1
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024; 21:e00442. [PMID: 39237437 PMCID: PMC11585894 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
2
|
Tsuji H, Otsuka R, Wada H, Murata T, Sasaki A, Itoh M, Baghdadi M, Sasaki E, Seino KI. Induction of macrophage-like immunosuppressive cells from common marmoset ES cells by stepwise differentiation with DZNep. Sci Rep 2020; 10:12625. [PMID: 32724084 PMCID: PMC7387549 DOI: 10.1038/s41598-020-69690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Recent progress in regenerative medicine has enabled the utilization of pluripotent stem cells (PSCs) as the resource of therapeutic cells/tissue. However, immune suppression is still needed when the donor-recipient combination is allogeneic. We have reported previously that mouse PSCs-derived immunosuppressive cells contribute to prolonged survival of grafts derived from the same mouse PSCs in allogeneic recipients. For its clinical application, a preclinical study using non-human primates such as common marmoset must be performed. In this study, we established the induction protocol of immunosuppressive cells from common marmoset ES cells. Although similar immunosuppressive macrophages could not be induced by same protocol as that for mouse PSCs, we employed an inhibitor for histone methyltransferase, DZNep, and succeeded to induce them. The DZNep-treated macrophage-like cells expressed several immunosuppressive molecules and significantly inhibited allogeneic mixed lymphocyte reaction. The immunosuppressive cells from non-human primate ESCs will help to establish an immunoregulating strategy in regenerative medicine using PSCs.
Collapse
Affiliation(s)
- Hyuma Tsuji
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Airi Sasaki
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Mizuho Itoh
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa, 21-0821, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.
| |
Collapse
|
3
|
Fujii Y, Kitaura K, Matsutani T, Shirai K, Suzuki S, Takasaki T, Kumagai K, Kametani Y, Shiina T, Takabayashi S, Katoh H, Hamada Y, Kurane I, Suzuki R. Immune-related gene expression profile in laboratory common marmosets assessed by an accurate quantitative real-time PCR using selected reference genes. PLoS One 2013; 8:e56296. [PMID: 23451040 PMCID: PMC3581525 DOI: 10.1371/journal.pone.0056296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 11/29/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is considered a novel experimental animal model of non-human primates. However, due to antibody unavailability, immunological and pathological studies have not been adequately conducted in various disease models of common marmoset. Quantitative real-time PCR (qPCR) is a powerful tool to examine gene expression levels. Recent reports have shown that selection of internal reference housekeeping genes are required for accurate normalization of gene expression. To develop a reliable qPCR method in common marmoset, we used geNorm applets to evaluate the expression stability of eight candidate reference genes (GAPDH, ACTB, rRNA, B2M, UBC, HPRT, SDHA and TBP) in various tissues from laboratory common marmosets. geNorm analysis showed that GAPDH, ACTB, SDHA and TBP were generally ranked high in stability followed by UBC. In contrast, HPRT, rRNA and B2M exhibited lower expression stability than other genes in most tissues analyzed. Furthermore, by using the improved qPCR with selected reference genes, we analyzed the expression levels of CD antigens (CD3ε, CD4, CD8α and CD20) and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12β, IL-13, IFN-γ and TNF-α) in peripheral blood leukocytes and compared them between common marmosets and humans. The expression levels of CD4 and IL-4 were lower in common marmosets than in humans whereas those of IL-10, IL-12β and IFN-γ were higher in the common marmoset. The ratio of Th1-related gene expression level to that of Th2-related genes was inverted in common marmosets. We confirmed the inverted ratio of CD4 to CD8 in common marmosets by flow cytometric analysis. Therefore, the difference in Th1/Th2 balance between common marmosets and humans may affect host defense and/or disease susceptibility, which should be carefully considered when using common marmoset as an experimental model for biomedical research.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Matsutani
- Laboratory of Immune Regulation, Wakayama Medical University, Osaka, Japan
| | - Kenji Shirai
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satsuki Suzuki
- Section of Biological Science, Research Center for Odontology, Nippon Dental University, School of Life Dentistry, Tokyo, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Kumagai
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Kanagawa, Japan
| | - Yoshie Kametani
- Department of Immunology, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Shuji Takabayashi
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hideki Katoh
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
- Laboratory of Animal Breeding and Genetics, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Kanagawa, Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
4
|
Amedei A, Prisco D, D’Elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 2012; 13:13438-13460. [PMID: 23202961 PMCID: PMC3497335 DOI: 10.3390/ijms131013438] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis, the clinical features and pathological correlate for which were first described by Charcot, is a chronic neuroinflammatory disease with unknown etiology and variable clinical evolution. Although neuroinflammation is a descriptive denominator in multiple sclerosis based on histopathological observations, namely the penetration of leukocytes into the central nervous system, the clinical symptoms of relapses, remissions and progressive paralysis are the result of losses of myelin and neurons. In the absence of etiological factors as targets for prevention and therapy, the definition of molecular mechanisms that form the basis of inflammation, demyelination and toxicity for neurons have led to a number of treatments that slow down disease progression in specific patient cohorts, but that do not cure the disease. Current therapies are directed to block the immune processes, both innate and adaptive, that are associated with multiple sclerosis. In this review, we analyze the role of cytokines in the multiple sclerosis pathogenesis and current/future use of them in treatments of multiple sclerosis.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Prisco
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Department of Medical and Surgical Critical Care, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mario Milco D’Elios
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| |
Collapse
|
5
|
Bine S, Haziot A, Malikova I, Pelletier J, Charron D, Boucraut J, Mooney N, Gelin C. Alteration of CD1 expression in multiple sclerosis. Clin Exp Immunol 2012; 169:10-6. [PMID: 22670773 DOI: 10.1111/j.1365-2249.2012.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Studies of multiple sclerosis (MS) have concentrated mainly on antigen presentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expression in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells.
Collapse
Affiliation(s)
- S Bine
- INSERM, UMR-S, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kitaura K, Fujii Y, Matsutani T, Shirai K, Suzuki S, Takasaki T, Shimada S, Kametani Y, Shiina T, Takabayashi S, Katoh H, Ogasawara K, Kurane I, Suzuki R. A new method for quantitative analysis of the T cell receptor V region repertoires in healthy common marmosets by microplate hybridization assay. J Immunol Methods 2012; 384:81-91. [PMID: 22841578 DOI: 10.1016/j.jim.2012.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The common marmoset, Callithrix jacchus, is one of the smallest primates and is increasingly used for an experimental nonhuman primate model in many research fields. Analysis of T cell receptor (TCR) repertoires is a powerful tool to investigate T cell immunity in terms of antigen specificity and variability of TCR expression. However, monoclonal antibodies specific for many TCR Vα or Vβ chains have not been created. We have recently identified a large number of TCRα chain variable (TRAV) and TCRβ chain variable (TRBV) sequences from a cDNA library of common marmosets. The purpose of this study is to develop a new method for analysis of TCR repertoires in the common marmoset using this sequence information. This method is based on a microplate hybridization technique using 32 TRAV-specific and 32 TRBV-specific oligoprobes following an adaptor-ligation PCR. This enables the easy quantitation of the respective TRAV and TRBV expression levels. No cross-hybridization among specific-oligoprobes and very low variances in repeated measures of the same samples was found, demonstrating high specificity and reproducibility. Furthermore, this method was validated by an antihuman Vβ23 antibody which specifically bound to marmoset Vβ23. Using this method, we analyzed TCR repertoires from various tissue samples (PBMCs, spleen, lymph node and thymus) and isolated T cell subpopulations (CD4+CD8+, CD4+CD8− and CD4−CD8+) from the thymus of 10 common marmosets. Neither tissue-specific nor T cell subpopulation-specific differences was found in TRAV and TRBV repertoires. These results suggest that, unlike mice, TCR repertoires in the common marmoset are not affected by endogenous superantigens and are conserved among individuals, among tissues, and among T cell subpopulations. Thus, TCR repertoire analysis with high specificity and reproducibility is a very useful technique, with the potential to replace flow cytometric analysis using a panel of TRV-specific antibodies, many of which remain unavailable.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihra National Hospital, National Hospital Organization, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wekerle H, Flügel A, Fugger L, Schett G, Serreze D. Autoimmunity's next top models. Nat Med 2012; 18:66-70. [PMID: 22227675 DOI: 10.1038/nm.2635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Munich, Germany.
| | | | | | | | | |
Collapse
|
8
|
Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK. Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin Dev Immunol 2011; 2012:970789. [PMID: 22203863 PMCID: PMC3235500 DOI: 10.1155/2012/970789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and CD4(+) T cells form the core immunopathogenic cascade leading to chronic inflammation. Traditionally, Th1 cells (interferon-γ-producing CD4(+) T cells) driven by interleukin 12 (IL12) were considered to be the encephalitogenic T cells in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Currently, Th17 cells (Il17-producing CD4(+) T cells) are considered to play a fundamental role in the immunopathogenesis of EAE. This paper highlights the growing evidence that Th17 cells play the core role in the complex adaptive immunity of EAE/MS and discusses the roles of the associated immune cells and cytokines. These constitute the modern immunological basis for the development of novel clinical and preclinical immunomodulatory therapies for MS discussed in this paper.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Ling Wang
- Center for Composite Tissue Allotransplantation, Chang Gung Memorial Hospital, Linkou, New Taipei City 333, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Tsung Lo
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
9
|
Comprehensive analysis and characterization of the TCR α chain sequences in the common marmoset. Immunogenetics 2010; 62:383-95. [DOI: 10.1007/s00251-010-0445-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/26/2010] [Indexed: 11/27/2022]
|
10
|
Schreiner B, Heppner FL, Becher B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009; 31:479-95. [PMID: 19802608 DOI: 10.1007/s00281-009-0181-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.
Collapse
|
11
|
Abstract
Since its first description, experimental autoimmune encephalomyelitis, originally designated experimental allergic encephalitis (EAE), has been proposed as animal model to investigate pathogenetic hypotheses and test new treatments in the field of central nervous system inflammation and demyelination, which has become, in the last 30 years, the most popular animal model of multiple sclerosis (MS). This experimental disease can be obtained in all mammals tested so far, including nonhuman primates, allowing very advanced preclinical studies. Its appropriate use has led to the development of the most recent treatments approved for MS, also demonstrating its predictive value when properly handled. Some of the most exciting experiments validating the use of neural precursor cells (NPCs) as a potential therapeutic option in CNS inflammation have been performed in this model. We review here the most relevant immunological features of EAE in the different animal species and strains, and describe detailed protocols to obtain the three most common clinical courses of EAE in mice, with the hope to provide both cultural and practical basis for the use of this fascinating animal model.
Collapse
Affiliation(s)
- Roberto Furlan
- Neuroimmunology Unit - DIBIT and Department of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
12
|
Abstract
Experimental autoimmune encephalomyelitis (EAE) is often termed "the" model of human multiple sclerosis (MS). This is, however, an oversimplification. MS is a multifaceted disorder, with no single experimental model representing the entire complexity of the human disease. On the other hand, EAE comes in numerous, distinct variants, which may reflect individual aspects of MS. This presentation reviews EAE variants and their usability as models for human MS. New transgenic models representing mechanisms determining spontaneous initiation, the course of central nervous system (CNS) autoimmunity, the distribution of lesions within the CNS and the cellular composition of the inflammatory infiltrate are discussed. Aspects of the early, inflammatory phase of MS plaque generation, in particular concerning the dynamics of immune cell invasion into the CNS, are also reviewed. Finally, the usability of EAE models for discovery and validation of MS drugs is discussed.
Collapse
Affiliation(s)
- H Wekerle
- Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
13
|
Xin J, Wainwright DA, Serpe CJ, Sanders VM, Jones KJ. Phenotype of CD4+ T cell subsets that develop following mouse facial nerve axotomy. Brain Behav Immun 2008; 22:528-37. [PMID: 18024079 PMCID: PMC2396948 DOI: 10.1016/j.bbi.2007.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/19/2007] [Accepted: 10/07/2007] [Indexed: 01/31/2023] Open
Abstract
We have previously shown that CD4(+) T helper (Th) 2 cells, but not Th1 cells, participate in the rescue of mouse facial motoneurons (FMN) from axotomy-induced cell death. Recently, a number of other CD4(+) T cell subsets have been identified in addition to the Th1 and Th2 effector subsets, including Th17, inducible T regulatory type 1 (Tr1), and naturally thymus-born Foxp3(+) regulatory (Foxp3(+) Treg) cells. These subsets regulate the nature of a T cell-mediated immune response. Th1 and Th17 cells are pro-inflammatory subsets, while Th2, Tr1, and Foxp3(+) Treg cells are anti-inflammatory subsets. Pro-inflammatory responses in the central nervous system are thought to be neurodestructive, while anti-inflammatory responses are considered neuroprotective. However, it remains to be determined if another CD4(+) T cell subset, other than the Th2 cell, develops after peripheral nerve injury and participates in FMN survival. In the present study, we used FACS analysis to determine the temporal frequency of Th1, Th17, Th2, Tr1 and Foxp3(+) Treg CD4(+) T cell subset development in C57BL/6 wild type mice after facial nerve transection at the stylomastoid foramen in the mouse. The results indicate that all of the known CD4(+) T cell subsets develop and expand in number within the draining lymph node, with a peak in number primarily at 7 days postoperative (dpo), followed by a decline at 9 dpo. In addition to the increase in subset frequency over time, FACS analysis of individual cells showed that the level of cytokine expressed per cell also increased for interferon-gamma (IFN-gamma), interleukin (IL)-10 and IL-17, but not IL-4. Additional control double-cytokine labeling experiments were done which indicate that, at 7dpo, the majority of cells indeed have committed to a specific phenotype and express only 1 cytokine. Collectively, our findings indicate for the first time that there is no preferential activation and expansion of any single CD4(+) T cell subset after peripheral nerve injury but, rather, that both pro-inflammatory and anti-inflammatory CD4(+) T cells develop.
Collapse
Affiliation(s)
- Junping Xin
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
14
|
Pirko I, Johnson AJ. Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol 2008; 318:241-66. [PMID: 18219821 DOI: 10.1007/978-3-540-73677-6_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton density-weighted imaging, and we discuss the studies aimed at analyzing blood-brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.
Collapse
Affiliation(s)
- I Pirko
- Department of Neurology, Waddell Center for Multiple Sclerosis, University of Cincinnati, 260 Stetson St, Suite 2300, Cincinnati, OH 45267-0525, USA.
| | | |
Collapse
|
15
|
Toda M. Analysis of dendritic cells from common marmosets for the treatment of CNS injury. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Ohta S, Ueda Y, Yaguchi M, Matsuzaki Y, Nakamura M, Toyama Y, Tanioka Y, Tamaoki N, Nomura T, Okano H, Kawakami Y, Toda M. Isolation and characterization of dendritic cells from common marmosets for preclinical cell therapy studies. Immunology 2007; 123:566-74. [PMID: 18005037 DOI: 10.1111/j.1365-2567.2007.02727.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) have important functions as modulators of immune responses, and their ability to activate T cells is of great value in cancer immunotherapy. The isolation of DCs from the peripheral blood of rhesus and African green monkeys has been reported, but the immune system in the common marmoset remains poorly characterized, although it offers many potential advantages for preclinical studies. In the present study, we devised methods, based on techniques developed for mouse and human DC preparation, for isolating DCs from three major tissue sources in the common marmoset: bone marrow (BM), spleen and peripheral blood. Each set of separated cells was analysed using the cell surface DC-associated markers CD11c, CD80, CD83, CD86 and human leucocyte antigen (HLA)-DR, all of which are antibodies against human antigens, and the cells were further characterized both functionally and morphologically as antigen-presenting cells. BM proved to be an excellent cell source for the isolation of DCs intended for preclinical studies on cell therapy, for which large quantities of cells are required. In the BM-derived CD11c(+) cell population, cells exhibiting the characteristic features of DCs were enriched, with the typical DC morphology and the abilities to undergo endocytosis, to secrete interleukin (IL)-12, and to stimulate Xenogenic T cells. Moreover, BM-derived DCs produced the neurotrophic factor NT-3, which is also found in murine splenic DCs. These results suggest that BM-derived DCs from the common marmoset may be useful for biological analysis and for preclinical studies on cell therapy for central nervous system diseases and cancer.
Collapse
Affiliation(s)
- Shigeki Ohta
- Neuroimmunology Research Group, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a model of the neuroimmune system responding to priming with central nervous system (CNS)-restricted antigens. It is an excellent model of post-vaccinal encephalitis and a useful model of many aspects of multiple sclerosis. EAE has been established in numerous species and is induced by priming with a large number of CNS-derived antigens. As a consequence, the pathogenesis, pathology and clinical signs vary significantly between experimental protocols. As I describe in this Timeline article, the reductionist approach taken in some lines of investigation of EAE resulted in a reliance on results obtained under a narrow range of conditions. Although such studies made important contributions to our molecular understanding of inflammation, T-cell activation, and MHC restriction, they did not advance as effectively our knowledge of the polyantigenic responses that usually occur in CNS immunopathology and autoimmunity.
Collapse
Affiliation(s)
- Alan G Baxter
- Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville, 4,811, Queensland, Australia.
| |
Collapse
|
18
|
Ankeny DP, Popovich PG. Central nervous system and non-central nervous system antigen vaccines exacerbate neuropathology caused by nerve injury. Eur J Neurosci 2007; 25:2053-64. [PMID: 17439492 DOI: 10.1111/j.1460-9568.2007.05458.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we showed that autoimmune (central nervous system myelin-reactive) T cells exacerbate tissue damage and impair neurological recovery after spinal cord injury. Conversely, independent studies have shown T cell-mediated neuroprotection after spinal cord injury or facial nerve axotomy (FNAx). The antigen specificity of the neuroprotective T cells has not been investigated after FNAx. Here, we compared the neuroprotective capacity of autoimmune and non-autoimmune lymphocytes after FNAx. Prior to axotomy, C57BL/6 mice were immunized with myelin basic protein, myelin oligodendrocyte glycoprotein (MOG) or ovalbumin (a non-self antigen) emulsified in complete Freund's adjuvant (CFA). FNAx mice receiving injections of phosphate-buffered saline (PBS) only (unimmunized) or PBS/CFA emulsions served as controls. At 4 weeks after axotomy, bilateral facial motor neuron counts were obtained throughout the facial motor nucleus using unbiased stereology (optical fractionator). The data show that neuroantigen immunizations and 'generic' lymphocyte activation (e.g. PBS/CFA or ovalbumin/CFA immunizations) exacerbated neuron loss above that caused by FNAx alone. We also found that nerve injury potentiated the effector potential of autoimmune lymphocytes. Indeed, prominent forelimb and hindlimb motor deficits were accompanied by disseminated neuroinflammation and demyelination in FNAx mice receiving subencephalitogenic immunization with MOG. FNAx or neuroantigen (MOG or myelin basic protein) immunization alone did not cause these pathological changes. Thus, irrespective of the antigens used to trigger an immune response, neuropathology was enhanced when the immune system was primed in parallel with nerve injury. These data have important implications for therapeutic vaccination in clinical neurotrauma and neurodegeneration.
Collapse
Affiliation(s)
- Daniel P Ankeny
- Department of Molecular Virology, Immunology & Medical Genetics, The Center for Brain and Spinal Cord Repair and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
| | | |
Collapse
|
19
|
|
20
|
Abstract
The autoimmune model of multiple sclerosis (MS) pathogenesis provided for many years a useful but incomplete conceptual framework for understanding the complex array of factors that lead to the loss of immune homeostasis, myelin and axonal injury, and progressive neurological symptoms. The availability of novel tools in molecular neurogenetics and increasingly sophisticated neuroimaging technologies, together with the revitalization of MS neuropathology, has created a new paradigm for the multidisciplinary study of this disease. This is reflected by the growing resolution of the MS genomic map, discovery of delicate inflammatory networks that are perturbed in MS, identification of mediators of demyelination, and recognition that cumulative axonal loss and neuronal injury are the histological correlates of neurological disability. Together, these advances have set the stage for the development of therapeutic approaches designed to target the demyelinating and neurodegenerative components of the disease and promote repair.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
21
|
't Hart BA, Laman JD, Bauer J, Blezer E, van Kooyk Y, Hintzen RQ. Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol 2004; 3:588-97. [PMID: 15380155 DOI: 10.1016/s1474-4422(04)00879-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The many, highly specific, biological therapies for immune-based diseases create a need for valid preclinical animal models. The wide immunological gap between human beings and laboratory mouse or rat models makes many disease models in these species invalid. In this review, we report a non-human-primate model of chronic multiple sclerosis (MS)-experimental autoimmune encephalitis (EAE) in the common marmoset (Callithrix jacchus)-that can help bridge this wide gap. The genetic and immunological similarity of marmosets and human beings and the clinical and neuropathological similarity of the EAE model to MS provide a unique experimental platform for research into basic immunopathogenetic mechanisms and for the development of more effective treatments for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14599-606. [PMID: 15306684 PMCID: PMC521993 DOI: 10.1073/pnas.0404874101] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Autoimmune T and B cell responses to CNS antigen(s) are thought to drive the pathogenesis of multiple sclerosis (MS), and thus are logical targets for therapy. Indeed, several immunomodulatory agents, including IFN-beta 1b, IFN-beta 1a, glatiramer acetate, and mitoxantrone, have had beneficial clinical effects in different forms of MS. However, because the available treatments are only partially effective, MS therapy needs to be further improved. Selective (antigen-specific) immunotherapies are especially appealing because in theory they combine maximal efficacy with minimal side effects. Indeed, several innovative immunotherapies have been successfully applied in experimental autoimmune encephalomyelitis. For example, autoreactive T cells can be selectively targeted by means of antigen, T cell receptor, or activation markers. However, experimental autoimmune encephalomyelitis is far from being a perfect approximation of MS because MS is more heterogeneous and the target antigen(s) is (are) not known. Further advances in MS therapy will depend on our growing understanding of the pathogenesis of this still incurable disease.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz, D-82152 Martinsried, Germany.
| | | |
Collapse
|
23
|
Vojdani A, Vojdani E, Cooper E. Antibodies to myelin basic protein, myelin oligodendrocytes peptides, alpha-beta-crystallin, lymphocyte activation and cytokine production in patients with multiple sclerosis. J Intern Med 2003; 254:363-74. [PMID: 12974875 DOI: 10.1046/j.1365-2796.2003.01203.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure neurone-specific humoral and cellular immune parameters in MRI-positive patients with multiple sclerosis (MS). BACKGROUND It has been postulated from animal models for MS and in situ evidence in MS patients that antibodies, activated T cells and proinflammatory cytokines are involved in the destruction of myelin sheaths and loss of oligodendrocytes in active areas. SUBJECTS AND METHODS Blood samples were obtained from 20 healthy control subjects and 20 patients with abnormal MRI and clinical diagnosis of MS. Sera were tested for levels of IgG, IgM and IgA against myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) peptides, and a small heat-shock protein, alpha-beta-crystallin. Lymphocytes were isolated and cultured in the presence or absence of MBP, MOG peptides and alpha-beta-crystallin, measured for stimulated T cells, cytokine production and compared with controls. RESULTS Patients with MS showed the highest levels of IgG, IgM or IgA antibodies against one or all three tested antigens. Moreover, in the presence of MBP, MOG peptides or alpha-beta-crystallin, a significant percent- age of lymphocytes from MS patients underwent blast transformation, which resulted in high levels of interferon gamma (IFN-gamma), tumour necrosis factor alpha (TNF-alpha) and tumour necrosis factor beta (TNF-beta) production. Sensitivity of these assays was 60-80% and specificity, 65-70%. CONCLUSIONS Detection of antibodies against MBP, MOG peptides, alpha-beta-crystallin, lymphocyte stimulation and production of proinflammatory cytokines in response to these antigens could be used as surrogate markers for the confirmation of MS diagnosis. A combination of antibodies, lymphocyte activation or cytokine production with abnormal MRI may significantly increase the sensitivity and specificity of MS diagnosis.
Collapse
Affiliation(s)
- A Vojdani
- Immunosciences Lab., Inc., Beverly Hills Facility [corrected] USA.
| | | | | |
Collapse
|
24
|
von Herrath MG. Regulation of virally induced autoimmunity and immunopathology: contribution of LCMV transgenic models to understanding autoimmune insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol 2002; 263:145-75. [PMID: 11987813 DOI: 10.1007/978-3-642-56055-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- M G von Herrath
- Division of Virology, Department of Neuropharmacology, IMM6, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
|
26
|
Scarisbrick IA, Blaber SI, Lucchinetti CF, Genain CP, Blaber M, Rodriguez M. Activity of a newly identified serine protease in CNS demyelination. Brain 2002; 125:1283-96. [PMID: 12023317 DOI: 10.1093/brain/awf142] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have identified a novel serine protease, myelencephalon-specific protease (MSP), which is preferentially expressed in the adult CNS, and therein, is abundant in both neurones and oligodendroglia. To determine the potential activity of MSP in CNS demyelination, we examined its expression in multiple sclerosis lesions and in two animal models of multiple sclerosis: Theiler's murine encephalomyelitis virus (TMEV) and myelin oligodendrocyte glycoprotein (MOG)-induced experimental allergic encephalomyelitis (EAE) in marmosets. High levels of MSP were present within infiltrating mononuclear cells, including macrophages and T cells, which characteristically fill sites of demyelination, both in multiple sclerosis lesions and in animal models of this disease. The functional consequence of excess MSP on oligodendroglia was determined in vitro by evaluating the effects of recombinant MSP (r-MSP) on oligodendrocyte survival and process number. Application of excess r-MSP resulted in a dramatic loss of processes from differentiated oligodendrocytes, and a parallel decrease in process outgrowth from immature cells. Transfection of oligodendrocyte progenitors with an MSP-green fluorescent protein construct produced similar changes in oligodendrocyte process number. Importantly, r-MSP did not affect oligodendrocyte survival or differentiation towards the sulphatide-positive lineage. We further demonstrate that myelin basic protein, and to a lesser extent myelin oligodendrocyte glycoprotein, can serve as MSP substrates. These studies support the hypothesis that excess MSP, as is present in inflammatory CNS lesions, promotes demyelination.
Collapse
Affiliation(s)
- I A Scarisbrick
- Department of Neurology and Immunology, Mayo Medical and Graduate Schools, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Koehler NKU, Genain CP, Giesser B, Hauser SL. The human T cell response to myelin oligodendrocyte glycoprotein: a multiple sclerosis family-based study. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5920-7. [PMID: 12023398 DOI: 10.4049/jimmunol.168.11.5920] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is an encephalitogenic myelin protein and a likely autoantigen in human multiple sclerosis (MS). In this work, we describe the fine specificity and cytokine profile of T cell clones (TCC) directed against MOG in three nuclear families, comprised of four individuals affected with MS and their HLA-identical siblings. TCC were generated from PBMC by limiting dilution against a mixture of eleven 20-mer overlapping peptides corresponding to the encephalitogenic extracellular domain of human MOG (aa 1-120). The frequency of MOG peptide-reactive T cells was surprisingly high (range, 1:400 to 1:3,000) and, unexpectedly, cloning efficiencies were highest at low seeding densities of 10(2) or 10(3) PBMC per well. A total of 235 MOG peptide-reactive TCC were produced, all of which were CD4(+)CD8(-)TCRalphabeta(+)TCRgammadelta(-). All 11 MOG peptides were recognized by the TCC, and different epitopes of MOG appeared to be immunodominant in the HLA-identical siblings. The patterns of cytokine secretion by TCC from single individuals were generally similar. The healthy individuals exhibited Th2-, Th0-, and T regulatory cell 1-like cytokine profiles, whereas TCC from one sibling with MS had a striking Th1-like phenotype, producing high levels of IFN-gamma and TNF-alpha, and low IL-4 levels. Thus, MOG-reactive T cells appear to constitute an important part of the natural T cell repertoire, a finding that could contribute to the development of autoimmunity to this protein.
Collapse
Affiliation(s)
- Niklas K U Koehler
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
28
|
von Herrath MG, Wolfe T, Möhrle U, Coon B, Hughes A. Protection from type 1 diabetes in the face of high levels of activated autoaggressive lymphocytes in a viral transgenic mouse model crossed to the SV129 strain. Diabetes 2001; 50:2700-8. [PMID: 11723052 DOI: 10.2337/diabetes.50.12.2700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In comparing the incidence of virally induced type 1 diabetes in F(1) crosses of RIP-LCMV mice to three different mouse strains identical at the major histocompatibility complex H-2D(b) locus, we surprisingly found that disease development was reduced by 80% in F(1) crosses to the SV129 genetic background and by 60% after eight backcrosses to the original C57BL/6 RIP-LCMV mice. In this model, diabetes is strongly dependent on a virally induced H-2D(b)-restricted cytotoxic T-cell (CTL) response. Importantly, numbers and effector functions of autoaggressive CD4 and CD8 lymphocytes were not decreased in the protected mice, and CTLs were still able to kill syngeneic islet cells in vitro with equal efficacy compared with CTLs from the original RIP-LCMV strain. Furthermore, CTLs were able to extravasate into islets in vivo, and no evidence for induction of regulatory cells was observed. However, regeneration of beta-cells in islets under "attack" occurred only in the protected SV129-crossed animals, whereas it was not evident at any time in any mice that developed diabetes. Thus, genetic factors can "override" the diabetogenic potential of high numbers of autoaggressive lymphocytes through, for example, increased islet regeneration. This finding has important implications for interpreting numbers and pathogenicity of autoreactive lymphocytes in prediabetic patients of genetically diverse backgrounds.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/virology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunity, Innate
- Insulin/genetics
- Islets of Langerhans/immunology
- Lymphocyte Count
- Lymphocytes/immunology
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Promoter Regions, Genetic
- Rats
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- M G von Herrath
- Immunology and Neuropharmacology, the Scripps Research Institute, La Jolla, California 92121, USA.
| | | | | | | | | |
Collapse
|
29
|
't Hart BA, Brok HP, Amor S, Bontrop RE. The major histocompatibility complex influences the ethiopathogenesis of MS-like disease in primates at multiple levels. Hum Immunol 2001; 62:1371-81. [PMID: 11756006 PMCID: PMC7135550 DOI: 10.1016/s0198-8859(01)00346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Revised: 08/14/2001] [Accepted: 08/23/2001] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease primarily affecting the central nervous system. Of the many candidate polymorphic major histocompatibility complex (MHC) and non-MHC genes contributing to disease susceptibility, including those encoding effector (cytokines and chemokines) or receptor molecules within the immune system (MHC, TCR, Ig or FcR), human leukocyte antigen (HLA) class II genes have the most significant influence. In this article we put forward the hypothesis that the influence of HLA genes on the risk to develop MS is actually the sum of multiple antigen presenting cell (APC) and T-cell interactions involving HLA class I and class II molecules. This article will also discuss that, because of the genetic and immunologic similarity to humans, autoimmune models of MS in non-human primates are the experimental models "par excellence" to test this hypothesis.
Collapse
Key Words
- experimental autoimmune encephalomyelitis
- multiple sclerosis
- primates
- immunology
- apc, antigen presenting cell
- bbb, blood-brain barrier
- cln, cervical lymph node
- cns, central nervous system
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin/oligodendrocyte glycoprotein
- ms, multiple sclerosis
- plp, proteolipid protein
- tcr, t-cell recptor
- tmev, theiler’s murine encephalomyelitis virus
- sfv, semliki forest virus
Collapse
Affiliation(s)
- B A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Iglesias A. Maintenance and loss of self-tolerance in B cells. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:351-66. [PMID: 11826614 DOI: 10.1007/s281-001-8164-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A Iglesias
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| |
Collapse
|
31
|
Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 2001; 36:220-34. [PMID: 11596130 DOI: 10.1002/glia.1111] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The identification of myelin oligodendrocyte glycoprotein (MOG) as a target for autoantibody-mediated demyelination in experimental autoimmune encephalomyelitis (EAE) resulted in the re-evaluation of the role of B cell responses to myelin autoantigens in the immunopathogenesis of multiple sclerosis. MOG is a central nervous system specific myelin glycoprotein that is expressed preferentially on the outermost surface of the myelin sheath. Although MOG is only a minor component of CNS myelin it is highly immunogenic, inducing severe EAE in both rodents and primates. In rat and marmoset models of MOG-induced EAE demyelination is antibody-dependent and reproduces the immunopathology seen in many cases of MS. In contrast, in mice inflammation in the CNS can result in demyelination in the absence of a MOG-specific B cell response, although if present this will enhance disease severity and demyelination. Clinical studies indicate that autoimmune responses to MOG are enhanced in many CNS diseases and implicate MOG-specific B cell responses in the immunopathogenesis of multiple sclerosis. This review provides a summary of our current understanding of MOG as a target autoantigen in EAE and MS, and addresses the crucial question as to how immune tolerance to MOG may be maintained in the healthy individual.
Collapse
Affiliation(s)
- A Iglesias
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Unlike most bodily organs, the central nervous system (CNS) exists behind a blood-tissue barrier designed to minimize the passage of cells and macromolecules into the neural parenchyma. Yet, the CNS is routinely and effectively surveyed by the immune system. This review examines the mechanisms and participants in this immunological surveillance mechanism. The nature of the healthy blood-brain barrier, factors modifying it, and its central position in determining the number and nature of leukocytes permitted to enter, are considered. In addition the role in surveillance played by lymphatic drainage, migrating T and B lymphocytes, and elements of the monocyte/macrophage/microglia family are considered. While all these participants are known to be important in responding to a CNS antigen and/or establishing a site of inflammation in the nervous system, they also are major elements in maintaining the homeostasis of the CNS and permitting the necessary immunological surveillance of that organ.
Collapse
Affiliation(s)
- W F Hickey
- Department of Pathology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
33
|
Villoslada P, Abel K, Heald N, Goertsches R, Hauser SL, Genain CP. Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. Eur J Immunol 2001; 31:2942-50. [PMID: 11592070 PMCID: PMC11956759 DOI: 10.1002/1521-4141(2001010)31:10<2942::aid-immu2942>3.0.co;2-m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Auto-reactive T cells present in healthy subjects remain in a state of unresponsiveness, but may trigger autoimmunity under various situations. Although myelin oligodendrocyte glycoprotein (MOG) is a potential target antigen in multiple sclerosis (MS), MOG-reactive T cell responses are present in the blood of both healthy subjects and MS-affected individuals. To investigate the disease-inducing potential and regulation of these autoreactive T cells in healthy outbred populations, we have characterized MOG-reactive T cell clones obtained by limiting dilution from peripheral blood of unimmunized C. jacchus marmosets. We report an extraordinarily high prevalence of circulating MOG-reactive T cells in these naive animals (2.6 +/- 1.4 / 10(5) PBMC), and a broadly diverse repertoire of epitope recognition encompassing at least three regions within the extracellular domain of MOG. Adoptive transfer of a MOG21-40-specific T cell clone resulted in mild clinical experimental allergic encephalomyelitis, characterized pathologically by rare foci of inflammation and minimal demyelination. We conclude that MOG-reactive T cells are present in healthy primates at a highly prevalent frequency, and are potentially capable of triggering central nervous system autoimmunity. Expansion of these autoreactive T cells must be tightly controlled to maintain immune homeostasis in healthy individuals.
Collapse
Affiliation(s)
- P Villoslada
- Department of Neurology, University of California, San Francisco, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Boon L, Brok HP, Bauer J, Ortiz-Buijsse A, Schellekens MM, Ramdien-Murli S, Blezer E, van Meurs M, Ceuppens J, de Boer M, 't Hart BA, Laman JD. Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2942-9. [PMID: 11509643 DOI: 10.4049/jimmunol.167.5.2942] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibition of CD40-CD40 ligand interaction is a potentially effective approach for treatment of autoimmune diseases, such as multiple sclerosis. We have investigated this concept with a chimeric antagonist anti-human CD40 mAb (ch5D12) in the marmoset monkey experimental autoimmune encephalomyelitis (EAE) model. Marmosets were immunized with recombinant human myelin oligodendrocyte glycoprotein (rMOG) and treated from the day before immunization (day -1) until day 50 with either ch5D12 (5 mg/kg every 2-4 days) or placebo. On day 41 after the induction of EAE, four of four placebo-treated monkeys had developed severe clinical EAE, whereas all animals from the ch5D12-treated group were completely free of disease symptoms. High serum levels of ch5D12 associated with complete coating of CD40 on circulating B cells were found. At necropsy placebo- and ch5D12-treated animals showed similar MOG-specific lymphoproliferative responses in vitro, but ch5D12 treatment resulted in strongly reduced anti-MOG IgM Ab responses and delayed anti-MOG IgG responses. Most importantly, treatment with ch5D12 prevented intramolecular spreading of epitope recognition. Postmortem magnetic resonance imaging and immunohistologic analysis of the CNS showed a markedly reduced lesion load after ch5D12 treatment. In conclusion, the strong reduction of clinical, pathological, and radiological aspects of EAE by ch5D12 treatment in this preclinical model points to a therapeutic potential of this engineered antagonist anti-CD40 mAb for multiple sclerosis.
Collapse
Affiliation(s)
- L Boon
- Tanox Pharma B.V., Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
von Büdingen HC, Tanuma N, Villoslada P, Ouallet JC, Hauser SL, Genain CP. Immune responses against the myelin/oligodendrocyte glycoprotein in experimental autoimmune demyelination. J Clin Immunol 2001; 21:155-70. [PMID: 11403222 DOI: 10.1023/a:1011031014433] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myelin/oligodendrocyte glycoprotein (MOG) is a surface-exposed antigen of myelin and an important target for autoimmune responses which mediate inflammatory demyelination in the central nervous system. Experimentally, MOG induces strong pathogenic T cell responses in many strains of laboratory animals. Immunological studies in humans also identify MOG as a surprisingly prevalent antigenic molecule among the myelin proteins. In addition, the encephalitogenic properties of MOG are linked to the induction of antibody responses which have been demonstrated to directly promote central nervous system demyelination, a hallmark neuropathological feature in disorders such as human multiple sclerosis. Factors responsible for autoimmunity to MOG likely include genetic influences as well as other mechanisms, which are the subject of intense investigation. This article reviews experimental data currently available on specificity and pathogenic roles of T cell and antibody responses against MOG, which have implications relevant to multiple sclerosis and related disorders.
Collapse
Affiliation(s)
- H C von Büdingen
- Department of Neurology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
36
|
Mancardi G, Hart B, Roccatagliata L, Brok H, Giunti D, Bontrop R, Massacesi L, Capello E, Uccelli A. Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci 2001; 184:41-9. [PMID: 11231031 DOI: 10.1016/s0022-510x(00)00490-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The demyelinating plaque is the paradigmatic lesion of multiple sclerosis (MS), but only recently attention has been given to axonal damage and to its role in the pathophysiology of disease. Albeit the possible relevance of axonal loss in MS and its experimental models, the amount and timing of axonal sufferance has been addressed only in experimental autoimmune encephalomyelitis (EAE) of rodents. In this report we observed that, in the marmoset model of EAE, axonal damage occurs early during the demyelinating process as assessed by immunoreactivity for amyloid precursor protein (APP) and non-phosphorylated neurofilaments (SMI-32 positive) detected mostly in early active lesions compared to late active and normal appearing white matter. The rare occurrence of morphological features of axonal transection, such as APP or SMI-32 positive spheroids and swellings, as well as an increase of neurofilament density in the demyelinated axons without accumulation of electron dense organelles or osmiophilic bodies, at electron microscopy, suggests that early axonal damage may be, at least in part, a reversible process. These findings are of relevance for the development of therapies, which can protect axons and enhance their function and survival.
Collapse
Affiliation(s)
- G Mancardi
- Department of Neurological Sciences and Vision, University of Genoa, Via De Toni 5, 16132 Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Uccelli A, Giunti D, Mancardi G, Caroli F, Fiorone M, Seri M, Hauser SL, Genain CP. Characterization of the response to myelin basic protein in a non human primate model for multiple sclerosis. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200102)31:2<474::aid-immu474>3.0.co;2-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Pelletier J, Ali Chérif A. ["Multiple sclerosis plus": leukoencephalopathies at the frontiers of internal medicine]. Rev Med Interne 2000; 21:1104-13. [PMID: 11191677 DOI: 10.1016/s0248-8663(00)00270-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an inflammatory, demyelinating and probably autoimmune disease affecting the white matter of the central nervous system (CNS). Due to the absence of specific clinical and laboratory markers, diagnosis remains difficult. CURRENT KNOWLEDGE AND KEY POINTS In particular, no clinical or paraclinical investigation is satisfactory to distinguish definite MS from other autoimmune or inflammatory diseases, especially when they predominantly affect the CNS. Moreover, previous studies have reported that patients with definite MS could present clinical systemic signs suggestive of other inflammatory or autoimmune diseases, and that MS could be associated with other autoimmune diseases. On the other hand, the presence of biological autoimmune abnormalities, including antinuclear antibodies and antiphospholipid antibodies, has been observed, with a high frequency in patients with MS in comparison to control populations. These clinical and laboratory features could therefore represent a new nosological entity characterized by a systemic immune dysregulation more extensive than the CSN target, or a distinct subgroup of MS patients with a classical course of the disease. Because of the impact of the new therapeutic approach to MS, an important issue concerning this aspect that should be addressed is the use of immunomodulatory therapy, especially with interferon beta. It appears necessary to consider these abnormalities before treating MS patients with preventive therapy, in particular in the perspective of new strategies, such as treatment at an early stage of the disease or combination therapies.
Collapse
Affiliation(s)
- J Pelletier
- Service de neurologie, hôpital de la Timone, CHU, 264, rue Saint-Pierre, 13385 Marseille, France.
| | | |
Collapse
|
39
|
Kerlero de Rosbo N, Brok HP, Bauer J, Kaye JF, 't Hart BA, Ben-Nun A. Rhesus monkeys are highly susceptible to experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein: characterisation of immunodominant T- and B-cell epitopes. J Neuroimmunol 2000; 110:83-96. [PMID: 11024537 DOI: 10.1016/s0165-5728(00)00306-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Eight rhesus monkeys with different MHC backgrounds were immunized with myelin oligodendrocyte glycoprotein (MOG). All developed severe experimental autoimmune encephalomyelitis associated with large inflammatory foci and extensive demyelination. T-cell autoreactivity to MOG was directed against three main epitopes encompassed within amino acids 4-20, 35-50 and 94-116, of which two are also immunodominant epitopes for the autoimmune T cell response to MOG in patients with MS. A strong B cell response to MOG was observed in all monkeys and major epitopes recognized were located within amino acids 4-26, 24-46 and 44-66/54-76.
Collapse
Affiliation(s)
- N Kerlero de Rosbo
- Department of Immunology, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
Mancardi G, Hart BA, Capello E, Brok HP, Ben-Nun A, Roccatagliata L, Giunti D, Gazzola P, Dono M, Kerlero de Rosbo N, Colombo M, Uccelli A. Restricted immune responses lead to CNS demyelination and axonal damage. J Neuroimmunol 2000; 107:178-83. [PMID: 10854654 DOI: 10.1016/s0165-5728(00)00223-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although autoreactive T-cells have a pivotal role in initiating the inflammatory process in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), recent evidence suggests a relevant role for autoantibodies specific for myelin proteins as well. To examine the role of B-cells in the cerebrospinal fluid of patients with MS, we analyzed the V(H) gene usage in ten MS patients by PCR technologies. Analysis of HCDR3 length revealed an oligoclonal accumulation of B-cells. Sequence analysis of the V(H)3 and V(H)4 gamma transcripts of two MS individuals demonstrated that this accumulation was related to the expansion and somatic diversification of a limited groups of B-cell clones. These findings are indicative of a chronic and intense antigenic stimulation occurring in the CNS. Animal models, such as EAE, are of particular importance in order to elucidate the pathogenetic effector mechanisms in autoimmune demyelination. In a non-human primate model of EAE, we describe that the immunodominant T-cell epitope is presented exclusively by a monomorphic DRB1 allele, suggesting that susceptibility to EAE may be linked to this unique restriction and, therefore, providing a possible mechanism for MHC linkage to diseases. Moreover, we report on the presence of inflammation, sharp demyelination and axonal damage in EAE induced with whole myelin as well as with recombinant myelin oligodendrocyte glycoprotein (MOG), but not with myelin basic protein alone. The presence of axonal pathology was supported by immunohistochemistry with anti-amyloid precursor protein and anti-non phosphorilated neurofilaments monoclonal antibodies within early active demyelinated plaques. These findings suggest that axonal damage may be an early event in the pathogenesis of autoimmune demyelinating diseases of the CNS and highlights the importance of animal models in which therapies targeting repair and axonal survival may be exploited.
Collapse
Affiliation(s)
- G Mancardi
- Department of Neurological Sciences and Vision, University of Genova, Via De Toni 5, 16132, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brok HP, Uccelli A, Kerlero De Rosbo N, Bontrop RE, Roccatagliata L, de Groot NG, Capello E, Laman JD, Nicolay K, Mancardi GL, Ben-Nun A, Hart BA. Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24-36 is presented by a monomorphic MHC class II molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1093-101. [PMID: 10878388 DOI: 10.4049/jimmunol.165.2.1093] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization of common marmosets (Callithrix jacchus) with a single dose of human myelin in CFA, without administration of Bordetella pertussis, induces a form of autoimmune encephalomyelitis (EAE) resembling in its clinical and pathological expression multiple sclerosis in humans. The EAE incidence in our outbred marmoset colony is 100%. This study was undertaken to assess the genetic and immunological basis of the high EAE susceptibility. To this end, we determined the separate contributions of immune reactions to myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein to the EAE induction. Essentially all pathological features of myelin-induced EAE were also found in animals immunized with MOG in CFA, whereas in animals immunized with myelin basic protein in CFA clinical and pathological signs of EAE were lacking. The epitope recognition by anti-MOG Abs and T cells were assessed. Evidence is provided that the initiation of EAE is based on T and B cell activation by the encephalitogenic phMOG14-36 peptide in the context of monomorphic Caja-DRB*W1201 molecules.
Collapse
Affiliation(s)
- H P Brok
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In numerous animal models, DNA immunization has been shown to induce protective immunity against infectious diseases (viral, bacterial and protozoan) and cancers (1, 2). In these situations it is desirable to induce a strong immune response to the DNA-encoded antigen in order to generate an immune memory that enables the vaccine to respond more rapidly to subsequent challenge. The success of DNA vaccination in this regard has led to its rapid introduction into several human clinical trials (3, 4). However, in autoimmunity, undesirable immune responses to autoantigens are thought to lead to the destruction of target cells or organs, resulting in diseases such as myasthenia gravis, diabetes or multiple sclerosis. Thus, at first sight, it appears that immunization would more likely trigger autoimmunity than ameliorate it. Nevertheless, clinical experience has shown that certain immune-mediated diseases may be countered by low-dose antigen administration ('desensitization'), although the underlying mechanisms remain somewhat conjectural. Here, we will describe an intriguing approach to the prevention of autoimmune disease, in which we use a DNA vaccine encoding a self-antigen to abrogate autoimmune diabetes. The success of this strategy relies on the nature of the immune response induced by the DNA vaccine.
Collapse
|
43
|
Ransohoff RM, Trebst C. Surprising pleiotropy of nerve growth factor in the treatment of experimental autoimmune encephalomyelitis. J Exp Med 2000; 191:1625-30. [PMID: 10811856 PMCID: PMC2193159 DOI: 10.1084/jem.191.10.1625] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- R M Ransohoff
- Department of Neurosciences, The Lerner Research Institute and the Mellen Center for Multiple Sclerosis Treatment and Research, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
44
|
Nugent CT, Morgan DJ, Biggs JA, Ko A, Pilip IM, Pamer EG, Sherman LA. Characterization of CD8+ T lymphocytes that persist after peripheral tolerance to a self antigen expressed in the pancreas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:191-200. [PMID: 10605011 DOI: 10.4049/jimmunol.164.1.191] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As a result of expression of the influenza hemagglutinin (HA) in the pancreatic islets, the repertoire of HA-specific CD8+ T lymphocytes in InsHA transgenic mice (D2 mice expressing the HA transgene under control of the rat insulin promoter) is comprised of cells that are less responsive to cognate Ag than are HA-specific CD8+ T lymphocytes from conventional mice. Previous studies of tolerance induction involving TCR transgenic T lymphocytes suggested that a variety of different mechanisms can reduce avidity for Ag, including altered cell surface expression of molecules involved in Ag recognition and a deficiency in signaling through the TCR complex. To determine which, if any, of these mechanisms pertain to CD8+ T lymphocytes within a conventional repertoire, HA-specific CD8+ T lymphocytes from B10.D2 mice and B10.D2 InsHA transgenic mice were compared with respect to expression of cell surface molecules, TCR gene utilization, binding of tetrameric KdHA complexes, lytic mechanisms, and diabetogenic potential. No evidence was found for reduced expression of TCR or CD8 by InsHA-derived CTL, nor was there evidence for a defect in triggering lytic activity. However, avidity differences between CD8+ clones correlated with their ability to bind KdHA tetramers. These results argue that most of the KdHA-specific T lymphocytes in InsHA mice are not intrinsically different from KdHA-specific T lymphocytes isolated from conventional animals. They simply express TCRs that are less avid in their binding to KdHA.
Collapse
MESH Headings
- Animals
- Autoantigens/biosynthesis
- CD3 Complex/physiology
- CD8 Antigens/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Separation
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Epitopes, T-Lymphocyte/immunology
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Immune Tolerance/genetics
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Mice
- Mice, Transgenic
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Species Specificity
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- C T Nugent
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Martin A, Barbesino G, Davies TF. T-cell receptors and autoimmune thyroid disease--signposts for T-cell-antigen driven diseases. Int Rev Immunol 1999; 18:111-40. [PMID: 10614741 DOI: 10.3109/08830189909043021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human autoimmune thyroid diseases (AITDs) are characterized by profuse infiltrates of both CD4+ and CD8+ T cells. The intrathyroidal T-cell-receptor repertoire in Graves' disease, more than in Hashimoto's disease, has been shown to be biased as evidenced by phenotypic analysis and by the use of a restricted T-cell-receptor variable (V) gene repertoire seen in both TCR alpha and beta chains. Evidence for a bias in the T-cell repertoire has also been observed in animal models of induced and spontaneous autoimmune thyroiditis. We found a similar phenomenon of autoimmune thyroid-related T-cell bias in thyroid-humanized scid mice. In these studies we transplanted lymphocyte-depleted thyrocytes and autologous peripheral lymphocytes from AITD patients with a basement membrane preparation which allowed the formation of an artificial thyroid which we have called an "organoid". T-cell clonal expansion was present in these artificial mixed-cell organoids which appeared to mimic the in vivo process. Such clonal expansion was suggestive of an antigen-driven immune response and could also be identified in thyroid tissue from patients with Graves' disease. Our data on scid mice grafted with human mixed-cell thyroid organoids, therefore, suggested that the major antigens driving T-cell selection in patients with AITD were most likely to be thyroid specific. These antigens include thyroglobulin, thyroid peroxidase, and the receptor for thyroid stimulating hormone (TSHR) on the surface of thyroid epithelial cells and we found significant T-cell proliferation to synthetic TSHR peptides in patients with AITD as compared with normals. Our search for a TCR recognition motif for the autoantigen TPO did not reveal any specific sequence motifs. Instead, analysis of the physico-chemical characteristics i.e. hydrophobicity of the amino acids in the CDR3 (N) region of the TCR alpha chain, revealed a strong negative linear correlation between strength of stimulation and the average hydrophobicity of N-region amino acids. This led us to hypothesize that lower affinity T-cell clones were commonly more hydrophobic in their CDR3 alpha region amino acids in keeping with potential crossreactivity of such T cells as a consequence of promiscuous, hydrophobic CDR3 regions. This phenomenon would be analogous to polyreactive, natural autoantibodies which tend to be crossreactive and 'sticky'. Thus, the physico-chemical characteristics of the TCR alpha CDR3 region supported the interaction with antigen/MHC by potentially cross-reactive T cells of low affinity. It would seem likely that such low-affinity autoreactive T-cell populations serve as a pool of potentially pathogenetic cells. These cells would be able to respond to an insult which, via a number of possible mechanisms such as molecular mimicry, would initiate a thyroid lymphocytic infiltration in an antigen-driven fashion with intrathyroidal T-cell expansion and a marked bias in the utilization of T-cell-receptor V genes.
Collapse
Affiliation(s)
- A Martin
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
46
|
Ristori G, Montesperelli C, Gasperini C, Battistini L, Borsellino G, Buttinelli C, Cannoni S, Perna A, Pozzilli C, Salvetti M. T cell response to myelin basic protein before and after treatment with interferon beta in multiple sclerosis. J Neuroimmunol 1999; 99:91-6. [PMID: 10496181 DOI: 10.1016/s0165-5728(99)00107-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Studies on the in vivo effects of interferon-beta (IFNbeta) therapy on autoreactive T cells have never been carried out in multiple sclerosis (MS). We investigated the T cell response to myelin basic protein (MBP), before and after IFN-beta therapy, raising MBP-specific T cell lines (TCL) from the peripheral blood of six MS patients with a satisfactory response to the treatment. IFNbeta did not affect the relative frequency and epitope specificity of the TCL. After IFNbeta therapy, the production of interleukin-4 was decreased in MBP-stimulated TCL while the secretion of interferon-gamma was increased in unstimulated TCL. Interleukin-10 and tumor necrosis factor-alpha did not show significant variations. This finding supports recent suggestions about the complexity of the T helper 1/T helper 2 paradigm in MS and other organ-specific autoimmune diseases. In fact, the beneficial effects of IFNbeta do not exclude an immunostimulatory action that may involve potentially autoreactive T cells. This has implications for future treatment options, including combination therapies.
Collapse
Affiliation(s)
- G Ristori
- Department of Neurological Sciences, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Diaz-Villoslada P, Shih A, Shao L, Genain CP, Hauser SL. Autoreactivity to myelin antigens: myelin/oligodendrocyte glycoprotein is a prevalent autoantigen. J Neuroimmunol 1999; 99:36-43. [PMID: 10496175 DOI: 10.1016/s0165-5728(99)00099-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autoreactive T cells specific for myelin antigens are thought to play a role in the pathogenesis of multiple sclerosis (MS). We compared T cell proliferative responses in peripheral blood following challenge in vitro with myelin/oligodendrocyte glycoprotein (recombinant protein, rMOG), myelin basic protein (MBP) and proteolipid apoprotein (PLP) in 50 patients with MS and 40 healthy controls. T cell reactivity against rMOG (defined by a specific stimulation index of 2.5 or greater) was present in 13 (26%) MS patients and 12 (30%) healthy controls and was MHC-restricted, as anti-MHC class II antibodies abolished all proliferative responses. By contrast, reactivity against PLP was present in only one (2%) MS patient and six (15%) controls, and no reactivity against MBP was found in any subject. Thus, by the criteria of the present study, an increased reactivity of circulating T cells to MOG is present to a similar degree in healthy individuals and in patients with MS. This finding raises the possibility that additional factors contribute to the pathogenicity of these autoreactive T cell populations in demyelinating disorders of the central nervous system.
Collapse
Affiliation(s)
- P Diaz-Villoslada
- Department of Neurology, University of California, San Francisco 94143-0435, USA
| | | | | | | | | |
Collapse
|
48
|
Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 1999; 46:144-60. [PMID: 10443879 DOI: 10.1002/1531-8249(199908)46:2<144::aid-ana3>3.0.co;2-k] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuropathological and ultrastructural features of central nervous system demyelination were compared in marmoset experimental autoimmune encephalomyelitis (EAE) induced with myelin/oligodendrocyte glycoprotein (MOG), and in 3 cases of multiple sclerosis (MS) displaying recent lesions. At the edges of EAE and MS lesions, a zone of myelin vacuolation was common, whereas in the lesion proper, myelin sheaths were consistently transformed into vesiculated membranous networks. These networks became dissociated from axons by cell processes from macrophages. Oligodendrocytes were remarkably spared and evidence of myelin repair was present but not prominent. Axonal pathology was more common in the MS material than in marmoset EAE. Immunocytochemistry, using gold-labeled encephalitogenic peptides of MOG and silver enhancement to detect MOG autoantibodies, revealed the presence of MOG-specific autoantibodies over vesiculated myelin networks. Gold-labeled antibody to IgG also gave a positive reaction. Gold-labeled peptide of myelin basic protein did not react with MOG/EAE tissue, but the same conjugate gave positive staining in MS (and in marmoset EAE induced by whole white matter), perhaps indicating broader spectrum immunoreactivity or sensitization to myelin antigens. Thus, vesicular disruption of myelin was a constant feature in these evolving, highly active lesions in primate EAE and MS and appeared causally related to the deposition of antigen-specific autoantibodies.
Collapse
Affiliation(s)
- C S Raine
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
49
|
Jordan EK, McFarland HI, Lewis BK, Tresser N, Gates MA, Johnson M, Lenardo M, Matis LA, McFarland HF, Frank JA. Serial MR imaging of experimental autoimmune encephalomyelitis induced by human white matter or by chimeric myelin-basic and proteolipid protein in the common marmoset. AJNR Am J Neuroradiol 1999; 20:965-76. [PMID: 10445431 PMCID: PMC7056255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 01/22/1999] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND PURPOSE Experimental autoimmune encephalomyelitis (EAE) in the marmoset was monitored by serial MR imaging to determine correlates to the natural-history MR studies in multiple sclerosis (MS). The relationships of MR-revealed lesions to clinical status and histopathologic findings were also explored. METHODS We induced EAE by subcutaneous inoculation in two marmosets by human white matter (HWM) and in seven marmosets by MP4 (a chimeric recombinant fusion protein of myelin-basic and proteolipid protein) in adjuvant along with intravenous inactivated pertussis vaccine to facilitate the disease process. The HWM-inoculated animals were induced with Freund's adjuvant as the established model of marmoset EAE. The MP4-inoculated animals were induced with either Freund's incomplete adjuvant or TiterMax as part of a preclinical treatment trial. MR imaging was performed at 1.5 T at baseline, and repeated at 1- to 2-week intervals for a period of up to 16 weeks in six EAE-induced marmosets, and intermittently for up to 70 weeks in three EAE-induced and two control marmosets. Proton density- (PD-) and T2-weighted, pre- and postgadopentetate dimeglumine enhancement, T1-weighted, and magnetization transfer (MT) images were obtained. The brains were prepared for histologic evaluation of lesion distribution and counts, characterization of lesions as demyelinating or inflammatory, and histopathologic scoring. The clinical, MR, and pathologic scoring were done on grading systems, and correlated for evaluation. RESULTS White matter (WM) changes after EAE induction were observed first at 9 days in the HWM-induced animals and at 2.5 weeks in the MP4-induced animals, with subsequent week-to-week fluctuations on PD- and T2-weighted images. Contrast-enhancing lesions were not observed in all animals. MR-revealed WM lesions correlated to histopathologic analysis of EAE lesions, measuring from 0.5 mm to 1.5 mm. The lesion count and extent of demyelination was greater in the HWM-induced animals than in the MP4-induced animals. Some MR-revealed lesions correlated directly to clinical symptoms, but the majority of lesions were clinically silent. CONCLUSION On MR images, lesions in the EAE marmoset model were confined to the WM, and their development, resolution, distribution, and enhancing characteristics fluctuated over the duration of the study. The dynamic presentation of MR-revealed lesions confirms the parallels between EAE in the marmoset and relapsing-remitting MS. Clinical symptoms alone were not representative of ongoing pathologic brain lesions. Therefore, serial MR imaging serves as a very important adjunct to clinical and histologic surveillance of the development of new and the persistence of existing brain lesions in this animal model of MS.
Collapse
Affiliation(s)
- E K Jordan
- Laboratory of Diagnostic Radiology Research, CC, NIH, Bethesda, Maryland 20892-1074, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wekerle H. Remembering MOG: autoantibody mediated demyelination in multiple sclerosis? Nat Med 1999; 5:153-4. [PMID: 9930860 DOI: 10.1038/5514] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|