1
|
Pushchina EV, Pimenova EA, Kapustyanov IA, Bykova ME. Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon ( Oncorhynchus keta) Brain After Acute Traumatic Injury. Int J Mol Sci 2025; 26:644. [PMID: 39859360 PMCID: PMC11765592 DOI: 10.3390/ijms26020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the "astrocyte-like" response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.P.); (I.A.K.); (M.E.B.)
| | | | | | | |
Collapse
|
2
|
Bahaaeldin M, Bülte C, Luelsberg F, Kumar S, Kappler J, Völker C, Schilling K, Baader SL. Engrailed-2 and inflammation convergently and independently impinge on cerebellar Purkinje cell differentiation. J Neuroinflammation 2024; 21:306. [PMID: 39609827 PMCID: PMC11603920 DOI: 10.1186/s12974-024-03301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorders (ASD) have a complex pathogenesis thought to include both genetic and extrinsic factors. Among the latter, inflammation of the developing brain has recently gained growing attention. However, how genetic predisposition and inflammation might converge to precipitate autistic behavior remains elusive. Cerebellar structure and function are well known to be affected in autism. We therefore used cerebellar slice cultures to probe whether inflammatory stimulation and (over)expression of the autism susceptibility gene Engrailed-2 interact in shaping differentiation of Purkinje cells, key organizers of cerebellar histogenesis and function. We show that lipopolysaccharide treatment reduces Purkinje cell dendritogenesis and that this effect is enhanced by over-expression of Engrailed-2 in these cells. The effects of lipopolysaccharide can be blocked by inhibiting microglia proliferation and also by blocking tumor necrosis factor alpha receptor signaling, suggesting microglia and tumor necrosis factor alpha are major players in this scenario. These findings identify Purkinje cells as a potential integrator of genetic and environmental signals that lead to an autism-associated morphology.
Collapse
Affiliation(s)
- Mohammed Bahaaeldin
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Carolin Bülte
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Fabienne Luelsberg
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Sujeet Kumar
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
- National Reference Laboratory for Tuberculosis, ICMR-RMRC, Bhubaneswar, Odisha, India
| | - Joachim Kappler
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, 53125, Bonn, Germany
| | - Christof Völker
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, 53125, Bonn, Germany
| | - Karl Schilling
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany.
| |
Collapse
|
3
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Weaver O, Gano D, Zhou Y, Kim H, Tognatta R, Yan Z, Ryu JK, Brandt C, Basu T, Grana M, Cabriga B, Alzamora MDPS, Barkovich AJ, Akassoglou K, Petersen MA. Fibrinogen inhibits sonic hedgehog signaling and impairs neonatal cerebellar development after blood-brain barrier disruption. Proc Natl Acad Sci U S A 2024; 121:e2323050121. [PMID: 39042684 PMCID: PMC11295022 DOI: 10.1073/pnas.2323050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.
Collapse
Affiliation(s)
- Olivia Weaver
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Dawn Gano
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Hosung Kim
- Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Reshmi Tognatta
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Caroline Brandt
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Trisha Basu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Martin Grana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
| | - Belinda Cabriga
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Maria del Pilar S. Alzamora
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - A. James Barkovich
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA94143
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Mark A. Petersen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
5
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
6
|
Liu F, Li S, Zhao X, Xue S, Li H, Yang G, Li Y, Wu Y, Zhu L, Chen L, Wu H. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants (Basel) 2023; 12:antiox12040806. [PMID: 37107182 PMCID: PMC10135177 DOI: 10.3390/antiox12040806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.
Collapse
|
7
|
Huynh DT, Boyce M. Chemical Biology Approaches to Understanding Neuronal O-GlcNAcylation. Isr J Chem 2023; 63:e202200071. [PMID: 36874376 PMCID: PMC9983623 DOI: 10.1002/ijch.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/16/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous post-translational modification in mammals, decorating thousands of intracellular proteins. O-GlcNAc cycling is an essential regulator of myriad aspects of cell physiology and is dysregulated in numerous human diseases. Notably, O-GlcNAcylation is abundant in the brain and numerous studies have linked aberrant O-GlcNAc signaling to various neurological conditions. However, the complexity of the nervous system and the dynamic nature of protein O-GlcNAcylation have presented challenges for studying of neuronal O-GlcNAcylation. In this context, chemical approaches have been a particularly valuable complement to conventional cellular, biochemical, and genetic methods to understand O-GlcNAc signaling and to develop future therapeutics. Here we review selected recent examples of how chemical tools have empowered efforts to understand and rationally manipulate O-GlcNAcylation in mammalian neurobiology.
Collapse
Affiliation(s)
- Duc Tan Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
9
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
10
|
Filev AD, Kostyuk SV, Umriukhin PE, Pisarev VM. Oxidized Cell-Free DNA Rapidly Skews the Transcriptional Profile of Brain Cells toward Boosting Neurogenesis and Neuroplasticity. Curr Issues Mol Biol 2021; 43:1583-1591. [PMID: 34698136 PMCID: PMC8929019 DOI: 10.3390/cimb43030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-free DNA (cfDNA) is liberated and accumulated in neural tissue due to cell damage. The oxidative and nitrosative stress in the brain that accompanies various pathological conditions has been shown to increase the oxidation of cellular and cell-free DNA. Whether the high concentration of non-oxidized and oxidized cfDNA may affect the transcriptome response of brain cells has not been studied. In the current work, we studied whether cfDNA fragments affect several key pathways, including neurogenesis, at the level of gene expression in brain cells. In the study, primary rat cerebellum cell cultures were used to assess the effects of oxidized and non-oxidized cfDNA on the expression of 91 genes in brain cells. We found that only oxidized cfDNA, not non-oxidized cfDNA, significantly altered the transcription in brain cells in 3 h. The pattern of change included all 10 upregulated genes (S100A8, S100A9, S100b, TrkB, Ngf, Pink1, Aqp4, Nmdar, Kcnk2, Mapk1) belonging to genes associated with neurogenesis and neuroplasticity. The expression of inflammatory and apoptosis genes, which oppose neurogenesis, decreased. The results show that the oxidized form of cfDNA positively regulates early gene expression of neurogenesis and neuroplasticity. At the same time, the question of whether chronic elevation of cfDNA concentration alters brain cells remains unexplored.
Collapse
Affiliation(s)
- Anton D. Filev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
- Correspondence:
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir M. Pisarev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| |
Collapse
|
11
|
Hoerig CM, Plant-Fox AS, Pulley MD, Di K, Bota DA. Exploring the role and clinical implications of proteasome inhibition in medulloblastoma. Pediatr Blood Cancer 2021; 68:e29168. [PMID: 34114315 PMCID: PMC10516099 DOI: 10.1002/pbc.29168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Ubiquitin proteasome-mediated protein degradation has been implicated in posttranslational oncogenesis in medulloblastoma. Current research is evaluating the clinical implications of proteasome inhibition as a therapeutic target. In medulloblastoma cell lines, proteasome inhibitors induce apoptosis and inhibit cell proliferation via multiple pathways involving activation of caspase pathways, NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway inhibition, reduced AKT/mTOR pathway activity, and pro-apoptotic protein expression. Second-generation proteasome inhibitors demonstrate blood-brain barrier penetration while maintaining antitumor effect. This review summarizes the ubiquitin-proteasome system in the pathogenesis of medulloblastoma and the potential clinical implications.
Collapse
Affiliation(s)
- Clay M Hoerig
- Department of Pediatric Hematology/Oncology, Children's Hospital Orange County, Orange, California, USA
- University of California, Irvine, California, USA
| | - Ashley S Plant-Fox
- Department of Pediatric Oncology, Ann and Robert H. Lurie Children's Hospital Chicago, Illinois, USA
- University of California, Irvine, California, USA
| | - Michelle D Pulley
- Department of Pediatric Hematology/Oncology, Children's Hospital Orange County, Orange, California, USA
- University of California, Irvine, California, USA
| | - Kaijun Di
- University of California, Irvine, California, USA
| | - Daniela A Bota
- Department of Neurology, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Choi JM, Acharya R, Marasini S, Narayan B, Lee KW, Hwang WS, Chang DY, Kim SS, Suh-Kim H. Cell Type-specific Knockout with Gli1-mediated Cre Recombination in the Developing Cerebellum. Exp Neurobiol 2021; 30:203-212. [PMID: 34230222 PMCID: PMC8278141 DOI: 10.5607/en21017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP-flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.
Collapse
Affiliation(s)
- Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Bashyal Narayan
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Kwang-Wook Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| |
Collapse
|
13
|
Martí-Clúa J. Incorporation of 5-Bromo-2'-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells 2021; 10:cells10061453. [PMID: 34200598 PMCID: PMC8229392 DOI: 10.3390/cells10061453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The synthetic halogenated pyrimidine analog, 5-bromo-2'-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2'-deoxyuridine to label dividing cells.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
14
|
Developmental Role of Adenosine Kinase in the Cerebellum. eNeuro 2021; 8:ENEURO.0011-21.2021. [PMID: 33863781 PMCID: PMC8174006 DOI: 10.1523/eneuro.0011-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
Adenosine acts as a neuromodulator and metabolic regulator of the brain through receptor dependent and independent mechanisms. In the brain, adenosine is tightly controlled through its metabolic enzyme adenosine kinase (ADK), which exists in a cytoplasmic (ADK-S) and nuclear (ADK-L) isoform. We recently discovered that ADK-L contributes to adult hippocampal neurogenesis regulation. Although the cerebellum (CB) is a highly plastic brain area with a delayed developmental trajectory, little is known about the role of ADK. Here, we investigated the developmental profile of ADK expression in C57BL/6 mice CB and assessed its role in developmental and proliferative processes. We found high levels of ADK-L during cerebellar development, which was maintained into adulthood. This pattern contrasts with that of the cerebrum, in which ADK-L expression is gradually downregulated postnatally and largely restricted to astrocytes in adulthood. Supporting a functional role in cell proliferation, we found that the ADK inhibitor 5-iodotubericine (5-ITU) reduced DNA synthesis of granular neuron precursors in a concentration-dependent manner in vitro. In the developing CB, immunohistochemical studies indicated ADK-L is expressed in immature Purkinje cells and granular neuron precursors, whereas in adulthood, ADK is absent from Purkinje cells, but widely expressed in mature granule neurons and their molecular layer (ML) processes. Furthermore, ADK-L is expressed in developing and mature Bergmann glia in the Purkinje cell layer, and in astrocytes in major cerebellar cortical layers. Together, our data demonstrate an association between neuronal ADK expression and developmental processes of the CB, which supports a functional role of ADK-L in the plasticity of the CB.
Collapse
|
15
|
Developmental Maturation of the Cerebellar White Matter-an Instructive Environment for Cerebellar Inhibitory Interneurons. THE CEREBELLUM 2020; 19:286-308. [PMID: 32002802 PMCID: PMC7082410 DOI: 10.1007/s12311-020-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the developing cerebellum, the nascent white matter (WM) serves as an instructive niche for cerebellar cortical inhibitory interneurons. As their Pax2 expressing precursors transit the emerging WM, their laminar fate is programmed. The source(s) and nature of the signals involved remain unknown. Here, we used immunocytochemistry to follow the cellular maturation of the murine cerebellar WM during this critical period. During the first few days of postnatal development, when most Pax2 expressing cells are formed and many of them reach the cerebellar gray matter, only microglial cells can be identified in the territories through which Pax2 cells migrate. From p4 onward, cells expressing the oligodendrocytic or astrocyte markers, CNP-1, MBP or GFAP, started to appear in the nascent WM. Expression of macroglial markers increased with cerebellar differentiation, yet deep nuclei remained GFAP-negative at all ages. The progressive spread of maturing glia did not correlate with the exit of Pax2 cells from the WM, as indicated by the extensive mingling of these cells up to p15. Whereas sonic hedgehog-associated p75NTR expression could be verified in granule cell precursors, postmitotic Pax2 cells are p75NTR negative at all ages analyzed. Thus, if Pax2 cells, like their precursors, are sensitive to sonic hedgehog, this does not affect their expression of p75NTR. Our findings document that subsequently generated sets of Pax2 expressing precursors of inhibitory cerebellar interneurons are confronted with a dynamically changing complement of cerebellar glia. The eventual identification of fate-defining pathways should profit from the covariation with glial maturation predicted by the present findings.
Collapse
|
16
|
Investigating developmental and disease mechanisms of the cerebellum with pluripotent stem cells. Mol Cell Neurosci 2020; 107:103530. [PMID: 32693017 DOI: 10.1016/j.mcn.2020.103530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023] Open
Abstract
The cerebellum is a brain region located in the dorsal part of the anterior hindbrain, composed of a highly stereotyped neural circuit structure with small sets of neurons. The cerebellum is involved in a wide variety of functions such as motor control, learning, cognition and others. Damage to the cerebellum often leads to impairments in motor skills (cerebellar ataxia). Cerebellar ataxia can occur as a result of neurodegenerative diseases such as spinocerebellar ataxia. Recent advances in technologies related to pluripotent stem cells and their neural differentiation has enabled researchers to investigate the mechanisms of development and of disease in the human brain. Here, we review recent applications of leading-edge stem cell technologies to the mechanistic investigation of human cerebellar development and neurological diseases affecting the cerebellum.
Collapse
|
17
|
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neurosci Lett 2020; 725:134870. [DOI: 10.1016/j.neulet.2020.134870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
|
18
|
Prestori F, Mapelli L, D'Angelo E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019; 12:267. [PMID: 31787879 PMCID: PMC6854908 DOI: 10.3389/fnmol.2019.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local microcircuit activity. The importance of inhibition relies in its fundamental role in shaping signal processing in single neurons and neuronal circuits. In this context, the activity of inhibitory interneurons proved the key to endow networks with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through Purkinje cells (PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of restricting or blocking excitation. This assumption has been challenged, in particular in the cerebellar cortex where all neurons except granule cells (and unipolar brush cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics and computational modeling, has revealed that inhibitory interneurons play a much more complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal response dynamics in the whole circuit and eventually regulate the PC output. This review elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and moving up to their morphological, physiological and plastic properties, and integrates this knowledge with that on the more renown granule cells and PCs. We will focus on the circuit loops in which these interneurons are involved and on the way they generate feed-forward, feedback and lateral inhibition along with complex spatio-temporal response dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of cerebellar functioning.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
19
|
Status Epilepticus Increases Cell Proliferation and Neurogenesis in the Developing Rat Cerebellum. THE CEREBELLUM 2019; 19:48-57. [PMID: 31656012 DOI: 10.1007/s12311-019-01078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Status epilepticus (SE) promotes neuronal proliferation and differentiation in the adult and developing rodent hippocampus. However, the effect of SE on other neurogenic brain regions such as the cerebellum has been less explored. To determine whether SE induced by pentylentetrazole (PTZ-SE) and lithium-pilocarpine (Li-Pilo-SE) increases cell proliferation and neurogenesis in the developing rat cerebellum. SE was induced in 14-day-old (P14) Wistar rat pups (both sexes). One hour after SE and the following day rats were injected intraperitoneally with 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg). Seven days after SE, immunohistochemistry was performed to detect BrdU-positive (BrdU+) cells or BrdU/NeuN+ cells in the cerebellar vermis. SE induced by PTZ or Li-Pilo statistically significant increased the number of cerebellar BrdU+ cells when compared with the control group (58% and 40%, respectively); maximal cell proliferation occurred in lobules II, III, VIb, VIc, VIII, IXa, and IXb of PTZ-SE group and II, V, VIc, VII, and X of Li-Pilo-SE group. An increased number of BrdU/NeuN+ cells was detected in lobules V (17 ± 1.9), VIc (25.8 ± 2.7), and VII (26.2 ± 3.4) after Li-Pilo-SE compared to their control group (9.8 ± 1.7, 12.8 ± 2.8, and 11 ± 1.7, respectively), while the number of BrdU/NeuN+ cells remained the same after PTZ-induced SE or control conditions. SE induced in the developing rat by different experimental models increases cell proliferation in the granular layer of the cerebellar vermis, but only SE of limbic seizures increases neurogenesis in specific cerebellar lobes.
Collapse
|
20
|
Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry 2019; 9:267. [PMID: 31636273 PMCID: PMC6803711 DOI: 10.1038/s41398-019-0608-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Despite the substantial progress made in identifying genetic defects in autism spectrum disorder (ASD), the etiology for majority of ASD individuals remains elusive. Maternal exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug during pregnancy in human, has long been considered a risk factor to contribute to ASD susceptibility in offspring from epidemiological studies in humans. The similar exposures in murine models have provided tentative evidence to support the finding from human epidemiology. However, the apparent difference between rodent and human poses a significant challenge to extrapolate the findings from rodent models to humans. Here we report for the first time the neurodevelopmental and behavioral outcomes of maternal VPA exposure in non-human primates. Monkey offspring from the early maternal VPA exposure have significantly reduced NeuN-positive mature neurons in prefrontal cortex (PFC) and cerebellum and the Ki67-positive proliferating neuronal precursors in the cerebellar external granular layer, but increased GFAP-positive astrocytes in PFC. Transcriptome analyses revealed that maternal VPA exposure disrupted the expression of genes associated with neurodevelopment in embryonic brain in offspring. VPA-exposed juvenile offspring have variable presentations of impaired social interaction, pronounced stereotypies, and more attention on nonsocial stimuli by eye tracking analysis. Our findings in non-human primates provide the best evidence so far to support causal link between maternal VPA exposure and neurodevelopmental defects and ASD susceptibility in humans.
Collapse
|
21
|
Fernández-Suárez D, Krapacher FA, Andersson A, Ibáñez CF, Kisiswa L. MAG induces apoptosis in cerebellar granule neurons through p75 NTR demarcating granule layer/white matter boundary. Cell Death Dis 2019; 10:732. [PMID: 31570696 PMCID: PMC6768859 DOI: 10.1038/s41419-019-1970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
MAG (Myelin-associated glycoprotein) is a type I transmembrane glycoprotein expressed by Schwann cells and oligodendrocytes, that has been implicated in the control of axonal growth in many neuronal populations including cerebellar granule neurons (CGNs). However, it is unclear whether MAG has other functions in central nervous system, in particular, in cerebellar development and patterning. We find that MAG expression in the cerebellum is compartmentalised resulting in increased MAG protein levels in the cerebellar white matter. MAG induces apoptosis in developing CGNs through p75NTR signalling. Deletion of p75NTR in vivo reduced the number of apoptotic neurons in cerebellar white matter during development leading to reduction in the size of white matter in the adulthood. Furthermore, we show that MAG impairs CGNs neurite outgrowth as consequence of MAG-induced apoptosis in CGNs. Mechanistically, we find that MAG/NgR1-induced cell death is dependent of p75NTR-mediated activation of JNK/cell death signalling pathway. Together, these findings identify the mechanisms by which MAG induces CGNs apoptotic activity, a crucial event that facilitates cerebellar layer refinement during development.
Collapse
Affiliation(s)
| | - Favio A Krapacher
- Department of Neuroscience, Karolinska Institute, S-17177, Stockholm, Sweden
| | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, S-17177, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, S-17177, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Lilian Kisiswa
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
22
|
Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. THE CEREBELLUM 2019; 17:428-437. [PMID: 29450804 DOI: 10.1007/s12311-018-0928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For many degenerative cerebellar diseases, currently, no effective treatment that would substantially restore cerebellar functions is available. Neurotransplantation could be a promising therapy for such cases. Nevertheless, there are still severe limitations for routine clinical use. The aim of the work was to assess volume and morphology and functional impact on motor skills of an embryonic cerebellar graft injected in the form of cell suspension in Lurcher mutant and wild-type mice of the B6CBA and C3H strains after a 6-month survival period. The grafts survived in the majority of the mice. In both B6CBA and C3H Lurcher mice, most of the grafts were strictly delimited with no tendency to invade the host cerebellum, while in wild-type mice, graft-derived Purkinje cells colonized the host's cerebellum. In C3H Lurcher mice, but not in B6CBA Lurchers, the grafts had smaller volume than in their wild-type counterparts. C3H wild-type mice had significantly larger grafts than B6CBA wild-type mice. No positive effect of the transplantation on performance in the rotarod test was observed. The findings suggest that the niche of the Lurcher mutant cerebellum has a negative impact on integration of grafted cells. This factor seems to be limiting for specific functional effects of the transplantation therapy in this mouse model of cerebellar degeneration.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| | - Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Jakub Kubik
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Erik Ulbricht
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
| |
Collapse
|
23
|
Muguruma K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs. THE CEREBELLUM 2019; 17:37-41. [PMID: 29196977 DOI: 10.1007/s12311-017-0905-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.
Collapse
Affiliation(s)
- Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo Kobe, 650-0047, Japan.
| |
Collapse
|
24
|
Gano D, Barkovich AJ. Cerebellar hypoplasia of prematurity: Causes and consequences. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:201-216. [PMID: 31324311 DOI: 10.1016/b978-0-444-64029-1.00009-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As magnetic resonance imaging has been increasingly used to study brain injury and brain development in premature newborns, the prevalence of cerebellar abnormalities is increasingly recognized. The preterm cerebellum is highly vulnerable to a number of insults during its critical phase of growth and development throughout the period of prematurity and beyond. Direct cerebellar injury and additional factors such as supratentorial brain injury and glucocorticoid exposure adversely impact cerebellar growth and, consequently, increase the risk of neurodevelopmental disabilities. In this chapter the causes and consequences of cerebellar hypoplasia of prematurity are reviewed.
Collapse
Affiliation(s)
- Dawn Gano
- Department of Neurology, University of California, San Francisco, CA, United States.
| | - A James Barkovich
- Department of Radiology, University of California, San Francisco, CA, United States
| |
Collapse
|
25
|
Alves CAPF, Fragoso DC, Gonçalves FG, Marussi VH, Amaral LLFD. Cerebellar Ataxia in Children: A Clinical and MRI Approach to the Differential Diagnosis. Top Magn Reson Imaging 2018; 27:275-302. [PMID: 30086112 DOI: 10.1097/rmr.0000000000000175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The cerebellum has long been recognized as a fundamental structure in motor coordination. Structural cerebellar abnormalities and diseases involving the cerebellum are relatively common in children. The not always specific clinical presentation of ataxia, incoordination, and balance impairment can often be a challenge to attain a precise diagnosis. Continuous advances in genetic research and moreover the constant development in neuroimaging modalities, particularly in the field of magnetic resonance imaging, have promoted a better understanding of cerebellar diseases and led to several modifications in their classification in recent years. Thorough clinical and neuroimaging investigation is recommended for proper diagnosis. This review outlines an update of causes of cerebellar disorders that present clinically with ataxia in the pediatric population. These conditions were classified in 2 major groups, namely genetic malformations and acquired or disruptive disorders recognizable by neuroimaging and subsequently according to their features during the prenatal and postnatal periods.
Collapse
Affiliation(s)
| | - Diego Cardoso Fragoso
- Division of Neuroradiology, Serviço de Diagnostico por Imagem, Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
| | | | - Victor Hugo Marussi
- Neuroradiology Department - Medimagem, Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
- Neuroradiology Department, Hospital Santa Catarina, São Paulo, SP, Brazil
| | - Lázaro Luís Faria do Amaral
- Neuroradiology Department - Medimagem, Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
- Neuroradiology Department, Hospital Santa Catarina, São Paulo, SP, Brazil
- Neuroradiology Department, Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Kisiswa L, Fernández-Suárez D, Sergaki MC, Ibáñez CF. RIP2 Gates TRAF6 Interaction with Death Receptor p75 NTR to Regulate Cerebellar Granule Neuron Survival. Cell Rep 2018; 24:1013-1024. [PMID: 30044969 DOI: 10.1016/j.celrep.2018.06.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cerebellar granule neurons (CGNs) undergo programmed cell death during the first postnatal week of mouse development, coincident with sustained expression of the death receptor p75NTR. Although ablation of p75NTR does not affect CGN cell death, deletion of the downstream effector RIP2 significantly increases CGN apoptosis, resulting in reduced adult CGN number and impaired behaviors associated with cerebellar function. Remarkably, CGN death is restored to basal levels when p75NTR is deleted in RIP2-deficient mice. We find that RIP2 gates the signaling output of p75NTR by competing with TRAF6 for binding to the receptor intracellular domain. In CGNs lacking RIP2, more TRAF6 is associated with p75NTR, leading to increased JNK-dependent apoptosis. In agreement with this, pharmacological inhibition or genetic ablation of TRAF6 restores cell death levels in CGNs lacking RIP2. These results reveal an unexpected mechanism controlling CGN number and highlight how competitive interactions govern the logic of death receptor function.
Collapse
Affiliation(s)
- Lilian Kisiswa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17177, Sweden
| | | | | | - Carlos F Ibáñez
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
27
|
Lang PY, Gershon TR. A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain tumors and microcephaly arise from opposing derangements regulating progenitor growth. Drivers of microcephaly could be attractive brain tumor targets. Bioessays 2018; 40:e1700243. [PMID: 29577351 PMCID: PMC5910257 DOI: 10.1002/bies.201700243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Indexed: 02/06/2023]
Abstract
New targets for brain tumor therapies may be identified by mutations that cause hereditary microcephaly. Brain growth depends on the repeated proliferation of stem and progenitor cells. Microcephaly syndromes result from mutations that specifically impair the ability of brain progenitor or stem cells to proliferate, by inducing either premature differentiation or apoptosis. Brain tumors that derive from brain progenitor or stem cells may share many of the specific requirements of their cells of origin. These tumors may therefore be susceptible to disruptions of the protein products of genes that are mutated in microcephaly. The potential for the products of microcephaly genes to be therapeutic targets in brain tumors are highlighted hereby reviewing research on EG5, KIF14, ASPM, CDK6, and ATR. Treatments that disrupt these proteins may open new avenues for brain tumor therapy that have increased efficacy and decreased toxicity.
Collapse
Affiliation(s)
- Patrick Y. Lang
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Timothy R. Gershon
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
28
|
Obana EA, Zhou Q, Furmanski O, Doughty ML. Conditional deletion of Neurog1 in the cerebellum of postnatal mice delays inhibitory interneuron maturation. J Neurosci Res 2018; 96:1560-1575. [PMID: 29665106 DOI: 10.1002/jnr.24247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022]
Abstract
The transcriptional programs that drive the generation of diverse GABAergic neuron populations from their common progenitor pools in the developing cerebellum remain unclear. Neurog1 is a pro-neural basic helix-loop-helix transcription factor expressed in GABAergic progenitor cells in the ventricular zone (VZ) of embryos and subsequently in the presumptive white matter (pWM) tracts of developing postnatal mice. Genetic inducible fate-mapping labels Purkinje cells and all inhibitory interneuron cell types of the cerebellar cortex. As conventional Neurog1Neo knockout (KO) mice are neonatal lethal, we generated Neurog1loxP mutant mice to examine the effects of conditional Neurog1 deletion on the postnatal development of the cerebellum. Targeted Neurog1 loss-of-function in the developing cerebellum does not result in significant differences in cerebellar morphology or in the number of GABAergic neurons in the cerebellar cortex of mice at postnatal day 21 (P21). To determine the effects of Neurog1 deletion on GABAergic progenitors, we quantified rates of cell proliferation and cell cycle progression or re-entry in embryonic Neurog1Neo and postnatal Neurog1loxP mutants. The data revealed no significant effect of Neurog1 loss-of-function on embryonic day 12.5 (E12.5) VZ progenitors or on P5 and P6 progenitors in the pWM at P7. However, 4-5 day pulse-labeling of P5 and P6 progenitors revealed reductions in inhibitory interneuron dispersal from the pWM to the cerebellar cortex in P10 conditional Neurog1loxP/loxP KO mice. Thus, our conditional Neurog1 KO approach reveals a requirement for Neurog1 activity in inhibitory interneuron cell dispersal from pWM tracts in the developing cerebellum of postnatal mice.
Collapse
Affiliation(s)
- Edwin A Obana
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Qiong Zhou
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Martin L Doughty
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
29
|
Cerebellar Pathways in Mouse Model of Purkinje Cell Degeneration Detected by High-Angular Resolution Diffusion Imaging Tractography. THE CEREBELLUM 2018; 16:648-655. [PMID: 28102462 DOI: 10.1007/s12311-016-0842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cerebellar MR imaging has several challenging aspects, due to the fine, repetitive layered structure of cortical folia with underlying axonal pathways. In this MR study, we imaged with high-angular resolution diffusion imaging (HARDI) abnormal cerebellar cortical structure (gray matter) and myelinated axonal pathways (white matter) of a mouse spontaneous mutation, Purkinje cell degeneration (pcd), in which almost all Purkinje neurons degenerate, mainly between postnatal days 20 and 35. Mouse brains at postnatal day 20 (P20) and at 8 months were scanned, and known or expected abnormalities, such as reduction of the white matter volume, disorganized pathways likely linked to parallel fibers, mossy fibers, and other fibers running from/to the cerebellar cortex were observed in mutant mice. Such abnormalities were detected at both an early and a fully advanced degeneration stage. These results suggest that our diffusion MR tractography is useful for early detection and tracking of neuropathology in the cerebellum.
Collapse
|
30
|
Sergaki MC, López-Ramos JC, Stagkourakis S, Gruart A, Broberger C, Delgado-García JM, Ibáñez CF. Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning. Cell Rep 2018; 19:1977-1986. [PMID: 28591570 PMCID: PMC5469938 DOI: 10.1016/j.celrep.2017.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
The role of neurotrophic factors as endogenous survival proteins for brain neurons remains contentious. In the cerebellum, the signals controlling survival of molecular layer interneurons (MLIs) are unknown, and direct evidence for the requirement of a full complement of MLIs for normal cerebellar function and motor learning has been lacking. Here, we show that Purkinje cells (PCs), the target of MLIs, express the neurotrophic factor GDNF during MLI development and survival of MLIs depends on GDNF receptors GFRα1 and RET. Conditional mutant mice lacking either receptor lose a quarter of their MLIs, resulting in compromised synaptic inhibition of PCs, increased PC firing frequency, and abnormal acquisition of eyeblink conditioning and vestibulo-ocular reflex performance, but not overall motor activity or coordination. These results identify an endogenous survival mechanism for MLIs and reveal the unexpected vulnerability and selective requirement of MLIs in the control of cerebellar-dependent motor learning. The signals controlling survival of molecular layer interneurons (MLIs) are unclear Whether MLIs are involved in normal cerebellar function was unclear Purkinje cells express GDNF, and survival of MLIs depends on GDNF receptors GFRα1 and RET Requirement of MLIs for cerebellar-dependent motor learning
Collapse
Affiliation(s)
| | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | | | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm S-17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
31
|
Su Z, Zhang Y, Liao B, Zhong X, Chen X, Wang H, Guo Y, Shan Y, Wang L, Pan G. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition. J Biol Chem 2018; 293:4445-4455. [PMID: 29386354 DOI: 10.1074/jbc.m117.815449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans.
Collapse
Affiliation(s)
- Zhenghui Su
- From the School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China.,the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| | - Yanqi Zhang
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Baojian Liao
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| | - Xiaofen Zhong
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Xin Chen
- the School of Automation, Guangdong University of Technology, 510006 Guangzhou, China, and
| | - Haitao Wang
- From the School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Yiping Guo
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yongli Shan
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Lihui Wang
- the Department of Pathology, Medical College, Jinan University, 510632 Guangzhou, China
| | - Guangjin Pan
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China, .,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| |
Collapse
|
32
|
Cerebellar-dependent associative learning is impaired in very preterm born children and young adults. Sci Rep 2017; 7:18028. [PMID: 29269751 PMCID: PMC5740078 DOI: 10.1038/s41598-017-18316-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Preterm birth incorporates an increased risk for cerebellar developmental disorders likely contributing to motor and cognitive abnormalities. Experimental evidence of cerebellar dysfunction in preterm subjects, however, is sparse. In this study, classical eyeblink conditioning was used as a marker of cerebellar dysfunction. Standard delay conditioning was investigated in 20 adults and 32 preschool children born very preterm. Focal lesions were excluded based on structural magnetic resonance imaging. For comparison, an equal number of matched term born healthy peers were tested. Subgroups of children (12 preterm, 12 controls) were retested. Preterm subjects acquired significantly less conditioned responses (CR) compared to controls with slower learning rates. A likely explanation for these findings is that preterm birth impedes function of the cerebellum even in the absence of focal cerebellar lesions. The present findings are consistent with the assumption that prematurity results in long-term detrimental effects on the integrity of the cerebellum. It cannot be excluded, however, that extra-cerebellar pathology contributed to the present findings.
Collapse
|
33
|
Sergaki MC, Ibáñez CF. GFRα1 Regulates Purkinje Cell Migration by Counteracting NCAM Function. Cell Rep 2017; 18:367-379. [PMID: 28076782 PMCID: PMC5263233 DOI: 10.1016/j.celrep.2016.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
During embryonic development of the cerebellum, Purkinje cells (PCs) migrate away from the ventricular zone to form the PC plate. The mechanisms that regulate PC migration are incompletely understood. Here, we report that the neurotrophic receptor GFRα1 is transiently expressed in developing PCs and loss of GFRα1 delays PC migration. Neither GDNF nor RET, the canonical GFRα1 ligand and co-receptor, respectively, contribute to this process. Instead, we found that the neural cell adhesion molecule NCAM is co-expressed and directly interacts with GFRα1 in embryonic PCs. Genetic reduction of NCAM expression enhances wild-type PC migration and restores migration in Gfra1 mutants, indicating that NCAM restricts PC migration in the embryonic cerebellum. In vitro experiments indicated that GFRα1 can function both in cis and trans to counteract NCAM and promote PC migration. Collectively, our studies show that GFRα1 contributes to PC migration by limiting NCAM function.
Collapse
Affiliation(s)
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
34
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
35
|
O'Connor SD, Cabrera OH, Dougherty JD, Singh S, Swiney BS, Salinas-Contreras P, Farber NB, Noguchi KK. Dexmedetomidine protects against glucocorticoid induced progenitor cell apoptosis in neonatal mouse cerebellum. J Matern Fetal Neonatal Med 2017; 30:2156-2162. [PMID: 27677376 PMCID: PMC5500416 DOI: 10.1080/14767058.2016.1241763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Glucocorticoids (GCs) are used to improve respiratory mechanics in preterm infants despite clinical evidence linking neonatal GC therapy to cerebellar pathology. In developing mouse cerebellum, the GC dexamethasone (DEX) causes rapid GC-induced neural progenitor cell apoptosis (GINA). Focusing on pharmacological neuroprotection strategies, we investigated whether dexmedetomidine (DMT) protects against GINA. METHODS Neonatal mice were pretreated with DMT prior to DEX challenge. Additionally, we tested clonidine and yohimbine in vivo to determine mechanism of DMT neuroprotection. For in vitro studies, cerebellar neural progenitor cells were pretreated with DMT before DEX challenge. RESULTS In vivo, DMT attenuated GINA at 1 μg/kg and above, p < 0.0001. Clonidine significantly attenuated GINA, p < 0.0001, while yohimbine reversed DMT neuroprotection, p < 0.0001, suggesting DMT neuroprotection is likely mediated via adrenergic signaling. In vitro, DMT neuroprotection was achieved at 10 μM and above, p < 0.001, indicating DMT rescue is cell autonomous. CONCLUSIONS DMT affords dose-dependent neuroprotection from GINA at clinically relevant doses, an effect that is cell autonomous and likely mediated by α2 adrenergic receptor agonism. DMT co-administration with GCs may be an effective strategy to protect the neonatal brain from GINA while retaining the beneficial effects of GCs on respiratory mechanics.
Collapse
Affiliation(s)
- Shawn David O'Connor
- a Edward Mallinckrodt Department of Pediatrics , Division of Newborn Medicine, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital , St. Louis , MO , USA
| | - Omar Hoseá Cabrera
- b Department of Psychiatry , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| | - Joseph D Dougherty
- b Department of Psychiatry , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
- c Department of Genetics , Washington University in St. Louis School of Medicine , St. Louis , MO , USA , and
| | - Sukrit Singh
- d Division of Biology and Biomedical Sciences, Department of Genetics , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| | - Brant Stephen Swiney
- b Department of Psychiatry , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| | - Patricia Salinas-Contreras
- d Division of Biology and Biomedical Sciences, Department of Genetics , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| | - Nuri Bradford Farber
- b Department of Psychiatry , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| | - Kevin Kiyoshi Noguchi
- b Department of Psychiatry , Washington University in St. Louis School of Medicine , St. Louis , MO , USA
| |
Collapse
|
36
|
Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC. Midbrain-Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front Neuroanat 2017; 11:64. [PMID: 28824384 PMCID: PMC5541008 DOI: 10.3389/fnana.2017.00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
A constriction in the neural tube at the junction of the midbrain and hindbrain is a conserved feature of vertebrate embryos. The constriction is a defining feature of the midbrain-hindbrain boundary (MHB), a signaling center that patterns the adjacent midbrain and rostral hindbrain and forms at the junction of two gene expression domains in the early neural plate: an anterior otx2/wnt1 positive domain and a posterior gbx/fgf8 positive domain. otx2 and gbx genes encode mutually repressive transcription factors that create a lineage restriction boundary at their expression interface. Wnt and Fgf genes form a mutually dependent feedback system that maintains their expression domains on the otx2 or gbx side of the boundary, respectively. Constriction morphogenesis occurs after these conserved gene expression domains are established and while their mutual interactions maintain their expression pattern; consequently, mutant studies in zebrafish have led to the suggestion that constriction morphogenesis should be considered a unique phase of MHB development. We analyzed MHB morphogenesis in fgf8 loss of function zebrafish embryos using a reporter driven by the conserved wnt1 enhancer to visualize anterior boundary cells. We found that fgf8 loss of function results in a re-activation of wnt1 reporter expression posterior to the boundary simultaneous with an inactivation of the wnt1 reporter in the anterior boundary cells, and that these events correlate with relaxation of the boundary constriction. In consideration of other results that correlate the boundary constriction with Wnt and Fgf expression, we propose that the maintenance of an active Wnt-Fgf feedback loop is a key factor in driving the morphogenesis of the MHB constriction.
Collapse
Affiliation(s)
- Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Ana Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States.,Department of Materials Science and Engineering, Texas A&M UniversityCollege Station, TX, United States.,School of Computational Sciences, Korea Institute for Advanced StudySeoul, South Korea
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
37
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
38
|
Molina V, Rodríguez-Vázquez L, Owen D, Valero O, Martí J. Cell cycle analysis in the rat external granular layer evaluated by several bromodeoxyuridine immunoperoxidase staining protocols. Histochem Cell Biol 2017; 148:477-488. [PMID: 28681271 DOI: 10.1007/s00418-017-1593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
An important step in bromodeoxyuridine (BrdU) immunohistochemistry is the production of single-stranded DNA to make the incorporated BrdU accessible to the antibodies. This paper examines the effect of distinct DNA denaturation pretreatments (DNase I, sodium citrate buffer, endonuclease Eco RI and exonuclease III, and HCl hydrolysis) on detection of BrdU. We found that all the methods used in the partial denaturation of DNA combined good nuclear immunostaining with acceptable tissue integrity. We also observed that these immunohistochemical protocols revealed a spatial pattern in the distribution of DNA-synthesizing cells within the cerebellar external granular layer (EGL) of 10-day-old rats, allowing us to estimate the fraction of S-phase cells. Our results indicate that detection of BrdU-stained cells is affected by the distinct histological procedures used in such detection. Additionally, as the duration and phases of the cell cycle in EGL neuroblasts are estimated in accordance with BrdU detection, an effect on this detection can render the measurement of cell cycle inaccurate. The present work shows that DNase I and citrate buffer, at appropriate conditions, may be good alternatives for acid denaturation. However, they are less sensitive than autoradiographic techniques that use 3H-thymidine administration. Finally, current data reveal that short survival times after a single BrdU exposure do not seem to affect the cell cycle progression of the EGL neuroblasts.
Collapse
Affiliation(s)
- Vanesa Molina
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - David Owen
- Departament de Filologia Anglesa i de Germanística, Àrea de Filologia Anglesa, Bellaterra, 08193, Barcelona, Spain
| | - Oliver Valero
- Servei d'Estadística Aplicada, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
39
|
Agyemang AA, Sveinsdóttir K, Vallius S, Sveinsdóttir S, Bruschettini M, Romantsik O, Hellström A, Smith LEH, Ohlsson L, Holmqvist B, Gram M, Ley D. Cerebellar Exposure to Cell-Free Hemoglobin Following Preterm Intraventricular Hemorrhage: Causal in Cerebellar Damage? Transl Stroke Res 2017; 8:10.1007/s12975-017-0539-1. [PMID: 28601919 PMCID: PMC5590031 DOI: 10.1007/s12975-017-0539-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/09/2017] [Indexed: 11/05/2022]
Abstract
Decreased cerebellar volume is associated with intraventricular hemorrhage (IVH) in very preterm infants and may be a principal component in neurodevelopmental impairment. Cerebellar deposition of blood products from the subarachnoid space has been suggested as a causal mechanism in cerebellar underdevelopment following IVH. Using the preterm rabbit pup IVH model, we evaluated the effects of IVH induced at E29 (3 days prior to term) on cerebellar development at term-equivalent postnatal day 0 (P0), term-equivalent postnatal day 2 (P2), and term-equivalent postnatal day 5 (P5). Furthermore, the presence of cell-free hemoglobin (Hb) in cerebellar tissue was characterized, and cell-free Hb was evaluated as a causal factor in the development of cerebellar damage following preterm IVH. IVH was associated with a decreased proliferative (Ki67-positive) portion of the external granular layer (EGL), delayed Purkinje cell maturation, and activated microglia in the cerebellar white matter. In pups with IVH, immunolabeling of the cerebellum at P0 demonstrated a widespread presence of cell-free Hb, primarily distributed in the white matter and the molecular layer. Intraventricular injection of the Hb scavenger haptoglobin (Hp) resulted in a corresponding distribution of immunolabeled Hp in the cerebellum and a partial reversal of the damaging effects observed following IVH. The results suggest that cell-free Hb is causally involved in cerebellar damage following IVH and that blocking cell-free Hb may have protective effects.
Collapse
Affiliation(s)
- Alex Adusei Agyemang
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Kristbjörg Sveinsdóttir
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Snjolaug Sveinsdóttir
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Matteo Bruschettini
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Olga Romantsik
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden.
| |
Collapse
|
40
|
Kaslin J, Kroehne V, Ganz J, Hans S, Brand M. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development 2017; 144:1462-1471. [PMID: 28289134 DOI: 10.1242/dev.144907] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Jan Kaslin
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47 01307, Germany .,Australian Regenerative Medicine Institute, Monash University, Innovation Walk 15, Lvl1, 3800, Clayton, Melbourne, Australia
| | - Volker Kroehne
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47 01307, Germany
| | - Julia Ganz
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47 01307, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47 01307, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47 01307, Germany
| |
Collapse
|
41
|
Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep 2017; 7:42523. [PMID: 28205531 PMCID: PMC5311982 DOI: 10.1038/srep42523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.
Collapse
Affiliation(s)
- Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Chih-Ming Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Kerstin Buttler
- Department of Anatomy and Cell Biology, University Medicine Göttingen, 37075-Göttingen, Germany
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| |
Collapse
|
42
|
Early Purkinje Cell Development and the Origins of Cerebellar Patterning. CONTEMPORARY CLINICAL NEUROSCIENCE 2017. [DOI: 10.1007/978-3-319-59749-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
43
|
J. Onaolapo O, Y. Onaolapo A. The 21<sup>st</sup> Century Cerebellum: An Evolution of Cognitive Functions, Connections, Disorders, and Pharmacotherapeutic Modulation. AIMS Neurosci 2017. [DOI: 10.3934/neuroscience.2017.4.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Jernigan TL, Stiles J. Construction of the human forebrain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 27906520 DOI: 10.1002/wcs.1409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/12/2022]
Abstract
The adult human brain is arguably the most complex of biological systems. It contains 86 billion neurons (the information processing cells of the brain) and many more support cells. The neurons, with the assistance of the support cells, form trillions of connections creating complex, interconnected neural networks that support all human thought, feeling, and action. A challenge for modern neuroscience is to provide a model that accounts for this exquisitely complex and dynamic system. One fundamental part of this model is an account of how the human brain develops. This essay describes two important aspects of this developmental story. The first part of the story focuses on the remarkable and dynamic set of events that unfold during the prenatal period to give rise to cell lineage that form the essential substance of the brain, particularly the structures of the cerebral hemispheres. The second part of the story focuses on the formation of the major brain pathways of the cerebrum, the intricate fiber bundles that connect different populations of neurons to form the information processing systems that support all human thought and action. These two aspects of early brain development provide an essential foundation for understanding how the structure, organization, and functioning of the human brain emerge. WIREs Cogn Sci 2017, 8:e1409. doi: 10.1002/wcs.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Joan Stiles
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Martí J, Molina V, Santa-Cruz MC, Hervás JP. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study. Neurotox Res 2016; 31:187-203. [PMID: 27601242 DOI: 10.1007/s12640-016-9666-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Vanesa Molina
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - M C Santa-Cruz
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - José P Hervás
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
46
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
47
|
Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME, Manzo J. Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci 2016; 53:46-52. [PMID: 27423376 DOI: 10.1016/j.ijdevneu.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023] Open
Abstract
Valproic acid (VPA) is an anti-epileptic drug with teratogenicity activity that has been related to autism. In rodents, exposure to VPA in utero leads to brain abnormalities similar than those reported in the autistic brain. Particularly, VPA reduces the number of Purkinje neurons in the rat cerebellum parallel to cerebellar abnormalities found in autism. Thus, we injected pregnant females on embryonic day 12 either with VPA (600mg/kg, i.p.) or 0.9% saline solution and obtained the cerebellum from their offspring at different postnatal time points. Testosterone has been linked to autism and plays an important role during brain development. Therefore, we identified and analyzed the androgen receptor (AR) by immunohistochemistry and densitometry, respectively. We found VPA decreases AR density in the superficial Purkinje layer only in cerebellar lobule 8 at PN7, but increased it at PN14 compared to control in males. In females, VPA decreased AR density in the superficial Purkinje layer in cerebellar lobule 6 at PN14, but increased it in lobule 9 at the same time point. No differences were found in the deep Purkinje layer of any cerebellar lobule in terms of AR density neither in males nor females. We additionally found a particular AR density decreasing in both superficial and deep regions across development in the majority of cerebellar lobules in males, but in all cerebellar lobules in females. Thus, our results indicate that VPA disrupts the AR ontogeny in the developing cerebellum in an age and region specific manner in male and female rats. Future epigenetic studies including the evaluation of histone deacetylases (HDAC's) might shed light these results as HDAC's are expressed by Purkinje neurons, interact with the AR and are VPA targets. This work contributes to the understanding of the cerebellar development and it might help to understand the role of the cerebellum in neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
| | - Marta Miquel
- Area de Psicobiologia, Universidad Jaume I, Castellon de la Plana, Spain.
| | - Paul Saft
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | - Brenda Brug
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | - Rebeca Toledo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | | | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| |
Collapse
|
48
|
Abstract
Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
49
|
Obana EA, Lundell TG, Yi KJ, Radomski KL, Zhou Q, Doughty ML. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum. THE CEREBELLUM 2016; 14:247-63. [PMID: 25592069 DOI: 10.1007/s12311-014-0641-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.
Collapse
Affiliation(s)
- Edwin A Obana
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | | | | | | | |
Collapse
|
50
|
Brandalise F, Lujan R, Leone R, Lodola F, Cesaroni V, Romano C, Gerber U, Rossi P. Distinct expression patterns of inwardly rectifying potassium currents in developing cerebellar granule cells of the hemispheres and the vermis. Eur J Neurosci 2016; 43:1460-73. [DOI: 10.1111/ejn.13219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Brandalise
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE); Department of Ciencias Médicas; Facultad de Medicina; Universidad Castilla-La Mancha; Albacete Spain
| | - Roberta Leone
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Francesco Lodola
- Molecular Cardiology; IRCCS Fondazione Salvatore Maugeri; Pavia Italy
| | - Valentina Cesaroni
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Chiara Romano
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Urs Gerber
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Paola Rossi
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| |
Collapse
|