposure.
Collapse
Affiliation(s)
- Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Feng Xi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Divaris E, Kostopoulos G, Efstathiadou ZA. Current and Emerging Pharmacological Therapies for Cushing's Disease. Curr Pharm Des 2024; 30:757-777. [PMID: 38424426 DOI: 10.2174/0113816128290025240216110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Cushing's Disease (CD), hypercortisolism due to pituitary ACTH secreting neuroendocrine neoplasm, is associated with increased morbidity and, if untreated, mortality in about half of the affected individuals. Consequently, the timely initiation of effective treatment is mandatory. Neurosurgery is the first line and the only potentially curative treatment; however, 30% of patients will have persistent disease post-surgery. Furthermore, a small percentage of those initially controlled will develop hypercortisolism during long-term follow- up. Therefore, patients with persistent or recurrent disease, as well as those considered non-eligible for surgery, will need a second-line therapeutic approach, i.e., pharmacotherapy. Radiation therapy is reserved as a third-line therapeutic option due to its slower onset of action and its unfavorable profile regarding complications. During the past few years, the understanding of molecular mechanisms implicated in the physiology of the hypothalamus-pituitary-adrenal axis has evolved, and new therapeutic targets for CD have emerged. In the present review, currently available treatments, compounds currently tested in ongoing clinical trials, and interesting, potentially new targets emerging from unraveling molecular mechanisms involved in the pathophysiology of Cushing's disease are discussed.
Collapse
Affiliation(s)
- Efstathios Divaris
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kostopoulos
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Zoe A Efstathiadou
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Martino M, Aboud N, Lucchetti B, Salvio G, Arnaldi G. An evaluation of pharmacological options for Cushing's disease: what are the state-of-the-art options? Expert Opin Pharmacother 2023; 24:557-576. [PMID: 36927238 DOI: 10.1080/14656566.2023.2192349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Untreated Cushing's syndrome (CS) is associated with significant morbidity and mortality. Cortisol normalization is a key goal to treatment. Pituitary surgery remains the first-line approach for Cushing's disease, but sometimes it is impracticable, unsuccessful, or complicated by recurrence. Medical therapy has been historically considered a palliative. However, in the latest years, interest on this topic has grown due to both the availability of new drugs and the reevaluation of the old, commonly used drugs in clinical practice. AREAS COVERED In this article, we will discuss the current options and future directions of medical therapy for CS, aiming at fitting best patients' features. An extensive literature search regarding already approved and investigational principles was conducted (PubMed, ClinicalTrials.gov. Available drugs include inhibitors of ACTH secretion, steroidogenesis inhibitors, and glucocorticoid receptor antagonists; drugs acting at different levels can be also combined in uncontrolled patients. EXPERT OPINION Since there is still no standardized pharmacological approach and the superiority of one drug over another has not been established yet in the absence of comparative studies, each time clinicians' choices should be patient-tailored. Age, gender, tumor features, severity of hypercortisolism, comorbidities/complications, rapidity of action, side effects, drug-drug interactions, contraindications, availability, patients' preferences, and costs should be all considered.
Collapse
Affiliation(s)
- Marianna Martino
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO). Polytechnic University of Marche Ancona, Italy
| | - Nairus Aboud
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO). Polytechnic University of Marche Ancona, Italy
| | - Beatrice Lucchetti
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO). Polytechnic University of Marche Ancona, Italy
| | - Gianmaria Salvio
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO). Polytechnic University of Marche Ancona, Italy
| | - Giorgio Arnaldi
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO). Polytechnic University of Marche Ancona, Italy
| |
Collapse
|
4
|
Abstract
Cushing's disease (CD) is the most frequent form of endogenous hypercortisolism. Management of this devastating condition relies on pituitary surgery, while effective pharmacological treatment mainly focus on periphery targeting pharmaceuticals. Approved tumour-targeting drugs are limited to dopamine agonists and somatostatin analogues with frequently low efficacy and substantial side effects. Discoveries on the genetics and pathophysiology of corticotroph tumorigenesis brought forward new potential pharmacological targets. Compounds such as retinoic acid although promising in preclinical studies, are not as efficient in the clinic. Others, such as, silibinin, gefitinib and roscovitine are effective in preclinical models, but their efficacy and safety still needs to be determined in patients with CD.
Collapse
Affiliation(s)
- Vivian von Selzam
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Zheng HS, Daniel JG, Salamat JM, Mackay L, Foradori CD, Kemppainen RJ, Pondugula SR, Tao YX, Huang CCJ. Early transcriptomic response of mouse adrenal gland and Y-1 cells to dexamethasone. Endocr Connect 2022; 11:e220064. [PMID: 35904237 PMCID: PMC9346337 DOI: 10.1530/ec-22-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022]
Abstract
Glucocorticoids have short- and long-term effects on adrenal gland function and development. RNA sequencing (RNA-seq) was performed to identify early transcriptomic responses to the synthetic glucocorticoid, dexamethasone (Dex), in vitro and in vivo. In total, 1711 genes were differentially expressed in the adrenal glands of the 1-h Dex-treated mice. Among them, only 113 were also considered differentially expressed genes (DEGs) in murine adrenocortical Y-1 cells treated with Dex for 1 h. Gene ontology analysis showed that the upregulated DEGs in the adrenal gland of the 1-h Dex-treated mice were highly associated with the development of neuronal cells, suggesting the adrenal medulla had a rapid response to Dex. Interestingly, only 4.3% of Dex-responsive genes in the Y-1 cell line under Dex treatment for 1 h were differentially expressed under Dex treatment for 24 h. The heatmaps revealed that most early responsive DEGs in Y-1 cells during 1 h of treatment exhibited a transient response. The expression of these genes under treatment for 24 h returned to basal levels similar to that during control treatment. In summary, this research compared the rapid transcriptomic effects of Dex stimulation in vivo and in vitro. Notably, adrenocortical Y-1 cells had a transient early response to Dex treatment. Furthermore, the DEGs had a minimal overlap in the 1-h Dex-treated group in vivo and in vitro.
Collapse
Affiliation(s)
- Huifei Sophia Zheng
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jeffrey G Daniel
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
6
|
Marino A, Albanese I, Larose S, Fantus IG. Combined Central Hypothyroidism and Adrenal Insufficiency Associated with Retinoic Acid Therapy for Cutaneous T-Cell Lymphoma. AACE Clin Case Rep 2022; 8:251-254. [DOI: 10.1016/j.aace.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
|
7
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
8
|
Pecori Giraldi F, Sesta A, Tapella L, Cassarino MF, Castelli L. Dual effects of 9-cis retinoic acid on ACTH-dependent hyperplastic adrenal tissues. Sci Rep 2021; 11:14315. [PMID: 34253781 PMCID: PMC8275666 DOI: 10.1038/s41598-021-93672-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Retinoids play a pivotal role in adrenal development and differentiation. Recent clinical trials revealed therapeutic potential of both all-trans and 9-cis retinoic acid in patients with cortisol excess due to a pituitary ACTH-secreting adenoma and indicated that retinoids might act also on the adrenal. Aim of the present study was to evaluate the effect of 9-cis retinoic acid on adrenals from patients with ACTH-dependent Cushing’s syndrome. Adrenal specimens from six patients with Cushing’s disease were incubated with 10 nM–1 µM 9-cis retinoic acid with and without 10 nM ACTH. Cortisol secretion was measured by immunoassay and expression of genes involved in steroidogenesis as well as retinoic acid action were evaluated by real-time RT-PCR. Incubation with 10–100 nM 9-cis retinoic acid increased spontaneous cortisol secretion and expression of STAR and CYP17A. On the other hand, in wells treated with ACTH, 9-cis retinoic acid markedly diminished ACTH receptor upregulation and no stimulatory effect on cortisol secretion or steroidogenic enzyme synthesis was observed. ACTH itself increased ligand-induced retinoic acid receptor expression, possibly enhancing sensitivity to retinoic acid. Our findings indicate that the effect of 9-cis retinoic acid in presence of ACTH is distinct from unchallenged wells and support the hypothesis of a direct adrenal action in patients with Cushing’s disease.
Collapse
Affiliation(s)
- Francesca Pecori Giraldi
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy. .,Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy.
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Laura Tapella
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Luigi Castelli
- Ospedale San Carlo, Reparto di Chirurgia, 20037, Paderno Dugnano, MI, Italy
| |
Collapse
|
9
|
Frank LA, Morandi F. Vitamin A failed to ameliorate clinical signs in dogs with pituitary-dependent hypercortisolaemia. Vet Dermatol 2021; 32:371-e104. [PMID: 33720445 DOI: 10.1111/vde.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND In dogs with pituitary-dependent hypercortisolaemia, retinoic acid was shown to lower cortisol, reduce pituitary tumour size and decrease clinical signs when administered for six months. Oral vitamin A (retinol) has been used to treat various canine dermatoses in which retinoic acid has been efficacious. OBJECTIVES To determine if orally administered vitamin A lowers cortisol and reduces clinical signs in dogs with pituitary-dependent hypercortisolaemia over a five month period. METHODS AND MATERIALS Five dogs were enrolled in this study. Diagnosis of hypercortisolaemia was based on the presence of at least three clinical signs and one abnormal screening test. Diagnosis of pituitary-dependent disease was based on low dose dexamethasone suppression (LDDS) test results and symmetrical adrenal glands on ultrasound. Adrenocorticotropic hormone (ACTH) stimulation testing and adrenal ultrasound were performed at each visit. Plasma was collected at each visit and stored at -80°C for batch analysis of endogenous ACTH at conclusion of the study. RESULTS Four dogs completed the study. A fifth dog died from complications of hypercortisolaemia before the third month. One dog showed improvement in clinical signs, yet there was no significant decrease in adrenal gland size or cortisol concentrations. Endogenous ACTH concentrations at the fifth month were decreased from baseline in two dogs and increased from baseline in one dog. The treatment had no adverse effects. CONCLUSIONS AND CLINICAL IMPORTANCE Results from this study failed to show an improvement in clinical signs or cortisol concentration after five months of oral daily vitamin A in dogs with hypercortisolaemia.
Collapse
Affiliation(s)
- Linda A Frank
- Department Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Federica Morandi
- Department Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
10
|
Nakano-Tateno T, Lau KJ, Wang J, McMahon C, Kawakami Y, Tateno T, Araki T. Multimodal Non-Surgical Treatments of Aggressive Pituitary Tumors. Front Endocrinol (Lausanne) 2021; 12:624686. [PMID: 33841328 PMCID: PMC8033019 DOI: 10.3389/fendo.2021.624686] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Up to 35% of aggressive pituitary tumors recur and significantly affect mortality and quality of life. Management can be challenging and often requires multimodal treatment. Current treatment options, including surgery, conventional medical therapies such as dopamine agonists, somatostatin receptor agonists and radiotherapy, often fail to inhibit pituitary tumor growth. Recently, anti-tumor effects of chemotherapeutic drugs such as Temozolomide, Capecitabine, and Everolimus, as well as peptide receptor radionuclide therapy on aggressive pituitary tumors have been increasingly investigated and yield mixed, although sometimes promising, outcomes. The purpose of this review is to provide thorough information on non-surgical medical therapies and their efficacies and used protocols for aggressive pituitary adenomas from pre-clinical level to clinical use.
Collapse
Affiliation(s)
- Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kheng Joe Lau
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Justin Wang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Cailin McMahon
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Toru Tateno, ; Takako Araki,
| | - Takako Araki
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Toru Tateno, ; Takako Araki,
| |
Collapse
|
11
|
Capatina C, Hinojosa-Amaya JM, Poiana C, Fleseriu M. Management of patients with persistent or recurrent Cushing's disease after initial pituitary surgery. Expert Rev Endocrinol Metab 2020; 15:321-339. [PMID: 32813595 DOI: 10.1080/17446651.2020.1802243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Treatment options for persistent and recurrent Cushing's disease (CD) include an individualized approach for repeat surgery, medical treatment, radiation therapy (RT), and bilateral adrenalectomy (BLA). AREAS COVERED In this expert opinion perspective, the authors review the latest treatment(s) for persistent/recurrent CD. A PubMed search was undertaken (English articles through May 2020) and relevant articles discussed. Repeat pituitary surgery should be considered in most patients with proven hypercortisolism; there is potential for cure with low risk of major complications. Medical therapy is valuable either alone, while awaiting the effects of RT, or in preparation for BLA. Medical therapy includes steroidogenesis inhibitors, agents that act at the pituitary or glucocorticoid receptor level, and novel agents in development. Radiation therapy has been used successfully to treat CD, but hypopituitarism risk and delayed efficacy (improved with radiosurgery) are major drawbacks. Laparoscopic BLA is safe and effective in patients with severe, difficult-to-manage hypercortisolism, but long-term follow-up is required as corticotroph tumor progression can develop. EXPERT OPINION Treatment of persistent/recurrent CD is challenging. Most patients require >1 therapy to achieve long-lasting remission. There is currently no ideal single treatment option that provides high and rapid efficacy, low adverse effects, and preserves normal pituitary-adrenal axis function.
Collapse
Affiliation(s)
- Cristina Capatina
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology , Bucharest, Romania
| | - José Miguel Hinojosa-Amaya
- Departments of Medicine (Endocrinology) and Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University , Portland, Oregon, USA
- Endocrinology Division, Department of Medicine, Hospital Universitario Dr. José E. González, Universidad Autónoma De Nuevo León , Monterrey, Nuevo León, Mexico
| | - Catalina Poiana
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology , Bucharest, Romania
| | - Maria Fleseriu
- Departments of Medicine (Endocrinology) and Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University , Portland, Oregon, USA
| |
Collapse
|
12
|
Yu H, Ren S, Wang J, Lv T, Sun L, Du G. Bexarotene combined with lapatinib for the treatment of Cushing's disease: evidence based on drug repositioning and experimental confirmation. Signal Transduct Target Ther 2020; 5:175. [PMID: 32862196 PMCID: PMC7456421 DOI: 10.1038/s41392-020-00284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Haoying Yu
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China.,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China
| | - Shuyue Ren
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China.,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China
| | - Jingrong Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China.,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China
| | - Tingting Lv
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China.,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China
| | - Lan Sun
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China. .,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China.
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, 100050, Beijing, China. .,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, 100050, Beijing, China. .,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 1 Xian Nong Tan Street, 100050, Beijing, China.
| |
Collapse
|
13
|
Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Cells 2020; 9:cells9040900. [PMID: 32272677 PMCID: PMC7226830 DOI: 10.3390/cells9040900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.
Collapse
|
14
|
Surakhy M, Wallace M, Bond E, Grochola LF, Perez H, Di Giovannantonio M, Zhang P, Malkin D, Carter H, Parise IZS, Zambetti G, Komechen H, Paraizo MM, Pagadala MS, Pinto EM, Lalli E, Figueiredo BC, Bond GL. A common polymorphism in the retinoic acid pathway modifies adrenocortical carcinoma age-dependent incidence. Br J Cancer 2020; 122:1231-1241. [PMID: 32147670 PMCID: PMC7156685 DOI: 10.1038/s41416-020-0764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have enriched the fields of genomics and drug development. Adrenocortical carcinoma (ACC) is a rare cancer with a bimodal age distribution and inadequate treatment options. Paediatric ACC is frequently associated with TP53 mutations, with particularly high incidence in Southern Brazil due to the TP53 p.R337H (R337H) germline mutation. The heterogeneous risk among carriers suggests other genetic modifiers could exist. METHODS We analysed clinical, genotype and gene expression data derived from paediatric ACC, R337H carriers, and adult ACC patients. We restricted our analyses to single nucleotide polymorphisms (SNPs) previously identified in GWASs to associate with disease or human traits. RESULTS A SNP, rs971074, in the alcohol dehydrogenase 7 gene significantly and reproducibly associated with allelic differences in ACC age-of-onset in both cohorts. Patients homozygous for the minor allele were diagnosed up to 16 years earlier. This SNP resides in a gene involved in the retinoic acid (RA) pathway and patients with differing levels of RA pathway gene expression in their tumours associate with differential ACC progression. CONCLUSIONS These results identify a novel genetic component to ACC development that resides in the retinoic acid pathway, thereby informing strategies to develop management, preventive and therapeutic treatments for ACC.
Collapse
Affiliation(s)
- Mirvat Surakhy
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Marsha Wallace
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Elisabeth Bond
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lukasz Filip Grochola
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Department of Surgery, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Husein Perez
- Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford, UK
| | - Matteo Di Giovannantonio
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ping Zhang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, USA
| | - Ivy Zortea S Parise
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Gerard Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heloisa Komechen
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Mariana M Paraizo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Meghana S Pagadala
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Université Côte D'Azur, Inserm, Valbonne, France
| | - Bonald C Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.
- Departamento de Saúde Coletiva, Universidade Federal do Paraná, Curitiba, PR, Brazil.
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), Curitiba, PR, Brazil.
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Cheung LYM, Camper SA. PROP1-Dependent Retinoic Acid Signaling Regulates Developmental Pituitary Morphogenesis and Hormone Expression. Endocrinology 2020; 161:bqaa002. [PMID: 31913463 PMCID: PMC7029777 DOI: 10.1210/endocr/bqaa002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Dietary vitamin A is metabolized into bioactive retinoic acid (RA) in vivo and regulates the development of many embryonic tissues. RA signaling is active in the oral ectoderm-derived tissues of the neuroendocrine system, but its role there has not yet been fully explored. We show here that RA signaling is active during pituitary organogenesis and dependent on the pituitary transcription factor Prop1. Prop1-mutant mice show reduced expression of the aldehyde dehydrogenase gene Aldh1a2, which metabolizes the vitamin A-intermediate retinaldehyde into RA. To elucidate the specific function of RA signaling during neuroendocrine development, we studied a conditional deletion of Aldh1a2 and a dominant-negative mouse model of inhibited RA signaling during pituitary organogenesis. These models partially phenocopy Prop1-mutant mice by exhibiting embryonic pituitary dysmorphology and reduced hormone expression, especially thyrotropin. These findings establish the role of RA in embryonic pituitary stem cell progression to differentiated hormone cells and raise the question of gene-by-environment interactions as contributors to pituitary development and disease.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Abstract
Endogenous Cushing's syndrome is a chronic disease associated with increased morbidity and mortality if not appropriately treated. Recurrence and/or persistence of hypercortisolemia after surgical treatment, especially for Cushing's disease, are high, and long-term medical treatment is used to decrease cortisol levels and risk of metabolic comorbidities. Medical treatment is also often required while waiting for radiation effects to take place. In some cases, severe or life-threatening hypercortisolism must be urgently and medically treated, via intravenous medications or with combination therapy, before patients can undergo surgery. In the last decade, medical treatment has progressed from a few steroidogenesis inhibitors to three novel drug groups: new inhibitors for steroidogenic enzymes with possibly fewer side effects, pituitary-directed drugs that aim to inhibit the pathophysiological pathways of Cushing's disease, and glucocorticoid receptor antagonists that block cortisol's action. Understanding the pathophysiology of Cushing's syndrome has also led to the identification of potential targets that may decrease adrenocorticotrophic hormone and/or cortisol excess, and/or decrease tumor cell proliferation, and induce senescence or apoptosis. We provide here a review of current and near-future medical options to treat Cushing's syndrome, and discuss updates on clinical trials and the efficacy and safety of novel or in-development drugs, as well as future potential targets.
Collapse
|
17
|
Nishioka H, Yamada S. Cushing's Disease. J Clin Med 2019; 8:jcm8111951. [PMID: 31726770 PMCID: PMC6912360 DOI: 10.3390/jcm8111951] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
In patients with Cushing's disease (CD), prompt diagnosis and treatment are essential for favorable long-term outcomes, although this remains a challenging task. The differential diagnosis of CD is still difficult in some patients, even with an organized stepwise diagnostic approach. Moreover, despite the use of high-resolution magnetic resonance imaging (MRI) combined with advanced fine sequences, some tumors remain invisible. Surgery, using various surgical approaches for safe maximum tumor removal, still remains the first-line treatment for most patients with CD. Persistent or recurrent CD after unsuccessful surgery requires further treatment, including repeat surgery, medical therapy, radiotherapy, or sometimes, bilateral adrenalectomy. These treatments have their own advantages and disadvantages. However, the most important thing is that this complex disease should be managed by a multidisciplinary team with collaborating experts. In addition, a personalized and individual-based approach is paramount to achieve high success rates while minimizing the occurrence of adverse events and improving the patients' quality of life. Finally, the recent new insights into the pathophysiology of CD at the molecular level are highly anticipated to lead to the introduction of more accurate diagnostic tests and efficacious therapies for this devastating disease in the near future.
Collapse
Affiliation(s)
- Hiroshi Nishioka
- Department of Hypothalamic and Pituitary surgery, Toranomon Hospital, Tokyo 1058470, Japan;
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Neurological Center Hospital, Tokyo 1340081, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
- Correspondence: ; Tel.: +81-336-751-211
| |
Collapse
|
18
|
Bonhomme D, Alfos S, Webster SP, Wolff M, Pallet V, Touyarot K. Vitamin A deficiency impairs contextual fear memory in rats: Abnormalities in the glucocorticoid pathway. J Neuroendocrinol 2019; 31:e12802. [PMID: 31613407 DOI: 10.1111/jne.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11β-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11β-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11β-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11β-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11β-HSD1.
Collapse
Affiliation(s)
- Damien Bonhomme
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
| | - Serge Alfos
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Scott P Webster
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mathieu Wolff
- UMR 5287, CNRS, INCIA, Bordeaux, France
- UMR 5287, INCIA, Université de Bordeaux, Bordeaux, France
| | - Véronique Pallet
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Katia Touyarot
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| |
Collapse
|
19
|
Barbot M, Ceccato F, Scaroni C. The Pathophysiology and Treatment of Hypertension in Patients With Cushing's Syndrome. Front Endocrinol (Lausanne) 2019; 10:321. [PMID: 31164868 PMCID: PMC6536607 DOI: 10.3389/fendo.2019.00321] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
When hypertension, a pathology that is frequently found in the general population, presents in a young patient, secondary causes such as Cushing's syndrome (CS), a rare disease characterized by long-term elevated cortisol levels, should be considered. Present in ~80% of CS patients independently of their age and sex, hypertension is one of the pathology's most prevalent, alarming features. Its severity is principally associated with the duration and intensity of elevated cortisol levels. Prompt diagnosis and rapid initiation of treatment are important for reducing/delaying the consequences of hypercortisolism. Glucocorticoid excess leads to hypertension via a variety of mechanisms including mineralocorticoid mimetic activity, alterations in peripheral and renovascular resistance, and vascular remodeling. As hypertension in CS patients is caused by cortisol excess, treating the underlying pathology generally contributes to reducing blood pressure (BP) levels, although hypertension tends to persist in approximately 30% of cured patients. Surgical removal of the pituitary tumor remains the first-line treatment for both adrenocorticotropin hormone (ACTH) dependent and independent forms of the syndrome. In light of the fact that surgery is not always successful in curing the underlying disease, it is essential that other treatments be considered and prescribed as needed. This article discusses the mechanisms involved in the pathogenesis of CS and the pros and the cons of the various antihypertensive agents that are presently available to treat these patients.
Collapse
Affiliation(s)
- Mattia Barbot
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Filippo Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Feelders RA, Newell-Price J, Pivonello R, Nieman LK, Hofland LJ, Lacroix A. Advances in the medical treatment of Cushing's syndrome. Lancet Diabetes Endocrinol 2019; 7:300-312. [PMID: 30033041 DOI: 10.1016/s2213-8587(18)30155-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 01/05/2023]
Abstract
Cushing's syndrome is associated with multisystem morbidity and, when suboptimally treated, increased mortality. Medical therapy is an option for patients if surgery is not successful and can be classified into pituitary-directed drugs, steroid synthesis inhibitors, and glucocorticoid receptor antagonists. In the last decade there have been new developments in each drug category. Targeting dopamine and somatostatin receptors on corticotroph adenomas with cabergoline or pasireotide, or both, controls cortisol production in up to 40% of patients. Potential new targets in corticotroph adenomas include the epidermal growth factor receptor, cyclin-dependent kinases, and heat shock protein 90. Osilodrostat and levoketoconazole are new inhibitors of steroidogenesis and are currently being evaluated in multicentre trials. CORT125134 is a new selective glucocorticoid receptor antagonist under investigation. We summarise the drug therapies for various forms of Cushing's syndrome and focus on emerging drugs and drug targets that have the potential for new and effective tailor-made pharmacotherapy for patients with Cushing's syndrome.
Collapse
Affiliation(s)
- Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands.
| | - John Newell-Price
- Academic Unit of Endocrinology, University of Sheffield, Sheffield, UK
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Lynnette K Nieman
- Eunice Kennedy Shriver National Institute of Diabetes and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Andre Lacroix
- Division of Endocrinology, Department of Medicine and Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| |
Collapse
|
21
|
Theodoropoulou M, Reincke M. Tumor-Directed Therapeutic Targets in Cushing Disease. J Clin Endocrinol Metab 2019; 104:925-933. [PMID: 30535260 DOI: 10.1210/jc.2018-02080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
CONTEXT The most frequent cause of endogenous hypercortisolism is Cushing disease (CD), a devastating condition associated with severe comorbidities and high mortality. Effective tumor-targeting therapeutics are limited. DESIGN Search in PubMed with key words "corticotroph" and "Cushing's disease" plus the name of the mentioned therapeutic agent and in associated references of the obtained papers. Additionally, potential therapeutics were obtained from ClinicalTrials.gov with a search for "Cushing disease." RESULTS At present, the tumor-targeted pharmacological therapy of CD is concentrated on dopamine agonists (cabergoline) and somatostatin analogs (pasireotide) with varying efficacy, escape from response, and considerable side effects. Preclinical studies on corticotroph pathophysiology have brought forward potential drugs such as retinoic acid, silibinin, and roscovitine, whose efficacy and safety remain to be determined. CONCLUSIONS For many patients with CD, effective tumor-targeted pharmacological therapy is still lacking. Coordinated efforts are pivotal in establishing efficacy and safety of novel therapeutics in this rare but devastating disease.
Collapse
Affiliation(s)
- Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
22
|
Ciato D, Li R, Monteserin Garcia JL, Papst L, D'Annunzio S, Hristov M, Tichomirowa MA, Belaya Z, Rozhinskaya L, Buchfelder M, Theodoropoulou M, Paez-Pereda M, Stalla GK. Inhibition of Heat Shock Factor 1 Enhances Repressive Molecular Mechanisms on the POMC Promoter. Neuroendocrinology 2019; 109:362-373. [PMID: 30995664 DOI: 10.1159/000500200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cushing's disease (CD) is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. They express high levels of heat shock protein 90 and heat shock factor 1 (HSF1) in comparison to the normal tissue counterpart, indicating activated cellular stress. AIMS Our objectives were: (1) to correlate HSF1 expression with clinical features and hormonal/radiological findings of CD, and (2) to investigate the effects of HSF1 inhibition as a target for CD treatment. PATIENTS/METHODS We examined the expression of total and pSer326HSF1 (marker for its transcriptional activation) by Western blot on eight human CD tumours and compared to the HSF1 status of normal pituitary. We screened a cohort of 45 patients with CD for HSF1 by immunohistochemistry and correlated the HSF1 immunoreactivity score with the available clinical data. We evaluated the effects of HSF1 silencing with RNA interference and the HSF1 inhibitor KRIBB11 in AtT-20 cells and four primary cultures of human corticotroph tumours. RESULTS We show that HSF1 protein is highly expressed and transcriptionally active in CD tumours in comparison to normal pituitary. The immunoreactivity score for HSF1 did not correlate with the typical clinical features of the disease. HSF1 inhibition reduced proopiomelanocortin (Pomc) transcription in AtT-20 cells. The HSF1 inhibitor KRIBB11 suppressed ACTH synthesis from 75% of human CD tumours in primary cell culture. This inhibitory action on Pomc transcription was mediated by increased glucocorticoid receptor and suppressed Nurr77/Nurr1 and AP-1 transcriptional activities. CONCLUSIONS These data show that HSF1 regulates POMC transcription. Pharmacological targeting of HSF1 may be a promising treatment option for the control of excess ACTH secretion in CD.
Collapse
Affiliation(s)
- Denis Ciato
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany,
| | - Ran Li
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lilia Papst
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sarah D'Annunzio
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Padua, Padua, Italy
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria A Tichomirowa
- Service d'Endocrinologie, Centre Hospitalier du Nord, Ettelbruck, Luxembourg
| | - Zhanna Belaya
- The National Research Centre for Endocrinology, Moscow, Russian Federation
| | | | - Michael Buchfelder
- Neurochirurgische Klinik, Klinikum der Universität Erlangen, Erlangen, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcelo Paez-Pereda
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter Karl Stalla
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| |
Collapse
|
23
|
Dai C, Liu X, Ma W, Wang R. The Treatment of Refractory Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:334. [PMID: 31191457 PMCID: PMC6548863 DOI: 10.3389/fendo.2019.00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Refractory pituitary adenomas (PAs) are defined as aggressive-invasive PAs characterized by a high Ki-67 index, rapid growth, frequent recurrence, and resistance to conventional treatments. It is notoriously difficult to manage refractory PAs because the efficacy of current therapeutic options is limited. The purpose of this review is to address currently employed and promising therapeutic strategies for the treatment of refractory PAs. Except for prolactinomas, neurosurgery is the first-line option, but most refractory PAs often recur or re-grow after initial surgery and require further treatments. Medical therapy, radiotherapy and re-operation are explored when surgery has failed to completely resect tumors; however, refractory PAs are usually resistant to these treatments. As a salvage treatment, temozolomide (TMZ) has shown promising results and is currently used for all types of refractory PAs. However, not all refractory PAs are responsive to TMZ treatment, and some of these PAs are resistant to TMZ. Although targeted therapies such as vascular endothelial growth factor, epidermal growth factor and mTOR inhibitors have also been used to treat refractory PAs, the effectiveness of these targeted therapies is still not known due to a lack of data from randomized prospective trials. As a novel therapeutic method, cancer immunotherapy is a promising strategy for the treatment of refractory PAs, but further preclinical research and clinical trials are needed to assess the efficacy of this new approach. In summary, early identification and a multidisciplinary approach are required to treat refractory PAs.
Collapse
|
24
|
Abstract
INTRODUCTION Cushing's disease is a rare systemic and disabling disease due to oversecretion of adrenocorticotrophic hormone (ACTH) resulting in excess cortisol levels. Diagnosis and treatment are difficult; despite the availability of various pharmaceutical treatment options, there is an ongoing, unmet need for even more effective treatment. AREAS COVERED The present review aims at providing an overview of available drugs and presenting new developments. Focusing on the pituitary as a target, the review covers compounds targeting pituitary cell signaling or cell cycle control such as heat shock protein inhibitors (e.g. silibinin), histone deacetylase inhibitors (trichostatin A, vorinostat), kinase inhibitors (gefitinib, seliciclib), and others (such as triptolide, AT-101). Levoketoconazole and osilodrostat are in clinical testing and inhibit steroidogenesis. Blockade of ACTH receptor binding at the adrenal level is explained as a theoretical drug target. Inhibition of binding of the glucocorticoid receptor in the peripheral tissue plays a minor role due to its lack of biomonitoring options. EXPERT OPINION In our opinion, further research and drug development of pituitary-directed targets are necessary. Combination therapies may exert synergistic effects and allow for smaller and better tolerated doses, but more experience and data are needed to guide such treatment schemes.
Collapse
Affiliation(s)
- Sylvère Störmann
- a Medizinische Klinik und Poliklinik IV , Klinikum der Universität München , München , Germany
| | - Jochen Schopohl
- a Medizinische Klinik und Poliklinik IV , Klinikum der Universität München , München , Germany
| |
Collapse
|
25
|
Nieman LK. Recent Updates on the Diagnosis and Management of Cushing's Syndrome. Endocrinol Metab (Seoul) 2018; 33:139-146. [PMID: 29947171 PMCID: PMC6021313 DOI: 10.3803/enm.2018.33.2.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Cushing's syndrome, a potentially lethal disorder characterized by endogenous hypercortisolism, may be difficult to recognize, especially when it is mild and the presenting features are common in the general population. However, there is a need to identify the condition at an early stage, as it tends to progress, accruing additional morbidity and increasing mortality rates. Once a clinical suspicion is raised, screening tests involve timed measurement of urine, serum or salivary cortisol at baseline or after administration of dexamethasone, 1 mg. Each test has caveats, so that the choice of tests must be individualized for each patient. Once the diagnosis is established, and the cause is determined, surgical resection of abnormal tumor/tissue is the optimal treatment. When this cannot be achieved, medical treatment (or bilateral adrenalectomy) must be used to normalize cortisol production. Recent updates in screening for and treating Cushing's syndrome are reviewed here.
Collapse
Affiliation(s)
- Lynnette K Nieman
- Diabetes, Endocrine and Obesity Branch, The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Machado MC, Fragoso MCBV, Moreira AC, Boguszewski CL, Vieira Neto L, Naves LA, Vilar L, Araújo LAD, Musolino NRC, Miranda PAC, Czepielewski MA, Gadelha MR, Bronstein MD, Ribeiro-Oliveira A. A review of Cushing's disease treatment by the Department of Neuroendocrinology of the Brazilian Society of Endocrinology and Metabolism. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:87-105. [PMID: 29694638 PMCID: PMC10118687 DOI: 10.20945/2359-3997000000014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
The treatment objectives for a patient with Cushing's disease (CD) are remission of hypercortisolism, adequate management of co-morbidities, restoration of the hypothalamic-pituitary-adrenal axis, preservation of fertility and pituitary function, and improvement of visual defects in cases of macroadenomas with suprasellar extension. Transsphenoidal pituitary surgery is the main treatment option for the majority of cases, even in macroadenomas with low probability of remission. In cases of surgical failure, another subsequent pituitary surgery might be indicated in cases with persistent tumor imaging at post surgical magnetic resonance imaging (MRI) and/or pathology analysis of adrenocorticotropic hormone-positive (ACTH+) positive pituitary adenoma in the first procedure. Medical treatment, radiotherapy and adrenalectomy are the other options when transsphenoidal pituitary surgery fails. There are several options of medical treatment, although cabergoline and ketoconazole are the most commonly used alone or in combination. Novel treatments are also addressed in this review. Different therapeutic approaches are frequently needed on an individual basis, both before and, particularly, after surgery, and they should be individualized. The objective of the present review is to provide the necessary information to achieve a more effective treatment for CD. It is recommended that patients with CD be followed at tertiary care centers with experience in treating this condition.
Collapse
Affiliation(s)
- Márcio Carlos Machado
- Unidade de Neuroendocrinologia, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Candida Barisson Vilares Fragoso
- Unidade de Neuroendocrinologia, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ayrton Custódio Moreira
- Divisão de Endocrinologia e Metabologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - César Luiz Boguszewski
- Serviço de Endocrinologia e Metabologia (SEMPR), Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Leonardo Vieira Neto
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luciana A Naves
- Serviço de Endocrinologia, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, DF, Brasil
| | - Lucio Vilar
- Serviço de Endocrinologia, Hospital de Clínicas, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Nina Rosa Castro Musolino
- Divisão de Neurocirurgia Funcional, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Mauro A Czepielewski
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Monica R Gadelha
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Marcello Delano Bronstein
- Unidade de Neuroendocrinologia, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Antônio Ribeiro-Oliveira
- Serviço de Endocrinologia, Hospital de Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
27
|
Abstract
Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.
Collapse
|
28
|
Yurekli BS, Karaca B, Kisim A, Bozkurt E, Atmaca H, Cetinkalp S, Ozgen G, Yilmaz C, Uzunoglu S, Uslu R, Saygili F. AT-101 acts as anti-proliferative and hormone suppressive agent in mouse pituitary corticotroph tumor cells. J Endocrinol Invest 2018; 41:233-240. [PMID: 28730425 DOI: 10.1007/s40618-017-0733-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/12/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE Gossypol, a naturally occurring compound in cottonseeds, has anticancer effects against several tumor cell lines. It has been extensively studied in clinical trials and is well tolerated with a favorable safety profile. AT-101, a derivative of R (-)-gossypol, binds to Bcl-2 family proteins and induces apoptosis in vitro. Although transsphenoidal surgical excision of the pituitary corticotroph adenoma is the gold standard of care, it is not successful all the time. Medical therapy for Cushing's disease still remains a challenge for the clinicians. We aimed to investigate the cytotoxic and apoptotic effects of AT-101 in mouse pituitary corticotroph tumor AtT20 cells. METHODS Cytotoxic effect of AT-101 was assessed by XTT cell viability assay. Apoptosis was shown by measuring DNA fragmentation and Caspase-3/7 activity. Changes in mRNA expressions of apoptosis-related genes were investigated by qPCR array after treatment with AT-101. ACTH was measured by ACTH-EIA Kit. RESULTS AT-101 induced cytotoxicity and apoptosis in AtT20 cells. mRNA levels of pro-apoptotic genes such as TNFR-SF-10B, Bid, PYCARD, Caspase-8, Caspase-3, and Caspase-7 were induced by 2.0-, 1.5-, 1.7-, 1.5-, 1.6-, and 2-fold, respectively, in AtT20 cells by AT-101 treatment. Moreover, some of the anti-apoptotic genes such as BCL2L10, NAIP1, and PAK-7 were reduced by 2.1-, 2.3-, 4.0-fold, respectively, in AtT20 cells. AT-101 also decreased ACTH secretion significantly. CONCLUSION AT-101 induces apoptosis in mouse pituitary corticotroph tumor cells.
Collapse
Affiliation(s)
- B S Yurekli
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100, Izmir, Turkey.
| | - B Karaca
- Division Medical Oncology, Tulay Aktas Oncology Hospital, Ege University School of Medicine, 35100, Izmir, Turkey
| | - A Kisim
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Muradiye/Manisa, Turkey
| | - E Bozkurt
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Muradiye/Manisa, Turkey
| | - H Atmaca
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Muradiye/Manisa, Turkey
| | - S Cetinkalp
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100, Izmir, Turkey
| | - G Ozgen
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100, Izmir, Turkey
| | - C Yilmaz
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100, Izmir, Turkey
| | - S Uzunoglu
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Muradiye/Manisa, Turkey
| | - R Uslu
- Division Medical Oncology, Tulay Aktas Oncology Hospital, Ege University School of Medicine, 35100, Izmir, Turkey
| | - F Saygili
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100, Izmir, Turkey
| |
Collapse
|
29
|
Fuertes M, Tkatch J, Rosmino J, Nieto L, Guitelman MA, Arzt E. New Insights in Cushing Disease Treatment With Focus on a Derivative of Vitamin A. Front Endocrinol (Lausanne) 2018; 9:262. [PMID: 29881371 PMCID: PMC5976796 DOI: 10.3389/fendo.2018.00262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cushing's disease (CD) is an endocrine disorder originated by a corticotroph tumor. It is linked with high mortality and morbidity due to chronic hypercortisolism. Treatment goals are to control cortisol excess and achieve long-term remission, therefore, reducing both complications and patient's mortality. First-line of treatment for CD is pituitary's surgery. However, 30% of patients who undergo surgery experience recurrence in long-term follow-up. Persistent or recurrent CD demands second-line treatments, such as pituitary radiotherapy, adrenal surgery, and/or pharmacological therapy. The latter plays a key role in cortisol excess control. Its targets are inhibition of adrenocorticotropic hormone (ACTH) production, inhibition of adrenal steroidogenesis, or antagonism of cortisol action at its peripheral receptor. Retinoic acid (RA) is a metabolic product of vitamin A (retinol) and has been studied for its antiproliferative effects on corticotroph tumor cells. It has been shown that this drug regulates the expression of pro-opiomelanocortin (POMC), ACTH secretion, and tumor growth in corticotroph tumor mouse cell lines and in the nude mice experimental model, via inhibition of POMC transcription. It has been shown to result in tumor reduction, normalization of cortisol levels and clinical improvement in dogs treated with RA for 6 months. The orphan nuclear receptor COUP-TFI is expressed in normal corticotroph cells, but not in corticotroph tumoral cells, and inhibits RA pathways. A first clinical human study demonstrated clinical and biochemical effectiveness in 5/7 patients treated with RA for a period of up to 12 months. In a recent second clinical trial, 25% of 16 patients achieved eucortisolemia, and all achieved a cortisol reduction after 6- to 12-month treatment. The goal of this review is to discuss in the context of the available and future pharmacological treatments of CD, RA mechanisms of action on corticotroph tumor cells, and future perspectives, focusing on potential clinical implementation.
Collapse
Affiliation(s)
- Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Julieta Tkatch
- División Endocrinología, Hospital General de Agudos “Carlos G. Durand”, Buenos Aires, Argentina
| | - Josefina Rosmino
- División Endocrinología, Hospital General de Agudos “Carlos G. Durand”, Buenos Aires, Argentina
| | - Leandro Nieto
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
30
|
Barbot M, Ceccato F, Scaroni C. Diabetes Mellitus Secondary to Cushing's Disease. Front Endocrinol (Lausanne) 2018; 9:284. [PMID: 29915558 PMCID: PMC5994748 DOI: 10.3389/fendo.2018.00284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Associated with important comorbidities that significantly reduce patients' overall wellbeing and life expectancy, Cushing's disease (CD) is the most common cause of endogenous hypercortisolism. Glucocorticoid excess can lead to diabetes, and although its prevalence is probably underestimated, up to 50% of patients with CD have varying degrees of altered glucose metabolism. Fasting glycemia may nevertheless be normal in some patients in whom glucocorticoid excess leads primarily to higher postprandial glucose levels. An oral glucose tolerance test should thus be performed in all CD patients to identify glucose metabolism abnormalities. Since diabetes mellitus (DM) is a consequence of cortisol excess, treating CD also serves to alleviate impaired glucose metabolism. Although transsphenoidal pituitary surgery remains the first-line treatment for CD, it is not always effective and other treatment strategies may be necessary. This work examines the main features of DM secondary to CD and focuses on antidiabetic drugs and how cortisol-lowering medication affects glucose metabolism.
Collapse
|
31
|
Langlois F, Chu J, Fleseriu M. Pituitary-Directed Therapies for Cushing's Disease. Front Endocrinol (Lausanne) 2018; 9:164. [PMID: 29765354 PMCID: PMC5938400 DOI: 10.3389/fendo.2018.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
Cushing's disease (CD) is caused by a pituitary corticotroph neuroendocrine tumor inducing uncontrolled hypercortisolism. Transsphenoidal surgery is the first-line treatment in most cases. Nonetheless, some patients will not achieve cure even in expert hands, others may not be surgical candidates and a significant percentage will experience recurrence. Many patients will thus require medical therapy to achieve disease control. Pharmacologic options to treat CD have increased in recent years, with an explosion in knowledge related to pathophysiology at the molecular level. In this review, we focus on medications targeting specifically pituitary adrenocorticotropic hormone-secreting tumors. The only medication in this group approved for the treatment of CD is pasireotide, a somatostatin receptor ligand. Cabergoline and temozolomide may also be used in select cases. Previously studied and abandoned medical options are briefly discussed, and emphasis is made on upcoming medications. Mechanism of action and available data on efficacy and safety of cell cycle inhibitor roscovitine, epidermal growth factor receptor inhibitor gefitinib, retinoic acid, and silibinin, a heat shock protein 90 inhibitor are also presented.
Collapse
Affiliation(s)
- Fabienne Langlois
- Department of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jennifer Chu
- Department of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR, United States
| | - Maria Fleseriu
- Department of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR, United States
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
- Northwest Pituitary Center, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Maria Fleseriu,
| |
Collapse
|
32
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
33
|
Lu J, Chatain GP, Bugarini A, Wang X, Maric D, Walbridge S, Zhuang Z, Chittiboina P. Histone Deacetylase Inhibitor SAHA Is a Promising Treatment of Cushing Disease. J Clin Endocrinol Metab 2017; 102:2825-2835. [PMID: 28505327 PMCID: PMC5546859 DOI: 10.1210/jc.2017-00464] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/05/2017] [Indexed: 02/01/2023]
Abstract
CONTEXT Remission failure following transsphenoidal surgery in Cushing disease (CD) from pituitary corticotroph tumors (CtTs) remains clinically challenging. Histone deacetylase inhibitors (HDACis) are antitumor drugs approved for clinical use, with the potential to affect adrenocorticotropin hormone (ACTH) hypersecretion by inhibiting pro-opiomelanocortin (POMC) transcription. OBJECTIVE Testing the efficacy of suberoylanilide hydroxamic acid (SAHA) on human and murine ACTH-secreting tumor (AtT-20) cells. DESIGN Cell viability, ACTH secretion (enzyme-linked immunosorbent assay), apoptosis, and gene expression profile were investigated on AtT-20 cells. In vivo efficacy was examined in an athymic nude mouse AtT-20 xenograft model. SAHA efficacy against human-derived corticotroph tumor (hCtT) (n = 8) was tested in vitro. SETTING National Institutes of Health. INTERVENTION SAHA (0.5 to 8 µM). MAIN OUTCOME MEASURES AtT-20 and hCtT cell survival, in vitro/invivo ACTH measurements. RESULTS SAHA (1 µM) reduced AtT-20 viability to 75% at 24 hours, 43% at 48 hours (analysis of variance; P = 0.002). Apoptosis was confirmed with elevated BAX/Bcl2 ratio and FACS. Intriguingly, early (3-hour) significant decline (70%; P < 0.0001) of secreted ACTH and diminished POMC transcription was observed with SAHA (1 µM). Microarray analysis revealed a direct association between liver X receptor alpha (LXRα) and POMC expression. Accordingly, SAHA reduced LXRα in AtT-20 cells but not in normal murine corticotrophs. Xenografted nude-mice tumor involution (126 ± 33/160 ± 35 vs 337 ± 49 mm3; P = 0.0005) was observed with 5-day intraperitoneal SAHA, with reversal of elevated ACTH (P < 0.0001). SAHA did not affect serum ACTH in nontumor mice. Lastly, we confirmed that SAHA (1 µM/24 h) decreased hCtT survival (78.92%; P = 0.0007) and ACTH secretion (83.64%; P = 0.03). CONCLUSION Our findings demonstrate SAHA's efficacy in reducing survival and ACTH secretion in AtT-20 and hCtT cells, providing a potential intervention for recurrent/unremitting CD.
Collapse
Affiliation(s)
- Jie Lu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Grégoire P. Chatain
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Alejandro Bugarini
- Surgical Neurology Branch, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Xiang Wang
- Surgical Neurology Branch, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
- Surgical Neurology Branch, National Institute of Neurologic Diseases and Stroke, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Ciato D, Mumbach AG, Paez-Pereda M, Stalla GK. Currently used and investigational drugs for Cushing´s disease. Expert Opin Investig Drugs 2016; 26:75-84. [PMID: 27894193 DOI: 10.1080/13543784.2017.1266338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cushing's disease (CD) is caused by a corticotroph adenoma of the pituitary gland that secretes excess adrenocorticotropic hormone (ACTH) causing increased morbidity and mortality. Surgery is the treatment of choice, but is not always successful. Alternatives include radiotherapy, adrenal surgery, and pharmaceutical therapy. The latter is increasingly gaining momentum due to the recent development of compounds that reduce hypercortisolaemia or its symptoms, acting through different mechanisms. Areas covered: In this article, the authors provide a complete overview of the treatment options for Cushing´s disease, including adrenal-directed, tumor-targeted, and peripheral therapies that are currently used or in development, and discuss their potential advantages and limitations. Expert opinion: Considering the lack of long-term remission in up to half of the patients after surgery, and the delayed response to radiotherapy along with potential side effects, there is a strong need for an effective pharmaceutical treatment. Pasireotide, mifepristone, ketoconazole and metyrapone have been approved by regulatory authorities but their use remains limited due to considerable costs and side effects. Research in this field has focused recently on the improvement of pre-existing drugs and the development of safe new ones. However, few approaches aim at targeting the source of the disease, the ACTH-secreting adenoma.
Collapse
Affiliation(s)
- Denis Ciato
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany.,b Endocrinology Division, Department of Medicine , University-Hospital of Padua , Padua , Italy
| | - Aizhar G Mumbach
- c Endocrinology Division , Carlos G. Durand Hospital , Buenos Aires , Argentina
| | - Marcelo Paez-Pereda
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany
| | - Günter K Stalla
- a Clinical Neuroendocrinology , Max Planck Institute of Psychiatry , Munich , Germany
| |
Collapse
|
35
|
Effect of retinoic acid on human adrenal corticosteroid synthesis. Life Sci 2016; 151:277-280. [PMID: 26979774 DOI: 10.1016/j.lfs.2016.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022]
Abstract
AIMS Retinoic acid has recently yielded promising results in the treatment of Cushing's disease, i.e., excess cortisol secretion due to a pituitary corticotropin (ACTH)-secreting adenoma. In addition to its effect on the tumoral corticotrope cell, clinical results suggest an additional adrenal site of action. Aim of this study was to evaluate whether retinoic acid modulates cortisol synthesis and secretion by human adrenals in vitro. MAIN METHODS Primary cultures from 10 human adrenals specimens were incubated with 10nM, 100nM and 1μM retinoic acid with and without 10nM ACTH for 24h. Cortisol levels were measured by radioimmunoassay and CYP11A1, STAR and MC2R gene expression analyzed by real-time PCR. KEY FINDINGS Retinoic acid increased cortisol secretion (149.5±33.01%, 151.3±49.45% and 129.3±8.32% control secretion for 10nM, 100nM and 1μM respectively, p<0.05) and potentiated STAR expression (1.51±0.22, 1.56±0.15 and 1.59±0.14 fold change over baseline, for 10nM, 100nM and 1μM respectively, p<0.05). Concurrently, retinoic acid markedly blunted constitutional and ACTH-induced MC2R expression (0.66±0.11, 0.62±0.08 and 0.53±0.07 fold change over baseline, for 10nM, 100nM and 1μM respectively, p<0.05; 0.71±0.10, 0.51±0.07 and 0.51±0.08 fold change over ACTH alone, for 10nM, 100nM and 1μM respectively, p<0.05). No effect on CYP11A1 was observed. SIGNIFICANCE Retinoic acid stimulates cortisol synthesis and secretion in human adrenals and at the same time markedly blunts ACTH receptor transcription. These results reveal a novel, adrenal effect of retinoic acid which may contribute to its efficacy in patients with Cushing's disease.
Collapse
|
36
|
Castillo V, Pessina P, Hall P, Blatter MFC, Miceli D, Arias ES, Vidal P. Post-surgical treatment of thyroid carcinoma in dogs with retinoic acid 9 cis improves patient outcome. Open Vet J 2016; 6:6-14. [PMID: 26862515 PMCID: PMC4744371 DOI: 10.4314/ovj.v6i1.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
The objective of the present study was to compare the effects of isotretinoin 9-cis (RA9-cis) as a post-surgery treatment of thyroid carcinoma to a traditional treatment (doxorubicin) and no treatment. Owners who did not want their dogs to receive treatment were placed into the control group A (GA; n=10). The remaining dogs were randomly placed into either group B (GB; n=12) and received doxorubicin at a dose of 30 mg/m2 every three weeks, for six complete cycles or group C (GC; n=15) and treated with RA9-cis at a dose of 2 mg/kg/day for 6 months. The time of the recurrence was significantly shorter in the GA and GB compared to GC (P=0.0007; P=0.0015 respectively), while we did not detect differences between GA and GB. The hazard ratio of recurrence between GA and GB compared to GC were 7.25 and 5.60 times shorter, respectively. We did not detect any differences between the other groups. The risk ratio of recurrence was 2.0 times higher in GA compared to GC and 2.1 times higher in GB compared to GC. The type of carcinoma had an effect on time of survival with follicular carcinomas having an increased mean survival time than follicular-compact carcinomas (P<0.0001) and follicular-compact carcinomas had a longer mean survival time than compact carcinomas. The interaction among treatment and type was significant, but survival time in follicular carcinomas did not differ between treatments. In follicular-compact carcinomas the survival time of GC was greater than GB (P<0.05), but we did not detect a difference between GA and GB. In conclusion, this study shows that the use of surgery in combination with RA9-cis treatment significantly increases survival rate and decreases the time to tumor recurrence when compared to doxorubicin treated or untreated dogs. The histological type of carcinoma interacted with treatment for time to recurrence and survival time, with more undifferentiated carcinomas having a worse prognosis than differentiated carcinomas.
Collapse
Affiliation(s)
- V Castillo
- Cat. Clin. Méd. Peq. An. and U. Endocrinología, Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| | - P Pessina
- Laboratorio de Técnicas Nucleares, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, Montevideo, Uruguay
| | - P Hall
- Cat. Cirugía and U. Cirugía, Hosp., Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| | - M F Cabrera Blatter
- Cat. Clin. Méd. Peq. An. and U. Endocrinología, Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| | - D Miceli
- Cat. Clin. Méd. Peq. An. and U. Endocrinología, Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| | - E Soler Arias
- Cat. Clin. Méd. Peq. An. and U. Endocrinología, Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| | - P Vidal
- Cat. Clin. Méd. Peq. An. and U. Endocrinología, Escuela Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires. Av.Chorroarín 280, C. Autónoma de Buenos Aires, Argentina
| |
Collapse
|
37
|
Vilar L, Albuquerque JL, Lyra R, Trovão Diniz E, Rangel Filho F, Gadelha P, Thé AC, Ibiapina GR, Gomes BS, Santos V, Melo da Fonseca M, Frasão Viana K, Lopes IG, Araújo D, Naves L. The Role of Isotretinoin Therapy for Cushing's Disease: Results of a Prospective Study. Int J Endocrinol 2016; 2016:8173182. [PMID: 27034666 PMCID: PMC4789464 DOI: 10.1155/2016/8173182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Objective. This prospective open trial aimed to evaluate the efficacy and safety of isotretinoin (13-cis-retinoic acid) in patients with Cushing's disease (CD). Methods. Sixteen patients with CD and persistent or recurrent hypercortisolism after transsphenoidal surgery were given isotretinoin orally for 6-12 months. The drug was started on 20 mg daily and the dosage was increased up to 80 mg daily if needed and tolerated. Clinical, biochemical, and hormonal parameters were evaluated at baseline and monthly for 6-12 months. Results. Of the 16 subjects, 4% (25%) persisted with normal urinary free cortisol (UFC) levels at the end of the study. UFC reductions of up to 52.1% were found in the rest. Only patients with UFC levels below 2.5-fold of the upper limit of normal achieved sustained UFC normalization. Improvements of clinical and biochemical parameters were also noted mostly in responsive patients. Typical isotretinoin side-effects were experienced by 7 patients (43.7%), though they were mild and mostly transient. We also observed that the combination of isotretinoin with cabergoline, in relatively low doses, may occasionally be more effective than either drug alone. Conclusions. Isotretinoin may be an effective and safe therapy for some CD patients, particularly those with mild hypercortisolism.
Collapse
Affiliation(s)
- Lucio Vilar
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - José Luciano Albuquerque
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Ruy Lyra
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Erik Trovão Diniz
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Frederico Rangel Filho
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Patrícia Gadelha
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Ana Carolina Thé
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - George Robson Ibiapina
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Barbara Sales Gomes
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Vera Santos
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Maíra Melo da Fonseca
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Karoline Frasão Viana
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Isis Gabriella Lopes
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Douglas Araújo
- Division of Endocrinology, Hospital das Clínicas, Pernambuco Federal University, Avenida Professor Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Luciana Naves
- Division of Endocrinology, Brasilia University Hospital, Brasilia, DF, Brazil
| |
Collapse
|
38
|
Effects of RXR Agonists on Cell Proliferation/Apoptosis and ACTH Secretion/Pomc Expression. PLoS One 2015; 10:e0141960. [PMID: 26714014 PMCID: PMC4695086 DOI: 10.1371/journal.pone.0141960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Various retinoid X receptor (RXR) agonists have recently been developed, and some of them have shown anti-tumor effects both in vivo and in vitro. However, there has been no report showing the effects of RXR agonists on Cushing’s disease, which is caused by excessive ACTH secretion in a corticotroph tumor of the pituitary gland. Therefore, we examined the effects of synthetic RXR pan-agonists HX630 and PA024 on the proliferation, apoptosis, ACTH secretion, and pro-opiomelanocortin (Pomc) gene expression of murine pituitary corticotroph tumor AtT20 cells. We demonstrated that both RXR agonists induced apoptosis dose-dependently in AtT20 cells, and inhibited their proliferation at their higher doses. Microarray analysis identified a significant gene network associated with caspase 3 induced by high dose HX630. On the other hand, HX630, but not PA024, inhibited Pomc transcription, Pomc mRNA expression, and ACTH secretion dose-dependently. Furthermore, we provide new evidence that HX630 negatively regulates the Pomc promoter activity at the transcriptional level due to the suppression of the transcription factor Nur77 and Nurr1 mRNA expression and the reduction of Nur77/Nurr1 heterodimer recruiting to the Pomc promoter region. We also demonstrated that the HX630-mediated suppression of the Pomc gene expression was exerted via RXRα. Furthermore, HX630 inhibited tumor growth and decreased Pomc mRNA expression in corticotroph tumor cells in female nude mice in vivo. Thus, these results indicate that RXR agonists, especially HX630, could be a new therapeutic candidate for Cushing’s disease.
Collapse
|
39
|
Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 2015; 64:425-39. [PMID: 26527258 PMCID: PMC4949630 DOI: 10.1002/glia.22938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Collapse
Affiliation(s)
- Patrick N Stoney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Diana Rodrigues
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Peter McCaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| |
Collapse
|
40
|
Lau D, Rutledge C, Aghi MK. Cushing's disease: current medical therapies and molecular insights guiding future therapies. Neurosurg Focus 2015; 38:E11. [PMID: 25639313 DOI: 10.3171/2014.10.focus14700] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cushing's disease (CD) can lead to significant morbidity secondary to hormonal sequelae or mass effect from the pituitary tumor. A transsphenoidal approach to resection of the adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma is the first-line treatment. However, in the setting in which patients are unable to undergo surgery, have acute hypercortisolism, or have recurrent disease, medical therapy can play an important role. The authors performed a systematic review to highlight the efficacy of medical treatment of CD and discuss novel molecular insights that could guide the development of future medical treatments of CD. METHODS A search on current medical therapies for CD was performed. After individual medical therapeutic agents for CD were identified, each agent underwent a formal systematic search. The phrase "(name of agent) and Cushing's" was used as a search term in PubMed for all years up to 2014. The abstract of each article was reviewed for studies that evaluated the efficacy of medical treatment of CD. Only studies that enrolled at least 20 patients were included in the review. RESULTS A total of 11 articles on 6 individual agents were included in this review. Specific medical therapies were categorized based on the level of action: pituitary directed (cabergoline and pasireotide), adrenal/steroidogenesis directed (ketoconazole, metyrapone, and mitotane), and end-tissue directed/cortisol receptors (mifepristone). The studies identified consisted of a mix of retrospective reviews and small clinical trials. Only pasireotide and mifepristone have undergone Phase III clinical trials, from which they garnered FDA approval for the treatment of patients with CD. Overall, agents targeting ACTH secretion and steroidogenesis were found to be quite effective in reducing urine free cortisol (UFC) to levels near normal. A significant reduction in UFC was observed in 45%-100% of patients and a majority of patients gained clinical improvement. Similarly, inhibition at the end-tissue level led to clinical improvement in 87% of patients. However, side-effect rates associated with these drugs are high (up to 88%). Ketoconazole has been shown to enhance tumor appearance on MRI to facilitate pituitary resection. Promising molecular targets have been identified, including epidermal growth factor receptor, retinoic acid receptors, and cyclin dependent kinases. These pathways have been linked to the regulation of pro-opiomelanocortin expression, ACTH secretion, and tumor growth. CONCLUSIONS Despite encouraging Phase III clinical trials leading to FDA approval of 2 agents for treatment of patients with CD, no agent has yet produced results comparable to resection. As a result, the molecular insights gained into CD pathogenesis will need to continue to be expanded until they can lead to the development of medical therapies for CD with a favorable side-effect profile and efficacy comparable to resection. Ideally these agents should also reduce tumor size, which could potentially permit their eventual discontinuation.
Collapse
Affiliation(s)
- Darryl Lau
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | |
Collapse
|
41
|
Sugiyama A, Kageyama K, Murasawa S, Ishigame N, Niioka K, Daimon M. Inhibition of heat shock protein 90 decreases ACTH production and cell proliferation in AtT-20 cells. Pituitary 2015; 18:542-53. [PMID: 25280813 DOI: 10.1007/s11102-014-0607-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Cushing's disease is primarily caused by adrenocorticotropic hormone (ACTH)-producing pituitary adenomas. If excision of the tumor from the pituitary, which is the primary treatment for Cushing's disease, is unsuccessful, further medical therapy is needed to treat the resultant hypercortisolism. Some of the drugs used to treat this condition have shown potential therapeutic benefits, but a more effective treatment should be explored for the treatment of Cushing's disease. In the present study, we determined the effect of heat shock protein 90 inhibitors on ACTH production and cell proliferation of AtT-20 corticotroph tumor cells. METHODS AtT-20 pituitary corticotroph tumor cells were cultured. The expression levels of mouse proopiomelanocortin (POMC) and pituitary tumor transforming gene 1 (PTTG1) mRNA were evaluated using quantitative real-time PCR. Cellular DNA content was analyzed with fluorescence-activated cell sorting (FACS) analysis. The protein levels were determined by Western blot analysis. RESULTS Both 17-allylamino-17-demethoxygeldanamycin and CCT018159 decreased POMC mRNA levels in AtT-20 cells and ACTH levels in the culture medium of these cells, suggesting that both drugs suppress ACTH synthesis and secretion in corticotroph tumor cells. Both drugs also decreased cell proliferation and induced apoptosis. FACS analyses revealed that both agents increased the percentage of AtT-20 cells in the G2/M phase. These drugs decreased cell proliferation, presumably due to the induction of cell death and arrest of the cell cycle in AtT-20 cells. Tumor weight in mice xenografted with AtT-20 cells and treated with CCT018159 was lower than in AtT-20-xenografted control mice. CCT018159 also decreased plasma ACTH levels, and POMC and PTTG1 mRNA levels in the tumor cells. CONCLUSIONS CCT018159 inhibits ACTH production and corticotroph tumor cell proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Aya Sugiyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Pivonello R, De Leo M, Cozzolino A, Colao A. The Treatment of Cushing's Disease. Endocr Rev 2015; 36:385-486. [PMID: 26067718 PMCID: PMC4523083 DOI: 10.1210/er.2013-1048] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/13/2015] [Indexed: 12/23/2022]
Abstract
Cushing's disease (CD), or pituitary-dependent Cushing's syndrome, is a severe endocrine disease caused by a corticotroph pituitary tumor and associated with increased morbidity and mortality. The first-line treatment for CD is pituitary surgery, which is followed by disease remission in around 78% and relapse in around 13% of patients during the 10-year period after surgery, so that nearly one third of patients experience in the long-term a failure of surgery and require an additional second-line treatment. Patients with persistent or recurrent CD require additional treatments, including pituitary radiotherapy, adrenal surgery, and/or medical therapy. Pituitary radiotherapy is effective in controlling cortisol excess in a large percentage of patients, but it is associated with a considerable risk of hypopituitarism. Adrenal surgery is followed by a rapid and definitive control of cortisol excess in nearly all patients, but it induces adrenal insufficiency. Medical therapy has recently acquired a more important role compared to the past, due to the recent employment of novel compounds able to control cortisol secretion or action. Currently, medical therapy is used as a presurgical treatment, particularly for severe disease; or as postsurgical treatment, in cases of failure or incomplete surgical tumor resection; or as bridging therapy before, during, and after radiotherapy while waiting for disease control; or, in selected cases, as primary therapy, mainly when surgery is not an option. The adrenal-directed drug ketoconazole is the most commonly used drug, mainly because of its rapid action, whereas the glucocorticoid receptor antagonist, mifepristone, is highly effective in controlling clinical comorbidities, mainly glucose intolerance, thus being a useful treatment for CD when it is associated with diabetes mellitus. Pituitary-directed drugs have the advantage of acting at the site responsible for CD, the pituitary tumor. Among this group of drugs, the dopamine agonist cabergoline and the somatostatin analog pasireotide result in disease remission in a consistent subgroup of patients with CD. Recently, pasireotide has been approved for the treatment of CD when surgery has failed or when surgery is not an option, and mifepristone has been approved for the treatment of Cushing's syndrome when associated with impairment of glucose metabolism in case of the lack of a surgical indication. Recent experience suggests that the combination of different drugs may be able to control cortisol excess in a great majority of patients with CD.
Collapse
Affiliation(s)
- Rosario Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Universita' Federico II di Napoli, 80131 Naples, Italy
| | - Monica De Leo
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Universita' Federico II di Napoli, 80131 Naples, Italy
| | - Alessia Cozzolino
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Universita' Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Universita' Federico II di Napoli, 80131 Naples, Italy
| |
Collapse
|
43
|
Creemers SG, Hofland LJ, Lamberts SWJ, Feelders RA. Cushing's syndrome: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother 2015; 16:1829-44. [PMID: 26133755 DOI: 10.1517/14656566.2015.1061995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Endogenous Cushing's syndrome (CS) is characterized by chronic overproduction of cortisol and is associated with increased mortality and morbidity. It can be caused by a pituitary adenoma, ectopic adrenocorticotropic hormone (ACTH) production or primary adrenal disease. Successful tumor-directed surgery is the keystone treatment. When surgery is unsuccessful, contraindicated or in case of acute disease, pharmacotherapy is indicated to treat hypercortisolism. AREAS COVERED In this review, pharmacotherapeutic options for CS will be covered discussing the different possible targets, that is: i) inhibition of ACTH secretion; ii) suppression of steroidogenesis; and iii) blockade of cortisol effects at tissue level. Preclinical and clinical studies will be discussed considering mono- and combination therapy, taking into account efficacy, toxicity and mechanism of action. Per CS entity, future directions of pharmacotherapies will be addressed. EXPERT OPINION The number of medical treatment options for CS has increased in the past years. In contrast to decades ago, prospective trials are now being performed focusing on pituitary-directed drugs like pasireotide, the glucocorticoid receptor blocker mifepristone and 'new generation' steroid synthesis inhibitors. Future studies will focus on tumor-shrinking effects of neuromodulatory drugs, the optimal order and combination of pharmacotherapy, long-term efficacy and safety and new targets for medical treatment of CS.
Collapse
Affiliation(s)
- Sara G Creemers
- Erasmus Medical Center, Department of Internal Medicine, Division of Endocrinology , Dr. Molewaterplein 50, 3015GE Rotterdam , The Netherlands +31 10 7040704 ; +31 10 7044862 ;
| | | | | | | |
Collapse
|
44
|
Abstract
INTRODUCTION Considering the effects of uncontrolled hypercortisolism on morbidity and mortality, there is a clear need for effective medical therapy for patients with Cushing's disease (CD). Therefore, the search for new medical effective tools remains active, and already promising results have been obtained. AREAS COVERED The importance of the design and conduct of trials to validate old drugs or to test new compounds is discussed. The results of the ongoing clinical trials, targeting the specific properties of drugs, such as ketoconazole, LCI699, mifepristone, etomidate and pasireotide, are also reported. The authors also emphasise the advantages and drawbacks of each particular drug, and the potential combined use of agents with complementary mechanisms of action. EXPERT OPINION CD is an excellent example of a situation where effective therapy is essential, but where the balance of risk and benefit must be carefully judged. Metyrapone is the drug of choice when rapid control of the hypercortisolaemia is required, ketoconazole represents a good second-line drug, although in the future LCI699 may be a better alternative. Mifepristone can also be used in the rare situation when previous drugs are inappropriate. Etomidate is useful where immediate parenteral action is required. For drugs working directly on the pituitary, cabergoline is occasionally effective and pasireotide can be attempted in patients with mild CD.
Collapse
Affiliation(s)
- Daniela Guelho
- a 1 Department of Endocrinology, Diabetes and Metabolism of Coimbra Hospital and University Centre , Portugal
| | | |
Collapse
|
45
|
Affiliation(s)
- V. Pallet
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| | - K. Touyarot
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| |
Collapse
|
46
|
Abstract
Transsphenoidal surgery remains the first line therapy in Cushing's disease, but a large number of patients will not be cured or disease will recur over time. Repeat pituitary surgery, bilateral adrenalectomy, and radiation have limitations with respect to efficacy and/or side effects. Therefore, there is a clear need for an effective medical treatment. The studies reviewed here suggest a role for pituitary-directed therapies, applying multireceptor ligand somatostatin analogs like pasireotide or second-generation dopamine agonists. Retinoic acid has been also studied in a small prospective study. These compounds target ACTH-secretion at the pituitary level and possibly inhibit corticotrope proliferation. Specific side effects of these compounds need to be considered, especially when used as long-term therapy. These novel approaches could provide options for treatment of patients in whom surgery has failed or is not possible, and while awaiting effects of radiation therapy. Preoperative use to decrease cortisol excess, potentially reducing perioperative complications, needs to be further studied.
Collapse
Affiliation(s)
- Stephan Petersenn
- ENDOC Center for Endocrine Tumors, Altonaer Str. 59, 20357, Hamburg, Germany,
| | | |
Collapse
|
47
|
A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med 2015; 21:276-80. [PMID: 25665180 DOI: 10.1038/nm.3776] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/07/2014] [Indexed: 02/08/2023]
Abstract
One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.
Collapse
|
48
|
Cuny T, Barlier A, Feelders R, Weryha G, Hofland LJ, Ferone D, Gatto F. Medical therapies in pituitary adenomas: Current rationale for the use and future perspectives. ANNALES D'ENDOCRINOLOGIE 2015; 76:43-58. [DOI: 10.1016/j.ando.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023]
|
49
|
|
50
|
Abstract
Pituitary adenomas are a heterogeneous group of tumors that may occur as part of a complex syndrome or as an isolated endocrinopathy and both forms can be familial or non-familial. Studies of syndromic and non-syndromic pituitary adenomas have yielded important insights about the molecular mechanisms underlying tumorigenesis. Thus, syndromic forms, including multiple endocrine neoplasia type 1 (MEN1), MEN4, Carney Complex and McCune Albright syndrome, have been shown to be due to mutations of the tumor-suppressor protein menin, a cyclin-dependent kinase inhibitor (p27Kip1), the protein kinase A regulatory subunit 1-α, and the G-protein α-stimulatory subunit (Gsα), respectively. Non-syndromic forms, which include familial isolated pituitary adenoma (FIPA) and sporadic tumors, have been shown to be due to abnormalities of: the aryl hydrocarbon receptor-interacting protein; Gsα; signal transducers; cell cycle regulators; transcriptional modulators and miRNAs. The roles of these molecular abnormalities and epigenetic mechanisms in pituitary tumorigenesis, and their therapeutic implications are reviewed.
Collapse
Affiliation(s)
- Christopher J Yates
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
- b 2 Department of Diabetes and Endocrinology, Melbourne Health, The Royal Melbourne Hospital, Grattan Street, Parkville, Vic 3050, Australia
| | - Kate E Lines
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| | - Rajesh V Thakker
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| |
Collapse
|