1
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Spence PJ, Nahrendorf W, Bach FA. Moving beyond discovery science to a mechanistic understanding of human malaria. Curr Opin Microbiol 2025; 85:102610. [PMID: 40288157 DOI: 10.1016/j.mib.2025.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
We've had more than a hundred years of discovery-based human malaria research that has made steady progress in observing disease processes (such as sequestration and vascular occlusion) as well as potential mechanisms of immunity. These observations now take centre stage as we enter an era of mass vaccination that will alter the natural history and epidemiology of malaria. We will need to understand how to protect individuals from breakthrough infections and populations from a shift in the mean age of exposure. It is therefore paramount that we start to directly test our long-standing hypotheses about the causes of disease and the pathways to protection. This is now made possible by improvements to complex cellular model systems as well as a sea-change in our attitude towards human intervention studies. Mechanistic insight is therefore no longer limited to animal models, which are always imperfect, but can be achieved in people and in vivo.
Collapse
Affiliation(s)
- Philip J Spence
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Florian A Bach
- Department of Microbiology and Immunology, Stanford University, USA
| |
Collapse
|
3
|
Alharbi A, Albasyouni S, Al-Shaebi E, Al Quraishy S, Abdel-Gaber R. Neuroprotective and antimalarial effects of Juglans regia leaf extracts in a murine model of cerebral malaria. Front Vet Sci 2025; 12:1537686. [PMID: 40260212 PMCID: PMC12009927 DOI: 10.3389/fvets.2025.1537686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Background Malaria is a major public health problem caused by the apicomplexan Plasmodium parasite. Cerebral malaria (CM) is the most critical outcome of Plasmodium infection. It is becoming more difficult to manage, particularly in areas of multi-drug resistance. Scientists are focused on identifying alternative strategies to combat malaria infection. Therefore, this study was designed to evaluate the activity of Juglans regia leaf extract (JRLE) in Plasmodium berghei-infected C57BL/6 mice. Methods The J. regia leaf extract (JRLE) was prepared using methanol and characterized by Fourier-transform infrared spectroscopy (FT-IR). Female C57BL/6 mice were divided into six groups (5 mice/group): control, non-infected but JRLE-treated (500 mg/kg), P. berghei-infected non-treated, and P. berghei-infected treated with JRLE (250 or 500 mg/kg) or chloroquine (10 mg/kg). Groups (3-6) were infected intraperitoneally with P. berghei (1 × 10⁵). Treatment (oral JRLE or chloroquine) was administered for 5 days starting on day 4. Parasitemia, survival, and body weight were assessed, and brains were collected on day 9 p.i. for histopathological analysis (H&E staining) and GFAP immunohistochemistry. GABA, glutamate, neurotransmitters (epinephrine, norepinephrine, dopamine, serotonin), and mRNA expression of signaling genes (Chrnb2, Gabbr1, Gnai1, Gria2) were evaluated using ELISA and real-time PCR. Results Phytochemical screening by FT-IR demonstrated the presence of 10 functional groups in the JRLE. By day 9 after infection with the P. berghei parasite, the parasitemia was significantly reduced after JRLE treatment with a dose of 500 mg/kg (6.33% ± 1.18%) compared to the infected group (23.84% ± 2.06%) with a positive correlation with body weight. Our data showed that JRLE prolonged the survival curve of the infected mice. JRLE ameliorates the reduction of the brain index caused by P. berghei infection. Furthermore, histological analysis showed that infection with P. berghei exacerbates brain damage as evidenced by degeneration of Purkinje cells, cerebral hemorrhage, intravascular sequestrations of parasitized red blood corpuscles (pRBCs), and infiltration of lymphocytes. At the same time, treatment with JRLE mitigates the brain injury induced by the infection. JRLE reduced the level of GFAP expression in the brain tissue of the infected mice. Additionally, treatment with JRLE ameliorates the brain neurotransmitter disbalance (i.e., epinephrine, norepinephrine, dopamine, and serotonin) after Plasmodium infection. Upon JRLE treatment, Chrnb2, Gnai1, and Gabbr1 mRNA expression were down-regulated in the brain tissues derived from infected female C57BL/6 mice. Meanwhile, mRNA expression of Gria2 was up-regulated after JRLE inoculation. Our study proved that JRLE significantly ameliorated the neurotransmitter markers by increasing GABA levels and decreasing the glutamate level in the brain of P. berghei-infected mice. Conclusion Taken together, the data reported here illustrate that J. regia leaf extracts possess potent antimalarial effects and may offer a potential drug lead for developing a safe, effective, and affordable antimalarial therapy. Further studies are recommended to include the broader organ-specific effects of plant extract.
Collapse
Affiliation(s)
| | | | | | | | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zorrinho-Almeida M, de-Carvalho J, Bernabeu M, Silva Pereira S. Leveraging microphysiological systems to expedite understanding of host-parasite interactions. PLoS Pathog 2025; 21:e1013088. [PMID: 40273176 PMCID: PMC12021206 DOI: 10.1371/journal.ppat.1013088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Microphysiological systems (MPS) replicate the dynamic interactions between cells, tissues, and fluids. They have emerged as transformative tools for biology and have been increasingly applied to host-parasite interactions. Offering a better representation of cellular behavior compared with traditional in vitro models, MPS can facilitate the study of parasite tropism, immune evasion, and life cycle transitions across diverse parasitic diseases. Applications span multiple host tissues and pathogens, leveraging advanced bioengineering and microfabrication techniques to address long-standing knowledge gaps. Here, we review recent advances in MPS applied to parasitic diseases and identify persisting challenges and opportunities for investment. By refining these systems and integrating host multicellular models and parasites, MPS hold vast potential to revolutionize parasitology, enhancing our ability to combat parasitic diseases through deeper mechanistic understanding and targeted interventions.
Collapse
Affiliation(s)
- Maria Zorrinho-Almeida
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Oeiras, Portugal
| | | | | | - Sara Silva Pereira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Oeiras, Portugal
| |
Collapse
|
5
|
Fusco EM, Bower L, Polidoro R, Minns AM, Lindner SE, Schmidt NW. Microbiome-mediated modulation of immune memory to P. yoelii affects the resistance to secondary cerebral malaria challenge. Immunohorizons 2025; 9:vlaf009. [PMID: 40193560 DOI: 10.1093/immhor/vlaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Malaria is caused by protozoan parasites in the genus Plasmodium. Over time individuals slowly develop clinical immunity to malaria, but this process occurs at variable rates, and the mechanism of protection is not fully understood. We have recently demonstrated that in genetically identical C57BL/6N mice, gut microbiota composition dramatically impacts the quality of the humoral immune response to Plasmodium yoelii and subsequent protection against a lethal secondary challenge with Plasmodium berghei ANKA in C57BL/6N mice. Here, we utilize this genetically identical, gut microbiome-dependent model to investigate how the gut microbiota modulate immunological memory, hypothesizing that the gut microbiome impacts the formation and functionality of immune memory. In support of this hypothesis, P. yoelii hyperparasitemia-resistant C57BL/6N mice exhibit increased protection against P. berghei ANKA-induced experimental cerebral malaria (ECM) compared to P. yoelii hyperparasitemia-susceptible C57BL/6N mice. Despite differences in protection against ECM, P. yoelii-resistant and -susceptible mice accumulate similar numbers of memory B cells (MBCs) and memory T cells. Following challenge with P. berghei ANKA, P. yoelii-resistant mice generated more rapid germinal center reactions; however, P. yoelii-resistant and -susceptible mice had similar titers of P. yoelii- and P. berghei-specific antibodies. In contrast, P. yoelii-resistant mice had an increased number of regulatory T cells in response to secondary challenge with P. berghei ANKA, which may dampen the immune-mediated breakdown of the blood-brain barrier and susceptibility to P. berghei-induced ECM. These findings demonstrate the ability of the gut microbiome to shape immune memory and the potential to enhance resistance to severe malaria outcomes.
Collapse
Affiliation(s)
- Elizabeth M Fusco
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Layne Bower
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafael Polidoro
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen M Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Scott E Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Nalluri HV, Graff SA, Maric D, Heiss JD. Optimizing Colocalized Cell Counting Using Automated and Semiautomated Methods. Neuroinformatics 2025; 23:25. [PMID: 40113626 PMCID: PMC11926031 DOI: 10.1007/s12021-025-09723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P < 0.0001). While automated counts differed significantly from manual counts, their strong correlation (R2 = 0.7764-0.9954) supports their reliability for applications where exact counts are less critical. Additionally, both techniques significantly reduced analysis time compared to manual counting. Our findings support the use of automated and semi-automated colocalization analysis methods in histological samples, particularly as sample size increases.
Collapse
Affiliation(s)
- Hasita V Nalluri
- Surgical Neurology Branch, Flow and Imaging Cytometry Core Facility, Bethesda, MD, USA
| | - Shantelle A Graff
- Surgical Neurology Branch, Flow and Imaging Cytometry Core Facility, Bethesda, MD, USA.
| | - Dragan Maric
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, USA
| | - John D Heiss
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Hildebrand JA, Daniels NR, Dehm EM, Fisher BD, Guter JK, Janse CJ, Lucas ED, Sangala JA, Tankersley TN, Hart GT, Hamilton SE. Severe malaria enforces short-lived effector cell differentiation but does not prevent effective secondary responses by memory CD8 T cells. PLoS Pathog 2025; 21:e1012993. [PMID: 40163479 PMCID: PMC11957282 DOI: 10.1371/journal.ppat.1012993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Parasitic infections are a major worldwide health burden, yet most studies of CD8 T cell differentiation focus on acute viral and bacterial infections. To understand effector and memory CD8 T cell responses during erythrocytic malaria infection in mice, we utilized transgenic OT-I T cells and compared CD8 T cell responses between infection with OVA-expressing strains of Listeria monocytogenes (Lm) and Plasmodium berghei ANKA (PbA). We find that CD8 T cells expand vigorously during both infections. However, in contrast to Lm infection, PbA infection induces T cells that are heavily biased toward an IL-7Ra-deficient and KLRG1+ short-lived effector cell (SLEC) phenotype at the expense of memory precursor effector cell (MPECs) formation. PbA-induced inflammation, including IFNγ, is partially responsible for this outcome. Following treatment with antimalarial drugs and T cell contraction, PbA-primed memory T cells are rarely found in the blood and peripheral tissues but do maintain a low presence in the spleen and bone marrow. Despite these poor numbers, PbA memory T cells robustly expand upon vaccination or viral infection, control pathogen burden, and form secondary memory pools. Thus, despite PbA enforced SLEC formation and limited memory, effective secondary responses can still proceed.
Collapse
Affiliation(s)
- Jacob A. Hildebrand
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Noah R. Daniels
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emma M. Dehm
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin D. Fisher
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph K. Guter
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Erin D. Lucas
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jules A. Sangala
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor N. Tankersley
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sara E. Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
8
|
Obi OA, Obiezue RN, Eze D, Adebote DA. Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review. J Parasit Dis 2025; 49:13-28. [PMID: 39975623 PMCID: PMC11833005 DOI: 10.1007/s12639-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/13/2024] [Indexed: 02/21/2025] Open
Abstract
Recent fights on the control of trypanosomiasis and malaria focused on underscoring the concepts of antigen evasive mechanisms with the view to exploit the defensive mechanisms inherent in VSG and PfEMP1, although giant strides is being achieved towards beating the antigenic propensity of malaria parasites. Trypanosoma and Plasmodium falciparum adopt a common antigenic novelty through alternate expression of VSG and PfEMP1 respectively. These immunodominant antigens sterically shield other surface proteins from host antibodies and unvaryingly turn out to be the requisite elements with difficult underlining immunological concept for unmatched escape mechanisms of vaccine actions. Hence, the uncommon role of the pathogens to brazenly circumnavigate immunity through switching of variant antigens has not kept pace. Switching of variant surface in human trypanosomes occurs through programmed DNA rearrangements while in P. falciparum, switching occurs by purely transcriptional mechanism. The repertoire genes harmonize evasion of human immunity and also rekindle the outcome of infections. The extensive sequence divergence and genetic polymorphism of VSG and PfEMP1 are the requisite elements for the next generation breakthrough in vaccine discoveries. Thus, the springboard for the development of novel targets is lurking with the wit of unraveling the immunological concepts underlining the evasive aptitude of VSG and PfEMP1 with convincing biochemical techniques, hence offering a blueprint for enhanced vaccine targets. This review elucidates evasive mechanisms of VSG and PfEMP1 with link to pathologies, challenges of antigenic switches and prospects to current vaccine scenario.
Collapse
Affiliation(s)
- Okechukwu Anthony Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | - Rose Nduka Obiezue
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Desmond Eze
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | | |
Collapse
|
9
|
Chen J, Bai Y, He X, Xiao W, Chen L, Wong YK, Wang C, Gao P, Cheng G, Xu L, Yang C, Liao F, Han G, Sun J, Xu C, Wang J. The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment. Nat Commun 2025; 16:1540. [PMID: 39934099 DOI: 10.1038/s41467-024-52223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/28/2024] [Indexed: 02/13/2025] Open
Abstract
Cerebral malaria (CM) is a severe encephalopathy caused by Plasmodium parasite infection, resulting in thousands of annual deaths and neuro-cognitive sequelae even after anti-malarial drugs treatment. Despite efforts to dissect the mechanism, the cellular transcriptomic reprogramming within the spatial context remains elusive. Here, we constructed single-cell and spatial transcriptome atlases of experimental CM (ECM) male murine brain tissues with or without artesunate (ART) treatment. We identified activated inflammatory endothelial cells during ECM, characterized by a disrupted blood-brain barrier, increased antigen presentation, and leukocyte adhesion. We also observed that inflammatory microglia enhance antigen presentation pathway such as MHC-I to CD8+ cytotoxic T cells. The latter underwent an inflammatory state transition with up-regulated cytokine expression and cytotoxic activity. Multi-omics analysis revealed that the activated interferon-gamma response of injured neurons during ECM and persisted after ART treatment. Overall, our research provides valuable resources for understanding malaria parasite-host interaction mechanisms and adjuvant therapy development.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yunmeng Bai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lina Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanbin Yang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fulong Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jichao Sun
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
10
|
de Lima RMS, Leão LKR, Martins LC, Passos ADCF, Batista EDJO, Herculano AM, Oliveira KRHM. Unveiling new perspectives about the onset of neurological and cognitive deficits in cerebral malaria: exploring cellular and neurochemical mechanisms. Front Cell Infect Microbiol 2025; 15:1506282. [PMID: 39981376 PMCID: PMC11839640 DOI: 10.3389/fcimb.2025.1506282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral malaria is the most severe and lethal complication caused by Plasmodium falciparum infection, leading to critical neurological impairments and long-term cognitive, behavioral, and neurological sequelae in survivors, particularly affecting children under the age of five. Various hypotheses have been proposed to explain the neurological syndrome associated to cerebral malaria condition, including vascular occlusion and sequestration, cytokine storm or inflammatory response, or a combination of these mechanisms and despite extensive research and a growing range of scientific information, the precise pathophysiological mechanism remains poorly understood. In this sense, this review aims to explore the neurological impairment in cerebral malaria and elucidate novel mechanisms to explain the severity of this disease. Recent evidence implicates glutamate and glutamatergic pathways in the onset of cerebral malaria, alongside the impairments in the metabolic activity of other molecules such as dopamine and kynurenic acid. These neurotransmitters pathways may play a crucial role in the pathogenesis of cerebral malaria, potentially interacting with other molecular players. By enhancing our understanding in the pathophysiology of cerebral malaria, this article seeks to explore new hypotheses regarding the involvement of neurotransmitters and their interactions with other molecular targets, thereby contributing to the overall pathology of cerebral malaria.
Collapse
Affiliation(s)
- Renato M. S. de Lima
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Luana K. R. Leão
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Luana C. Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Adelaide da C. Fonseca Passos
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | | | - Anderson M. Herculano
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karen R. H. M. Oliveira
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
11
|
Siqueira-E-Silva BN, de Sousa LP, Rosa-Gonçalves P, da Silva RM, Martins YC, Brasil P, Daniel-Ribeiro CT. Non-cerebral malaria: does such a thing exist? Mem Inst Oswaldo Cruz 2025; 120:e240223. [PMID: 39907418 DOI: 10.1590/0074-02760240223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Malaria, caused by Plasmodium spp., remains a major public health problem. Cerebral malaria is its deadliest form, with a 15-25% mortality rate, despite artemisinin-based treatments. In addition, the World Health Organization (WHO) strictly defines cerebral malaria as the presence of coma, 1 h after a seizure or the correction of hypoglycemia, in patients with P. falciparum parasitemia. Consequently, 25% of survivors experience neurocognitive and behavioral sequelae, particularly in children. However, more recently, neurocognitive and behavioral impairments were also reported in severe non-cerebral malaria, non-severe malaria, and even during asymptomatic Plasmodium infection. Such impairments have been observed in school-aged children, the elderly, and in animal models without classic cerebral malaria pathology. Additionally, mild vasogenic edema has been detected in neuroimaging of patients with severe non-cerebral and non-severe P. falciparum malaria. Therefore, given that approximately 98% of malaria cases in the world are non-severe, neurocognitive and behavioral sequelae may account for a significant proportion of global malaria morbidity. Taken together, these observations suggest that systemic inflammation from malaria, even without traditional cerebral malaria signs, can disrupt brain function and lead to long-term sequelae. We propose that the current definition of cerebral malaria may not fully capture the observed evidence and a new conceptualization is necessary to encompass these findings.
Collapse
Affiliation(s)
| | - Luciana Pereira de Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Pamela Rosa-Gonçalves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Rízia Maria da Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Microbiologia e Parasitologia, Natal, RN, Brasil
| | - Yuri Chaves Martins
- Saint Louis University School of Medicine, Department of Anesthesiology, Saint Louis, MO, USA
| | - Patrícia Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de infectologia Evandro Chagas, Laboratório de Doenças Febris Agudas, Rio de Janeiro, RJ, Brasil
- Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente e Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
- Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente e Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Kioko M, Mwangi S, Njunge JM, Berkley JA, Bejon P, Abdi AI. Linking Cerebral Malaria Pathogenesis to APOE-Mediated Amyloidosis: Observations and Hypothesis. Mol Neurobiol 2025; 62:1720-1725. [PMID: 39023792 PMCID: PMC11772498 DOI: 10.1007/s12035-024-04366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Although most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease. If our hypothesis is tested and found to be true, it could have far-reaching implications for what we know about cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James M Njunge
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James A Berkley
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.
| |
Collapse
|
13
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Araujo S, Mabille D, Garcia AB, Caljon G. A breath of fresh air: impact of insect-borne protozoan parasites on the respiratory system. Trends Parasitol 2024; 40:717-730. [PMID: 39013660 DOI: 10.1016/j.pt.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The protozoan parasites Plasmodium, Leishmania, and Trypanosoma are transmitted by hematophagous insects and cause severe diseases in humans. These infections pose a global threat, particularly in low-resource settings, and are increasingly extending beyond the current endemic regions. Tropism of parasites is crucial for their development, and recent studies have revealed colonization of noncanonical tissues, aiding their survival and immune evasion. Despite receiving limited attention, cumulative evidence discloses the respiratory system as a significant interface for host-pathogen interactions, influencing the course of (co)infection and disease onset. Due to its pathophysiological and clinical implications, we emphasize that further research is needed to better understand the involvement of the respiratory system and its potential to improve prevention, diagnosis, treatment, and interruption of the chain of transmission.
Collapse
Affiliation(s)
- Sergio Araujo
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Alvaro Baeza Garcia
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
15
|
Wang Y, Shen Y, Liang J, Wang S, Huang Y, Zhu Q, Zhang X, Yu K, Tong G, Yang C, Li Y, Wang J, Zhao Y. Neurons upregulate PD-L1 via IFN/STAT1/IRF1 to alleviate damage by CD8 + T cells in cerebral malaria. J Neuroinflammation 2024; 21:119. [PMID: 38715061 PMCID: PMC11077882 DOI: 10.1186/s12974-024-03114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNβ or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNβ, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNβ or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yan Shen
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Shubiao Wang
- Grade 2020 Clinical Medicine (Five-Year Program), Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Qinghao Zhu
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Xizhi Zhang
- Grade 2019 Clinical Medicine (Five-Year Program), Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kangjie Yu
- Department of Pathology, Air Force Hospital of Eastern Theater, Nanjing, Jiangsu, China
| | - Guodong Tong
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chao Yang
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Jun Wang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
16
|
Gopinadhan A, Hughes JM, Conroy AL, John CC, Canfield SG, Datta D. A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria. Fluids Barriers CNS 2024; 21:38. [PMID: 38693577 PMCID: PMC11064301 DOI: 10.1186/s12987-024-00541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.
Collapse
Affiliation(s)
- Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Scott G Canfield
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
18
|
Ramalho T, Assis PA, Ojelabi O, Tan L, Carvalho B, Gardinassi L, Campos O, Lorenzi PL, Fitzgerald KA, Haynes C, Golenbock DT, Gazzinelli RT. Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells. Cell Metab 2024; 36:484-497.e6. [PMID: 38325373 PMCID: PMC10940217 DOI: 10.1016/j.cmet.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/27/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
Collapse
Affiliation(s)
- Theresa Ramalho
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ogooluwa Ojelabi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Brener Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Osvaldo Campos
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Sao Paulo, Brazil
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole Haynes
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Wang J, Zhu Q, Shen Y, Liang J, Wang Y, Huang Y, Tong G, Wang X, Zhang N, Yu K, Li Y, Zhao Y. CD8 + T cell infiltration and proliferation in the brainstem during experimental cerebral malaria. CNS Neurosci Ther 2024; 30:e14431. [PMID: 37697956 PMCID: PMC10916431 DOI: 10.1111/cns.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION Cerebral malaria (CM) is a lethal neuroinflammatory disease caused by Plasmodium infection. Immune cells and brain parenchyma cells contribute to the pathogenesis of CM. However, a systematic examination of the changes that occur in the brain parenchyma region during CM at the single-cell resolution is still poorly studied. AIMS To explore cell composition and CD8+ T cell infiltration, single-cell RNA sequencing (scRNA-seq) was performed on the brainstems of healthy and experimental cerebral malaria (ECM) mice. Then CD8+ T cell infiltration was confirmed by flow cytometry and immunofluorescence assays. Subsequently, the characteristics of the brain-infiltrated CD8+ T cells were analyzed. Finally, the interactions between parenchyma cells and brain-infiltrated CD8+ T cells were studied with an astrocytes-CD8+ T cell cocultured model. RESULTS The brainstem is the most severely damaged site during ECM. ScRNA-seq revealed a large number of CD8+ T cells infiltrating into the brainstem in ECM mice. Brain-infiltrated CD8+ T cells were highly activated according to scRNA-seq, immunofluorescence, and flow cytometry assays. Further analysis found a subset of ki-67+ CD8+ T cells that have a higher transcriptional level of genes related to T cell function, activation, and proliferation, suggesting that they were exposed to specific antigens presented by brain parenchyma cells. Brain-infiltrated CD8+ T cells were the only prominent source of IFN-γ in this single-cell analysis. Astrocytes, which have a high interferon response, act as cross-presenting cells to recruit and re-activate brain-infiltrated CD8+ T cells. We also found that brain-infiltrated CD8+ T cells were highly expressed immune checkpoint molecule PD-1, while parenchyma cells showed up-regulation of PD-L1 after infection. CONCLUSIONS These findings reveal a novel interaction between brain-infiltrated CD8+ T cells and parenchyma cells in the ECM brainstem, suggesting that the PD-1/PD-L1 signal pathway is a promising adjunctive therapeutic strategy for ECM targeting over-activated CD8+ T cells.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Qinghao Zhu
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yan Shen
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Jiao Liang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yi Wang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yuxiao Huang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Guodong Tong
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
- College of Life SciencesNorthwest UniversityXi'anChina
| | - Xu Wang
- School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Ningning Zhang
- School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Kangjie Yu
- Department of PathologyAir Force Hospital of Eastern TheaterNanjingChina
| | - Yinghui Li
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Ya Zhao
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
20
|
Denes A, Hansen CE, Oezorhan U, Figuerola S, de Vries HE, Sorokin L, Planas AM, Engelhardt B, Schwaninger M. Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathol 2024; 147:38. [PMID: 38347307 PMCID: PMC10861611 DOI: 10.1007/s00401-024-02695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.
Collapse
Affiliation(s)
- Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Uemit Oezorhan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sara Figuerola
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Munster, Germany
- Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, Germany.
| |
Collapse
|
21
|
Fain CE, Zheng J, Jin F, Ayasoufi K, Wu Y, Lilley MT, Dropik AR, Wolf DM, Rodriguez RC, Aibaidula A, Tritz ZP, Bouchal SM, Pewe LL, Urban SL, Chen Y, Chang SY, Hansen MJ, Kachergus JM, Shi J, Thompson EA, Jensen HE, Harty JT, Parney IF, Sun J, Wu LJ, Johnson AJ. Discrete class I molecules on brain endothelium differentially regulate neuropathology in experimental cerebral malaria. Brain 2024; 147:566-589. [PMID: 37776513 PMCID: PMC11734323 DOI: 10.1093/brain/awad319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.
Collapse
Affiliation(s)
- Cori E Fain
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Jiaying Zheng
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Meredith T Lilley
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Abigail R Dropik
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Abudumijiti Aibaidula
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905USA
| | - Zachariah P Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Samantha M Bouchal
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Yin Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | | | | | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - Hadley E Jensen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | - Jie Sun
- Department of Medicine, University of Virginia, Charlottesville, VA 22903USA
| | - Long-Jun Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| |
Collapse
|
22
|
Nampota-Nkomba N, Nyirenda OM, Mallewa J, Chimalizeni Y, Dzabala N, Fay MP, Gopalakrishnan M, Laurens MB, O'Brien NF, Miller LH, Pierce SK, Riggle BA, Postels DG. DON in pediatric cerebral malaria, a phase I/IIA dose-escalation safety study: study protocol for a clinical trial. Trials 2024; 25:87. [PMID: 38279124 PMCID: PMC10811809 DOI: 10.1186/s13063-023-07808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Despite treatment with highly effective antimalarial drugs, malaria annually claims the lives of over half a million children under 5-years of age in sub-Saharan Africa. Cerebral malaria (CM), defined as Plasmodium falciparum infection with coma, is the severe malaria syndrome with the highest mortality. Studies in the CM mouse model suggest that a T cell-mediated response underlies CM pathology, opening a new target for therapy in humans. This trial aims to establish the preliminary safety of one such novel therapy, the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). METHODS In this phase I/IIa dose-escalation clinical trial, a single dose of intravenous (IV) DON is administered to three participants groups-healthy adults and adults with uncomplicated malaria, then pediatric participants with CM-to primarily assess safety. The secondary objective of this trial is to assess pharmacokinetics of DON over a range of doses. The open-label adult portion of the trial enrolls 40 healthy adults concurrently with 40 adults with uncomplicated malaria. Cohorts of 10 participants receive a single IV dose of DON with doses escalating between cohorts from 0.1 mg/kg, 1.0 mg/kg, 5.0 mg/kg, to 10 mg/kg. Following subsequent safety review, a randomized, double-blind, and placebo-controlled pediatric study enrolls 72 participants aged 6 months to 14 years with CM. The pediatric portion of the study minimally spans three malaria seasons including a planned interim analysis after 50% of pediatric enrollments. The first half of pediatric participants receive DON 0.1 mg/kg, 1.0 mg/kg, or placebo. Dosing for the second half of pediatric participants is informed by the safety and preliminary efficacy results of those previously enrolled. The pediatric portion of the study has an exploratory outcome evaluating the preliminary efficacy of DON. Efficacy is assessed by diagnostics predictive of CM outcome: electroencephalography (EEG), magnetic resonance imaging (MRI), and transcranial doppler (TCD), measured before and after DON administration. All participants with malaria receive standard of care antimalarials in accordance with local guidelines, regardless of study drug dose group. DISCUSSION This preliminary safety and efficacy study evaluates DON, a candidate adjunctive therapy for pediatric CM. If results support DON preliminary safety and efficacy, follow-up phase II and III clinical trials will be indicated. TRIAL REGISTRATION This trial was registered on ClinicalTrials.gov on 28 July 2022 (NCT05478720).
Collapse
Affiliation(s)
| | - Osward M Nyirenda
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jane Mallewa
- Department of Internal Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Yamikani Chimalizeni
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nettie Dzabala
- Department of Pharmacy, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole F O'Brien
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brittany A Riggle
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Douglas G Postels
- Division of Neurology, The George Washington University/ Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
23
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol 2024; 40:28-44. [PMID: 38065791 PMCID: PMC11072469 DOI: 10.1016/j.pt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia; Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
25
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
26
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
27
|
Mandal RK, Schmidt NW. Mechanistic insights into the interaction between the host gut microbiome and malaria. PLoS Pathog 2023; 19:e1011665. [PMID: 37824458 PMCID: PMC10569623 DOI: 10.1371/journal.ppat.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| |
Collapse
|
28
|
Pinheiro ADS, Kazura JW, Pinheiro AA, Schmaier AH. Is there a role for bradykinin in cerebral malaria pathogenesis? Front Cell Infect Microbiol 2023; 13:1184896. [PMID: 37637466 PMCID: PMC10448822 DOI: 10.3389/fcimb.2023.1184896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Malaria is a parasitic disease of global health significance and a leading cause of death in children living in endemic regions. Although various Plasmodium species are responsible for the disease, Plasmodium falciparum infection accounts for most severe cases of the disease in humans. The mechanisms of cerebral malaria pathogenesis have been studied extensively in humans and animal malaria models; however, it is far from being fully understood. Recent discoveries indicate a potential role of bradykinin and the kallikrein kinin system in the pathogenesis of cerebral malaria. The aim of this review is to highlight how bradykinin is formed in cerebral malaria and how it may impact cerebral blood-brain barrier function. Areas of interest in this context include Plasmodium parasite enzymes that directly generate bradykinin from plasma protein precursors, cytoadhesion of P. falciparum infected red blood cells to brain endothelial cells, and endothelial cell blood-brain barrier disruption.
Collapse
Affiliation(s)
- Alessandro de Sa Pinheiro
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - James W. Kazura
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Ana Acacia Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
29
|
Harit K, Bhattacharjee R, Matuschewski K, Becker J, Kalinke U, Schlüter D, Nishanth G. The deubiquitinating enzyme OTUD7b protects dendritic cells from TNF-induced apoptosis by stabilizing the E3 ligase TRAF2. Cell Death Dis 2023; 14:480. [PMID: 37516734 PMCID: PMC10387084 DOI: 10.1038/s41419-023-06014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The cytokine tumor necrosis factor (TNF) critically regulates the intertwined cell death and pro-inflammatory signaling pathways of dendritic cells (DCs) via ubiquitin modification of central effector molecules, but the intrinsic molecular switches deciding on either pathway are incompletely defined. Here, we uncover that the ovarian tumor deubiquitinating enzyme 7b (OTUD7b) prevents TNF-induced apoptosis of DCs in infection, resulting in efficient priming of pathogen-specific CD8+ T cells. Mechanistically, OTUD7b stabilizes the E3 ligase TNF-receptor-associated factor 2 (TRAF2) in human and murine DCs by counteracting its K48-ubiquitination and proteasomal degradation. TRAF2 in turn facilitates K63-linked polyubiquitination of RIPK1, which mediates activation of NF-κB and MAP kinases, IL-12 production, and expression of anti-apoptotic cFLIP and Bcl-xL. We show that mice with DC-specific OTUD7b-deficiency displayed DC apoptosis and a failure to induce CD8+ T cell-mediated brain pathology, experimental cerebral malaria, in a murine malaria infection model. Together, our data identify the deubiquitinating enzyme OTUD7b as a central molecular switch deciding on survival of human and murine DCs and provides a rationale to manipulate DC responses by targeting their ubiquitin network downstream of the TNF receptor pathway.
Collapse
Affiliation(s)
- Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Rituparna Bhattacharjee
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Freire-Antunes L, Ornellas-Garcia U, Rangel-Ferreira MV, Ribeiro-Almeida ML, de Sousa CHG, Carvalho LJDM, Daniel-Ribeiro CT, Ribeiro-Gomes FL. Increased Neutrophil Percentage and Neutrophil-T Cell Ratio Precedes Clinical Onset of Experimental Cerebral Malaria. Int J Mol Sci 2023; 24:11332. [PMID: 37511092 PMCID: PMC10379066 DOI: 10.3390/ijms241411332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Newly emerging data suggest that several neutrophil defense mechanisms may play a role in both aggravating and protecting against malaria. These exciting findings suggest that the balance of these cells in the host body may have an impact on the pathogenesis of malaria. To fully understand the role of neutrophils in severe forms of malaria, such as cerebral malaria (CM), it is critical to gain a comprehensive understanding of their behavior and functions. This study investigated the dynamics of neutrophil and T cell responses in C57BL/6 and BALB/c mice infected with Plasmodium berghei ANKA, murine models of experimental cerebral malaria (ECM) and non-cerebral experimental malaria, respectively. The results demonstrated an increase in neutrophil percentage and neutrophil-T cell ratios in the spleen and blood before the development of clinical signs of ECM, which is a phenomenon not observed in the non-susceptible model of cerebral malaria. Furthermore, despite the development of distinct forms of malaria in the two strains of infected animals, parasitemia levels showed equivalent increases throughout the infection period evaluated. These findings suggest that the neutrophil percentage and neutrophil-T cell ratios may be valuable predictive tools for assessing the dynamics and composition of immune responses involved in the determinism of ECM development, thus contributing to the advancing of our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Lucas Freire-Antunes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Uyla Ornellas-Garcia
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Marcos Vinicius Rangel-Ferreira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Mônica Lucas Ribeiro-Almeida
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Carina Heusner Gonçalves de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Leonardo José de Moura Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
31
|
Gonzalez-Fierro C, Fonte C, Dufourd E, Cazaentre V, Aydin S, Engelhardt B, Caspi RR, Xu B, Martin-Blondel G, Spicer JA, Trapani JA, Bauer J, Liblau RS, Bost C. Effects of a Small-Molecule Perforin Inhibitor in a Mouse Model of CD8 T Cell-Mediated Neuroinflammation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200117. [PMID: 37080596 PMCID: PMC10119812 DOI: 10.1212/nxi.0000000000200117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.
Collapse
Affiliation(s)
- Carmen Gonzalez-Fierro
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Coralie Fonte
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Eloïse Dufourd
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Vincent Cazaentre
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Sidar Aydin
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Britta Engelhardt
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Rachel R Caspi
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Biying Xu
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Guillaume Martin-Blondel
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Julie A Spicer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Joseph A Trapani
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France.
| | - Chloé Bost
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| |
Collapse
|
32
|
Wu X, Dayanand KK, Thylur Puttalingaiah R, Punnath K, Norbury CC, Gowda DC. Different TLR signaling pathways drive pathology in experimental cerebral malaria vs. malaria-driven liver and lung pathology. J Leukoc Biol 2023; 113:471-488. [PMID: 36977632 DOI: 10.1093/jleuko/qiad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Malaria infection causes multiple organ-specific lethal pathologies, including cerebral malaria, and severe liver and lung pathologies by inducing strong inflammatory responses. Gene polymorphism studies suggest that TLR4 and TLR2 contribute to severe malaria, but the roles of these signaling molecules in malaria pathogenesis remain incompletely understood. We hypothesize that danger-associated molecular patterns produced in response to malaria activate TLR2 and TLR4 signaling and contribute to liver and lung pathologies. By using a mouse model of Plasmodium berghei NK65 infection, we show that the combined TLR2 and TLR4 signaling contributes to malaria liver and lung pathologies and mortality. Macrophages, neutrophils, natural killer cells, and T cells infiltrate to the livers and lungs of infected wild-type mice more than TLR2,4-/- mice. Additionally, endothelial barrier disruption, tissue necrosis, and hemorrhage were higher in the livers and lungs of infected wild-type mice than in those of TLR2,4-/- mice. Consistent with these results, the levels of chemokine production, chemokine receptor expression, and liver and lung pathologic markers were higher in infected wild-type mice than in TLR2,4-/- mice. In addition, the levels of HMGB1, a potent TLR2- and TLR4-activating danger-associated molecular pattern, were higher in livers and lungs of wild-type mice than TLR2,4-/- mice. Treatment with glycyrrhizin, an immunomodulatory agent known to inhibit HMGB1 activity, markedly reduced mortality in wild-type mice. These results suggest that TLR2 and TLR4 activation by HMGB1 and possibly other endogenously produced danger-associated molecular patterns contribute to malaria liver and lung injury via signaling mechanisms distinct from those involved in cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Xianzhu Wu
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kiran K Dayanand
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Ramesh Thylur Puttalingaiah
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kishore Punnath
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Christopher C Norbury
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
33
|
Cimperman CK, Pena M, Gokcek SM, Theall BP, Patel MV, Sharma A, Qi C, Sturdevant D, Miller LH, Collins PL, Pierce SK, Akkaya M. Cerebral Malaria Is Regulated by Host-Mediated Changes in Plasmodium Gene Expression. mBio 2023; 14:e0339122. [PMID: 36852995 PMCID: PMC10127683 DOI: 10.1128/mbio.03391-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA(C57BL/6)], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA(BALB/c)], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65(C57BL/6)]. All ANKA(C57BL/6) mice developed CM. In contrast, in ANKA(BALB/c) and NK65(C57BL/6), infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA(BALB/c) was remarkably different than that in ANKA(C57BL/6) but similar to the gene expression in NK65(C57BL/6). Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.
Collapse
Affiliation(s)
- Clare K. Cimperman
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Sohret M. Gokcek
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brandon P. Theall
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Meha V. Patel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Anisha Sharma
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - ChenFeng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Daniel Sturdevant
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Munir Akkaya
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis. Immunity 2023; 56:592-605.e8. [PMID: 36804959 DOI: 10.1016/j.immuni.2023.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.
Collapse
|
35
|
Shafi AM, Végvári Á, Zubarev RA, Penha-Gonçalves C. Brain endothelial cells exposure to malaria parasites links type I interferon signalling to antigen presentation, immunoproteasome activation, endothelium disruption, and cellular metabolism. Front Immunol 2023; 14:1149107. [PMID: 36993973 PMCID: PMC10042232 DOI: 10.3389/fimmu.2023.1149107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionCerebral malaria (CM) lethality is attributable to induction of brain edema induction but the cellular mechanisms involving brain microvascular endothelium in CM pathogenesis are unexplored.ResultsActivation of the STING-INFb-CXCL10 axis in brain endothelial cells (BECs) is a prominent component of the innate immune response in CM development in mouse models. Using a T cell-reporter system, we show that Type 1 IFN signaling in BECs exposed to Plasmodium berghei-infected erythrocytes (PbA-IE), functionally enhances MHC Class-I antigen presentation through gamma-interferon independent immunoproteasome activation and impacted the proteome functionally related to vesicle trafficking, protein processing/folding and antigen presentation. In vitro assays showed that Type 1 IFN signaling and immunoproteasome activation are also involved in the dysfunction of the endothelial barrier through disturbing gene expression in the Wnt/ß-catenin signaling pathway. We demonstrate that IE exposure induces a substantial increase in BECs glucose uptake while glycolysis blockade abrogates INFb secretion impairing immunoproteasome activation, antigen presentation and Wnt/ß-catenin signaling.DiscussionMetabolome analysis show that energy demand and production are markedly increased in BECs exposed to IE as revealed by enriched content in glucose and amino acid catabolites. In accordance, glycolysis blockade in vivo delayed the clinical onset of CM in mice. Together the results show that increase in glucose uptake upon IE exposure licenses Type 1 IFN signaling and subsequent immunoproteasome activation contributing to enhanced antigen presentation and impairment of endothelial barrier function. This work raises the hypothesis that Type 1 IFN signaling-immunoproteasome induction in BECs contributes to CM pathology and fatality (1) by increasing antigen presentation to cytotoxic CD8+ T cells and (2) by promoting endothelial barrier dysfunction, that likely favor brain vasogenic edema.
Collapse
Affiliation(s)
| | - Ákos Végvári
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Penha-Gonçalves
- Disease Genetics, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- *Correspondence: Carlos Penha-Gonçalves,
| |
Collapse
|
36
|
Royo J, Vianou B, Accrombessi M, Kinkpé E, Ayédadjou L, Dossou-Dagba I, Ladipo Y, Alao MJ, Bertin GI, Cot M, Boumédiène F, Houzé S, Faucher JF, Aubouy A. Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria. Infect Dis Poverty 2023; 12:8. [PMID: 36759905 PMCID: PMC9909955 DOI: 10.1186/s40249-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. METHODS Children presenting with CM (n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients' cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson's Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. RESULTS Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1β), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann-Whitney U-test, P-values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P-value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C-C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. CONCLUSIONS The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications.
Collapse
Affiliation(s)
- Jade Royo
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France
| | - Bertin Vianou
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France ,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Manfred Accrombessi
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin ,grid.8991.90000 0004 0425 469XFaculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Elisée Kinkpé
- Paediatric Department, Calavi Hospital, Calavi, Benin
| | - Linda Ayédadjou
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Yélé Ladipo
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | - Maroufou Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Michel Cot
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France
| | - Farid Boumédiène
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Sandrine Houzé
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France ,grid.411119.d0000 0000 8588 831XFrench Malaria Reference Center, APHP, Bichat Hospital, Paris, France ,grid.411119.d0000 0000 8588 831XParasitology Laboratory, APHP, Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean François Faucher
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France ,grid.411178.a0000 0001 1486 4131Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
| | - Agnès Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400, Toulouse, France. .,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin.
| | | |
Collapse
|
37
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
38
|
Storm J, Camarda G, Haley MJ, Brough D, Couper KN, Craig AG. Plasmodium falciparum-infected erythrocyte co-culture with the monocyte cell line THP-1 does not trigger production of soluble factors reducing brain microvascular barrier function. PLoS One 2023; 18:e0285323. [PMID: 37141324 PMCID: PMC10159134 DOI: 10.1371/journal.pone.0285323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Monocytes contribute to the pro-inflammatory immune response during the blood stage of a Plasmodium falciparum infection, but their precise role in malaria pathology is not clear. Besides phagocytosis, monocytes are activated by products from P. falciparum infected erythrocytes (IE) and one of the activation pathways is potentially the NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multi-protein complex that leads to the production of interleukin (IL)-1β. In cerebral malaria cases, monocytes accumulate at IE sequestration sites in the brain microvascular and the locally produced IL-1β, or other secreted molecules, could contribute to leakage of the blood-brain barrier. To study the activation of monocytes by IE within the brain microvasculature in an in vitro model, we co-cultured IT4var14 IE and the monocyte cell line THP-1 for 24 hours and determined whether generated soluble molecules affect barrier function of human brain microvascular endothelial cells, measured by real time trans-endothelial electrical resistance. The medium produced after co-culture did not affect endothelial barrier function and similarly no effect was measured after inducing oxidative stress by adding xanthine oxidase to the co-culture. While IL-1β does decrease barrier function, barely any IL-1β was produced in the co- cultures, indicative of a lack of or incomplete THP-1 activation by IE in this co-culture model.
Collapse
Affiliation(s)
- Janet Storm
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
39
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
40
|
Mix MR, Harty JT. Keeping T cell memories in mind. Trends Immunol 2022; 43:1018-1031. [PMID: 36369103 PMCID: PMC9691610 DOI: 10.1016/j.it.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
The mammalian central nervous system (CNS) contains a vibrant community of resident adaptive immune cells at homeostasis. Among these are memory CD8+ and CD4+ T cells, which reside in the CNS in the settings of health, aging, and neurological disease. These T cells commonly exhibit a tissue-resident memory (TRM) phenotype, suggesting that they are antigen-experienced and remain separate from the circulation. Despite these characterizations, T cell surveillance of the CNS has only recently been studied through the lens of TRM immunology. In this Review, we outline emerging concepts of CNS TRM generation, localization, maintenance, function, and specificity. In this way, we hope to highlight roles of CNS TRM in health and disease to inform future studies of adaptive neuroimmunity.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
41
|
Ramachandran A, Sharma A. Dissecting the mechanisms of pathogenesis in cerebral malaria. PLoS Pathog 2022; 18:e1010919. [PMCID: PMC9671333 DOI: 10.1371/journal.ppat.1010919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cerebral malaria (CM) is one of the leading causes of death due to malaria. It is characterised by coma, presence of asexual parasites in blood smear, and absence of any other reason that can cause encephalopathy. The fatality rate for CM is high, and those who survive CM often experience long-term sequelae, including cognitive and motor dysfunctions. It is unclear how parasites sequestered in the lumen of endothelial cells of the blood–brain barrier (BBB), and localised breakdown of BBB can manifest gross physiological changes across the brain. The pathological changes associated with CM are mainly due to the dysregulation of inflammatory and coagulation pathways. Other factors like host and parasite genetics, transmission intensity, and the host’s immune status are likely to play a role in the development and progression of CM. This work focuses on the pathological mechanisms underlying CM. Insights from humans, mice, and in vitro studies have been summarised to present a cohesive understanding of molecular mechanisms involved in CM pathology.
Collapse
Affiliation(s)
- Arathy Ramachandran
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
42
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
43
|
Blatt DB, Hanisch B, Co K, Datta D, Bond C, Opoka RO, Cusick SE, Michelow IC, John CC. Impact of Oxidative Stress on Risk of Death and Readmission in African Children With Severe Malaria: A Prospective Observational Study. J Infect Dis 2022; 226:714-722. [PMID: 35678643 PMCID: PMC9890907 DOI: 10.1093/infdis/jiac234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We hypothesized that oxidative stress in Ugandan children with severe malaria is associated with mortality. METHODS We evaluated biomarkers of oxidative stress in children with cerebral malaria (CM, n = 77) or severe malarial anemia (SMA, n = 79), who were enrolled in a randomized clinical trial of immediate vs delayed iron therapy, compared with community children (CC, n = 83). Associations between admission biomarkers and risk of death during hospitalization or risk of readmission within 6 months were analyzed. RESULTS Nine children with CM and none with SMA died during hospitalization. Children with CM or SMA had higher levels of heme oxygenase-1 (HO-1) (P < .001) and lower superoxide dismutase (SOD) activity than CC (P < .02). Children with CM had a higher risk of death with increasing HO-1 concentration (odds ratio [OR], 6.07 [95% confidence interval {CI}, 1.17-31.31]; P = .03) but a lower risk of death with increasing SOD activity (OR, 0.02 [95% CI, .001-.70]; P = .03). There were no associations between oxidative stress biomarkers on admission and risk of readmission within 6 months of enrollment. CONCLUSIONS Children with CM or SMA develop oxidative stress in response to severe malaria. Oxidative stress is associated with higher mortality in children with CM but not with SMA. CLINICAL TRIALS REGISTRATION NCT01093989.
Collapse
Affiliation(s)
- Daniel B Blatt
- Department of Pediatrics, Division of Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Benjamin Hanisch
- Department of Pediatrics, Division of Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Katrina Co
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caitlin Bond
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian C Michelow
- Department of Pediatrics, Division of Infectious Diseases, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut, USA
| | - Chandy C John
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
45
|
Brandi J, Riehn M, Hadjilaou A, Jacobs T. Increased Expression of Multiple Co-Inhibitory Molecules on Malaria-Induced CD8 + T Cells Are Associated With Increased Function Instead of Exhaustion. Front Immunol 2022; 13:878320. [PMID: 35874786 PMCID: PMC9301332 DOI: 10.3389/fimmu.2022.878320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
46
|
Cela D, Knackstedt SL, Groves S, Rice CM, Kwon JTW, Mordmüller B, Amulic B. PAD4 controls chemoattractant production and neutrophil trafficking in malaria. J Leukoc Biol 2022; 111:1235-1242. [PMID: 34755385 DOI: 10.1002/jlb.4ab1120-780r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) is a key regulator of inflammation but its function in infections remains incompletely understood. We investigate PAD4 in the context of malaria and demonstrate a role in regulation of immune cell trafficking and chemokine production. PAD4 regulates liver immunopathology by promoting neutrophil trafficking in a Plasmodium chabaudi mouse malaria model. In human macrophages, PAD4 regulates expression of CXCL chemokines in response to stimulation with TLR ligands and P. falciparum. Using patient samples, we show that CXCL1 may be a biomarker for severe malaria. PAD4 inhibition promotes disease tolerance and may represent a therapeutic avenue in malaria.
Collapse
Affiliation(s)
- Drinalda Cela
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, UK
| | | | - Sarah Groves
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, UK
| | - Christopher M Rice
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, UK
| | - Jamie Tae Wook Kwon
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, UK
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Borko Amulic
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, UK
| |
Collapse
|
47
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
dos Santos EC, Silva LS, Pinheiro AS, Teixeira DE, Peruchetti DB, Silva-Aguiar RP, Wendt CHC, Miranda KR, Coelho-de-Souza AN, Leal-Cardoso JH, Caruso-Neves C, Pinheiro AAS. The monoterpene 1,8-cineole prevents cerebral edema in a murine model of severe malaria. PLoS One 2022; 17:e0268347. [PMID: 35550638 PMCID: PMC9098050 DOI: 10.1371/journal.pone.0268347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
1,8-Cineole is a naturally occurring compound found in essential oils of different plants and has well-known anti-inflammatory and antimicrobial activities. In the present work, we aimed to investigate its potential antimalarial effect, using the following experimental models: (1) the erythrocytic cycle of Plasmodium falciparum; (2) an adhesion assay using brain microvascular endothelial cells; and (3) an experimental cerebral malaria animal model induced by Plasmodium berghei ANKA infection in susceptible mice. Using the erythrocytic cycle of Plasmodium falciparum, we characterized the schizonticidal effect of 1,8-cineole. This compound decreased parasitemia in a dose-dependent manner with a half maximal inhibitory concentration of 1045.53 ± 63.30 μM. The inhibitory effect of 972 μM 1,8-cineole was irreversible and independent of parasitemia. Moreover, 1,8-cineole reduced the progression of intracellular development of the parasite over 2 cycles, inducing important morphological changes. Ultrastructure analysis revealed a massive loss of integrity of endomembranes and hemozoin crystals in infected erythrocytes treated with 1,8-cineole. The monoterpene reduced the adhesion index of infected erythrocytes to brain microvascular endothelial cells by 60%. Using the experimental cerebral malaria model, treatment of infected mice for 6 consecutive days with 100 mg/kg/day 1,8-cineole reduced cerebral edema with a 50% reduction in parasitemia. Our data suggest a potential antimalarial effect of 1,8-cineole with an impact on the parasite erythrocytic cycle and severe disease.
Collapse
Affiliation(s)
- Edgleyson C. dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E. Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila H. C. Wendt
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare R. Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | | | | | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health, Rio de Janeiro, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
49
|
Imai T, Ngo-Thanh H, Suzue K, Shimo A, Nakamura A, Horiuchi Y, Hisaeda H, Murakami T. Live Vaccination with Blood-Stage Plasmodium yoelii 17XNL Prevents the Development of Experimental Cerebral Malaria. Vaccines (Basel) 2022; 10:vaccines10050762. [PMID: 35632518 PMCID: PMC9145751 DOI: 10.3390/vaccines10050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
In our work, we aim to develop a malaria vaccine with cross-strain (-species) protection. C57BL/6 mice infected with the P. berghei ANKA strain (PbA) develop experimental cerebral malaria (ECM). In contrast, ECM development is inhibited in infected mice depleted of T cells. The clinical applications of immune-cell depletion are limited due to the benefits of host defense against infectious diseases. Therefore, in the present study we attempted to develop a new method for preventing ECM without immune cell depletion. We demonstrated that mice inoculated with a heterologous live-vaccine of P. yoelii 17XNL were able to prevent both ECM and lung pathology and survived longer than control mice when challenged with PbA. Live vaccination protected blood–organ barriers from PbA infection. Meanwhile, live vaccination conferred sterile protection against homologous challenge with the P. yoelii 17XL virulent strain for the long-term. Analysis of the immune response induced by live vaccination showed that cross-reactive antibodies against PbA antigens were generated. IL-10, which has an immunosuppressive effect, was strongly induced in mice challenged with PbA, unlike the pro-inflammatory cytokine IFNγ. These results suggest that the protective effect of heterologous live vaccination against ECM development results from IL-10-mediated host protection.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
- Correspondence: ; Tel.: +81-49-276-1166
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
- National Hospital for Tropical Disease, 78 Giai Phong, Dong Da, Hanoi 10000, Vietnam
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (H.N.-T.); (K.S.)
| | - Aoi Shimo
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; (A.S.); (A.N.); (Y.H.); (T.M.)
| |
Collapse
|
50
|
Ampie L, McGavern DB. Immunological defense of CNS barriers against infections. Immunity 2022; 55:781-799. [PMID: 35545028 PMCID: PMC9087878 DOI: 10.1016/j.immuni.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Neuroanatomical barriers with physical, chemical, and immunological properties play an essential role in preventing the spread of peripheral infections into the CNS. A failure to contain pathogens within these barriers can result in very serious CNS diseases. CNS barriers are inhabited by an elaborate conglomerate of innate and adaptive immune cells that are highly responsive to environmental challenges. The CNS and its barriers can also be protected by memory T and B cells elicited by prior infection or vaccination. Here, we discuss the different CNS barriers from a developmental, anatomical, and immunological standpoint and summarize our current understanding of how memory cells protect the CNS compartment. We then discuss a contemporary challenge to CNS-barrier system (SARS-CoV-2 infection) and highlight approaches to promote immunological protection of the CNS via vaccination.
Collapse
Affiliation(s)
- Leonel Ampie
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|