1
|
Wang T, Bai Y, Dong Y, Qin J, Zhou X, Wang A, Liu D, Li X, Ma Z, Hu Y. A comprehensive analysis of deubiquitinase USP20 on prognosis and immunity in pan-cancer. FASEB J 2025; 39:e70499. [PMID: 40270318 DOI: 10.1096/fj.202402603r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/05/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
USP20 is a deubiquitinase enzyme in the ubiquitin-proteasome system that plays a role in the development and progression of tumors. However, the relationships between USP20 expression and clinical prognosis and tumor immunity remain unclear. In this study, the USP20 expression and its relationships with potential prognostic value, the tumor microenvironment (TME), immune-related genes, the tumor mutational burden (TMB), microsatellite instability (MSI), homologous recombination deficiency, cancer stemness, and correlated signaling pathways were investigated via The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), STRING, Gene Expression Profiling Interactive Analysis (GEPIA2), and the Human Protein Atlas (HPA). Moreover, we explored the oncogenic capability of USP20 in breast cancer. Data analysis was performed via GraphPad Prism and the R package. The results indicated that the expression of USP20 was upregulated in most cancers and was associated with survival in 17 tumor types. Furthermore, USP20 expression was strongly correlated with immune infiltration and the expression of immunomodulatory genes. We also verified the correlations between USP20 expression and tumor heterogeneity, cancer stemness, and the corresponding signaling pathways. Moreover, our work revealed that USP20 was highly expressed and predicted a poor outcome in patients with breast cancer. Basic experiments verified that USP20 overexpression promoted both the proliferation and migration of breast cancer cells. This study comprehensively investigated the expression of USP20 and its correlation with clinical prognostic assessment and tumor immune modulation across cancers, indicating that USP20 might have utility as a biomarker associated with prognosis and cancer immunotherapy.
Collapse
Affiliation(s)
- Ting Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yibing Bai
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Yi Dong
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Jiapei Qin
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Xin Zhou
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - An Wang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Li
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Xie Y, Wang R, Xu M, Chen J, Tan W, Chen Y, Bai Y, Wu N, Wu F, Xu X, Ma X, Liu Y. Potential of CLSPN as a therapeutic target in melanoma: a key player in melanoma progression and tumor microenvironment. J Transl Med 2025; 23:470. [PMID: 40275302 PMCID: PMC12020306 DOI: 10.1186/s12967-025-06455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Melanoma is a highly aggressive form of skin cancer. Despite significant advances in targeted therapies and immunotherapeutic approaches, some patients still have poor response rates, making a deeper understanding of melanoma pathogenesis essential. METHODS The expression of Claspin (CLSPN), prognosis and immune infiltration in skin cutaneous melanoma patients were analyzed by public databases. Immunohistochemistry was used to validate. Moreover, quantitative real-time polymerase chain reaction analysis, western blot, cell counting kit-8 assay, colony formation assay, flow cytometry, animal experiments, and RNA-seq were applied to explore its biological functions and potential molecular mechanisms of CLSPN in melanoma. RESULTS Our results demonstrated that abnormal CLSPN expression was correlated with poor prognosis in melanoma. Meanwhile, CLSPN may promote melanoma growth and progression in vivo and in vitro through IFI44L/JAK/STAT1 signaling. Additionally, CLSPN was associated with negative immune microenvironment in melanoma and may be related to polarization of tumor associated macrophages towards M2-type. CONCLUSIONS These findings suggest that CLSPN may be a promising new target for melanoma and accelerate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ruoqi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Skin Disease Hospital, Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai, 200443, China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Wei Tan
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yanbin Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
- , Baode Road 1278 street, Shanghai, 200433, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Skin Disease Hospital, Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai, 200443, China.
- , Baode Road 1278 street, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhang C, Wang T, Yuan J, Wang T, Ma B, Xu B, Bai R, Tang X, Zhang X, Wu M, Lei T, Xu W, Guo Y, Li N. Potential predictive value of CD8A and PGF protein expression in gastric cancer patients treated with neoadjuvant immunotherapy. BMC Cancer 2025; 25:674. [PMID: 40221689 PMCID: PMC11993984 DOI: 10.1186/s12885-025-14046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Immunoneoadjuvant therapy has gained significant attention due to its remarkable advancements in cancer treatment. This study aimed to investigate the molecular mechanisms underlying immunoneoadjuvant therapy through a comprehensive multiomics analysis of samples from a registered clinical trial cohort. METHODS Preoperative samples were collected from 16 patients, and postoperative samples were obtained from 12 among them. RNA sequencing (RNA-seq) and Olink proteomics were employed to identify key genes before and after neoadjuvant treatment. The weighted coexpression network was constructed using Weighted gene co-expression network analysis (WGCNA). Furthermore, the proportion of infiltrated immune cells was calculated using xCell based on normalized expression data derived from RNA-seq. RESULTS Patients were stratified into T1 (good efficacy) and T2 (poor efficacy) groups based on Tumor Regression Grade (TRG) to neoadjuvant immunotherapy. Compared to the T2 group (TRG2 and TRG3), the T1 group (TRG0 and TRG1) showed significant differences in pathways related to inflammatory response and myeloid leukocyte activation. Furthermore, the T1 group exhibited elevated levels of CD8+ T cells and B cells. The top two factors with the highest area under the Receiver Operating Characteristic (ROC) curve were CD8a molecule (CD8A) (1.000) and C-C motif chemokine ligand 20 (CCL20) (0.967). Additionally, the expression of placenta growth factor (PGF) and TNF receptor superfamily member 21 (TNFRSF21) proteins significantly increased in the T1 group compared to the T2 group. High expression of CD8A and PGF were associated with favorable and poor prognosis in gastric cancer patients, respectively. Immunoinfiltration analysis revealed a positive correlation between CD8A and dendritic cell (DC) levels, while a negative correlation was observed with myeloid-derived suppressor cell (MDSC) levels. CONCLUSIONS Through multiomics analysis, we discovered that CD8A is linked to enhanced treatment response and tumor regression. In contrast, PGF appears to exert adverse effects on treatment outcomes, suggesting a complex interplay of factors influencing the efficacy of immunoneoadjuvant therapy in gastric cancer.
Collapse
Affiliation(s)
- Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China
| | - Tingjie Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Yuan
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tao Wang
- The Kids Research Institute Australia, School of Medicine, the University of Western Australia, Nedlands, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruihua Bai
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiance Tang
- Department of Medical Records, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojie Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Minqing Wu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianqi Lei
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenhao Xu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China.
| | - Ning Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
4
|
Goff SL, Rosenberg SA. Tumor-infiltrating lymphocyte immunotherapy comes of age: a journey of development in the Surgery Branch, NCI. J Immunother Cancer 2025; 13:e011734. [PMID: 40210239 PMCID: PMC11987153 DOI: 10.1136/jitc-2025-011734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The early development of tumor-infiltrating lymphocytes into an effective clinical strategy was fundamentally the work of hundreds of scientists and clinicians within the Surgery Branch of the National Cancer Institute under the leadership of Steven Rosenberg. That journey brought new insights into the tumor-immune cell interface and ultimately helped create a new first-in-class therapeutic for patients with metastatic cancer.
Collapse
Affiliation(s)
- Stephanie L Goff
- Surgery Branch, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Karam S, Ali A, Fung W, Mehta P, Nair S, Anandh U. Acute Kidney Injury Associated with Novel Anticancer Therapies: Immunotherapy. KIDNEY360 2025; 6:652-662. [PMID: 39992727 PMCID: PMC12045508 DOI: 10.34067/kid.0000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
The landscape of cancer survival has been positively affected by the introduction and dissemination of immunotherapy with the wide usage of immune checkpoint inhibitors and chimeric antigen receptors cell therapies. The success of these novel therapies can, however, be limited to a certain extent by systemic inflammatory toxicities affecting, directly or indirectly, the kidney. In the case of immune checkpoint inhibitors, severe acute interstitial nephritis is the main adverse event and can lead to permanent discontinuation of the therapy. In turn, chimeric antigen receptor cell therapy can cause cytokine release syndrome and immune effector cell-associated hemophagocytic lympho-histiocytosis, with kidney damage through various mechanisms, and be life threatening. Prompt diagnosis and management of these entities is essential to preserve kidney function and ensure the best possible kidney and overall outcomes to patients with cancer.
Collapse
Affiliation(s)
- Sabine Karam
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minneapolis
- Division of Nephrology and Hypertension, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ala Ali
- Nephrology and Renal Transplantation Center, The Medical City, Baghdad, Iraq
| | - Winston Fung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Prashant Mehta
- Department of Hematology, Medical Oncology and Bone Marrow Transplantation, Amrita Institute of Medical Sciences and Research Centre, Faridabad, India
| | - Sanjeev Nair
- Department of Nephrology, Madras Medical Mission, Chennai, India
| | - Urmila Anandh
- Department of Nephrology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, India
| |
Collapse
|
6
|
Lovewell RR, Langermann S, Flies DB. Immune inhibitory receptor agonist therapeutics. Front Immunol 2025; 16:1566869. [PMID: 40207220 PMCID: PMC11979287 DOI: 10.3389/fimmu.2025.1566869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The immune system maintains the health of an organism through complex sensing and communication mechanisms. Receptors on the surface of immune cells respond to stimuli resulting in activity described at its most basic as inhibitory or stimulatory. Significant progress in therapeutic intervention has occurred by modulating these pathways, yet much remains to be accomplished. Therapeutics that antagonize, or block, immune inhibitory receptor (IIR) pathways, such as checkpoint inhibitors in cancer are a key example. Antagonism of immune stimulatory receptors (ISRs) for dysregulated inflammation and autoimmunity have received significant attention. An alternative strategy is to agonize, or induce signaling, in immune pathways to treat disease. Agonism of ISRs has been employed with some success in disease settings, but agonist therapeutics of IIRs have great, untapped potential. This review discusses and highlights recent advances in pre-clinical and clinical therapeutics designed to agonize IIR pathways to treat diseases. In addition, an understanding of IIR agonists based on activity at a cellular level as either agonist suppression of stimulatory cells (SuSt), or a new concept, agonist suppression of suppressive cells (SuSu) is proposed.
Collapse
|
7
|
He J, Liu N, Zhao L. New progress in imaging diagnosis and immunotherapy of breast cancer. Front Immunol 2025; 16:1560257. [PMID: 40165974 PMCID: PMC11955504 DOI: 10.3389/fimmu.2025.1560257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer (BC) is a predominant malignancy among women globally, with its etiology remaining largely elusive. Diagnosis primarily relies on invasive histopathological methods, which are often limited by sample representation and processing time. Consequently, non-invasive imaging techniques such as mammography, ultrasound, and Magnetic Resonance Imaging (MRI) are indispensable for BC screening, diagnosis, staging, and treatment monitoring. Recent advancements in imaging technologies and artificial intelligence-driven radiomics have enhanced precision medicine by enabling early detection, accurate molecular subtyping, and personalized therapeutic strategies. Despite reductions in mortality through traditional treatments, challenges like tumor heterogeneity and therapeutic resistance persist. Immunotherapies, particularly PD-1/PD-L1 inhibitors, have emerged as promising alternatives. This review explores recent developments in BC imaging diagnostics and immunotherapeutic approaches, aiming to inform clinical practices and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Jie He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nan Liu
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
8
|
Yao Y, Yang X, Li J, Guo E, Wang H, Sun C, Hong Z, Zhang X, Jia J, Wang R, Ma J, Dai Y, Deng M, Yu C, Sun L, Xie L. Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody. Pharmaceuticals (Basel) 2025; 18:395. [PMID: 40143171 PMCID: PMC11946465 DOI: 10.3390/ph18030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab's PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials.
Collapse
Affiliation(s)
- Yunqi Yao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Xiaoning Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Erhong Guo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Huiyu Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jilei Jia
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Yaqi Dai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Mingjing Deng
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Lingling Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
9
|
Bleik P, Fangsaard P, Yuklyaeva N. Immune Checkpoint Inhibitor-Mediated Aseptic Meningitis and Hypophysitis. Case Rep Oncol Med 2025; 2025:3517328. [PMID: 40225817 PMCID: PMC11991839 DOI: 10.1155/crom/3517328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/12/2025] [Indexed: 04/15/2025] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment, yet their use is associated with unique and sometimes unpredictable immune-related adverse events. We present a case of a 67-year-old female with renal cell cancer treated with ipilimumab and nivolumab who developed aseptic meningitis and hypophysitis. This case highlights the challenges in managing immune-related adverse events and underscores the need for vigilance in monitoring patients receiving ICIs.
Collapse
Affiliation(s)
- Pavel Bleik
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA
| | - Panisara Fangsaard
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA
| | - Nataliya Yuklyaeva
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA
| |
Collapse
|
10
|
Wang X, Fang H, Hu W, Feng Y, Zhou Z, Hu M, Jiang D, Zhang Y, Lan X. Oxygen-delivery nanoparticles enhanced immunotherapy efficacy monitored by granzyme B PET imaging in malignant tumors. J Nanobiotechnology 2025; 23:186. [PMID: 40050894 PMCID: PMC11887188 DOI: 10.1186/s12951-025-03257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Limited treatment response and inadequate monitoring methods stand firmly before successful immunotherapy. Recruiting and activating immune cells in the hypoxic tumor microenvironment is the key to reversing immune suppression and improving immunotherapy efficacy. In this study, biomimetic oxygen-delivering nanoparticles (CmPF) are engineered for homologous targeting and hypoxia alleviation within the tumor environment. CmPF targets the tumor microenvironment and delivers oxygen to reduce hypoxia, thereby promoting immune cell activity at the tumor site. In addition, granzyme B-targeted positron emission tomography (PET) imaging is employed to monitor immune cell activity changes in response to immunotherapy efficacy in vivo. The combination of CmPF with carboplatin and PD-1 inhibitors significantly suppresses tumor growth by 2.4-fold, exhibiting the potential of CmPF to enhance the efficacy of immunotherapy. Immunohistochemistry further confirms increased expression of key immune markers, highlighting the reprogramming of the tumor microenvironment. This study demonstrates that hypoxia alleviation enhances tumor immunotherapy efficacy and introduces a non-invasive PET imaging method for dynamic, real-time assessment of therapeutic response.
Collapse
Affiliation(s)
- Xingyi Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Zhangyongxue Zhou
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Mengyan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
11
|
Lepland A, Peranzoni E, Haljasorg U, Asciutto EK, Crespí‐Amer M, Modesti L, Kilk K, Lombardia M, Acosta G, Royo M, Peterson P, Marigo I, Teesalu T, Scodeller P. Peptide-Drug Conjugate for Therapeutic Reprogramming of Tumor-Associated Macrophages in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410288. [PMID: 39840532 PMCID: PMC11904948 DOI: 10.1002/advs.202410288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Indexed: 01/23/2025]
Abstract
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I. Binding studies to recombinant CD206 revealed a 15-fold lower KD for MACTIDE compared to parental mUNO. Mass spectrometry further demonstrated a 5-fold increase in MACTIDE's half-life in tumor lysates compared to mUNO. Homing studies in TNBC-bearing mice shows that fluorescein (FAM)-MACTIDE precisely targeted CD206+ tumor-associated macrophages (TAM) upon intravenous, intraperitoneal, and even oral administration, with minimal liver accumulation. MACTIDE was conjugated to Verteporfin, an FDA-approved photosensitizer and YAP/TAZ pathway inhibitor to create the conjugate MACTIDE-V. In the orthotopic 4T1 TNBC mouse model, non-irradiated MACTIDE-V-treated mice exhibited anti-tumoral effects comparable to those treated with irradiated MACTIDE-V, with fewer signs of toxicity, prompting further investigation into the laser-independent activity of the conjugate. In vitro studies using bone marrow-derived mouse macrophages showed that MACTIDE-V excluded YAP from the nucleus, increased phagocytic activity, and upregulated several genes associated with cytotoxic anti-tumoral macrophages. In mouse models of TNBC, MACTIDE-V slowed primary tumor growth, suppressed lung metastases, and increased markers of phagocytosis and antigen presentation in TAM and monocytes, increasing the tumor infiltration of several lymphocyte subsets. MACTIDE-V is proposed as a promising peptide-drug conjugate for modulating macrophage function in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Anni Lepland
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
| | - Elisa Peranzoni
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
| | - Uku Haljasorg
- Molecular Pathology Research GroupInstitute of Biomedicine and Translational MedicineUniversity of TartuTartu50411Estonia
| | - Eliana K. Asciutto
- Instituto de Ciencias FísicasUniversidad Nacional de San Martin (UNSAM) and CONICETCampus Migueletes25 de Mayo y FranciaBuenos AiresCP 1650Argentina
| | - Maria Crespí‐Amer
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
| | - Lorenzo Modesti
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
| | - Kalle Kilk
- Department of biochemistryInstitute of Biomedicine and Translational MedicineUniversity of TartuRavila 19Tartu50411Estonia
| | - Manuel Lombardia
- Proteomics core facilityCentro Nacional de BiotecnologiaCNB‐CSICCalle Darwin 3Madrid28049Spain
| | - Gerardo Acosta
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and NanomedicineIQAC‐CSICBarcelona08034Spain
| | - Miriam Royo
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and NanomedicineIQAC‐CSICBarcelona08034Spain
| | - Pärt Peterson
- Molecular Pathology Research GroupInstitute of Biomedicine and Translational MedicineUniversity of TartuTartu50411Estonia
| | - Ilaria Marigo
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
- Department of SurgeryOncology and Gastroenterology (DISCOG)University of PadovaPadova35128Italy
| | - Tambet Teesalu
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
| | - Pablo Scodeller
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
| |
Collapse
|
12
|
Katayama N, Ohuchida K, Son K, Tsutsumi C, Mochida Y, Noguchi S, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Oda Y, Nakamura M. Tumor infiltration of inactive CD8 + T cells was associated with poor prognosis in Gastric Cancer. Gastric Cancer 2025; 28:211-227. [PMID: 39722065 PMCID: PMC11842491 DOI: 10.1007/s10120-024-01577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC. METHODS We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC. RESULTS We categorized 157 GC patients into LOW, MID, and HIGH groups based on their CD8 + T-cell infiltration. Overall survival was notably lower for the HIGH and LOW groups compared with the MID group. Our scRNA-seq data analysis showed that CD8 + T-cell activity markers in the HIGH group were expressed at lower levels than in normal tissue, but the T-cell-attracting chemokine CCL5 was expressed at a higher level. Notably, CD8 + T-cells in the HIGH group displayed lower PD1 expression and higher CTLA4 expression. TCR repertoire analysis using only Epstein-Barr virus-negative cases showed that CD8 + T-cell receptor clonality was lower in the HIGH group than in the MID group. Furthermore, in the HIGH group, the antigen-presenting capacity of type 1 conventional dendritic cells was lower, the immunosuppressive capacity of myeloid-derived suppressor cells was higher, and the expression of CTLA4 in regulatory T-cells was higher. CONCLUSION The present data suggest that the infiltration of inactive CD8 + T-cells with low clonality is induced by chemotaxis in the HIGH group, possibly leading to a poor prognosis for patients with GC.
Collapse
Affiliation(s)
- Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kiwa Son
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shoko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
13
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
14
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
15
|
Tang WW, Battistone B, Bauer KM, Weis AM, Barba C, Fadlullah MZH, Ghazaryan A, Tran VB, Lee SH, Agir ZB, Nelson MC, Victor ES, Thibeaux A, Hernandez C, Tantalla J, Tan AC, Rao D, Williams M, Drummond MJ, Beswick EJ, Round JL, Ekiz HA, Voth WP, O'Connell RM. A microRNA-regulated transcriptional state defines intratumoral CD8 + T cells that respond to immunotherapy. Cell Rep 2025; 44:115301. [PMID: 39951377 PMCID: PMC11924119 DOI: 10.1016/j.celrep.2025.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The rising incidence of advanced-stage colorectal cancer (CRC) and poor survival outcomes necessitate new and effective therapies. Immune checkpoint inhibitors (ICIs), specifically anti-PD-1 therapy, show promise, yet clinical determinants of a positive response are suboptimal. Here, we identify microRNA-155 (miR-155) as necessary for CD8+ T cell-infiltrated tumors through an unbiased in vivo CRISPR-Cas9 screen identifying functional tumor antigen-specific CD8+ T cell-expressed microRNAs. T cell miR-155 is required for anti-PD-1 responses and for a vital intratumor CD8+ T cell differentiation cascade by repressing Ship-1, inhibiting Tcf-1 and stemness, and subsequently enhancing Cxcr6 expression, anti-tumor immunity, and effector functions. Based on an underlying miR-155-dependent CD8+ T cell transcriptional profile, we identify a gene signature that predicts ICI responses across 12 diverse cancers. Together, our findings support a model whereby miR-155 serves as a central regulator of CD8+ T cell-dependent cancer immunity and ICI responses that may be leveraged for future therapeutics.
Collapse
Affiliation(s)
- William W Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ben Battistone
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Allison M Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Muhammad Zaki Hidayatullah Fadlullah
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Van B Tran
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Z Busra Agir
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Morgan C Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Emmanuel Stephen Victor
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Amber Thibeaux
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Colton Hernandez
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Tantalla
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Aik C Tan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Dinesh Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Williams
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108, USA
| | - Ellen J Beswick
- Division of Digestive Disease and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Warren P Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Jiramonai L, Liang XJ, Zhu M. Extracellular Vesicle-Based Strategies for Tumor Immunotherapy. Pharmaceutics 2025; 17:257. [PMID: 40006624 PMCID: PMC11859549 DOI: 10.3390/pharmaceutics17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Immunotherapy is one of the most promising approaches for cancer management, as it utilizes the intrinsic immune response to target cancer cells. Normally, the human body uses its immune system as a defense mechanism to detect and eliminate foreign objects, including cancer cells. However, cancers develop a 'switch off' mechanism, known as immune checkpoint proteins, to evade immune surveillance and suppress immune activation. Therefore, significant efforts have been made to develop the strategies for stimulating immune responses against cancers. Among these, the use of extracellular vesicles (EVs) to enhance the anti-tumor immune response has emerged as a particularly promising approach in cancer management. EVs possess several unique properties that elevate the potency in modulating immune responses. This review article provides a comprehensive overview of recent advances in this field, focusing on the strategic usage of EVs to overcome tumor-induced immune tolerance. We discuss the biogenesis and characteristics of EVs, as well as their potential applications in medical contexts. The immune mechanisms within the tumor microenvironment and the strategies employed by cancers to evade immune detection are explored. The roles of EVs in regulating the tumor microenvironment and enhancing immune responses for immunotherapy are also highlighted. Additionally, this article addresses the challenges and future directions for the development of EV-based nanomedicine approaches, aiming to improve cancer immunotherapy outcomes with greater precision and efficacy while minimizing off-target effects.
Collapse
Affiliation(s)
- Luksika Jiramonai
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
18
|
Feng S, Shen Y, Zhang H, Liu W, Feng W, Chen X, Zhang L, Chen J, Lu M, Xue X, Shen X. Human cytomegalovirus tegument protein UL23 promotes gastric cancer immune evasion by facilitating PD-L1 transcription. Mol Med 2025; 31:57. [PMID: 39934685 PMCID: PMC11816993 DOI: 10.1186/s10020-025-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Immune checkpoint therapy targeting PD-1/PD-L1 has shown promise in treating tumors, however, its clinical benefits are limited to a subset of gastric cancer (GC) patients. Recent research has highlighted a the correlation between PD-L1 expression and the clinical efficacy of anti-PD-1/PD-L1 therapies. Human cytomegalovirus (HCMV) has been implicated in GC, but its specific role in modulating this disease remains elusive. In this study, we analyzed clinical tissue samples using bioinformatics and real-time quantitative polymerase chain reaction (RT-qPCR). We found that GC tissues infected with HCMV presented higher PD-L1 expression compared to those without virus. Furthermore, we demonstrated that HCMV infection enhances PD-L1 expression in GC cells. Cytotoxicity assays revealed that HCMV modulates cancer immune responses via the PD-1/PD-L1 pathway. Mechanistically, we showed that HCMV activates the PI3K-Akt signaling cascade and modulates PD-L1 expression through its tegument protein UL23. Functionally, increased UL23 expression leads to elevated PD-L1 levels, which diminishes tumor cell sensitivity to T-cell-mediated cytotoxicity and triggers T-cell apoptosis. Additionally, in vivo experiments revealed that UL23-induced PD-L1 upregulation inhibits CD8+ T-cell infiltration and reduces the expression of inflammatory factors in tumor microenvironment, ultimately weakening antitumor immunity. Our findings reveal a novel mechanism whereby HCMV and its tegument protein UL23 contribute to cancer immunosuppression through the regulation of PD-L1 expression. This discovery may serve as a potential therapeutic target for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yitian Shen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haoke Zhang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanfeng Liu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weixu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiuting Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangli Chen
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Mingdong Lu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
20
|
Du Y, Wang K, Zi X, Wang X, Li M, Zhang B, Ran J, Huang W, Wang J, Dong C, Xiang H, Lei L, Ge C, Liu Y. Combined transcriptome and metabolome analysis of stable knockdown and overexpression of the CD8A gene in chicken T lymphocytes. Poult Sci 2025; 104:104686. [PMID: 39729724 PMCID: PMC11748709 DOI: 10.1016/j.psj.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
CD8 subunit alpha (CD8A) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (DEGs) caused by altered expression of the CD8A gene were associated with multiple "neuroactive ligand-receptor interaction", "cell adhesion molecules", "calcium signaling pathway", etc. The metabolome analysis results revealed that different metabolites (DMs) caused by altered CD8A gene expression were associated with "Glutathione metabolism", "Arginine biosynthesis", "D-amino acid metabolism", etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, "Glutathione metabolism". Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of "Glutathione metabolism" and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.
Collapse
Affiliation(s)
- Yanli Du
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Xiao Wang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Meiquan Li
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Bo Zhang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Jinshan Ran
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Wei Huang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Jing Wang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Cuilian Dong
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Hanyi Xiang
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China
| | - Li Lei
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Yong Liu
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Bufialo Research, Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, PR China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China.
| |
Collapse
|
21
|
Son WC, Lee HR, Koh EK, Park GY, Kang HB, Song J, Ahn SY, Park YS. Combination Effect of Radiotherapy and Targeted Therapy with NK Cell-Based Immunotherapy in head and Neck Squamous Cell Carcinoma. Immunol Invest 2025; 54:185-201. [PMID: 39560204 DOI: 10.1080/08820139.2024.2428199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis, and current treatments are limited by high toxicity and low survival rates, highlighting the need for new therapeutic approaches. Natural killer (NK) cells can identify and eliminate cancer cells without prior antigen exposure. Radiotherapy directly targets tumors and increases activating ligands on tumor cells, promoting NK cell interactions. Cetuximab, an EGFR-targeting antibody, enhances NK cell cytotoxicity. Additionally, anti-PD-1 antibodies may further boost NK cell function by blocking inhibitory signals. The study aimed to enhance HNSCC treatment efficacy by combining radiotherapy and targeted therapy with expanded NK cells. METHODS NK cells were isolated, activated, and expanded from healthy donors. The FaDu and SCC-47 cell lines were inoculated into NOD/SCID mice. The mice were treated with PD-1 inhibitors, cetuximab, and radiation, followed by intravenous injection of NK cells. RESULTS Radiation increased ligands that regulate NK cell sensitivity. The combination of cetuximab, radiotherapy, and expanded NK cells significantly suppressed cancer progression and improved survival rates. However, adding anti-PD-1 antibodies did not further enhance outcomes. CONCLUSION This study suggests that a multimodal approach combining cetuximab, radiotherapy, and NK cells can significantly improve HNSCC therapy efficacy, offering a novel and promising treatment strategy.
Collapse
Affiliation(s)
- Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Hyun Bon Kang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - JinHoo Song
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Soo-Yeon Ahn
- Department of Otorhinolaryngology, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| |
Collapse
|
22
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
23
|
Zhong L, Li B, Zhang S, Li Q, Xiao G. Computational Identification of Migrating T cells in Spatial Transcriptomics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619870. [PMID: 39484480 PMCID: PMC11526994 DOI: 10.1101/2024.10.23.619870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
T cells are the central players in antitumor immunity, and effective tumor killing depends on their ability to infiltrate into the tumor microenvironment (TME) while maintaining normal cytotoxicity. However, late-stage tumors develop immunosuppressive mechanisms that impede T cell movement and induce exhaustion. Investigating T cell migration in human tumors in vivo could provide novel insights into tumor immune escape, although it remains a challenging task. In this study, we developed ReMiTT, a computational method that leverages spatial transcriptomics data to track T cell migration patterns within tumor tissue. Applying ReMiTT to multiple tumor samples, we identified potential migration trails. On these trails, chemokines that promote T-cell trafficking display an increasing trend. Additionally, we identified key genes and pathways enriched on these migration trails, including those involved in cytoskeleton rearrangement, leukocyte chemotaxis, cell adhesion, leukocyte migration, and extracellular matrix (ECM) remodeling. Furthermore, we characterized the phenotypes of T cells along these trails, showing that the migrating T cells are highly proliferative. Our findings introduce a novel approach for studying T cell migration and interactions within the tumor microenvironment (TME), offering valuable insights into tumor-immune dynamics.
Collapse
|
24
|
Kremer KN, Khammash HA, Miranda AM, Rutt LN, Twardy SM, Anton PE, Campbell ML, Garza-Ortiz C, Orlicky DJ, Pelanda R, McCullough RL, Torres RM. Liver sinusoidal endothelial cells regulate the balance between hepatic immunosuppression and immunosurveillance. Front Immunol 2025; 15:1497788. [PMID: 39896805 PMCID: PMC11782242 DOI: 10.3389/fimmu.2024.1497788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
As a metabolic center, the liver prevents inappropriate immune responses to abundant dietary antigens within the liver that could result in liver injury. This self-preservation mechanism can however decrease the efficiency of immunosurveillance of malignant cells by CD8 T cells. Hepatocellular carcinoma (HCC) is initiated by chronic viral infections, chronic alcohol consumption, and/or a fatty diet that leads to liver injury, fibrosis, and cirrhosis. HCC patients have high levels of dysfunctional and exhausted T cells, however, it is unclear which stage of HCC development contributes to T cell dysfunction. Repair of liver injury is initiated by interactions between injured hepatocytes and liver sinusoidal endothelial cells (LSEC), however, chronic injury can lead to fibrosis. Here, using a diethylnitrosamine/carbon tetrachloride (DEN/CCl4) mouse model of early HCC development, we demonstrate that chronic liver injury and fibrosis are sufficient to induce a CD8 T cell exhaustion signature with a corresponding increase in expression of immunosuppressive molecules on LSEC. We show that LSEC alter T cell function at various stages of T cell differentiation/activation. LSEC compete with dendritic cells presenting the same antigen to naïve CD8 T cells resulting in a unique T cell phenotype. Furthermore, LSEC abrogate killing of target cells, in an antigen-dependent manner, by previously activated effector CD8 T cells, and LSEC change the effector cell cytokine profile. Moreover, LSEC induce functional T cell exhaustion under low dose chronic stimulation conditions. Thus, LSEC critically regulate the balance between preventing/limiting liver injury and permitting sufficient tumor immunosurveillance with normal hepatic functions likely contributing to HCC development under conditions of chronic liver insult.
Collapse
Affiliation(s)
- Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Hadeel A. Khammash
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lauren N. Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Shannon M. Twardy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Margaret L. Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christian Garza-Ortiz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
25
|
Wan Z, Cui M, Yang J, Liao D, Chen J, Li F, Xiang Y, Cui Z, Yang Y. Prognostic significance of programmed cell death 1 expression on CD8+T cells in various cancers: a systematic review and meta-analysis. Front Oncol 2025; 14:1531219. [PMID: 39876901 PMCID: PMC11772205 DOI: 10.3389/fonc.2024.1531219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background Increased PD-1 expression on CD8+ T cells is considered as a hallmark for T-cell exhaustion, and is thought to be related to the prognosis of cancer patients. However, discrepant results have made it difficult to apply PD-1+CD8+T cells and tumor prognosis to clinical practice. Therefore, we conducted a meta-analysis to evaluate its prognostic value in human cancers. Methods PRISMA reporting guidelines were strictly followed for conducting the current meta-analysis. The PubMed, Web of Science, Embase databases were searched from inception to November 2024. The pooled Hazard Ratio (HR) along with 95% confidence intervals (CIs) of each article were combined for the associations of PD-1+CD8+ T cells with overall survival (OS), progression- free survival (PFS) and disease-free survival(DFS). Subgroup analyses were performed for area, specimen type, cancer type, treatment, detected method and cancer stage. Results A total of 20 studies (23 cohorts, 3086 cancer patients) were included in our study. The expression PD-1+CD8+ T cells in cancer patients tended to predict poor overall survival (OS) (HR: 1.379, 95%CI: 1.084-1.753, p= 0.009), and unfavorable disease-free survival(DFS) (HR: 1.468, 95%CI: 0.931-2.316, p=0.099), though it did not reach statistical significance. Begg's and Egger's test demonstrated that no obvious publication bias was exist. Conclusions High PD-1 expression on CD8+ T cells is associated with worse survival outcomes, which can be potentially used as a prognostic marker of malignant tumor.
Collapse
Affiliation(s)
- Zhiyong Wan
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Meng Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Jia Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Dan Liao
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Junliang Chen
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Fanmin Li
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Yin Xiang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Yang Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| |
Collapse
|
26
|
Tahrali I, Yucel E, Turkkan E, Aycicek A, Unuvar A, Cinar S, Deniz G. The effects of bone marrow humoral components of B-cell acute lymphoblastic leukemia patients on natural killer cell suppression. Immunol Res 2025; 73:31. [PMID: 39808387 DOI: 10.1007/s12026-024-09577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia. Nevertheless, the efficacy of NK cell immunotherapy is less pronounced than expected, which suggests the external conditions that affect NK cell functions after the administration to patients with leukemia. In this study, the effects of humoral components in the bone marrow humoral components of B-ALL patients on healthy NK cells were investigated. Healthy peripheral blood mononuclear cells were cultured with and without bone marrow-derived plasma samples of B-ALL patients. The expression of PD-1 and IL-10 were found to be increased whereas the proliferative capacities of NK cells were found to be decreased at the presence of B-ALL plasma samples. Moreover, high IL-10 versus low IL-18 levels were detected in bone marrow plasma samples of B-ALL patients. These findings indicate that humoral components in the bone marrow of B-ALL patients exert a suppressive effect on NK cell functions.
Collapse
Affiliation(s)
- Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Istanbul, Türkiye
| | - Esra Yucel
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Emine Turkkan
- Istanbul Okmeydani Health Application and Research Center, Pediatric Hematology and Oncology, University of Health Sciences, Istanbul, Türkiye
| | - Ali Aycicek
- Department of Pediatric Hematology and Oncology, Çam and Sakura City Hospital, Istanbul, Türkiye
| | - Aysegul Unuvar
- Division of Pediatric Hematology and Oncology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Suzan Cinar
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
27
|
Moura T, Caramelo O, Silva I, Silva S, Gonçalo M, Portilha MA, Moreira JN, Gil AM, Laranjeira P, Paiva A. Early-Stage Luminal B-like Breast Cancer Exhibits a More Immunosuppressive Tumor Microenvironment than Luminal A-like Breast Cancer. Biomolecules 2025; 15:78. [PMID: 39858472 PMCID: PMC11763923 DOI: 10.3390/biom15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous malignant disease with a varying prognosis and is classified into four molecular subtypes. It remains one of the most prevalent cancers globally, with the tumor microenvironment playing a critical role in disease progression and patient outcomes. METHODS This study evaluated tumor samples from 40 female patients with luminal A and B breast cancer, utilizing flow cytometry to phenotypically characterize the immune cells and tumor cells present within the tumor tissue. RESULTS The luminal B-like tumor samples exhibited increased infiltration of CD4+ cells, regulatory T cells (Tregs), and Th17 cells and decreased levels of NK cells, γδ T cells, Th1 cells, and follicular T cells, which is indicative of a more immunosuppressive tumor microenvironment. CONCLUSIONS These findings suggest that luminal B-like tumors have a microenvironment that is less supportive of effective anti-tumor immune responses compared to luminal A tumors. This study enhances the understanding of the immunological differences between luminal subtypes of breast cancer and identifies potential new therapeutic targets and biomarkers that could drive advancements in precision medicine for breast cancer management.
Collapse
Affiliation(s)
- Tânia Moura
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Olga Caramelo
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal;
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
| | - Sandra Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
| | - Manuela Gonçalo
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
| | - Maria Antónia Portilha
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
| | - João N. Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo das Ciências da Saúde, Sub-Unidade 1, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal;
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC—Coimbra Health School, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
28
|
Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, Tanya SM, Nguyen AXL, Burnier MN, Demirci H. Oncolytic Viruses and Immunotherapy for the Treatment of Uveal Melanoma and Retinoblastoma: The Current Landscape and Novel Advances. Biomedicines 2025; 13:108. [PMID: 39857692 PMCID: PMC11762644 DOI: 10.3390/biomedicines13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options. Extraocular extension, recurrence, and metastasis constitute the major challenges of conventional treatments. To overcome these obstacles, immunotherapy, which encompasses different treatment options such as oncolytic viruses, antibody-mediated immune modulations, and targeted immunotherapy, has shown great potential as a novel therapeutic tool for cancer therapy. These anti-cancer treatment options provide numerous advantages such as selective cancer cell death and the promotion of an anti-tumor immune response, and they prove useful in preventing vision impairment due to macular and/or optic disc involvement. Numerous factors such as the vector choice, route of administration, dosing, and patient characteristics must be considered when engineering an oncolytic virus or other forms of immunotherapy vectors. This manuscript provides an in-depth review of the molecular design of oncolytic viruses (e.g., virus capsid proteins and encapsulation technologies, vectors for delivery, cell targeting) and immunotherapy. The most recent advances in preclinical- and clinical-phase studies are further summarized. The recent developments in virus-like drug conjugates (i.e., AU011), oncolytic viruses for metastatic UM, and targeted immunotherapies have shown great results in clinical trials for the future clinical application of these novel technologies in the treatment algorithm of certain intraocular tumors.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Massimo Mazza
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Armaan Jaffer
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada
- Research Excellence Cluster in Vision, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Sarinee Juntipwong
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Stuti Misty Tanya
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hakan Demirci
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
29
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
30
|
Kuett L, Bollhagen A, Tietscher S, Sobottka B, Eling N, Varga Z, Moch H, de Souza N, Bodenmiller B. Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes. Cancer Res 2025; 85:15-31. [PMID: 39437149 DOI: 10.1158/0008-5472.can-24-1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. Although the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites. Significance: Multiplex imaging analysis of matched primary and metastatic breast tumors provides a phenotypic and spatial map of tumor microenvironments, revealing similar compositions of cancer cells and divergent immunologic features between matched samples.
Collapse
Affiliation(s)
- Laura Kuett
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
32
|
Liu X, Xi X, Xu S, Chu H, Hu P, Li D, Zhang B, Liu H, Jiang T, Lu Z. Targeting T cell exhaustion: emerging strategies in non-small cell lung cancer. Front Immunol 2024; 15:1507501. [PMID: 39726592 PMCID: PMC11669709 DOI: 10.3389/fimmu.2024.1507501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Lung cancer continues to be a major contributor to cancer-related deaths globally. Recent advances in immunotherapy have introduced promising treatments targeting T cell functionality. Central to the efficacy of these therapies is the role of T cells, which are often rendered dysfunctional due to continuous antigenic stimulation in the tumor microenvironment-a condition referred to as T cell exhaustion. This review addresses the critical challenge of T cell exhaustion in non-small cell lung cancer (NSCLC), offering a detailed examination of its molecular underpinnings and the resultant therapeutic ineffectiveness. We synthesize current knowledge on the drivers of T cell exhaustion, evaluate emerging strategies for its reversal, and explore the potential impact of these insights for enhancing the clinical efficacy of immunotherapies. By consolidating reported clinical trials and preclinical studies, this article highlights innovative approaches to modulate immune responses and improve patient outcomes, thus providing a roadmap for future research and therapeutic development in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Xiaowei Xi
- Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Penghui Hu
- Scientific Research and Education Department, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Dong Li
- Department of Intensive Care Unit and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
| | - Bin Zhang
- Department of Cardiovascular Disease and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hejie Liu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Tianxiao Jiang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| |
Collapse
|
33
|
Hu J, Zhang J, Wan S, Zhang P. Neoadjuvant immunotherapy for non-small cell lung cancer: Opportunities and challenges. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:224-239. [PMID: 39834585 PMCID: PMC11742355 DOI: 10.1016/j.pccm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 01/22/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for resectable non-small cell lung cancer. Numerous trials have explored the use of ICIs, either as monotherapy or in combination with other therapies, in the neoadjuvant setting for stage I-III non-small cell lung cancer. Most trials have demonstrated neoadjuvant immunotherapy to be safe and to have remarkable efficacy, with a high pathological response rate and significantly improved event-free survival. This review summarizes the findings of Phase I-III clinical trials investigating various neoadjuvant regimens, including ICI monotherapy, ICI therapy combined with chemotherapy, ICI plus anti-angiogenic therapy, dual ICI therapy, and ICI therapy in combination with radiotherapy or chemoradiotherapy. We discuss the benefits and outcomes associated with each approach. Despite the results being promising, several unresolved issues remain, including identification of reliable biomarkers, the appropriate duration of therapy, the optimal treatment regimen for tumors with high programmed cell death ligand 1 (PD-L1) expression, the false-negative pathological complete response rate, and the role of digital pathology in assessing the response to treatment. Resistance to immunotherapy, in particular, remains a significant barrier to effective use of ICIs. Given the critical influence of the tumor microenvironment (TME) on the response to treatment, we examine the characteristics of the TME in both responsive and resistant tumors as well as the dynamic changes that occur in the TME in response to neoadjuvant immunotherapy. We also summarize the mechanisms underlying T cell responses following neoadjuvant immunotherapy and provide a perspective on strategies to enhance the understanding of tumor heterogeneity, therapy-driven TME remodeling, and overcoming resistance to therapy. Finally, we propose future directions for advancements in personalized neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Junjie Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shiyue Wan
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- The 1st School of Medicine, the 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, Xinjiang 832000, China
| |
Collapse
|
34
|
Kamitani R, Tanaka N, Anno T, Murakami T, Masuda T, Yasumizu Y, Takeda T, Morita S, Kosaka T, Mikami S, Matsumoto K, Oya M. Tumor immune microenvironment dynamics and outcomes of prognosis in non-muscle-invasive bladder cancer. Cancer Sci 2024; 115:3963-3972. [PMID: 39394691 PMCID: PMC11611772 DOI: 10.1111/cas.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 10/14/2024] Open
Abstract
Agents that target PD-1 and PD-L1 have been developed in the treatment of bladder cancer (BC). However, the diversity of immune cell infiltration in non-muscle-invasive BC (NMIBC) and the dynamics of the microenvironment as it progresses to muscle-invasive/metastatic disease remains unknown. To assess tumor immune activity, hierarchical clustering was applied to 159 BC samples based on cellular positivity for the defined immune cellular markers (CD3/CD4/CD8/FOXP3/CD20/PD-1/PD-L1/LAG3/TIGIT), divided into two clusters. There was a "hot cluster" (25%) consisting of patients with a high expression of these markers and a "cold cluster" (75%) comprising those without. The expression of CD39, CD44, CD68, CD163, IDO1, and Ki67 was significantly higher in tumors in the hot cluster. Immunologically, high-grade T1 tumors were significantly hotter, whereas tumors that had progressed to muscle invasion turned cold. However, a certain number of high-grade NMIBC patients were in the cold cluster, and these patients had a significantly higher risk of disease progression. Using an externally available TCGA dataset, RB1 and TP53 alterations were more frequently observed in TCGA hot cluster; rather FGFR3, KDM6A, and KMT2A alterations were common in TCGA cold/intermediate cluster. Analyses of recurrent tumors after BCG therapy revealed that tumor immune activity was widely maintained before and after treatment, and high FGFR3 expression was detected after recurrence in tumors initially classified into the cold cluster. Collectively, we revealed the dynamics of the tumor microenvironment in BC as a whole and identified candidate molecules as therapeutic targets for recurrent NMIBC, e.g., after BCG therapy.
Collapse
Affiliation(s)
- Rei Kamitani
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Nobuyuki Tanaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Tadatsugu Anno
- Department of UrologyKeio University School of MedicineTokyoJapan
| | | | - Tsukasa Masuda
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Yota Yasumizu
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Toshikazu Takeda
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shinya Morita
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shuji Mikami
- Department of Diagnostic PathologyKeio University HospitalTokyoJapan
- Department of Diagnostic PathologyNational Hospital Organization Saitama HospitalSaitamaJapan
| | | | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
35
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
36
|
Yin X, Song Y, Deng W, Blake N, Luo X, Meng J. Potential predictive biomarkers in antitumor immunotherapy: navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front Oncol 2024; 14:1483454. [PMID: 39655071 PMCID: PMC11625675 DOI: 10.3389/fonc.2024.1483454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment modality, offering promising outcomes for various malignancies. However, the efficacy of ICIs varies among patients, highlighting the essential need of accurate predictive biomarkers. This review synthesizes the current understanding of biomarkers for ICI therapy, and discusses the clinical utility and limitations of these biomarkers in predicting treatment outcomes. It discusses three US Food and Drug Administration (FDA)-approved biomarkers, programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and microsatellite instability (MSI), and explores other potential biomarkers, including tumor immune microenvironment (TIME)-related signatures, human leukocyte antigen (HLA) diversity, non-invasive biomarkers such as circulating tumor DNA (ctDNA), and combination biomarker strategies. The review also addresses multivariable predictive models integrating multiple features of patients, tumors, and TIME, which could be a promising approach to enhance predictive accuracy. The existing challenges are also pointed out, such as the tumor heterogeneity, the inconstant nature of TIME, nonuniformed thresholds and standardization approaches. The review concludes by emphasizing the importance of biomarker research in realizing the potential of personalized immunotherapy, with the goal of improving patient selection, treatment strategies, and overall outcomes in cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Yin
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Wanglong Deng
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Neil Blake
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xinghong Luo
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Wang T, Liu Y, Kong J, Liu J. Identification of a novel molecular classification for hepatocellular carcinoma based on disulfideptosis-related genes and its potential prognostic significance. J Cancer Res Clin Oncol 2024; 150:506. [PMID: 39551857 PMCID: PMC11570565 DOI: 10.1007/s00432-024-06031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Globally, hepatocellular carcinoma (HCC) is one of the most prevalent and deadly malignant tumors. A recent study proposed disulfidptosis, a novel form of regulated cell death (RCD), offering a new avenue for identifying tumor prognosis biomarkers and developing novel therapeutic targets. METHODS Based on the expression data of 14 disulfideptosis-related genes extracted from public databases, a new molecular classification of HCC called the "disulfidptosis score" was constructed and its relationship to tumor immunity and prognosis was evaluated. RESULTS Based on the expression of disulfideptosis-related genes, we performed cluster analysis on HCC samples from the TCGA cohort, which classified these patients into three clusters: A, B, and C, and the differentially expressed genes of different clusters were analyzed. A disulfidptosis score model was constructed by differentially expressed genes associated with prognosis. Univariate and multivariate COX regression analysis showed that disulfidptosis score was an independent prognostic factor for HCC. In addition, in various disulfidptosis score groups, notable disparities were observed concerning the tumor immune microenvironment as well as the expression of immune checkpoint. CONCLUSION Disulfidptosis score have an important role in predicting HCC prognosis and help guide us in providing better immunotherapy options for patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Jinan, 250000, China
| | - Yong Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Jinan, 250000, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Jinan, 250000, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Jinan, 250000, China.
| |
Collapse
|
38
|
Lacalle RA, Blanco R, García-Lucena R, Mañes S. Generation of human and murine exhausted CD8 + T cells in vitro. Methods Cell Biol 2024; 191:93-114. [PMID: 39824566 DOI: 10.1016/bs.mcb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
T cell exhaustion is a state of dysfunction that can occur due to persistent exposure to antigens, such as in the tumor microenvironment. The progressive loss of effector functions in exhausted T cells can lead to resistance to immune checkpoint inhibitors and adoptive cell immunotherapies. Improving our understanding of the exhaustion process is thus crucial for optimizing the clinical outcomes of immunotherapy. A significant hurdle in this area is obtaining an adequate quantity of exhausted T cells. One solution could be the in vitro production of exhausted T cells by mimicking exhaustion-induced conditions. We present a simple, repeatable, flow cytometry-assisted method for generating exhausted CD8+ T cells from both human and mouse sources. This flexible protocol works with various cell sources and activation methods. Our results confirm the production of dysfunctional CD8+ T cells, akin to those in mouse tumor models and patient tumor samples. This methodology could help identify genes involved in the exhaustion process and serve as a platform for finding agents capable of altering, reversing, or accelerating this dysfunctional state. By using both mouse and human models, we increase the adaptability of the method, making it a powerful instrument for assessing potential substances with immunotherapeutic utility.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Raquel Blanco
- R&D Department, Landsteiner Genmed SL, Sevilla, Spain
| | | | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain.
| |
Collapse
|
39
|
Qiu X, Li S, Fan T, Zhang Y, Wang B, Zhang B, Zhang M, Zhang L. Advances and prospects in tumor infiltrating lymphocyte therapy. Discov Oncol 2024; 15:630. [PMID: 39514075 PMCID: PMC11549075 DOI: 10.1007/s12672-024-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy in adoptive T-cell therapy (ACT) has already caused durable regression in a variety of cancer types due to T-cell persistence, clinical activity, and duration of objective response and safety. TILs are composed of polyclonal effector T-cells specific to heterogenetic tumor antigens, reasonably providing a promising means for tumor therapy. In addition, their expansion in vitro can release them from the suppressive tumor microenvironment. Even though significant advances have been made in the procedure of TIL therapy, from TIL isolation, modification, expansion, and infusion back to the patient to target the tumor, strategy optimization is always ongoing to overcome drawbacks such as a complex process, options for the lineage differentiation status of TILs, and sufficient trafficking of TILs to the tumor. In this review, we summarize the current advances of TIL therapy, raise problem-based optimization strategies, and provide future perspectives on next-generation TIL therapy as a potential avenue for enhancing cell-based immunotherapy.
Collapse
Affiliation(s)
- Xu Qiu
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengjun Li
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Tianyu Fan
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Taian City Central Hospital, Taian, Shandong, China
| | - Yue Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- The Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bei Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
40
|
L'Orphelin JM, Lancien U, Nguyen JM, Coronilla FJS, Saiagh S, Cassecuel J, Boussemart L, Dompmartin A, Dréno B. NIVO-TIL: combination anti-PD-1 therapy and adoptive T-cell transfer in untreated metastatic melanoma: an exploratory open-label phase I trial. Acta Oncol 2024; 63:867-877. [PMID: 39508576 PMCID: PMC11565916 DOI: 10.2340/1651-226x.2024.40495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND PURPOSE In patients with metastatic melanoma who respond to anti-PD-1 therapy, the proliferation of intra-tumour CD8+ T cells is directly correlated with the clinical response, making tumour-infiltrating lymphocytes (TILs) a treatment of interest in combination with a PD-1 inhibitor, which is the undisputed gold standard in the management of metastatic melanoma. The aim of this trial was, therefore, to evaluate the safety and efficacy of sequential combination therapy consisting of nivolumab (a PD-1 inhibitor) and TILs adoptive T cells in patients with metastatic melanoma. MATERIALS AND METHODS We performed an exploratory, prospective, single-centre, open-label, non-randomised, uncontrolled phase I/II study. We enrolled 10 previously untreated patients with advanced melanoma. The treatment regimen was neoadjuvant anti-PD-1 therapy followed by 2 injections of TILs and a second sequence of anti-PD-1 therapy. RESULTS AND INTERPRETATION Among the four patients who received the autologous TILs + nivolumab combination, three (75%) achieved an objective response (two achieved a partial response [PR] at the end of the study, two achieved a complete response [CR]), and one achieved a CR at the end of the study. Among these three patients, one had a PR, and two had stable disease (SD) after the nivolumab course and before any TILs administration, reinforcing the importance of the tumour response after TILs injection. These responses were persistent, ranging from 9 months to 3.4 years.
Collapse
Affiliation(s)
- Jean-Matthieu L'Orphelin
- 1Department of Dermatology, Caen-Normandie University Hospital, Caen, France; Interdisciplinary Research Unit for Cancer Prevention and Treatment, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, Caen, Franc
| | - Ugo Lancien
- Department of Plastic Surgery, Nantes University Hospital, Nantes, France
| | - Jean-Michel Nguyen
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Francisco J S Coronilla
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Soraya Saiagh
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Julie Cassecuel
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Lise Boussemart
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Anne Dompmartin
- Department of Dermatology, Caen-Normandie University Hospital, Caen, France
| | - Brigitte Dréno
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France.
| |
Collapse
|
41
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Chaoul N, Lauricella E, Giglio A, D'Angelo G, Ganini C, Cives M, Porta C. The future of cellular therapy for the treatment of renal cell carcinoma. Expert Opin Biol Ther 2024; 24:1245-1259. [PMID: 39485013 DOI: 10.1080/14712598.2024.2418321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Systemic treatment options for renal cell carcinoma (RCC) have expanded considerably in recent years, and both tyrosine kinase inhibitors and immune checkpoint inhibitors, alone or in combination, have entered the clinical arena. Adoptive cell immunotherapies have recently revolutionized the treatment of cancer and hold the promise to further advance the treatment of RCC. AREAS COVERED In this review, we summarize the latest preclinical and clinical development in the field of adoptive cell immunotherapy for the treatment of RCC, focusing on lymphokine-activated killer (LAK) cells, cytokine-induced killer (CIK) cells, tumor-infiltrating T cells (TILs), TCR-engineered T cells, chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination strategies. Perspectives on emerging cellular products including CAR NK cells, CAR macrophages, as well as γδ T cells are also included. EXPERT OPINION So far, areas of greater therapeutic success of adoptive cell therapies include the adjuvant administration of CIK cells and the transfer of anti-CD70 CAR T cells in patients with metastatic RCC. Bench to bedside and back research will be needed to overcome current limitations of adoptive cell therapies in RCC, primarily aiming at improving the safety of immune cell products, optimizing their antitumor activity and generating off-the-shelf products ready for clinical use.
Collapse
Affiliation(s)
- Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Carlo Ganini
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
43
|
Yu KH, Lin WT, Chen DP. How Co-Stimulatory/Inhibitory Molecules Vary Across Immune Cell Subtypes in the Severity of Systemic Lupus Erythematosus Compared to Controls. Biomedicines 2024; 12:2444. [PMID: 39595011 PMCID: PMC11591756 DOI: 10.3390/biomedicines12112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Co-stimulatory and co-inhibitory molecules are critical to T cell responses and involved in the pathogenesis of systemic lupus erythematosus (SLE). This study aimed to comprehensively analyze the surface expression of these molecules in various phenotypic immune cells, comparing the differences between various levels of the severity in SLE and control groups. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque from blood samples of severe SLE patients (treatment with immunosuppressants), mild SLE patients (excluding those with persistent proteinuria or thrombocytopenia), and healthy controls (n = 10 each). PBMCs were stimulated for 48 h. The cells were stained with anti-CD3, CD4, CD28, PD-1, and CTLA-4 antibodies and analyzed by flow cytometry. Differences between groups were assessed using the Kruskal-Wallis test and Mann-Whitney U-test, with median values and statistical significance (p < 0.05) reported. RESULTS The results showed that CD28 expression was significantly higher in SLE patients compared to controls, with the highest levels in mild SLE. However, CD3+ CD28+ and CD4+ CD28+ cells were more prevalent in controls (p = 0.032 and 0.017, respectively). Mild SLE patients exhibited the highest CTLA-4 expression, with significant differences from severe SLE and controls (p = 0.030 and 0.037, respectively). PD-1 expression was lowest in severe SLE but highest in mild SLE within CD3+ CD4+ cells (p = 0.001). After 48 h of activation, CD4+ CTLA4+ and CD3+ CTLA4+ expression levels were significantly higher in controls compared to SLE groups. CONCLUSIONS Our study highlighted that the expression of CD28, CTLA-4, and PD-1 in lymphocytes and specific T cell subsets was various according the severity of SLE in patients, underscoring their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Kuang-Hui Yu
- Division of Rheumatology, Allergy, and Immunology, Chang Gung University and Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
44
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
45
|
Safizadeh B, Sadeh M, Robati AK, Riahi T, Tavakoli-Yaraki M. Assessment of the circulating levels of immune system checkpoint selected biomarkers in patients with lung cancer. Mol Biol Rep 2024; 51:1036. [PMID: 39361074 DOI: 10.1007/s11033-024-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Lung cancer is recognized as one of the leading causes of cancer-related deaths globally, with a significant increase in incidence and intricate pathogenic mechanisms. This study examines the expression profiles of Programmed Cell Death Protein 1 (PD-1), PD-1 ligand (PDL-1), β-catenin, CD44, interleukin 6 (IL-6), and interleukin 10 (IL-10), as well as their correlations with the clinic-pathological features and diagnostic significance in lung cancer patients. METHODS AND RESULTS The research involved lung cancer patients exhibiting various pathological characteristics, alongside demographically matched healthy controls. The expression levels of PD-1, PDL-1, β-catenin, and CD44 were analyzed using Real-Time PCR, while circulating levels of IL-6 and IL-10 were assessed through ELISA assays. This investigation focused on peripheral blood mononuclear cells (PBMC) to evaluate these factors non-invasively. Findings indicated that levels of PD-1, PDL-1, and CD44 were significantly elevated in patients compared to controls, which coincided with a decrease in β-catenin levels. Additionally, a concurrent rise in IL-6 and IL-10, both pro-inflammatory cytokines, was observed in patients, suggesting a potential regulatory role for these cytokines on the PD-1/PDL-1 axis, which may help tumors evade immune system checkpoints. The predictive value of these factors concerning lung tumors and metastasis was significant (Regression analysis). Furthermore, these markers demonstrated diagnostic potential in differentiating between patients and healthy controls, as well as between individuals with metastatic and non-metastatic tumors (ROC curve analysis). CONCLUSIONS This study provides insights into the expression profiles of PD-1/PDL-1 immune system checkpoints and their regulatory factors in lung cancer, potentially paving the way for new therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Maryam Sadeh
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
46
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
47
|
Pinho ACO, Barbosa P, Lazaro A, Tralhão JG, Pereira MJ, Paiva A, Laranjeira P, Carvalho E. Identification and characterization of circulating and adipose tissue infiltrated CD20 +T cells from subjects with obesity that undergo bariatric surgery. Immunol Lett 2024; 269:106911. [PMID: 39147242 DOI: 10.1016/j.imlet.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
T cells play critical roles in adipose tissue (AT) inflammation. The role of CD20+T cell in AT dysfunction and their contributing to insulin resistance (IR) and type 2 diabetes progression, is not known. The aim was to characterize CD20+T cells in omental (OAT), subcutaneous (SAT) and peripheral blood (PB) from subjects with obesity (OB, n = 42), by flow cytometry. Eight subjects were evaluated before (T1) and 12 months post (T2) bariatric/metabolic surgery (BMS). PB from subjects without obesity (nOB, n = 12) was also collected. Higher percentage of CD20+T cells was observed in OAT, compared to PB or SAT, in OB-T1. CD20 expression by PB CD4+T cells was inversely correlated with adiposity markers, while follicular-like CD20+T cells were positively correlated with impaired glucose tolerance (increased HbA1c). Notably, among OB-T1, IR establishment was marked by a lower percentage and absolute number of PB CD20+T cells, compared nOB. Obesity was associated with higher percentage of activated CD20+T cells; however, OAT-infiltrated CD20+T cells from OB-T1 with diabetes displayed the lowest activation. CD20+T cells infiltrating OAT from OB-T1 displayed a phenotype towards IFN-γ-producing Th1 and Tc1 cells. After BMS, the percentage of PB CD4+CD20+T cells increased, with reduced Th1 and increased Th17 phenotype. Whereas in OAT the percentage of CD20+T cells with Th1/17 and Tc1/17 phenotypes increased. Interestingly, OAT from OB pre/post BMS maintained higher frequency of effector memory CD20+T cells. In conclusion, CD20+T cells may play a prominent role in obesity-related AT inflammation.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Pedro Barbosa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - André Lazaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - José G Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria João Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Artur Paiva
- CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Paula Laranjeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal.
| | - Eugenia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal; APDP-Portuguese Diabetes Association, Lisbon, Portugal.
| |
Collapse
|
48
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
49
|
Ye L, Ryu H, Granadier D, Nguyen LT, Simoni Y, Dick I, Firth T, Rouse E, Chiang P, Lee YCG, Robinson BW, Creaney J, Newell EW, Redwood AJ. Stem-like exhausted CD8 T cells in pleural effusions predict improved survival in non-small cell lung cancer (NSCLC) and mesothelioma. Transl Lung Cancer Res 2024; 13:2352-2372. [PMID: 39430319 PMCID: PMC11484714 DOI: 10.21037/tlcr-24-284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Background Anti-tumor CD8 T cells are important for immunity but can become 'exhausted' and hence ineffective. Tumor-infiltrating exhausted CD8+ T cells include less differentiated stem-like exhausted T (Texstem) cells and terminally exhausted T (Texterm) cells. Both subsets have been proposed as prognostic biomarkers in cancer patients. In this study, we retrospectively investigated their prognostic significance in patients with metastatic non-small cell lung cancer (NSCLC) and validated our findings in a mesothelioma cohort. Methods Pre-treatment malignant pleural effusions (PEs) from 43 NSCLC (41 non-squamous, 2 squamous) patients were analyzed by flow cytometry. The percentages of Texstem and Texterm CD8 T cells were correlated with overall survival (OS) after adjusting for clinicopathological variables. Findings were validated using a mesothelioma cohort (n=49). Mass cytometry was performed on 16 pre-treatment PE samples from 5 mesothelioma and 3 NSCLC patients for T-cell phenotyping. Single-cell multi-omics analysis was performed on 4 pre-treatment PE samples from 2 NSCLC patients and 2 mesothelioma patients for analysis of the transcriptomic profiles, surface markers and T cell receptor (TCR) repertoire. Results Higher frequency of Texstem was associated with significantly increased OS [median 9.9 vs. 3.4 months, hazard ratio (HR) 0.36, 95% CI: 0.16-0.79, P=0.01]. The frequency of Texterm was not associated with OS. These findings were validated in the mesothelioma cohort (high vs. low Texstem, median OS 32.1 vs. 19.8 months, HR 0.31, 95% CI: 0.10-0.96, P=0.04). Detailed single-cell sequencing and mass cytometry profiling revealed that exhausted T cells from NSCLC expressed greater stem-likeness and less inhibitory markers than those from mesothelioma and that Texstem cells also contained 'bystander' virus-specific T cells. Conclusions This study demonstrates that PE CD8 Texstem cell abundance is associated with better survival outcomes, and thus may be a useful prognostic biomarker.
Collapse
Affiliation(s)
- Linda Ye
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
- School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - David Granadier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Long T. Nguyen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Yannick Simoni
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Ian Dick
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
| | - Tina Firth
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Ebony Rouse
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Peter Chiang
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Y. C. Gary Lee
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - Bruce W. Robinson
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Alec J. Redwood
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
50
|
Fernandes Q, Ansari AW, Makni-Maalej K, Merhi M, Dermime S, Ahmad A, Uddin S. Interleukin 10: Bridging the chasms in the immune landscape of multiple myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:199-222. [PMID: 39939076 DOI: 10.1016/bs.ircmb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Multiple myeloma (MM) is a complex hematologic malignancy characterized by the abnormal proliferation of plasma cells in the bone marrow, leading to significant clinical challenges and a high burden of morbidity and mortality. Interleukin 10 (IL-10), a cytokine with potent anti-inflammatory properties, has emerged as a critical player in the pathobiology of MM. This work delves into the multifaceted role of IL-10 in MM, exploring its contributions to tumor growth, immune evasion, and drug resistance. Here, we examine IL-10's interactions with various immune cells within the bone marrow microenvironment and its potential as a circulatory biomarker for MM. Furthermore, we particularly lay emphasis on the prognostic and diagnostic implications of IL-10 levels in MM patients and evaluate the therapeutic prospects of targeting IL-10 in MM treatment regimens. By synthesizing current research, this review aims to enhance the understanding of IL-10 as a circulatory biomarker in MM and to highlight novel avenues for therapeutic intervention, thereby translating to improved clinical outcomes for MM patient.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul W Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Karama Makni-Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health Sciences, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|