1
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Guo J, Yang X, Yang J, Du F, Liu S. Electroacupuncture Promotes the Proliferation and Differentiation of Enteric Neural Precursor Cells via the PTEN/PI3K/Akt/mTOR Signaling Pathway in Diabetic Mice. Neurogastroenterol Motil 2025; 37:e70040. [PMID: 40190044 DOI: 10.1111/nmo.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Enteric neuronal loss significantly contributes to gastrointestinal (GI) motility disorders. Electroacupuncture (EA) can promote the regeneration of lost enteric neurons in diabetic mice, but its mechanisms are not fully understood. Nestin+/Ngfr+ cells can function as enteric neural precursor cells (ENPCs) to proliferate and differentiate into enteric neurons in adult mice. However, EA's effects on ENPCs remain unknown. The study aimed to investigate whether EA reversed enteric neuronal loss via regulation of ENPCs and its molecular basis. MATERIALS AND METHODS The study utilized conventional C57BL/6J mice and ENPC-tracing transgenic mice. Streptozotocin-induced type 1 diabetic mouse, PI3K inhibitor, and PTEN inhibitor models were used. GI motility was evaluated by defecation frequency, fecal water content, and whole gut transit test. The alterations of enteric neurons, ENPCs, and PTEN/PI3K/Akt/mTOR signaling were detected by Western blot and immunofluorescence. RESULTS EA increased defecation frequency and fecal water content, reduced whole gut transit time, and increased the number of enteric neurons. Notably, EA inhibited ENPC apoptosis and facilitated ENPC proliferation and differentiation with a preferential into ChAT enteric neurons. Additionally, PTEN was decreased and PI3K/Akt/mTOR signaling was activated with EA. However, LY294002 (PI3K inhibitor) inhibited EA's effects on ENPCs, while BpV(HOpic) (PTEN inhibitor) partially rescued these inhibitory effects. CONCLUSIONS EA alleviates diabetic enteric neuropathy by regulating ENPC dynamics through the PTEN/PI3K/Akt/mTOR signaling pathway. Notably, EA-mediated anti-apoptotic and pro-proliferative effects on ENPCs, and their preferential cholinergic differentiation establish EA as a multimodal therapy that bridges neuromodulation with precursor cell biology, offering an alternative strategy for GI motility disorders.
Collapse
Affiliation(s)
- Jinlu Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingze Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Rao M, Gulbransen BD. Enteric Glia. Cold Spring Harb Perspect Biol 2025; 17:a041368. [PMID: 38951022 PMCID: PMC11960695 DOI: 10.1101/cshperspect.a041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enteric glia are a unique type of peripheral neuroglia that accompany neurons in the enteric nervous system (ENS) of the digestive tract. The ENS displays integrative neural circuits that are capable of governing moment-to-moment gut functions independent of input from the central nervous system. Enteric glia are interspersed with neurons throughout these intrinsic gut neural circuits and are thought to fulfill complex roles directed at maintaining homeostasis in the neuronal microenvironment and at neuroeffector junctions in the gut. Changes to glial functions contribute to a wide range of gastrointestinal diseases, but the precise roles of enteric glia in gut physiology and pathophysiology are still under examination. This review summarizes current concepts regarding enteric glial development, diversity, and functions in health and disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Haider S, Sassu E, Stefanovska D, Stoyek MR, Preissl S, Hortells L. News from the old: Aging features in the intracardiac, musculoskeletal, and enteric nervous systems. Ageing Res Rev 2025; 105:102690. [PMID: 39947485 DOI: 10.1016/j.arr.2025.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Aging strongly affects the peripheral nervous system (PNS), triggering alterations that vary depending on the innervated tissue. The most frequent alteration in peripheral nerve aging is reduced nerve fiber and glial density which can lead to abnormal nerve functionality. Interestingly, the activation of a destructive phenotype takes place in macrophages across the PNS while a reduced number of neuronal bodies is a unique feature of some enteric ganglia. Single cell/nucleus RNA-sequencing has unveiled a striking complexity of cell populations in the peripheral nerves, and these refined cell type annotations could facilitate a better understanding of PNS aging. While the effects of senescence on individual PNS cell types requires further characterization, the use of senolytics appears to improve general PNS function in models of aging. Here, we review the current understanding of age-related changes of the intracardiac, musculoskeletal, and enteric nervous system sub-sections of the PNS, highlighting their commonalities and differences.
Collapse
Affiliation(s)
- Severin Haider
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Eliza Sassu
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Mathew R Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz 8010, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Luis Hortells
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT-The Arctic University of Norway, Tromsø 9019, Norway.
| |
Collapse
|
6
|
Gonzales J, Gulbransen BD. The Physiology of Enteric Glia. Annu Rev Physiol 2025; 87:353-380. [PMID: 39546562 DOI: 10.1146/annurev-physiol-022724-105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as intestinal motility and epithelial barrier integrity through actions that regulate the microenvironment of the enteric nervous system, the activity of enteric neurons, intestinal epithelial functions, and immune response. Changes to glial phenotype in disease switch glial functions and contribute to intestinal inflammation, dysmotility, pain, neuroplasticity, and tumorigenesis. This review summarizes current concepts regarding the physiological roles of enteric glial cells and their potential contributions to gut disease. The discussion is focused on recent evidence that suggests important glial contributions to gastrointestinal health and pathophysiology.
Collapse
Affiliation(s)
- Jacques Gonzales
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
7
|
Mueller JL, Leavitt AR, Rahman AA, Han CY, Ott LC, Mahdavian NS, Carbone SE, King SK, Burns AJ, Poole DP, Hotta R, Goldstein AM, Stavely R. Highly neurogenic glia from human and mouse myenteric ganglia generate functional neurons following culture and transplantation into the gut. Cell Rep 2024; 43:114919. [PMID: 39471175 PMCID: PMC11697211 DOI: 10.1016/j.celrep.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024] Open
Abstract
Enteric neural stem cell (ENSC) therapy offers great promise for neurointestinal diseases; however, current isolation methods yield insufficient neurons for regenerative applications. Multiomic profiling of enteric glial cells (EGCs) suggests that subpopulations within myenteric ganglia (MyGa) are a reservoir of highly neurogenic ENSCs. Here, we describe protocols to enrich for intraganglionic EGCs by isolating intact fragments of MyGa, generating cultures with higher neuronal purity than traditional methodologies isolating intramuscular single cells (IM-SCs). MyGa-derived EGCs transdifferentiate into more neurons than IM-SC-derived EGCs do, confirming their neurogenic predisposition. Following transplantation to the mouse intestine, MyGa-derived neurons generate calcium transients and activate smooth muscle in response to optogenetic stimulation. In the human intestine, MyGa-derived cells are similarly highly neurogenic, are enriched for a distinct progenitor population identified by single-cell RNA sequencing (scRNA-seq), and exhibit neuromuscular connectivity following xenogeneic transplantation into mice. Highly neurogenic ENSCs are preferentially located within the MyGa, and their selective isolation offers considerable potential for therapy.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Narges S Mahdavian
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sebastian K King
- Department of Paediatric Surgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Aydin B, Mamede I, Cardoso J, Deere J, Alvarez Y, Qiao S, Sharma VP, Scavuzzo MA, Donaldson GP, Guo CJ, Mucida D. Gut bacteria-derived succinate induces enteric nervous system regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618589. [PMID: 39463929 PMCID: PMC11507891 DOI: 10.1101/2024.10.15.618589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Enteric neurons control gut physiology by regulating peristalsis, nutrient absorption, and secretion 1 . Disruptions in microbial communities caused by antibiotics or enteric infections result in the loss of enteric neurons and long-term motility disorders 2-5 . However, the signals and underlying mechanisms of this microbiota-neuron communication are unknown. We studied the effects of microbiota on the recovery of the enteric nervous system after microbial dysbiosis caused by antibiotics. We found that both enteric neurons and glia are lost after antibiotic exposure, but recover when the pre-treatment microbiota is restored. Using murine gnotobiotic models and fecal metabolomics, we identified neurogenic bacterial species and their derived metabolite succinate as sufficient to rescue enteric neurons and glia. Unbiased single-nuclei RNA-seq analysis uncovered a novel neural precursor-like population marked by the expression of the neuronal gene Nav2. Genetic fate-mapping showed that Plp1+ enteric glia differentiate into neurons following antibiotic exposure. In contrast, Nav2+ neurons expand upon succinate treatment and indicate an alternative mode of neuronal regeneration under recovery conditions. Our findings highlight specific microbial species, metabolites, and the underlying cellular mechanisms involved in neuronal regeneration, with potential therapeutic implications for peripheral neuropathies.
Collapse
|
9
|
Stavely R, Rahman AA, Mueller JL, Leavitt AR, Han CY, Pan W, Kaiser KN, Ott LC, Ohkura T, Guyer RA, Burns AJ, Koppes AN, Hotta R, Goldstein AM. Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. Neuron 2024; 112:3143-3160.e6. [PMID: 39019043 PMCID: PMC11427168 DOI: 10.1016/j.neuron.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kyla N Kaiser
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail N Koppes
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Lefèvre MA, Godefroid Z, Soret R, Pilon N. Enteric glial cell diversification is influenced by spatiotemporal factors and source of neural progenitors in mice. Front Neurosci 2024; 18:1392703. [PMID: 39268038 PMCID: PMC11390640 DOI: 10.3389/fnins.2024.1392703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Previously focused primarily on enteric neurons, studies of the enteric nervous system (ENS) in both health and disease are now broadening to recognize the equally significant role played by enteric glial cells (EGCs). Commensurate to the vast array of gastrointestinal functions they influence, EGCs exhibit considerable diversity in terms of location, morphology, molecular profiles, and functional attributes. However, the mechanisms underlying this diversification of EGCs remain largely unexplored. To begin unraveling the mechanistic complexities of EGC diversity, the current study aimed to examine its spatiotemporal aspects in greater detail, and to assess whether the various sources of enteric neural progenitors contribute differentially to this diversity. Based on established topo-morphological criteria for categorizing EGCs into four main subtypes, our detailed immunofluorescence analyses first revealed that these subtypes emerge sequentially during early postnatal development, in a coordinated manner with the structural changes that occur in the ENS. When combined with genetic cell lineage tracing experiments, our analyses then uncovered a strongly biased contribution by Schwann cell-derived enteric neural progenitors to particular topo-morphological subtypes of EGCs. Taken together, these findings provide a robust foundation for further investigations into the molecular and cellular mechanisms governing EGC diversity.
Collapse
Affiliation(s)
- Marie A Lefèvre
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Zoé Godefroid
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Pocevičiūtė D, Wennström M, Ohlsson B. Okinawa-Based Nordic Diet Decreases Plasma Glial Fibrillary Acidic Protein Levels in Type 2 Diabetes Patients. Nutrients 2024; 16:2847. [PMID: 39275164 PMCID: PMC11396978 DOI: 10.3390/nu16172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Elevated levels of glial fibrillary acidic protein (GFAP) in plasma reflect neuroinflammation and are linked to cognitive decline. Preclinical studies show that dietary change can attenuate astrocyte reactivity and neuroinflammation. In the current study, we investigate if the Okinawa-based Nordic (O-BN) diet alters plasma GFAP levels in patients with Type 2 Diabetes (T2D), a metabolic disorder associated with cognitive disturbances and an increased risk of dementia. Plasma GFAP levels were measured in T2D patients (n = 30) at baseline, after 3 months of the diet, and after a subsequent 4 months of unrestricted diets. The GFAP levels decreased significantly after 3 months of the diet (p = 0.048) but reverted to baseline levels after 4 months of unrestricted diets. At baseline, the GFAP levels correlated significantly with levels of the neurodegeneration marker neurofilament light polypeptide (r = 0.400*) and, after correcting for age, sex, and body mass index, with proinflammatory plasma cytokines (ranging from r = 0.440* to r = 0.530**) and the metabolic hormone islet amyloid polypeptide (r = 0.478*). We found no correlation with psychological well-being. These results suggest that the O-BN diet reduces neuroinflammation in T2D patients and may thus be an important preventive measure for managing T2D and reducing the risk of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden;
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, 214 28 Malmö, Sweden;
| |
Collapse
|
12
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
13
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Khan AA, Langston HC, Walsh L, Roscoe R, Jayawardhana S, Francisco AF, Taylor MC, McCann CJ, Kelly JM, Lewis MD. Enteric nervous system regeneration and functional cure of experimental digestive Chagas disease with trypanocidal chemotherapy. Nat Commun 2024; 15:4400. [PMID: 38782898 PMCID: PMC11116530 DOI: 10.1038/s41467-024-48749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. There is a lack of evidence on the mechanism of pathogenesis and rationales for treatment. We used a female C3H/HeN mouse model that recapitulates key clinical manifestations to study how infection dynamics shape DCD pathology and the impact of treatment with the front-line, anti-parasitic drug benznidazole. Curative treatment 6 weeks post-infection resulted in sustained recovery of gastrointestinal transit function, whereas treatment failure led to infection relapse and gradual return of DCD symptoms. Neuro/immune gene expression patterns shifted from chronic inflammation to a tissue repair profile after cure, accompanied by increased cellular proliferation, glial cell marker expression and recovery of neuronal density in the myenteric plexus. Delaying treatment until 24 weeks post-infection led to partial reversal of DCD, suggesting the accumulation of permanent tissue damage over the course of chronic infection. Our study shows that murine DCD pathogenesis is sustained by chronic T. cruzi infection and is not an inevitable consequence of acute stage denervation. The risk of irreversible enteric neuromuscular tissue damage and dysfunction developing highlights the importance of prompt diagnosis and treatment. These findings support the concept of treating asymptomatic, T. cruzi-infected individuals with benznidazole to prevent DCD development.
Collapse
Affiliation(s)
- Archie A Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Harry C Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Louis Walsh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Rebecca Roscoe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Michael D Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AJ, Coventry, UK.
| |
Collapse
|
16
|
Schulte S, Decker D, Nowduri B, Gries M, Christmann A, Meyszner A, Rabe H, Saumer M, Schäfer KH. Improving morphological and functional properties of enteric neuronal networks in vitro using a novel upside-down culture approach. Am J Physiol Gastrointest Liver Physiol 2024; 326:G567-G582. [PMID: 38193168 PMCID: PMC11376983 DOI: 10.1152/ajpgi.00170.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.
Collapse
Affiliation(s)
- Steven Schulte
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Dominique Decker
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Bharat Nowduri
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Manuela Gries
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Anne Christmann
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Antoine Meyszner
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Holger Rabe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Monika Saumer
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Karl-Herbert Schäfer
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| |
Collapse
|
17
|
Woods C, Flockton AR, Belkind-Gerson J. Phosphatase and Tensin Homolog Inhibition in Proteolipid Protein 1-Expressing Cells Stimulates Neurogenesis and Gliogenesis in the Postnatal Enteric Nervous System. Biomolecules 2024; 14:346. [PMID: 38540765 PMCID: PMC10967813 DOI: 10.3390/biom14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).
Collapse
Affiliation(s)
- Crystal Woods
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
| | - Amanda R. Flockton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
- Neurogastroenterology and Motility Program, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
19
|
Guyer RA, Picard N, Mueller JL, Ohishi K, Leavitt A, Murphy AJ, Cornejo KM, Hotta R, Goldstein AM. Differentiated neuroblastoma cells remain epigenetically poised for de-differentiation to an immature state. Dis Model Mech 2023; 16:dmm049754. [PMID: 38095019 PMCID: PMC10810560 DOI: 10.1242/dmm.049754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for a significant share of childhood cancer deaths. Prior studies utilizing RNA sequencing of bulk tumor populations showed two predominant cell states characterized by high and low expression of neuronal genes. Although cells respond to treatment by altering their gene expression, it is unclear whether this reflects shifting balances of distinct subpopulations or plasticity of individual cells. Using mouse and human neuroblastoma cell lines lacking MYCN amplification, we show that the antigen CD49b (also known as ITGA2) distinguishes these subpopulations. CD49b expression marked proliferative cells with an immature gene expression program, whereas CD49b-negative cells expressed differentiated neuronal marker genes and were non-cycling. Sorted populations spontaneously switched between CD49b expression states in culture, and CD49b-negative cells could generate rapidly growing, CD49b-positive tumors in mice. Although treatment with the chemotherapy drug doxorubicin selectively killed CD49b-positive cells in culture, the CD49b-positive population recovered when treatment was withdrawn. We profiled histone 3 (H3) lysine 27 acetylation (H3K27ac) to identify enhancers and super enhancers that were specifically active in each population and found that CD49b-negative cells maintained the priming H3 lysine 4 methylation (H3K4me1) mark at elements that were active in cells with high expression of CD49b. Improper maintenance of primed enhancer elements might thus underlie cellular plasticity in neuroblastoma, representing potential therapeutic targets for this lethal tumor.
Collapse
Affiliation(s)
- Richard A. Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicole Picard
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica L. Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kensuke Ohishi
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima 739-1195, Japan
| | - Abigail Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38015, USA
| | - Kristine M. Cornejo
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
20
|
Chen JC, Yang W, Tseng LY, Chang HL. Enteric neurospheres retain the capacity to assemble neural networks with motile and metamorphic gliocytes and ganglia. Stem Cell Res Ther 2023; 14:290. [PMID: 37798638 PMCID: PMC10557225 DOI: 10.1186/s13287-023-03517-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Neurosphere medium (NSM) and self-renewal medium (SRM) were widely used to isolate enteric neural stem cells (ENSCs) in the form of neurospheres. ENSCs or their neurosphere forms were neurogenic and gliogenic, but the compelling evidence for their capacity of assembling enteric neural networks remained lacking, raising the question of their aptitude for rebuilding the enteric nervous system (ENS) in ENSC therapeutics. It prompted us to explore an effective culture protocol or strategy for assembling ENS networks, which might also be employed as an in vitro model to simplify the biological complexity of ENS embedded in gut walls. METHODS NSM and SRM were examined for their capacity to generate neurospheres in mass culture of dispersed murine fetal enterocytes at serially diluted doses and assemble enteric neural networks in two- and three-dimensional cell culture systems and ex vivo on gut explants. Time-lapse microphotography was employed to capture cell activities of assembled neural networks. Neurosphere transplantation was performed via rectal submucosal injection. RESULTS In mass culture of dispersed enterocytes, NSM generated discrete units of neurospheres, whereas SRM promoted neural network assembly with neurospheres akin to enteric ganglia. Both were highly affected by seeding cell doses. SRM had similar ENSC mitosis-driving capacity to NSM, but was superior in driving ENSC differentiation in company with heightened ENSC apoptosis. Enteric neurospheres were motile, capable of merging together. It argued against their clonal entities. When nurtured in SRM, enteric neurospheres proved competent to assemble neural networks on two-dimensional coverslips, in three-dimensional hydrogels and on gut explants. In the course of neural network assembly from enteric neurospheres, neurite extension was preceded by migratory expansion of gliocytes. Assembled neural networks contained motile ganglia and gliocytes that constantly underwent shapeshift. Neurospheres transplanted into rectal submucosa might reconstitute myenteric plexuses of recipients' rectum. CONCLUSION Enteric neurospheres mass-produced in NSM might assemble neural networks in SRM-immersed two- or three-dimensional environments and on gut explants, and reconstitute myenteric plexuses of the colon after rectal submucosal transplantation. Our results also shed first light on the dynamic entity of ENS and open the experimental avenues to explore cellular activities of ENS and facilitate ENS demystification.
Collapse
Affiliation(s)
- Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, 5, Fu-Shin Street, Kweishan, Taoyuan, 333, Taiwan.
| | - Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, 5, Fu-Shin Street, Kweishan, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Li-Yun Tseng
- Pediatric Research Center, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsueh-Ling Chang
- Pediatric Research Center, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| |
Collapse
|
21
|
Laddach A, Chng SH, Lasrado R, Progatzky F, Shapiro M, Erickson A, Sampedro Castaneda M, Artemov AV, Bon-Frauches AC, Amaniti EM, Kleinjung J, Boeing S, Ultanir S, Adameyko I, Pachnis V. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. Nat Commun 2023; 14:5904. [PMID: 37737269 PMCID: PMC10516949 DOI: 10.1038/s41467-023-41492-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Song Hui Chng
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Experimental Drug Development Centre A*STAR 10 Biopolis Road, Chromos, 138670, Singapore
| | - Reena Lasrado
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- COMPASS Pathways PLC, Fora, 33 Broadwick St, London, W1F 0DQ, UK
| | - Fränze Progatzky
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Marisol Sampedro Castaneda
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
- Boehringer Ingelheim RCV, Vienna, Austria
| | - Ana Carina Bon-Frauches
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Eleni-Maria Amaniti
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sainsbury Wellcome Centre, London, UK
| | - Jens Kleinjung
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sila Ultanir
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
22
|
Sunardi M, Cirillo C. Mini-review: "Enteric glia functions in nervous tissue repair: Therapeutic target or tool?". Neurosci Lett 2023; 812:137360. [PMID: 37393007 DOI: 10.1016/j.neulet.2023.137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
In the body, nerve tissue is not only present in the central nervous system, but also in the periphery. The enteric nervous system (ENS) is a highly organized intrinsic network of neurons and glial cells grouped to form interconnected ganglia. Glial cells in the ENS are a fascinating cell population: their neurotrophic role is well established, as well as their plasticity in specific circumstances. Gene expression profiling studies indicate that ENS glia retain neurogenic potential. The identification of neurogenic glial subtype(s) and the molecular basis of glia-derived neurogenesis may have profound biological and clinical implications. In this review, we discuss the potential of using gene-editing for ENS glia and cell transplantation as therapies for enteric neuropathies. Glia in the ENS: target or tool for nerve tissue repair?
Collapse
Affiliation(s)
- Mukhamad Sunardi
- Division of Neural Differentiation and Regeneration (NDR), Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | - Carla Cirillo
- Division of Neural Differentiation and Regeneration (NDR), Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan; Toulouse NeuroImaging Center (ToNIC), National Institute of Health and Medical Research (INSERM), Toulouse University Paul Sabatier, Toulouse, France.
| |
Collapse
|
23
|
Lefèvre MA, Soret R, Pilon N. Harnessing the Power of Enteric Glial Cells' Plasticity and Multipotency for Advancing Regenerative Medicine. Int J Mol Sci 2023; 24:12475. [PMID: 37569849 PMCID: PMC10419543 DOI: 10.3390/ijms241512475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.
Collapse
Affiliation(s)
- Marie A. Lefèvre
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
24
|
Scharr M, Scherer S, Hirt B, Neckel PH. Dickkopf1 induces enteric neurogenesis and gliogenesis in vitro if apoptosis is evaded. Commun Biol 2023; 6:808. [PMID: 37532804 PMCID: PMC10397193 DOI: 10.1038/s42003-023-05072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
Neurogenesis in the postnatal enteric nervous system (ENS) is controversially discussed. Yet, deciphering the regenerative potential of the ENS is essential for our understanding and therapy of human enteric neuropathies. Dickkopf1 (DKK1) is a Wnt-antagonist and involved in the homeostasis of various tissues. We hypothesize that DKK1 could function as a negative regulator on the proliferation of ENS-progenitors in the postnatal gut of mice and human infants. Here, we provide evidence that DKK1 is expressed in the murine and human ENS. If applied to ENS-progenitors in vitro, DKK1 leads to an increased proliferation, however, followed by extensive apoptosis. Yet, once we block apoptosis, DKK1-stimulation markedly increases enteric neurogenesis in murine and human ENS-progenitors. Thus, DKK1 is a strong, ambivalent regulator of the ENS-progenitor cell pool in mice and humans. These results are fundamental steps to reshaping our understanding of the homeostasis of the ENS in health and disease.
Collapse
Affiliation(s)
- Melanie Scharr
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Le Berre C, Naveilhan P, Rolli-Derkinderen M. Enteric glia at center stage of inflammatory bowel disease. Neurosci Lett 2023; 809:137315. [PMID: 37257681 DOI: 10.1016/j.neulet.2023.137315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.
Collapse
Affiliation(s)
- Catherine Le Berre
- Hépato-Gastro-Entérologie et Assistance Nutritionnelle, Inserm CIC 1413, Institut des Maladies de l'Appareil Digestif (IMAD), CHU Nantes, 1 place Alexis Ricordeau, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France.
| |
Collapse
|
26
|
Viola MF, Chavero-Pieres M, Modave E, Delfini M, Stakenborg N, Estévez MC, Fabre N, Appeltans I, Martens T, Vandereyken K, Theobald H, Van Herck J, Petry P, Verheijden S, De Schepper S, Sifrim A, Liu Z, Ginhoux F, Azhar M, Schlitzer A, Matteoli G, Kierdorf K, Prinz M, Vanden Berghe P, Voet T, Boeckxstaens G. Dedicated macrophages organize and maintain the enteric nervous system. Nature 2023; 618:818-826. [PMID: 37316669 DOI: 10.1038/s41586-023-06200-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-β produced by the ENS; depletion of the ENS and disruption of transforming growth factor-β signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marta Chavero-Pieres
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Elodie Modave
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marcello Delfini
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Maria Cuende Estévez
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Naomi Fabre
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Iris Appeltans
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Tobie Martens
- Laboratory for Enteric NeuroScience, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Hannah Theobald
- Quantitative Systems Biology, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Jens Van Herck
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Philippe Petry
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon Verheijden
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sebastiaan De Schepper
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
- Laboratory of Multi-Omic Integrative Bioinformatics, Department of Genetics, KU Leuven, Leuven, Belgium
- Leuven AI Institute, KU Leuven, Leuven, Belgium
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Singapore Immunology Network, Agency for Science, Technology & Research, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andreas Schlitzer
- Quantitative Systems Biology, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
28
|
Guyer RA, Stavely R, Robertson K, Bhave S, Mueller JL, Picard NM, Hotta R, Kaltschmidt JA, Goldstein AM. Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis. Cell Rep 2023; 42:112194. [PMID: 36857184 PMCID: PMC10123761 DOI: 10.1016/j.celrep.2023.112194] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/24/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.
Collapse
Affiliation(s)
- Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keiramarie Robertson
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole M Picard
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Julia A Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Stavely R, Hotta R, Guyer RA, Picard N, Rahman AA, Omer M, Soos A, Szocs E, Mueller J, Goldstein AM, Nagy N. A distinct transcriptome characterizes neural crest-derived cells at the migratory wavefront during enteric nervous system development. Development 2023; 150:dev201090. [PMID: 36779913 PMCID: PMC10108706 DOI: 10.1242/dev.201090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023]
Abstract
Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A. Guyer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Picard
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adam Soos
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Emoke Szocs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Jessica Mueller
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
30
|
Collier CA, Foncerrada S, Clevenger AJ, Shetty A, Raghavan SA. Acute Exposure to Pyridostigmine Bromide Disrupts Cholinergic Myenteric Neuroimmune Function in Mice. Adv Biol (Weinh) 2023; 7:e2200254. [PMID: 36802210 DOI: 10.1002/adbi.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Indexed: 02/21/2023]
Abstract
Gulf War Illness (GWI) results from chemical exposure during the Gulf War, with notable impacts on gastrointestinal motility. Due to the limited demographic impacted by this ailment, an in-depth investigation of the GWI has yielded little regarding the underlying pathophysiological mechanisms. Here, the hypothesis that exposure to pyridostigmine bromide (PB) results in severe enteric neuro-inflammation, that cascades to disruptions in colonic motility, is tested. The analyses are performed on male C57BL/6 mice that are treated with physiologically similar doses of PB given to GW veterans. When colonic motility is assessed, GWI colons have significantly reduced forces in response to acetylcholine or electrical field stimulation. GWI is also accompanied by high levels of pro-inflammatory cytokines and chemokines, associated with increased numbers of CD40+ pro-inflammatory macrophages within the myenteric plexus. Enteric neurons responsible for mediating colonic motility reside within the myenteric plexus, and PB exposure reduced their numbers. Significant smooth muscle hypertrophy is also observed due to increased inflammation. Together, the results show that PB exposure caused functional and anatomical dysfunction, promoting impaired motility within the colon. Achieving a greater understanding of the mechanisms of GWI will allow more refinement in therapeutic options that improve veterans' quality of life.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Steven Foncerrada
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Ashok Shetty
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, 8447 Riverside Pkwy, Bryan, College Station, TX, 77807, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
31
|
Baghdadi MB, Kim TH. The multiple roles of enteric glial cells in intestinal homeostasis and regeneration. Semin Cell Dev Biol 2023:S1084-9521(23)00005-8. [PMID: 36658046 DOI: 10.1016/j.semcdb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The gastrointestinal tract is innervated by the enteric nervous system (ENS), a complex network of neurons and glial cells, also called the "second brain". Enteric glial cells, one of the major cell types in the ENS, are located throughout the entire gut wall. Accumulating evidence has demonstrated their critical requirement for gut physiology. Notably, recent studies have shown that enteric glial cells control new aspects of gut function such as regulation of intestinal stem cell behavior and immunity. In addition, the emergence of single-cell genomics technologies has revealed enteric glial cell heterogeneity and plasticity. In this review, we discuss established and emerging concepts regarding the roles of mammalian enteric glial cells and their heterogeneity in gut development, homeostasis, and regeneration.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
32
|
Shi CJ, Lian JJ, Zhang BW, Cha JX, Hua QH, Pi XP, Hou YJ, Xie X, Zhang R. TGFβR-1/ALK5 inhibitor RepSox induces enteric glia-to-neuron transition and influences gastrointestinal mobility in adult mice. Acta Pharmacol Sin 2023; 44:92-104. [PMID: 35794374 DOI: 10.1038/s41401-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Promoting adult neurogenesis in the enteric nervous system (ENS) may be a potential therapeutic approach to cure enteric neuropathies. Enteric glial cells (EGCs) are the most abundant glial cells in the ENS. Accumulating evidence suggests that EGCs can be a complementary source to supply new neurons during adult neurogenesis in the ENS. In the brain, astrocytes have been intensively studied for their neuronal conversion properties, and small molecules have been successfully used to induce the astrocyte-to-neuron transition. However, research on glia-to-neuron conversion in the ENS is still lacking. In this study, we used GFAP-Cre:Rosa-tdTomato mice to trace glia-to-neuron transdifferentiation in the ENS in vivo and in vitro. We showed that GFAP promoter-driven tdTomato exclusively labelled EGCs and was a suitable marker to trace EGCs and their progeny cells in the ENS of adult mice. Interestingly, we discovered that RepSox or other ALK5 inhibitors alone induced efficient transdifferentiation of EGCs into neurons in vitro. Knockdown of ALK5 further confirmed that the TGFβR-1/ALK5 signalling pathway played an essential role in the transition of EGCs to neurons. RepSox-induced neurons were Calbindin- and nNOS-positive and displayed typical neuronal electrophysiological properties. Finally, we showed that administration of RepSox (3, 10 mg· kg-1 ·d-1, i.g.) for 2 weeks significantly promoted the conversion of EGCs to neurons in the ENS and influenced gastrointestinal motility in adult mice. This study provides a method for efficiently converting adult mouse EGCs into neurons by small-molecule compounds, which might be a promising therapeutic strategy for gastrointestinal neuropathy.
Collapse
Affiliation(s)
- Chang-Jie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun-Jiang Lian
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo-Wen Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jia-Xue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu-Hong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Ping Pi
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Jun Hou
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Császár-Nagy N, Bókkon I. Hypnotherapy and IBS: Implicit, long-term stress memory in the ENS? Heliyon 2022; 9:e12751. [PMID: 36685398 PMCID: PMC9849985 DOI: 10.1016/j.heliyon.2022.e12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The association between irritable bowel syndrome (IBS) and psychiatric and mood disorders may be more fundamental than was previously believed. Prenatal, perinatal, postnatal, and early-age conditions can have a key role in the development of IBS. Subthreshold mental disorders (SMDs) could also be a significant source of countless diverse diseases and may be a cause of IBS development. We hypothesize that stress-induced implicit memories may persist throughout life by epigenetic processes in the enteric nervous system (ENS). These stress-induced implicit memories may play an essential role in the emergence and maintenance of IBS. In recent decades, numerous studies have proven that hypnosis can improve the primary symptoms of IBS and also reduce noncolonic symptoms such as anxiety and depression and improve quality of life and cognitive function. These significant beneficial effects of hypnosis on IBS may be because hypnosis allows access to unconscious brain processes.
Collapse
Affiliation(s)
- N. Császár-Nagy
- National University of Public Services, Budapest, Hungary,Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - I. Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary,Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA,Corresponding author. H-1238, Budapest, Láng Endre 68, Hungary.
| |
Collapse
|
34
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
35
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
36
|
Enteric Neural Network Assembly Was Promoted by Basic Fibroblast Growth Factor and Vitamin A but Inhibited by Epidermal Growth Factor. Cells 2022; 11:cells11182841. [PMID: 36139415 PMCID: PMC9496868 DOI: 10.3390/cells11182841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Extending well beyond the original use of propagating neural precursors from the central nervous system and dorsal root ganglia, neurosphere medium (NSM) and self-renewal medium (SRM) are two distinct formulas with widespread popularity in enteric neural stem cell (ENSC) applications. However, it remains unknown what growth factors or nutrients are crucial to ENSC development, let alone whether the discrepancy in their components may affect the outcomes of ENSC culture. Dispersed enterocytes from murine fetal gut were nurtured in NSM, SRM or their modifications by selective component elimination or addition to assess their effects on ENSC development. NSM generated neuriteless neurospheres, whereas SRM, even deprived of chicken embryo extract, might wire ganglia together to assemble neural networks. The distinct outcomes came from epidermal growth factor, which inhibited enteric neuronal wiring in NSM. In contrast, basic fibroblast growth factor promoted enteric neurogenesis, gangliogenesis, and neuronal wiring. Moreover, vitamin A derivatives might facilitate neuronal maturation evidenced by p75 downregulation during ENSC differentiation toward enteric neurons to promote gangliogenesis and network assembly. Our results might help to better manipulate ENSC propagation and differentiation in vitro, and open a new avenue for the study of enteric neuronal neuritogenesis and synaptogenesis.
Collapse
|
37
|
Ren B, Fu S, Liu Y, Kang J, Wang B, Yao Z, Wang H, Sun D. Dioscin ameliorates slow transit constipation in mice by up-regulation of the BMP2 secreted by muscularis macrophages. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1132-1140. [PMID: 36246057 PMCID: PMC9526884 DOI: 10.22038/ijbms.2022.64683.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Objectives The loss of enteric neurons has been shown to be a major cause of slow transit constipation (STC). Gut microbiota and muscularis macrophages (MMs) are associated with the enteric nervous system (ENS) development and gastrointestinal (GI) motility. This study aimed to investigate whether Dioscin (DIO) increased GI motility and inhibited neuron loss by modulating gut microbiota profile, improving inflammation in the ENS microenvironment. Materials and Methods The STC model was established by loperamide. The alteration of the gut microbiota was analyzed by 16S rDNA sequencing. The longitudinal muscle and myenteric plexus (LMMP) from the colon were prepared for flow cytometry, immunofluorescence, western blot, and qRT-PCR. Results DIO increased the stool number, stool water content and shortened whole gut transit time, helped to recover the gut microbial diversity and microbiota community structure, and increased the abundance of Muribaculaceae in STC mice. Compared with the STC group, the number of MMs and the level of the iNOS, IL-6, and TNFα genes were significantly decreased following DIO treatment. Moreover, DIO may increase the number of HuC/D+ neurons per ganglion by up-regulating the BMP2 secreted by MMs and activating the BMP2/p-Smad1/5/9 signaling pathway. Furthermore, the level of excitatory neurotransmitter AchE in colon tissues exhibited a substantial increase in the DIO group. However, the level of inhibitory neurotransmitter VIP was markedly decreased. Conclusion Our results provide that DIO increases GI motility and inhibits neuron loss by modulating gut microbiota profile, improving inflammation in the ENS microenvironment and up-regulating the BMP2 secreted by MMs.
Collapse
Affiliation(s)
- BingBing Ren
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - SiQi Fu
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - Yong Liu
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,These authors contributed eqully to this work
| | - JianYu Kang
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - ZhiWei Yao
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hao Wang
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, China,Corresponding authors: Da-Qing Sun. Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping, Tianjin 300052, China. , Hao Wang. Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| | - DaQing Sun
- Department of Pediatric Surgery, General Hospital, Tianjin Medical University, Tianjin, China,Corresponding authors: Da-Qing Sun. Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping, Tianjin 300052, China. , Hao Wang. Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
38
|
Virtanen H, Garton D, Andressoo JO. Reply. Cell Mol Gastroenterol Hepatol 2022; 14:968-969. [PMID: 35940207 PMCID: PMC9500437 DOI: 10.1016/j.jcmgh.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Heikki Virtanen
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel Garton
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Neurobiology, Care Sciences and Society, Neurogeriatrik, Karolinska Institutet, Sweden
| |
Collapse
|
39
|
Duan S, Sawyer TW, Sontz RA, Wieland BA, Diaz AF, Merchant JL. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 14:1025-1051. [PMID: 35835391 PMCID: PMC9490044 DOI: 10.1016/j.jcmgh.2022.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Efforts to characterize the signaling mechanisms that underlie gastroenteropancreatic neoplasms (GEP-NENs) are precluded by a lack of comprehensive models that recapitulate pathogenesis. Investigation into a potential cell-of-origin for gastrin-secreting NENs revealed a non-cell autonomous role for loss of menin in neuroendocrine cell specification, resulting in an induction of gastrin in enteric glia. Here, we investigated the hypothesis that cell autonomous Men1 inactivation in glial fibrillary acidic protein (GFAP)-expressing cells induced neuroendocrine differentiation and tumorigenesis. METHODS Transgenic GFAPΔMen1 mice were generated by conditional GFAP-directed Men1 deletion in GFAP-expressing cells. Cre specificity was confirmed using a tdTomato reporter. GFAPΔMen1 mice were evaluated for GEP-NEN development and neuroendocrine cell hyperplasia. Small interfering RNA-mediated Men1 silencing in a rat enteric glial cell line was performed in parallel. RESULTS GFAPΔMen1 mice developed pancreatic NENs, in addition to pituitary prolactinomas that phenocopied the human MEN1 syndrome. GFAPΔMen1 mice exhibited gastric neuroendocrine hyperplasia that coincided with a significant loss of GFAP expression. Men1 deletion induced loss of glial-restricted progenitor lineage markers and an increase in neuroendocrine genes, suggesting a reprogramming of GFAP+ cells. Deleting Kif3a, a mediator of Hedgehog signaling, in GFAP-expressing cells attenuated neuroendocrine hyperplasia by restricting the neuroendocrine cell fate. Similar results in the pancreas were observed when Sox10 was used to delete Men1. CONCLUSIONS GFAP-directed Men1 inactivation exploits glial cell plasticity in favor of neuroendocrine differentiation.
Collapse
Affiliation(s)
- Suzann Duan
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Travis W. Sawyer
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona
| | - Ricky A. Sontz
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Bradley A. Wieland
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Andres F. Diaz
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Juanita L. Merchant
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona,Correspondence Address correspondence to: Dr Juanita L. Merchant, University of Arizona, 1515 N. Campbell Ave, Tucson, AZ 85724; tel: (520) 626-7897; fax: (520) 626-1291.
| |
Collapse
|
40
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
41
|
Middelhoff M, Valenti G, Tomassoni L, Ochiai Y, Belin B, Takahashi R, Malagola E, Nienhüser H, Finlayson M, Hayakawa Y, Zamechek LB, Renz BW, Westphalen CB, Quante M, Margolis KG, Sims PA, Laise P, Califano A, Rao M, Gershon MD, Wang TC. Adult enteric Dclk1-positive glial and neuronal cells reveal distinct responses to acute intestinal injury. Am J Physiol Gastrointest Liver Physiol 2022; 322:G583-G597. [PMID: 35319286 PMCID: PMC9109794 DOI: 10.1152/ajpgi.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023]
Abstract
Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.
Collapse
Affiliation(s)
- Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Finlayson
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Internal Medicine, Comprehensive Cancer Center, Hospital of the University of Munich, Munich, Germany
| | - Michael Quante
- Klinik für Innere Medizin II, Gastrointestinale Onkologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Kara G Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Peter A Sims
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Pasquale Laise
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
- DarwinHealth Inc., New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Meenakshi Rao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children´s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
42
|
Wang Y, Xu X, Lin L. Prucalopride might improve intestinal motility by promoting the regeneration of the enteric nervous system in diabetic rats. Int J Mol Med 2022; 50:87. [PMID: 35543167 PMCID: PMC9162040 DOI: 10.3892/ijmm.2022.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The present study aimed to investigate whether prucalopride, as a 5-hydroxytryptamine 4 (5-HT4) receptor agonist, improved intestinal motility by promoting the regeneration of the enteric nervous system (ENS) in rats with diabetes mellitus (DM). A rat model of DM was established using an intraperitoneal injection of streptozotocin. The rats were randomly divided into four groups of 6 rats/group: Control, DM (DM model), DM + A (5 µg/kg prucalopride) and DM + B (10 µg/kg prucalopride). The rats in the Control group were given an equal volume of citric acid solvent. After successful model establishment, high blood glucose levels were maintained for 2 weeks before administration of prucalopride. The colonic transit time was measured using the glass bead discharge method. It was revealed that the colonic transit time of diabetic rats was the longest, and this was significantly shortened in the DM + B group. Subsequently, the colons were collected. The expression levels of Nestin, glial fibrillary acidic protein (GFAP), SOX10, RNA-binding protein human antigen D (HuD) and ubiquitin thiolesterase (PGP9.5) were determined via immunohistochemical analysis. Immunofluorescence double staining of 5-HT4 + Nestin and Ki67 + Nestin was performed. The 5-HT level was measured using ELISA. Compared with that in the control group, Nestin expression was significantly increased in the DM and DM + A groups, and it was concentrated in columnar epithelial cells and the mesenchyme. Furthermore, the expression levels of Nestin in the DM + A group were higher than those in the DM group. No difference was observed in the expression levels of Nestin between the DM + B group and the Control group. The expression levels of 5-HT protein were highest in the Control group; however, the expression levels of 5-HT protein in the DM group, DM + A group and DM + B group exhibited an increasing trend. Similar trends in the expression of 5-HT4 and Nestin were not observed; however, similar trends in the expression of Nestin and Ki67 were observed. The expression levels of GFAP, SOX10, PGP9.5 and Ki67 in the DM + A and DM + B groups were higher compared with those in the DM group. In the DM + A group, HuD expression was decreased compared with that in the Control group but it was markedly higher compared with that in the DM group. In conclusion, prucalopride may improve intestinal motility by promoting ENS regeneration in rats with DM.
Collapse
Affiliation(s)
- Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinyu Xu
- Department of Spleen and Stomach Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210014, P.R. China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
Liu C, Yang J. Enteric Glial Cells in Immunological Disorders of the Gut. Front Cell Neurosci 2022; 16:895871. [PMID: 35573829 PMCID: PMC9095930 DOI: 10.3389/fncel.2022.895871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric glial cells (EGCs) are one of the major cell types of neural crest lineage distributed in the gastrointestinal tract. EGCs represent an integral part of the enteric nervous system (ENS) and significantly outnumber ENS neurons. Studies have suggested that EGCs would exert essential roles in supporting the survival and functions of the ENS neurons. Notably, recent evidence has begun to reveal that EGCs could possess multiple immune functions and thereby may participate in the immune homeostasis of the gut. In this review article, we will summarize the current evidence supporting the potential involvement of EGCs in several important immunological disorders, including inflammatory bowel disease, celiac disease, and autoimmune enteropathy. Further, we highlight critical questions on the immunological aspects of EGCs that warrant future research attention.
Collapse
Affiliation(s)
- Chang Liu
- Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Jing Yang
| |
Collapse
|
44
|
Rueckert H, Ganz J. How to Heal the Gut's Brain: Regeneration of the Enteric Nervous System. Int J Mol Sci 2022; 23:ijms23094799. [PMID: 35563190 PMCID: PMC9105052 DOI: 10.3390/ijms23094799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.
Collapse
Affiliation(s)
- Helen Rueckert
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
45
|
Virtanen H, Garton DR, Andressoo JO. Myenteric Neurons Do Not Replicate in Small Intestine Under Normal Physiological Conditions in Adult Mouse. Cell Mol Gastroenterol Hepatol 2022; 14:27-34. [PMID: 35421596 PMCID: PMC9117811 DOI: 10.1016/j.jcmgh.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) is the largest part of the peripheral nervous system; moreover, abnormal ENS development and function are associated with multiple human pathologies. Data from several groups suggest that under normal physiological conditions in adult animals, enteric nerve cells do not replicate. A study by Kulkarni et al in 2017 challenged this view and proposed that nearly 70% of enteric neurons in the myenteric ganglia are born in 1 week. The authors of this study suggested that differences in DNA labelling times and DNA denaturation conditions might explain discrepancies with previous reports. Previous studies were carried out using different conditions and labelling techniques in various regions of the gastrointestinal tract; thus, conclusions have remained elusive. METHODS Here, we have eliminated those variables by analyzing the whole small intestine using the reagents and conditions that Kulkarni et al used. To exclude variables related to immunohistochemistry, we carried out parallel experiments with "click chemistry"-based detection of DNA replication. RESULTS Although proliferation was readily detected in the epithelium, we found no evidence of neuronal replication in the myenteric ganglia. CONCLUSIONS We conclude that within 1 week under normal physiological conditions, myenteric neurons in the small intestine do not replicate.
Collapse
Affiliation(s)
- Heikki Virtanen
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel R Garton
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Liu Y, Zhou S, Zhao L, Gu X. Identification of Neuronal Cells in Sciatic Nerves of Adult Rats. Front Cell Neurosci 2022; 16:816814. [PMID: 35401123 PMCID: PMC8991689 DOI: 10.3389/fncel.2022.816814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prior research generally confirms that there are no neuronal cell bodies in the adult sciatic nerve. However, we occasionally find some neuronal cells in adult rat sciatic nerves, either intact or crush-injured. By whole-mount staining and optical imaging of the hyalinized sciatic nerves for Stmn2 (a specific marker for neuronal cells), we found those neuronal cells with irregular distribution in the sciatic nerves in both crushed model and normal rats. We investigated the identity of those cells and established a cultured sciatic nerve model. Immunohistochemistry evidence both in vivo and in vitro illustrated that some of those cells are mature neurons in sciatic nerves. With single-cell sequencing of neuronal cells in adeno-associated virus (AAV)-infected sciatic nerves, we identified that some of those cells are a kind of neuronal stem-like cells. Then we constructed a Nestin-CreERT 2 rat line and traced those cells with fluorescence labeling which was induced by tamoxifen. Interesting, we proved that neuronal stem-like cells could proliferate by combination of EdU incorporation with staining in the sciatic nerves of transgenic rats. Together, the discovery of neuronal cells in adult sciatic nerves will make us aware of the distribution of neurons in the peripheral nervous system. Especially our data suggest that neuronal stem-like cells could proliferate in the sciatic nerves of adult rats.
Collapse
Affiliation(s)
- Yisheng Liu
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lili Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaosong Gu
- Model Animal Research Center, Nanjing University, Nanjing, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
47
|
Applications of Single-Cell Sequencing Technology to the Enteric Nervous System. Biomolecules 2022; 12:biom12030452. [PMID: 35327644 PMCID: PMC8946246 DOI: 10.3390/biom12030452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 02/05/2023] Open
Abstract
With recent technical advances and diminishing sequencing costs, single-cell sequencing modalities have become commonplace. These tools permit analysis of RNA expression, DNA sequence, chromatin structure, and cell surface antigens at single-cell resolution. Simultaneous measurement of numerous parameters can resolve populations including rare cells, thus revealing cellular diversity within organs and permitting lineage reconstruction in developing tissues. Application of these methods to the enteric nervous system has yielded a wealth of data and biological insights. We review recent papers applying single-cell sequencing tools to the nascent neural crest and to the developing and mature enteric nervous system. These studies have shown significant diversity of enteric neurons and glia, suggested paradigms for neuronal specification, and revealed signaling pathways active during development. As technology evolves and multiome techniques combining two or more of transcriptomic, genomic, epigenetic, and proteomic data become prominent, we anticipate these modalities will become commonplace in ENS research and may find a role in diagnostic testing and personalized therapeutics.
Collapse
|
48
|
Iruzubieta P, Cantarero I, Monzón M, Lahoz M, Junquera C. Supporting Evidence of Human Enteric Nervous System Adult Neurogenesis: Presence of Primary Cilia and Adult Neurogenesis Markers. Cell Mol Neurobiol 2022; 42:473-481. [PMID: 33237455 PMCID: PMC11441200 DOI: 10.1007/s10571-020-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Adult neurogenesis has been profusely studied in central nervous system. However, its presence in enteric nervous system remains elusive although it has been recently demonstrated in mice and intimately linked to glial cells. Moreover, primary cilium is an important organelle in central adult neurogenesis. In the present study, we analysed some parallelisms between central and enteric nervous system (ENS) in humans based on ultrastructural and immunohistochemical techniques. Thus, we described the presence of primary cilia in some subtypes of glial cells and Interstitial Cells of Cajal (ICCs) and we performed 3-D reconstructions to better characterise their features. Besides, we studied the expression of several adult neurogenesis-related proteins. Immature neuron markers were found in human ENS, supporting the existence of adult neurogenesis. However, only ICCs showed proliferation markers. Hence, we propose a new paradigm where ICCs would constitute the original neural stem cells which, through asymmetrical cell division, would generate the new-born neurons.
Collapse
Affiliation(s)
- Pablo Iruzubieta
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS), Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Irene Cantarero
- Dpto. Biología Celular, Fisiología e Inmunología. Facultad de Medicina, Instituto Maimonides de Investigación Biomédica (IMIBIC), Universidad de Córdoba, Córdoba, Spain
| | - Marta Monzón
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragón (IIS), Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Manuel Lahoz
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Concepción Junquera
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragón (IIS), Domingo Miral s/n, 50009, Zaragoza, Spain
| |
Collapse
|
49
|
Schonkeren SL, Küthe TT, Idris M, Bon-Frauches AC, Boesmans W, Melotte V. The gut brain in a dish: Murine primary enteric nervous system cell cultures. Neurogastroenterol Motil 2022; 34:e14215. [PMID: 34236124 PMCID: PMC9285479 DOI: 10.1111/nmo.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) is an extensive neural network embedded in the wall of the gastrointestinal tract that regulates digestive function and gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neurons and enteric glial cells. In vitro techniques allow simplified investigation of ENS function, and different culture methods have been developed over the years helping to understand the role of ENS cells in health and disease. PURPOSE This review focuses on summarizing and comparing available culture protocols for the generation of primary ENS cells from adult mice, including dissection of intestinal segments, enzymatic digestions, surface coatings, and culture media. In addition, the potential of human ENS cultures is also discussed.
Collapse
Affiliation(s)
- Simone L Schonkeren
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tara T Küthe
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Musa Idris
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ana C Bon-Frauches
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Werend Boesmans
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Veerle Melotte
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
50
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|