1
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
3
|
Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2018; 315:L432-L442. [PMID: 29722565 DOI: 10.1152/ajplung.00216.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Because of the expansion of aging and smoking populations, chronic obstructive pulmonary disease (COPD) is predicted to be the third leading cause of death worldwide in 2030. Therefore, it is pertinent to develop effective therapy to improve management for COPD. Cigarette smoke-mediated protease-antiprotease imbalance is a major pathogenic mechanism for COPD and results in massive pulmonary infiltration of neutrophils and macrophages, releasing excessive neutrophil elastase (NE) and matrix metalloproteinases (MMPs). Our previous studies indicated that placenta growth factor (PGF) and PGF-triggered downstream signaling molecules mediate NE-induced lung epithelial cell apoptosis, which is a major pathogenic mechanism for pulmonary emphysema. However, the relationship between MMP-directed COPD and PGF remains elusive. We hypothesize that MMPs may upregulate PGF expression and be involved in MMP-mediated pathogenesis of COPD. In this study, we demonstrate that only MMP-12 can increase the expression of PGF by increasing early-growth response protein 1 (Egr-1) level through the activation of protease-activated receptor 1 (PAR-1). The PGF-mediated downstream signaling molecules drive caspase-3 and caspase-9-dependent apoptosis in bronchial epithelial cells. Both the upregulation of PGF by MMP-12 and PGF downstream signaling molecules with pulmonary apoptosis and emphysema were also demonstrated in animals. Given these findings, we suggest that both human COPD-associated elastases, NE, and MMP-12, upregulate PGF expression and promote the progression of emphysema and COPD.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital , Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University , Taiwan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin Branch , Taiwan
| | - Kai-Zen Lu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| |
Collapse
|
4
|
Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 2017; 15:e2002054. [PMID: 28850571 PMCID: PMC5574553 DOI: 10.1371/journal.pbio.2002054] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. The epithelium lining the intestine is an ancient animal tissue that serves as a primary site of nutrient absorption and interaction with microbiota. Its formation and function require complex patterns of gene transcription that vary along the intestine and in specialized intestinal epithelial cell (IEC) subtypes. However, it is unknown how the underlying transcriptional regulatory mechanisms have changed over the course of vertebrate evolution. Here, we used genome-wide profiling of mRNA levels and chromatin accessibility to identify conserved IEC genes and regulatory regions in 4 vertebrate species (zebrafish, stickleback, mouse, and human) separated from a common ancestor by 420 million years. We identified substantial similarities in genes expressed along the vertebrate intestine. These data disclosed putative conserved transcription factor binding sites (TFBS) enriched in accessible chromatin near IEC genes and in regulatory sites with accessibility restricted to IECs. Fluorescent reporter assays in transparent zebrafish showed that these regions, which frequently lacked sequence conservation, were still capable of driving conserved expression patterns. We also found a highly conserved region near mammalian and fish hes1 sufficient to drive expression in a specific population of IECs with active Notch signaling. These results establish a platform to define the conserved transcriptional networks underlying vertebrate IEC physiology.
Collapse
Affiliation(s)
- Colin R. Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Gray Camp
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Matthew Weiser
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jordan L. Cocchiaro
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Terrence S. Furey
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shehzad Z. Sheikh
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bueno-Silva B, Kawamoto D, Ando-Suguimoto ES, Alencar SM, Rosalen PL, Mayer MPA. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS One 2015; 10:e0144954. [PMID: 26660901 PMCID: PMC4684384 DOI: 10.1371/journal.pone.0144954] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/16/2022] Open
Abstract
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Severino M. Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), Piracicaba, SP, Brazil
| | - Pedro L. Rosalen
- Piracicaba Dental School, University of Campinas–UNICAMP, Department of Physiologic Sciences, Piracicaba, SP, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
6
|
Siddappa D, Beaulieu É, Gévry N, Roux PP, Bordignon V, Duggavathi R. Effect of the transient pharmacological inhibition of Mapk3/1 pathway on ovulation in mice. PLoS One 2015; 10:e0119387. [PMID: 25803847 PMCID: PMC4372293 DOI: 10.1371/journal.pone.0119387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 μg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice.
Collapse
Affiliation(s)
- Dayananda Siddappa
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Élaine Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Gévry
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- * E-mail:
| |
Collapse
|
7
|
Tindall MJ, Clerk A. Modelling negative feedback networks for activating transcription factor 3 predicts a dominant role for miRNAs in immediate early gene regulation. PLoS Comput Biol 2014; 10:e1003597. [PMID: 24811474 PMCID: PMC4014390 DOI: 10.1371/journal.pcbi.1003597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 03/20/2014] [Indexed: 11/28/2022] Open
Abstract
Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction. Activating transcription factor 3 (Atf3) is an important regulatory transcription factor which is associated with inflammation, restraint of the immune response and cancer. In this work, we develop a series of mathematical models to understand how Atf3 may be regulated. Informed with data from the literature and our own experiments, we show that self-regulation of Atf3 does not allow for variation between experimentally observed Atf3 mRNA and Atf3 protein expression profiles. A fast-acting signal via phosphorylated RSK is also shown to be implausible for similar reasons. Extending our mathematical model further, we postulate for the first time, that the observed dynamical variation in Atf3 mRNA and protein can be described by microRNAs downstream of RSKs. The further inclusion of an inhibitory transcription factor for Atf3 expression has little effect on these findings.
Collapse
Affiliation(s)
- Marcus J. Tindall
- Department of Mathematics & Statistics, University of Reading, Reading, Berkshire, United Kingdom
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
- * E-mail: (MJT); (AC)
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
- * E-mail: (MJT); (AC)
| |
Collapse
|
8
|
Waitkus MS, Chandrasekharan UM, Willard B, Haque SJ, DiCorleto PE. STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction. J Biol Chem 2013; 288:11988-2003. [PMID: 23504318 DOI: 10.1074/jbc.m112.428516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling pathways interact with one another to form dynamic networks in which the cellular response to one stimulus may depend on the presence, intensity, timing, or localization of other signals. In rare cases, two stimuli may be simultaneously required for cells to elicit a significant biological output. This phenomenon, generally termed "coincidence detection," requires a downstream signaling node that functions as a Boolean AND gate to restrict biological output from a network unless multiple stimuli are received within a specific window of time. Simultaneous activation of the EGF receptor (EGFR) and a thrombin receptor (protease-activated receptor-1, PAR-1) increases the expression of multiple immediate early genes (IEGs) associated with growth and angiogenesis. Using a bioinformatic comparison of IEG promoter regions, we identified STAT3 as a critical transcription factor for the detection of coincident EGFR/PAR-1 activation. EGFR activation induces classical STAT3 Tyr(705) phosphorylation but also initiates an inhibitory signal through the PI3K-AKT signaling axis that prevents STAT3 Ser(727) phosphorylation. Coincident PAR-1 signaling resolves these conflicting EGF-activated pathways by blocking AKT activation and permitting GSK-3α/β-dependent STAT3 Ser(727) phosphorylation and STAT3-dependent gene expression. Functionally, combinatorial EGFR/PAR-1 signaling suppresses EGF-induced proliferation and thrombin-induced leukocyte adhesion and triggers a STAT3-dependent increase in endothelial cell migration. This study reveals a novel signaling role for STAT3 in which the simultaneous presence of extracellular EGF and thrombin is detected at the level of STAT3 post-translational modifications. Collectively, our results describe a novel regulatory mechanism in which combinatorial EGFR/PAR-1 signaling regulates STAT3-dependent IEG induction and endothelial cell migration.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
9
|
Chen J, Xu L, Chen S, Yang J, Jiang H. Transcriptional regulation of platelet-derived growth factor-B chain by thrombin in endothelial cells: involvement of Egr-1 and CREB-binding protein. Mol Cell Biochem 2012; 366:81-87. [PMID: 22488213 DOI: 10.1007/s11010-012-1285-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Thrombin and platelet-derived growth factor-B chain (PDGF-B) are key factors in the stimulation of atherosclerosis. The effect of thrombin on PDGF-B production has been characterized. However, the underlying mechanism is still far clear. Here, we investigate the transcription factors and regulators that are involved in PDGF-B production caused by thrombin in endothelial cells (ECs). Levels of PDGF were analyzed by real-time RT-PCR and ELISA, while levels of early growth response-1 (Egr-1) were analyzed by real-time RT-PCR and western blot. To evaluate the function of CBP and Egr-1 involved in regulation of PDGF-B, small interfering RNA (siRNA) were used to down-regulate their expression in mRNA and protein level. Interaction of Egr-1 and CBP was measured with immunoprecipitation and western blot. Thrombin induced an early and transient up-regulation of transcription factor early Egr-1, which was followed by a delayed increase of PDGF-B. siRNA against Egr-1-inhibited thrombin-induced PDGF-B production. Furthermore, thrombin could enhance the interaction of Egr-1 with its co-activator CREB-binding protein (CBP). CBP knockdown attenuated this interaction, and led to a reduction of PDGF-B expression induced by thrombin. Our results suggest that CBP might be one of the main interaction targets for Egr-1, and the transient activation of Egr-1 and recruitment of CBP are required for thrombin-induced PDGF-B in ECs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | |
Collapse
|
10
|
A gene signature distinguishing CD133hi from CD133- colorectal cancer cells: essential role for EGR1 and downstream factors. Pathology 2011; 43:220-7. [DOI: 10.1097/pat.0b013e328344e391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Down-regulation of CREB-binding protein expression inhibits thrombin-induced proliferation of endothelial cells: possible relevance to PDGF-B. Cell Biol Int 2011; 34:1155-61. [PMID: 20718713 DOI: 10.1042/cbi20090304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thrombin acts as a potent mitogenic factor for ECs (endothelial cells) by the release of several growth factors, including PDGF-B (platelet-derived growth factor-B). CBP (CREB-binding protein), which functions as a transcriptional coactivator, links the changes in the extracellular stimuli with alterations in gene expression. Therefore, we hypothesized that CBP could mediate thrombin-induced proliferation of ECs via PDGF-B-dependent way. Short hairpin RNA was used to down-regulate the expression of CBP in ECs. CBP and PDGF-B levels were analysed by real-time RT-PCR and Western blot. To evaluate ECs proliferation, cell cycle and DNA synthesis were analysed by flow cytometry and BrdU (bromodeoxyuridine) incorporation assay, respectively. PDGF-B was involved in the mitogenic effect of thrombin on ECs. Down-regulation of CBP attenuated ECs proliferation and inhibited cell cycle progression induced by thrombin. Silencing CBP expression also suppressed thrombin-induced PDGF-B expression in ECs. Mitogenic activity of thrombin was impaired by silencing CBP expression in ECs. This inhibitory effect was, in part, related to the inability to up-regulate PDGF-B expression in ECs. CBP could be regarded as a potential therapeutic target for vascular injury.
Collapse
|
12
|
Mikula M, Bomsztyk K. Direct recruitment of ERK cascade components to inducible genes is regulated by heterogeneous nuclear ribonucleoprotein (hnRNP) K. J Biol Chem 2011; 286:9763-75. [PMID: 21233203 DOI: 10.1074/jbc.m110.213330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Components of the ERK cascade are recruited to genes, but it remains unknown how they are regulated at these sites. The RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) K interacts with kinases and is found along genes including the mitogen-inducible early response gene EGR-1. Here, we used chromatin immunoprecipitations to study co-recruitment of hnRNP K and ERK cascade activity along the EGR-1 gene. These measurements revealed that the spatiotemporal binding patterns of ERK cascade transducers (GRB2, SOS, B-Raf, MEK, and ERK) at the EGR-1 locus resemble both hnRNP K and RNA polymerase II (Pol II). Inhibition of EGR-1 transcription with either serum-responsive factor knockdown or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole altered recruitment of all of the above ERK cascade components along this locus that mirrored the changes in Pol II and hnRNP K profiles. siRNA knockdown of hnRNP K decreased the levels of active MEK and ERK at the EGR-1, changes associated with decreased levels of elongating pre-mRNA and less efficient splicing. The hnRNP K dependence and pattern of ERK cascade activation at the c-MYC locus were different from at EGR-1. Ribonucleoprotein immunoprecipitations revealed that hnRNP K was associated with the EGR-1 but not c-MYC mRNAs. These data suggest a model where Pol II transcription-driven recruitment of hnRNP K along the EGR-1 locus compartmentalizes activation of the ERK cascade at these genes, events that regulate synthesis of mature mRNA.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
13
|
Nelson JD, LeBoeuf RC, Bomsztyk K. Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes 2011; 60:127-37. [PMID: 20929976 PMCID: PMC3012164 DOI: 10.2337/db09-1806] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Insulin receptor (IR) translocates to the nucleus, but its recruitment to gene loci has not been demonstrated. Here, we tested the hypothesis that IR and its downstream mitogenic transducers are corecruited to two prototypic insulin-inducible genes: early growth response 1 (egr-1), involved in mitogenic response, and glucokinase (Gck), encoding a key metabolic enzyme. RESEARCH DESIGN AND METHODS We used RNA and chromatin from insulin-treated rat hepatic tumor cell line expressing human insulin receptor (HTC-IR) and livers from lean and insulin-resistant ob/ob glucose-fed mice in quantitative RT-PCR and chromatin immunoprecipitation studies to determine gene expression levels and associated recruitment of RNA polymerase II (Pol II), insulin receptor, and cognate signaling proteins to gene loci, respectively. RESULTS Insulin-induced egr-1 mRNA in HTC-IR cells was associated with corecruitment of IR signaling cascade (IR, SOS, Grb2, B-Raf, MEK, and ERK) to this gene. Recruitment profiles of phosphorylated IR, B-Raf, MEK, and Erk along egr-1 transcribed region were similar to those of elongating Pol II. Glucose-feeding increased Gck mRNA expression in livers of lean but not ob/ob mice. In lean mice, there was glucose feeding-induced recruitment of IR and its transducers to Gck gene synchronized with elongating Pol II. In sharp contrast, in glucose-fed ob/ob mice, the Gck recruitment patterns of active MEK/Erk, IR, and Pol II were asynchronous. CONCLUSIONS IR and its signal transducers recruited to genes coupled to elongating Pol II may play a role in maintaining productive mRNA synthesis of target genes. These studies suggest a possibility that impaired Pol II processivity along genes bearing aberrant levels of IR/signal transducers is a previously unrecognized facet of insulin resistance.
Collapse
Affiliation(s)
- Joel D. Nelson
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
- UW Medicine Lake Union, University of Washington, Seattle, Washington
| | - Renée C. LeBoeuf
- UW Medicine Lake Union, University of Washington, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
- UW Medicine Lake Union, University of Washington, Seattle, Washington
- Corresponding author: Karol Bomsztyk,
| |
Collapse
|
14
|
Patel N, Kalra VK. Placenta growth factor-induced early growth response 1 (Egr-1) regulates hypoxia-inducible factor-1alpha (HIF-1alpha) in endothelial cells. J Biol Chem 2010; 285:20570-9. [PMID: 20448047 DOI: 10.1074/jbc.m110.119495] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotrienes, the lipid inflammatory products derived from arachidonic acid, are involved in the pathogenesis of respiratory and cardiovascular diseases and reactive airway disease in sickle cell disease. Placenta growth factor (PlGF), elaborated from erythroid cells, increased the mRNA expression of 5-lipoxygenase and 5-lipoxygenase-activating protein (FLAP) in human pulmonary microvascular endothelial cells. PlGF-induced both promoter activity and mRNA expression of hypoxia-inducible factor-1alpha (HIF-1alpha), which was abrogated by early growth response-1 (EGR-1) small interfering RNA. PlGF showed a temporal reciprocal relationship in the mRNA levels of EGR-1 and NAB2, the latter a repressor of Egr-1. Moreover, Nab2, but not mutant Nab2, significantly reduced promoter activity and mRNA expression of HIF-1alpha and also reduced expression of the HIF-1alpha target gene FLAP. Furthermore, overexpression of Egr-1 led to increased promoter activities for both HIF-1alpha and FLAP in the absence of PlGF. Additionally, the Egr-1-mediated induction of HIF-1alpha and FLAP promoters was reduced to basal levels by EGR-1 small interfering RNA. The binding of Egr-1 to HIF-1alpha promoter was corroborated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay, which showed increased Egr-1 binding to the HIF-1alpha promoter in response to PlGF stimulation. These studies provide a novel mechanism for PlGF-mediated regulation of HIF-1alpha via Egr-1, which results in increased FLAP expression. This study provides a new therapeutic target, namely Egr-1, for attenuation of elevated leukotriene levels in patients with sickle cell disease and other inflammatory diseases.
Collapse
Affiliation(s)
- Nitin Patel
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
15
|
Schweighofer B, Testori J, Sturtzel C, Sattler S, Mayer H, Wagner O, Bilban M, Hofer E. The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 2009; 102:544-54. [PMID: 19718476 DOI: 10.1160/th08-12-0830] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
VEGF-A is the major trigger of vasculogenesis and physiologic angiogenesis. We have investigated to which extent the gene repertoire induced by VEGF-A in endothelial cells is distinct from that of other growth factors and inflammatory cytokines. Genes upregulated in human umbilical vein endothelial cells treated with VEGF, EGF or IL-1 were compared by microarray analysis and clusters characteristic for individual or combinations of inducers were defined. VEGF-A upregulated in comparison to EGF a five-fold larger gene repertoire, which surprisingly overlapped to 60% with the inflammatory repertoire of IL-1. As shown by real-time RT-PCR for selected genes, VEGF-induction was mostly mediated by VEGF receptor-2 and the capacity of VEGF-A to induce genes in common with IL-1 largely depended on activation of the calcineurin/NFAT pathway, since cyclosporin A inhibited this induction. Another angiogenic growth factor, bFGF, did not share a comparable induction of inflammatory genes, but partially induced a small group of genes in common with VEGF-A, which were not regulated by EGF. Thus, the data display that VEGF-A induces a distinct gene repertoire, which, contrasting with other growth factors such as EGF or bFGF, includes an inherent inflammatory component possibly contributing to the cross-regulation of angiogenesis and inflammation as further indicated by the VEGF-mediated induction of leukocyte adhesion. Furthermore, a small group of genes selectively induced by VEGF-A with potential importance for angiogenesis is defined.
Collapse
Affiliation(s)
- Bernhard Schweighofer
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria. E
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 2009; 115:2520-32. [PMID: 19965691 DOI: 10.1182/blood-2009-07-233478] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Endothelial cell activation and dysfunction underlie many vascular disorders, including atherosclerosis, tumor growth, and sepsis. Endothelial cell activation, in turn, is mediated primarily at the level of gene transcription. Here, we show that in response to several activation agonists, including vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha, and thrombin, endothelial cells demonstrate rapid and profound induction of the early growth response (Egr) genes egr-1 and egr-3. In VEGF-treated endothelial cells, induction of Egr-3 was far greater and more prolonged compared with Egr-1. VEGF-mediated stimulation of Egr-3 involved the inducible binding of NFATc, serum response factor, and CREB to their respective consensus motifs in the upstream promoter region of Egr-3. Knockdown of Egr-3 markedly impaired VEGF-mediated proliferation, migration, and tube formation of endothelial cells and blocked VEGF-induced monocyte adhesion. Egr-3 knockdown abrogated VEGF-mediated vascular outgrowth from ex vivo aortic rings and attenuated Matrigel plug vascularization and melanoma tumor growth in vivo. Together, these findings suggest that Egr-3 is a critical determinant of VEGF signaling in activated endothelial cells. Thus, Egr-3 represents a potential therapeutic target in VEGF-mediated vasculopathic diseases.
Collapse
|
17
|
Rössler OG, Thiel G. Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor. BMC Mol Biol 2009; 10:40. [PMID: 19432968 PMCID: PMC2686679 DOI: 10.1186/1471-2199-10-40] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 05/11/2009] [Indexed: 01/18/2023] Open
Abstract
Background The serine protease thrombin catalyzes fibrin clot formation by converting fibrinogen into fibrin. Additionally, thrombin stimulation leads to an activation of stimulus-responsive transcription factors in different cell types, indicating that the gene expression pattern is changed in thrombin-stimulated cells. The objective of this study was to analyze the signaling cascade leading to the expression of the zinc finger transcription factor Egr-1 in thrombin-stimulated lung fibroblasts. Results Stimulation of 39M1-81 fibroblasts with thrombin induced a robust and transient biosynthesis of Egr-1. Reporter gene analysis revealed that the newly synthesized Egr-1 was biologically active. The signaling cascade connecting thrombin stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca2+, the activation of diacylgycerol-dependent protein kinase C isoenzymes, and the activation of extracellular signal-regulated protein kinase (ERK). Stimulation of the cells with thrombin triggered the phosphorylation of the transcription factor Elk-1. Expression of a dominant-negative mutant of Elk-1 completely prevented Egr-1 expression in stimulated 39M1-81 cells, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of protease-activated receptors with transcription of the Egr-1 gene. Lentiviral-mediated expression of MAP kinase phosphatase-1, a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, prevented Elk-1 phosphorylation and Egr-1 biosynthesis in thrombin stimulated 39M1-81 cells, confirming the importance of nuclear ERK and Elk-1 for the upregulation of Egr-1 expression in thrombin-stimulated lung fibroblasts. 39M1-81 cells additionally express M1 muscarinic acetylcholine receptors. A comparison between the signaling cascades induced by thrombin or carbachol showed no differences, except that signal transduction via M1 muscarinic acetylcholine receptors required the transactivation of the EGF receptor, while thrombin signaling did not. Conclusion This study shows that stimulus-transcription coupling in thrombin-treated lung fibroblasts relies on the elevation of the intracellular Ca2+-concentration and the activation of PKC and ERK. In the nucleus, ternary complex factors function as key proteins linking the intracellular signaling cascade with enhanced transcription of the Egr-1 gene. This study further shows that the dominant-negative Elk-1 mutant is a valuable tool to study Elk-1-mediated gene transcription.
Collapse
Affiliation(s)
- Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | |
Collapse
|
18
|
Ding BS, Hong N, Christofidou-Solomidou M, Gottstein C, Albelda SM, Cines DB, Fisher AB, Muzykantov VR. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am J Respir Crit Care Med 2009; 180:247-56. [PMID: 19342415 DOI: 10.1164/rccm.200809-1433oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelial thrombomodulin (TM) regulates thrombosis and inflammation. Diverse forms of pulmonary and vascular injury are accompanied by down-regulation of TM, which aggravates tissue injury. We postulated that anchoring TM to the endothelial surface would restore its protective functions. OBJECTIVES To design an effective and safe strategy to treat pulmonary thrombotic and inflammatory injury. METHODS We synthesized a fusion protein, designated scFv/TM, by linking the extracellular domain of mouse TM to a single-chain variable fragment of an antibody to platelet endothelial cell adhesion molecule-1 (PECAM-1). The targeting and protective functions of scFv/TM were tested in mouse models of lung ischemia-reperfusion and acute lung injury (ALI) caused by intratracheal endotoxin and hyperoxia, both of which caused approximately 50% reduction in the endogenous expression of TM. MEASUREMENTS AND MAIN RESULTS Biochemical assays showed that scFv/TM accelerated protein C activation by thrombin and bound mouse PECAM-1 and cytokine high mobility group-B1. After intravenous injection, scFv/TM preferentially accumulated in the mouse pulmonary vasculature. In a lung model of ischemia-reperfusion injury, scFv/TM attenuated elevation of early growth response-1, inhibited pulmonary deposition of fibrin and leukocyte infiltration, and preserved blood oxygenation more effectively than soluble TM. In an ALI model, scFv/TM, but not soluble TM, suppressed activation of nuclear factor-kappaB, inflammation and edema in the lung and reduced mortality without causing hemorrhage. CONCLUSIONS Targeting TM to the endothelium using an scFv anchor enhances its antithrombotic and antiinflammatory effectiveness in models of ALI.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ogata T. Egr-1 mRNA induction by medium flow involves mRNA stabilization and is enhanced by the p38 inhibitor SB203580 in osteoblast-like cells. Acta Physiol (Oxf) 2008; 194:177-88. [PMID: 18485123 DOI: 10.1111/j.1748-1716.2008.01873.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM Mechanical stimuli are important for maintaining organ structure and tissue function. To elucidate signalling pathways activated by mechanical stimuli, the contribution of mRNA stabilization to induction of egr-1 mRNA by medium flow was examined and the mechanisms responsible for stabilization were analysed. An early-response gene that encodes a transcription factor, egr-1, activates transcription of several genes in response to mechanical stimuli, and was therefore selected to resolve how early-induced signals are integrated and connected to subsequent response. METHODS Mouse osteoblast-like MC3T3E1 cells were stably transfected with the chloramphenicol acetyltransferase (CAT) gene linked to the egr-1 promoter, and inductions of endogenous egr-1 and transfected CAT mRNA following medium flow were compared using real-time reverse transcriptase PCR. The mechanism of induction was examined using a transcription inhibitor and mitogen-activated protein (MAP) kinase inhibitors. Activation of MAP kinases by medium flow was investigated using western blotting. RESULTS Induction of egr-1 mRNA by medium flow was twofold higher than CAT mRNA induction. Induction of egr-1 mRNA was also observed in cells pre-treated with transcription inhibitor. The p38 inhibitor SB203580 enhanced induction of egr-1 mRNA by medium flow. Extracellular signal regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) were activated by medium flow. CONCLUSION A considerable part of egr-1 mRNA induction by medium flow may be due to mRNA stabilization. The p38 inhibitor SB203580 enhances induction.
Collapse
Affiliation(s)
- T Ogata
- Division of Advanced Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
20
|
Kim MJ, Kang JH, Chang SY, Jang HJ, Ryu GR, Ko SH, Jeong IK, Kim MS, Jo YH. Exendin-4 induction of Egr-1 expression in INS-1 beta-cells: interaction of SRF, not YY1, with SRE site of rat Egr-1 promoter. J Cell Biochem 2008; 104:2261-71. [PMID: 18446785 DOI: 10.1002/jcb.21783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) induces several immediate early response genes such as c-fos, c-jun, and early growth response-1 (Egr-1), which are involved in cell proliferation and differentiation. We recently reported that exendin-4 (EX-4), a potent GLP-1 agonist, upregulated Egr-1 expression via phosphorylation of CREB, a transcription factor in INS-1 beta-cells. This study was designed to investigate the role of another transcription factors, serum response factor (SRF) and Yin Yang-1 (YY1), in EX-4-induced Egr-1 expression. EX-4 significantly increased Egr-1 mRNA and subsequently its protein level. EX-4-induced Egr-1 expression was inhibited by pretreatment with a PKA inhibitor, H-89, and an MEK inhibitor, PD 98059. The siRNA-mediated inhibition of PKA and ERK1 resulted in significant reduction of EX-4-induced Egr-1 expression. Promoter analyses showed that SRE clusters were essential for Egr-1 transcription, and YY1 overexpression did not affect Egr-1 promoter activity. EMSA results demonstrated that EX-4-induced transient increase in DNA-protein complex on SRE site, and that both SRF and phospho-SRF were bound to this site. Treatment of either YY1 consensus oligonucleotide or YY1 antibody did not effect the change of density or migration of the DNA-protein complex. Collectively, EX-4-induced Egr-1 expression is largely dependent on cAMP-mediated extracellular signal-regulated kinase activation, and EX-4 induces Egr-1 transcription via the interaction of SRF and phospho-SRF to SRE sites.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salah Z, Haupt S, Maoz M, Baraz L, Rotter V, Peretz T, Haupt Y, Bar-Shavit R. p53 controls hPar1 function and expression. Oncogene 2008; 27:6866-74. [DOI: 10.1038/onc.2008.324] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 2008; 36:e17. [PMID: 18203739 PMCID: PMC2241906 DOI: 10.1093/nar/gkn001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chromatin immunoprecipitation (ChIP) assay is a major tool in the study of genomic processes in vivo. This and other methods are revealing that control of gene expression, cell division and DNA repair involves multiple proteins and great number of their modifications. ChIP assay is traditionally done in test tubes limiting the ability to study signaling of the complex genomic events. To increase the throughput and to simplify the assay we have developed a microplate-based ChIP (Matrix ChIP) method, where all steps from immunoprecipitation to DNA purification are done in microplate wells without sample transfers. This platform has several important advantages over the tube-based assay including very simple sample handling, high throughput, improved sensitivity and reproducibility, and potential for automation. 96 ChIP measurements including PCR can be done by one researcher in one day. We illustrate the power of Matrix ChIP by parallel profiling 80 different chromatin and transcription time-course events along an inducible gene including transient recruitment of kinases.
Collapse
Affiliation(s)
- Steve Flanagin
- UW Medicine Lake Union, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
23
|
Kinney CM, Chandrasekharan UM, Mavrakis L, DiCorleto PE. VEGF and thrombin induce MKP-1 through distinct signaling pathways: role for MKP-1 in endothelial cell migration. Am J Physiol Cell Physiol 2008; 294:C241-50. [DOI: 10.1152/ajpcell.00187.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A165isoform stimulated MKP-1 expression, whereas the VEGF-A162isoform induced the gene to a lesser extent, and the VEGF-A121isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.
Collapse
|
24
|
Activated Protein C Decreases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand by an EPCR- Independent Mechanism Involving Egr-1/Erk-1/2 Activation. Arterioscler Thromb Vasc Biol 2007; 27:2634-41. [DOI: 10.1161/atvbaha.107.153734] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
APC is an antithrombotic and antiinflammatory serine protease that plays an important role in vascular function. We report that APC can suppress the proapoptotic mediator TRAIL in human umbilical vein endothelial cells, and we have investigated the signaling mechanism.
Methods and Results—
APC inhibited endothelial TRAIL expression and secretion and its induction by cell activation. To explore the mechanism, we examined factors associated with TRAIL regulation and demonstrated that APC increased the level of EGR-1, a transcriptional factor known to suppress the TRAIL promoter. APC also induced a significant increase in phosphorylation of ERK-1/2, required to activate EGR-1 expression. Activation of ERK-1/2 was dependent on the protease activated receptor-1 (PAR-1), but independent of the endothelial protein C receptor (EPCR). Using siRNA, we found that the effect of APC on the EGR-1/ERK signaling required for TRAIL inhibition was dependent on the S1P1 receptor and S1P1 kinase.
Conclusions—
Our data suggest that APC may provide cytoprotective activity by activating the ERK pathway, which upregulates EGR-1 thereby suppressing the expression of TRAIL. Moreover, we provide evidence that APC can induce a cell signaling response through a PAR-1/S1P1-dependent but EPCR-independent mechanism.
Collapse
|
25
|
Latasa MU, Couton D, Charvet C, Lafanechère A, Guidotti JE, Li Z, Tuil D, Daegelen D, Mitchell C, Gilgenkrantz H. Delayed liver regeneration in mice lacking liver serum response factor. Am J Physiol Gastrointest Liver Physiol 2007; 292:G996-G1001. [PMID: 17170024 DOI: 10.1152/ajpgi.00493.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Various immediate early genes (IEGs) upregulated during the early process of liver regeneration are transcriptional targets of the serum response factor (SRF). We show here that the expression of SRF is rapidly induced in rodent liver after partial hepatectomy. Because the inactivation of the SRF gene in mice is embryonic lethal, the in vivo role of SRF in liver regeneration after partial hepatectomy was analyzed in mutant mice conditionally deleted for SRF in the liver. We demonstrate that SRF is not an essential factor for liver ontogenesis. However, adult mutant mice show impaired liver regeneration after partial hepatectomy, associated with a blunted upregulation of various SRF target IEGs. In conclusion, our work suggests that SRF is an early response transcription factor that may contribute to the initial phases of liver regeneration through its activation of IEGs.
Collapse
Affiliation(s)
- M Ujue Latasa
- Institut Cochin, Genetics and Development Department, 24 Rue du Fbg St. Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Landis RC. Protease activated receptors: clinical relevance to hemostasis and inflammation. Hematol Oncol Clin North Am 2007; 21:103-13. [PMID: 17258121 DOI: 10.1016/j.hoc.2006.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protease-activated receptors (PARs) are a unique family of vascular receptors that confer on cells an ability to sense, and respond to, local changes in the proteolytic environment. They are activated by serine proteases of the blood coagulation cascade, notably thrombin, and are linked to thrombotic and inflammatory effector pathways. In surgery with cardiopulmonary bypass (CPB), thrombin is generated in large quantities in the extracorporeal circuit and can exert systemic effects by way of platelet and endothelial PAR1. Aprotinin (Trasylol), a serine protease inhibitor used in cardiac surgery, preserves platelet function, and attenuates the inflammatory response by protecting the PAR 1 receptor on platelets and endothelium.
Collapse
Affiliation(s)
- R Clive Landis
- Edmund Cohen Laboratory for Vascular Research, University of the West Indies, Chronic Disease Research Centre, Jemmotts Lane, Barbados, West Indies.
| |
Collapse
|
27
|
Zhang JJ, Kelm RJ, Biswas P, Kashgarian M, Madri JA. PECAM-1 modulates thrombin-induced tissue factor expression on endothelial cells. J Cell Physiol 2007; 210:527-37. [PMID: 17111362 DOI: 10.1002/jcp.20908] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) (CD31) is known to inhibit platelet function and thrombus formation. The mechanisms involved in PECAM-1's roles as a modulator of hemostasis are still not completely understood. We examined the role of PECAM-1 as a regulator of tissue factor (TF) expression, a known important inducer of thrombosis. Wildtype and CD31KO mice underwent transient (30 min) renal ischemia followed by 24 h re-perfusion and their kidneys assessed for apoptosis, fibrin formation, and tissue factor expression. CD31KO mice exhibited increased tubular epithelial and endothelial apoptosis, increased fibrin deposition, and tissue factor expression. Human umbilical vein endothelial cells (HUVEC) transfected with antisense (AS) PECAM-1 oligonucleotides to downregulate PECAM-1 expression, exhibited greater induction of TF mRNA and protein expression as well as increased expression and nuclear localization of the transcription factor Egr-1 compared to scrambled AS PECAM-1 (Scr)-treated HUVEC following thrombin stimulation. TF induction was found to be mediated through thrombin receptor PAR-1 and the Galphai/o subunit of G-protein, confirmed by PAR-1 antagonist and pertussis toxin inhibition respectively. Thrombin-mediated TF induction was dependent on Rho Kinase activity, phosphorylation of p38(MAPK) and p85 & Akt dephosphorylation. The inverse correlation of PI3K-Akt phosphorylation with p38 (MAPK) phosphorylation was confirmed by pharmacological inhibition. These studies suggest that PECAM-1 is involved in regulating a signaling pathway, affecting PI3K and Akt activation, p38 (MAPK) phosphorylation, which in turn, affects Egr-1 expression and nuclear translocation, ultimately affecting TF expression. These findings provide new insights into the action of PECAM-1 as a modulator of thrombosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Blood Coagulation/physiology
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Early Growth Response Protein 1/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fibrin/metabolism
- Humans
- Kidney/blood supply
- Kidney/metabolism
- Kidney/physiopathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Platelet Endothelial Cell Adhesion Molecule-1/drug effects
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, PAR-1/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/physiopathology
- Thrombin/metabolism
- Thrombin/pharmacology
- Thromboplastin/drug effects
- Thromboplastin/genetics
- Thromboplastin/metabolism
- Thrombosis/metabolism
- Thrombosis/physiopathology
Collapse
Affiliation(s)
- Jenny J Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
28
|
De Vries L, Palmier C, Finana F, Le Grand B, Perez M, Cussac D. Pharmacological characterization of protease activated receptor-1 by a serum responsive element-dependent reporter gene assay: Major role of calmodulin. Biochem Pharmacol 2006; 71:1449-58. [PMID: 16524561 DOI: 10.1016/j.bcp.2006.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/26/2022]
Abstract
We studied the protease activated receptor-1 coupling to a serum response element (SRE)-dependent luciferase activity readout in transfected COS-7 cells. Thrombin, with a pEC50 of 10.5, was 3000-fold more potent than the peptide agonists SFLLR and its derived compound C721-40 in stimulating luciferase activity, although the three agonists exhibited similar efficacy at the maximal concentration tested. Interestingly, SFLLR- and C721-40-induced luciferase activity was biphasic, suggesting that at least two populations of G proteins couple to the receptor. Further pharmacological characterization of this system was performed using selective protease activated receptor-1 antagonists. SCH203099 and ER-112787 blocked SFLLR-induced luciferase activity with similar potencies (pK(B) of 7), slightly higher than that exhibited by an arylisoxazole derivative compound from Merck (pK(B) of 6.1). These values correlated with their affinities established by competition binding experiments using [3H]-C721-40 as radioligand for protease activated receptor-1. Transduction mechanisms of protease activated receptor-1 coupling to SRE-dependent luciferase activity were examined using specific inhibitors. The Ca2+ chelator BAPTA-AM, as well as the calmodulin inhibitors W-7 and ophiobolin A, robustly inhibited SFLLR-induced SRE activation. Overexpression of RGS2 and a dominant negative rhoA protein abolished the SFLLR signal in an additive manner, suggesting a major role of Gq and G12/13 proteins. Furthermore, inhibition of phospholipase C, MAP-kinases, phosphatidyl inositol-3 kinase, rho-kinase and Ca2+/calmodulin-dependent protein kinases, all downstream effectors of Gq and G12/13, partially blocked the SFLLR-induced luciferase signal. Taken together, this SRE-luciferase assay reveals a complex network of transduction pathways of protease activated receptor-1 in accordance with the pleiotrophic action of thrombin.
Collapse
Affiliation(s)
- Luc De Vries
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, 81106 Castres, France.
| | | | | | | | | | | |
Collapse
|
29
|
Day JRS, Taylor KM, Lidington EA, Mason JC, Haskard DO, Randi AM, Landis RC. Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. J Thorac Cardiovasc Surg 2006; 131:21-7. [PMID: 16399290 DOI: 10.1016/j.jtcvs.2005.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/26/2005] [Accepted: 08/31/2005] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Thrombin is generated in significant quantities during cardiopulmonary bypass and mediates adverse events, such as platelet aggregation and proinflammatory responses, through activation of the high-affinity thrombin receptor protease-activated receptor 1, which is expressed on platelets and endothelium. Thus antagonism of protease-activated receptor 1 might have broad therapeutic significance. Aprotinin, used clinically to reduce transfusion requirements and the inflammatory response to bypass, has been shown to inhibit protease-activated receptor 1 on platelets in vitro and in vivo. Here we have examined whether aprotinin inhibits endothelial protease-activated receptor 1 activation and resulting proinflammatory responses induced by thrombin. METHODS Protease-activated receptor 1 expression and function were examined in cultured human umbilical vein endothelial cells after treatment with alpha-thrombin at 0.02 to 0.15 U/mL in the presence or absence of aprotinin (200-1600 kallikrein inhibitory units/mL). Protease-activated receptor 1 activation was assessed by using an antibody, SPAN-12, which detects only the unactivated receptor, and thrombin-mediated calcium fluxes. Other thrombin-dependent inflammatory pathways investigated were phosphorylation of the p42/44 mitogen-activated protein kinase, upregulation of the early growth response 1 transcription factor, and production of the proinflammatory cytokine interleukin 6. RESULTS Pretreatment of cultured endothelial cells with aprotinin significantly spared protease-activated receptor 1 receptor cleavage (P < .0001) and abrogated calcium fluxes caused by thrombin. Aprotinin inhibited intracellular signaling through p42/44 mitogen-activated protein kinase (P < .05) and early growth response 1 transcription factor (P < .05), as well as interleukin 6 secretion caused by thrombin (P < .005). CONCLUSIONS This study demonstrates that endothelial cell activation by thrombin and downstream inflammatory responses can be inhibited by aprotinin in vitro through blockade of protease-activated receptor 1. Our results provide a new molecular basis to help explain the anti-inflammatory properties of aprotinin reported clinically.
Collapse
Affiliation(s)
- Jonathan R S Day
- Eric Bywaters Centre, Imperial College London, Faculty of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The immediate-early gene product and zinc finger transcription factor early growth response (Egr)-1 plays a key master regulatory role in multiple cardiovascular pathological processes. This article reviews the amazing recent evidence implicating Egr-1 in atherosclerosis, intimal thickening after acute vascular injury, ischemic pathology, angiogenesis, allograft rejection, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Levon M Khachigian
- Centre for Vascular Research, Department of Pathology, The University of New South Wales, The Prince of Wales Hospital, Sydney, Australia.
| |
Collapse
|
31
|
Wada Y, Otu H, Wu S, Abid MR, Okada H, Libermann T, Kodama T, Shih SC, Minami T, Aird WC. Preconditioning of primary human endothelial cells with inflammatory mediators alters the "set point" of the cell. FASEB J 2005; 19:1914-6. [PMID: 16172186 PMCID: PMC5378497 DOI: 10.1096/fj.05-4037fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells are highly sensitive to changes in the extracellular milieu. Sepsis results in activation of inflammatory and coagulation pathways. We hypothesized that sepsis-associated mediators may alter the response capacity (so-called "set point") of endothelial cells. Human umbilical vein endothelial cells (HUVEC) were preincubated in the presence or absence of tumor necrosis factor (TNF)-alpha, lipopolysaccharide (LPS), hypoxia, hyperthermia, and/or high glucose; treated with or without thrombin for 4 h; and then processed for RNase protection assays of selected activation markers. Priming with TNF-alpha and LPS significantly inhibited thrombin-mediated induction of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tissue factor, and E-selectin, but not platelet-derived growth factor-A or CD44. In electrophoretic mobility shift assays, thrombin-treated HUVEC demonstrated inducible binding of p65 NF-kappaB, an effect that was significantly blunted by pretreatment of cells with TNF-alpha and LPS. Consistent with these results, TNF-alpha and LPS attenuated the effect of thrombin on IkappaB phosphorylation, total cytoplasmic IkappaB, and nuclear translocation of p65 NF-kappaB. The inhibitory effect of TNF-alpha on thrombin signaling persisted for up to 24 h following removal of the cytokine. Taken together, these data suggest that inflammatory mediators prime endothelial cells to modulate subsequent thrombin response.
Collapse
Affiliation(s)
- Youichiro Wada
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hasan Otu
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shengqian Wu
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Md. Ruhul Abid
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hitomi Okada
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Towia Libermann
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Tatsuhiko Kodama
- The Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan
| | - Shu-Ching Shih
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Takashi Minami
- The Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan
| | - William C. Aird
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
32
|
Kamimura M, Viedt C, Dalpke A, Rosenfeld ME, Mackman N, Cohen DM, Blessing E, Preusch M, Weber CM, Kreuzer J, Katus HA, Bea F. Interleukin-10 suppresses tissue factor expression in lipopolysaccharide-stimulated macrophages via inhibition of Egr-1 and a serum response element/MEK-ERK1/2 pathway. Circ Res 2005; 97:305-13. [PMID: 16037570 DOI: 10.1161/01.res.0000177893.24574.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is considered to be an inflammatory disease. Tissue factor (TF), a prothrombotic molecule expressed by various cell types within atherosclerotic plaques, is thought to play an essential role in thrombus formation after atherosclerotic plaque rupture. Recent studies suggest that the antiinflammatory cytokine interleukin-10 (IL-10) has many antiatherosclerotic properties. Therefore, the effects of IL-10 on TF expression in response to inflammation were investigated. Mouse macrophages were stimulated with lipopolysaccharide (LPS) in the presence or absence of IL-10. Pretreatment with IL-10 resulted in a 50% decrease in TF mRNA expression and TF promoter activity. Binding of early growth response gene-1 (Egr-1) to the consensus DNA sequence, a key transcriptional activator of TF expression in response to inflammation, and the expression of Egr-1 mRNA were also inhibited by IL-10. This inhibition was independent of the induction of suppressor of cytokine signaling protein-3 by IL-10. Macrophages that had been transfected with luciferase reporter constructs containing the murine Egr-1 5'-flanking sequence exhibited reduced reporter gene activity in response to LPS stimulation with IL-10 pretreatment. Studies with deletion constructs of the Egr-1 promoter identified the proximal serum response element SRE3 as a potential regulatory site for the IL-10 mediated suppression of Egr-1 expression. Furthermore, activation of the upstream signal-transduction elements, such as mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase 1/2, and Elk-1 were also inhibited by IL-10 pretreatment. Taken together, these results demonstrate a pathway for the IL-10 mediated inhibition of TF expression during inflammation and may explain the antiatherosclerotic effects of IL-10.
Collapse
Affiliation(s)
- Motohiro Kamimura
- Department Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu SQ, Aird WC. Thrombin, TNF-alpha, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005; 289:H873-85. [PMID: 15833800 DOI: 10.1152/ajpheart.00993.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombin, TNF-alpha, and LPS have each been implicated in endothelial cell and vascular smooth muscle cell (VSMC) activation. We wanted to test the hypothesis that these three agonists display mediator and/or cell type-specific properties. The addition of thrombin to human pulmonary artery endothelial cells resulted in an upregulation of PDGF-A, tissue factor (TF), ICAM-1, and urokinase-type plasminogen activator (u-PA), whereas TNF-alpha and LPS failed to induce PDGF-A. These effects were mimicked by protease-activated receptor-1 activation. In VSMC, thrombin induced expression of TF and PDGF-A but failed to consistently induce ICAM-1 or u-PA expression. In contrast, TNF-alpha and LPS increased expression of all four genes in this cell type. Inhibitor studies in endothelial cells demonstrated a critical role for PKC in mediating thrombin, TNF-alpha, and LPS induction of ICAM-1, TF, and u-PA and for p38 MAPK in mediating thrombin, TNF-alpha, and LPS induction of TF. Taken together, these results suggest that inflammatory mediators engage distinct signaling pathways and expression profiles in endothelial cells and VSMC. The data support the notion that endothelial cell activation is not an all-or-nothing phenomenon but rather is dependent on the nature of the extracellular mediator.
Collapse
MESH Headings
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/physiology
- Gene Expression/drug effects
- Humans
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- Lipopolysaccharides/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/physiology
- Thrombin/pharmacology
- Thromboplastin/genetics
- Thromboplastin/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Sheng-Qian Wu
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, RW-663, 330 Brookline Ave., Boston, MA 02215, USA
| | | |
Collapse
|
34
|
Bauer I, Hohl M, Al-Sarraj A, Vinson C, Thiel G. Transcriptional activation of the Egr-1 gene mediated by tetradecanoylphorbol acetate and extracellular signal-regulated protein kinase. Arch Biochem Biophys 2005; 438:36-52. [PMID: 15910736 DOI: 10.1016/j.abb.2005.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 01/25/2023]
Abstract
Activation of extracellular signal-regulated protein kinase (ERK) triggers the biosynthesis of Egr-1, a zinc finger transcription factor. Likewise, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) strongly upregulates Egr-1 biosynthesis. Here, we have analyzed the genetic elements involved in the regulation of Egr-1 gene transcription by ERK and TPA in human hepatoma cells. Expression experiments using mitogen-activated protein kinase phosphatase-1 or a dominant-negative mutant of the ternary complex factor Elk-1 revealed that the distal cluster of serum response elements is essential in the TPA-induced enhancement of Egr-1 promoter activity, encompassing two independent TPA-responsive elements. The CRE in the proximal Egr-1 promoter plays, if anything, only a marginal role in TPA-induced stimulus-transcription coupling of the Egr-1 gene. The fact that Egr-1 promoter/reporter gene transcription is upregulated by a constitutively active CREB mutant indicates that the CRE couples other signaling cascades via CREB to the Egr-1 gene.
Collapse
Affiliation(s)
- Inge Bauer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
35
|
McLaughlin JN, Mazzoni MR, Cleator JH, Earls L, Perdigoto AL, Brooks JD, Muldowney JAS, Vaughan DE, Hamm HE. Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells. J Biol Chem 2005; 280:22172-80. [PMID: 15817447 DOI: 10.1074/jbc.m500721200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombospondin-1 (THBS1) is a large extracellular matrix glycoprotein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. Increases in THBS1 expression have been liked to disease states including tumor progression, atherosclerosis, and arthritis. The present study focuses on the effects of thrombin activation of the G-protein-coupled, protease-activated receptor-1 (PAR-1) on THBS1 gene expression in the microvascular endothelium. Thrombin-induced changes in gene expression were characterized by microarray analysis of approximately 11,000 different human genes in human microvascular endothelial cells (HMEC-1). Thrombin induced the expression of a set of at least 65 genes including THBS1. Changes in THBS1 mRNA correlated with an increase in the extracellular THBS1 protein concentration. The PAR-1-specific agonist peptide (TFLLRNK-PDK) mimicked thrombin stimulation of THBS1 expression, suggesting that thrombin signaling is through PAR-1. Further studies showed THBS1 expression was sensitive to pertussis toxin and protein kinase C inhibition indicating G(i/o)- and G(q)-mediated pathways. THBS1 up-regulation was also confirmed in human umbilical vein endothelial cells stimulated with thrombin. Analysis of the promoter region of THBS1 and other genes of similar expression profile identified from the microarray predicted an EBOX/EGRF transcription model. Expression of members of each family, MYC and EGR1, respectively, correlated with THBS1 expression. These results suggest thrombin formed at sites of vascular injury increases THBS1 expression into the extracellular matrix via activation of a PAR-1, G(i/o), G(q), EBOX/EGRF-signaling cascade, elucidating regulatory points that may play a role in increased THBS1 expression in disease states.
Collapse
MESH Headings
- Adenosine Diphosphate/chemistry
- Algorithms
- Amides/pharmacology
- Apoptosis
- Cells, Cultured
- Cluster Analysis
- Culture Media
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electric Impedance
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme-Linked Immunosorbent Assay
- Extracellular Matrix/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Humans
- Indoles/pharmacology
- Maleimides/pharmacology
- Microcirculation/metabolism
- Models, Biological
- Nucleic Acid Hybridization
- Oligonucleotide Array Sequence Analysis
- Peptides/chemistry
- Pertussis Toxin/pharmacology
- Promoter Regions, Genetic
- Protein Binding
- Pyridines/pharmacology
- RNA/metabolism
- Receptor, PAR-1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Thrombin/chemistry
- Thrombin/metabolism
- Thrombospondin 1/biosynthesis
- Time Factors
- Umbilical Veins/cytology
- Up-Regulation
Collapse
Affiliation(s)
- Joseph N McLaughlin
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 444 Robinson Research Building, 23rd Avenue South at Pierce, Nashville, TN 37232 , USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gaggioli C, Deckert M, Robert G, Abbe P, Batoz M, Ehrengruber MU, Ortonne JP, Ballotti R, Tartare-Deckert S. HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1. Oncogene 2005; 24:1423-33. [PMID: 15608673 DOI: 10.1038/sj.onc.1208318] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The matrix fibronectin protein is a multifunctional adhesive molecule that promotes migration and invasiveness of many tumors including melanomas. Increased fibronectin synthesis has been associated with the metastatic potential of melanoma cells; however, the molecular mechanisms underlying fibronectin overexpression during melanoma development are poorly understood. We report that hepatocyte growth factor/scatter factor (HGF) induces fibronectin expression and its extracellular assembly on the surface of melanoma cells through activation of mitogen-activated protein (MAP) kinase pathway, and induction and transcriptional activation of Early growth response-1 (Egr-1). Inhibition of B-RAF/MAP kinase pathway by dominant-negative mutants and by U0126-abrogated HGF-induced Egr-1, and chromatin immunoprecipitation showed that Egr-1 is bound to the fibronectin promoter in response to HGF. Exogenously expressed Egr-1 increased fibronectin levels, while blockage of Egr-1 activation by expression of the Egr-1 corepressor NAB2 interfered with the upregulation of fibronectin synthesis induced by HGF, indicating that Egr-1 exerts a significant role in fibronectin expression in response to HGF. Finally, analysis of the expression pattern of fibronectin in melanoma cells demonstrated that fibronectin levels are correlated with constitutive MAP kinase signaling. Our data define a novel mechanism that might have important implications in regulation of melanoma progression by autocrine HGF signaling or by constitutive activation of MAP kinase pathway.
Collapse
Affiliation(s)
- Cédric Gaggioli
- INSERM Unité 597, Biologie et Pathologies des Cellules Mélanocytaires, 'équipe labellisée la Ligue 2001', IFR 50, 06107 Nice Cédex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Pelekanakis K, Woolkalis MJ. Thrombin and tumor necrosis factor alpha synergistically stimulate tissue factor expression in human endothelial cells: regulation through c-Fos and c-Jun. J Biol Chem 2004; 279:36142-7. [PMID: 15201277 DOI: 10.1074/jbc.m405039200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor is critically important for initiating the activation of coagulation zymogens leading to the generation of thrombin. Quiescent endothelial cells do not express tissue factor on their surface, but many stimuli including cytokines and coagulation proteases can elicit tissue factor synthesis. We challenged human endothelial cells simultaneously with tumor necrosis factor alpha (TNFalpha) and thrombin because many pathophysiological conditions, such as sepsis, diabetes, and coronary artery disease, result in the concurrent presence of circulating inflammatory mediators and activated thrombin. We observed a remarkable synergy in the expression of tissue factor by thrombin plus TNFalpha. This was due to altered regulation of the transcription factors c-Jun and c-Fos. The activation of c-Jun was greater and more sustained than that obtained with either thrombin or TNFalpha alone. Thrombin-stimulated expression of c-Fos was both enhanced and prolonged by the concurrent presence of TNFalpha. These changes support the increased availability of c-Jun/c-Fos AP-1 complexes for mediating transcription at the tissue factor promoter. Transcription factors downstream of the extracellular signal-regulated kinases as well as changes in NFkappaB regulation were not involved in the synergistic increase in tissue factor expression by thrombin and TNFalpha. Thus, concurrent exposure of vascular endothelial cells to cytokines and procoagulant proteases such as thrombin can result in greatly enhanced tissue factor expression on the endothelium, thereby perpetuating the prothrombotic phenotype of the endothelium.
Collapse
Affiliation(s)
- Yuchuan Liu
- Department of Physiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
38
|
Tullai JW, Schaffer ME, Mullenbrock S, Kasif S, Cooper GM. Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways. J Biol Chem 2004; 279:20167-77. [PMID: 14769801 DOI: 10.1074/jbc.m309260200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have taken an integrated approach in which expression profiling has been combined with the use of small molecule inhibitors and computational analysis of transcription factor binding sites to characterize regulatory sequences of genes that are targets of specific signaling pathways in growth factor-stimulated human cells. T98G cells were stimulated with platelet-derived growth factor (PDGF) and analyzed by DNA microarrays, which identified 74 immediate-early gene transcripts. Cells were then treated with inhibitors to identify subsets of genes that are targets of the phosphatidylinositol 3-kinase (PI3K) and MEK/ERK signaling pathways. Four groups of PDGF-induced genes were defined: independent of PI3K and MEK/ERK signaling, dependent on PI3K signaling, dependent on MEK/ERK signaling, and dependent on both pathways. The upstream regions of all genes in the four groups were scanned using TRANSFAC for putative cis-elements as compared with a background set of non-induced genes. Binding sites for 18 computationally predicted transcription factors were over-represented in the four groups of co-expressed genes compared with the background sequences (p < 0.01). Many of the cis-elements identified were conserved in orthologous mouse genes, and many of the predicted elements and their cognate transcription factors were consistent with previous experimental data. In addition, chromatin immunoprecipitation assays experimentally verified nine predicted SRF binding sites in T98G cells, including a previously unknown SRF site upstream of DUSP5. These results indicate that groups of human genes regulated by discrete intracellular signaling pathways share common cis-regulatory elements.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
39
|
Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC. Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 2004; 24:41-53. [PMID: 14551154 DOI: 10.1161/01.atv.0000099880.09014.7d] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombin signaling in the endothelium is linked to multiple phenotypic changes, including alterations in permeability, vasomotor tone, and leukocyte trafficking. The thrombin signal is transduced, at least in part, at the level of gene transcription. In this review, we focus on the role of thrombin signaling and transcriptional networks in mediating downstream gene expression and endothelial phenotype. In addition, we report the results of DNA microarrays in control and thrombin-treated endothelial cells. We conclude that (1) thrombin induces the upregulation and downregulation of multiple genes in the endothelium, (2) thrombin-mediated gene expression involves a multitude of transcription factors, and (3) future breakthroughs in the field will depend on a better understanding of the spatial and temporal dynamics of these transcriptional networks.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 2003; 17:1211-62. [PMID: 12835715 DOI: 10.1038/sj.leu.2402912] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chronological history of the important discoveries leading to our present understanding of the essential clinical, biological, biochemical, and molecular features of chronic myelogenous leukemia (CML) are first reviewed, focusing in particular on abnormalities that are responsible for the massive myeloid expansion. CML is an excellent target for the development of selective treatment because of its highly consistent genetic abnormality and qualitatively different fusion gene product, p210(bcr-abl). It is likely that the multiple signaling pathways dysregulated by p210(bcr-abl) are sufficient to explain all the initial manifestations of the chronic phase of the disease, although understanding of the circuitry is still very incomplete. Evidence is presented that the signaling pathways that are constitutively activated in CML stem cells and primitive progenitors cooperate with cytokines to increase the proportion of stem cells that are activated and thereby increase recruitment into the committed progenitor cell pool, and that this increased activation is probably the primary cause of the massive myeloid expansion in CML. The cooperative interactions between Bcr-Abl and cytokine-activated pathways interfere with the synergistic interactions between multiple cytokines that are normally required for the activation of stem cells, while at the same time causing numerous subtle biochemical and functional abnormalities in the later progenitors and precursor cells. The committed CML progenitors have discordant maturation and reduced proliferative capacity compared to normal committed progenitors, and like them, are destined to die after a limited number of divisions. Thus, the primary goal of any curative strategy must be to eliminate all Philadelphia positive (Ph+) primitive cells that are capable of symmetric division and thereby able to expand the Ph+ stem cell pool and recreate the disease. Several highly potent and moderately selective inhibitors of Bcr-Abl kinase have recently been discovered that are capable of killing the majority of actively proliferating early CML progenitors with minimal effects on normal progenitors. However, like their normal counterparts, most of the CML primitive stem cells are quiescent at any given time and are relatively invulnerable to the Bcr-Abl kinase inhibitors as well as other drugs. We propose that survival of dormant Ph+ stem cells may be the most important reason for the inability to cure the disease during initial treatment, while resistance to the inhibitors and other drugs becomes increasingly important later. An outline of a possible curative strategy is presented that attempts to take advantage of the subtle differences in the proliferative behavior of normal and Ph+ stem cells and the newly discovered selective inhibitors of Bcr-Abl. Leukemia (2003) 17, 1211-1262. doi:10.1038/sj.leu.2402912
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Signal Transduction
- Treatment Outcome
Collapse
Affiliation(s)
- B Clarkson
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|