1
|
Cavaco S, Grilo ML, Dias R, Nunes M, Pascoal P, Pereira M, Fogaça C, Costa AB, Pardal S, Ferreira AC. Brucella ceti in Common Dolphins ( Delphinus delphis) in Portugal-Characterization of First Isolates. Animals (Basel) 2025; 15:374. [PMID: 39943144 PMCID: PMC11816080 DOI: 10.3390/ani15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates Brucella ceti infection in marine mammals stranded along the Lisbon and Tagus Valley coast between 2022 and mid-2024, marking the first report of Brucella presence in Portuguese waters. Out of 59 examined marine mammals, B. ceti was isolated in three common dolphins (5.1%), a prevalence rate consistent with previous studies from other coastlines. PCR-based detection indicated a higher infection rate (23.7%), suggesting an underestimation of the prevalence of B. ceti infection in this population. Multi-locus Sequence Typing (MLST) and Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA) revealed distinct genetic profiles and close relationships to B. ceti strains from the Atlantic, supporting the hypothesis of specific host-adapted lineages in dolphins. Virulence genes, including those for host interaction (bspE, btpB) and intracellular survival (virB7, vceA), were consistent across isolates, highlighting the pathogenic potential. Additionally, antimicrobial resistance (AMR) genes, such as mprF and efflux proteins (bepC-G), were also identified. These findings underscore the need for further research and surveillance to understand B. ceti transmission, host range, and impacts on Atlantic cetaceans, as well as to develop effective diagnostic and management strategies to mitigate infection risks in marine environments.
Collapse
Affiliation(s)
- Sandra Cavaco
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Miguel L. Grilo
- RALVT—Rede de Arrojamentos de Lisboa e Vale do Tejo, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; (M.L.G.); (C.F.); (A.B.C.); (S.P.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Almada, Portugal
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
| | - Ricardo Dias
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (R.D.); (M.N.); (P.P.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mónica Nunes
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (R.D.); (M.N.); (P.P.)
| | - Pedro Pascoal
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (R.D.); (M.N.); (P.P.)
| | - Marcelo Pereira
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Catarina Fogaça
- RALVT—Rede de Arrojamentos de Lisboa e Vale do Tejo, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; (M.L.G.); (C.F.); (A.B.C.); (S.P.)
| | - Ana Beatriz Costa
- RALVT—Rede de Arrojamentos de Lisboa e Vale do Tejo, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; (M.L.G.); (C.F.); (A.B.C.); (S.P.)
| | - Sofia Pardal
- RALVT—Rede de Arrojamentos de Lisboa e Vale do Tejo, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; (M.L.G.); (C.F.); (A.B.C.); (S.P.)
| | - Ana Cristina Ferreira
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
- I-MVET-Faculty of Veterinary Medicine, Lusófona University, University Centre of Lisbon, 1749-024 Lisbon, Portugal
| |
Collapse
|
2
|
Andersen-Ranberg E, Nymo IH, Jokelainen P, Emelyanova A, Jore S, Laird B, Davidson RK, Ostertag S, Bouchard E, Fagerholm F, Skinner K, Acquarone M, Tryland M, Dietz R, Abass K, Rautio A, Hammer S, Evengård B, Thierfelder T, Stimmelmayr R, Jenkins E, Sonne C. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176869. [PMID: 39423885 DOI: 10.1016/j.scitotenv.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species and thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg, Denmark.
| | - Ingebjørg H Nymo
- Norwegian Veterinary Institute, Holtveien 66, 9016 Tromsø, Norway; Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsø, Norway
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Anastasia Emelyanova
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Solveig Jore
- Department of Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health, Postbox 222 Skøyen, 0213 Oslo, Norway
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | | | - Sonja Ostertag
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Emilie Bouchard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, St Hyacinthe J2T 1B3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Freja Fagerholm
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Anne Evenstads Veg 80, 2480 Koppang, Norway
| | - Rune Dietz
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Khaled Abass
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, postbox 27272, United Arab Emirates
| | - Arja Rautio
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Sjúrður Hammer
- Faroese Environment Agency, Traðagøta 38, 165 Argir, Faroe Islands; University of the Faroe Islands, Vestara Bryggja 15, 100 Tórshavn, Faroe Islands
| | - Birgitta Evengård
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Tomas Thierfelder
- Department of Energy and Technology, Swedish University of Agricultural Sciences, postbox 75651, Uppsala, Sweden
| | - Raphaela Stimmelmayr
- Department of Wildlife management, North Slope Borough, postbox 69, 99723 Utqiagvik, AK, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Gardner BR, Stent A, Bushell R, Arnould JPY, McIntosh R, Liyanage KLDTD, Fromant A, Botha J, Eizenberg YH, Olaogun OM, Marenda M, Lynch M, Hufschmid J. Surveillance for Toxoplasma gondii, Brucella spp., and Chlamydia spp. in Australian Fur Seal (Arctocephalus pusillus doriferus) Abortions. J Wildl Dis 2024; 60:860-873. [PMID: 39141888 DOI: 10.7589/jwd-d-23-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The intracellular pathogens Toxoplasma gondii, Brucella spp., and Chlamydia spp. are all known causative agents of abortion in wildlife. Both T. gondii and Brucella spp. have been identified in marine mammal abortions and a limited number of studies have detected their potential presence in Australian fur seals (Arctocephalus pusillus doriferus), but data are sparse for these pathogens in Australian fur seal breeding colonies. Australian fur seals have been shown to have a high degree of third-trimester pregnancy loss in one of their largest breeding colonies. Additionally, pup production has declined at the largest breeding colony for the species. This study surveyed the presence of T. gondii, Brucella spp., and Chlamydia spp. as potential infectious causes of this reproductive loss. Aborted fetuses were collected from two of the largest breeding colonies for the species, Seal Rocks (n=19) and Kanowna Island (n=34). These were examined grossly and through histopathological evaluation, in conjunction with molecular testing for all three pathogens. Placentas were collected from full-term births during the pupping season from Kanowna Island (n=118). These were used to compare the molecular prevalence of the three pathogens in presumed successful pregnancies. Chlamydia spp. was not detected in aborted fetuses in this study. Brucella spp. was detected with PCR in both aborted fetuses (9.4%) and placentas from full-term births (3.4%), and T. gondii was detected using routine histopathology (n=2/53), immunohistochemistry (n=3/4), and PCR (n=4/53) in tissues from aborted fetuses. Toxoplasma gondii was present in 7.5% of third-trimester abortions and absent from all full-term placentas. Brucella spp. was detected in both aborted fetuses and full-term placentas. This is the first description of vertical transmission of T. gondii in a marine mammal from the southern hemisphere.
Collapse
Affiliation(s)
- Brett R Gardner
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
- Zoos Victoria, Parkville, Victoria 3052, Australia
| | - Andrew Stent
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
| | - Rhys Bushell
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Rebecca McIntosh
- Conservation Department, Philip Island Nature Parks, Cowes, Victoria 3922, Australia
| | - K L D Tharaka D Liyanage
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
| | - Aymeric Fromant
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jonathan Botha
- Biosis Pty Ltd, 38 Bertie Street, Port Melbourne, Melbourne, Victoria 3207, Australia
| | - Yonina H Eizenberg
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - O Martins Olaogun
- AsureQuality Diagnostics, 28 Mareno Road, Tullamarine, Victoria 3043, Australia
| | - Marc Marenda
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
| | | | - Jasmin Hufschmid
- Melbourne Veterinary School, One Health Research Group, The University of Melbourne, Werribee Victoria 3030, Australia
| |
Collapse
|
4
|
Girault G, Freddi L, Jay M, Perrot L, Dremeau A, Drapeau A, Delannoy S, Fach P, Ferreira Vicente A, Mick V, Ponsart C, Djokic V. Combination of in silico and molecular techniques for discrimination and virulence characterization of marine Brucella ceti and Brucella pinnipedialis. Front Microbiol 2024; 15:1437408. [PMID: 39360323 PMCID: PMC11444999 DOI: 10.3389/fmicb.2024.1437408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Mammals are the main hosts for Brucella sp., agents of worldwide zoonosis. Marine cetaceans and pinnipeds can be infected by Brucella ceti and B. pinnipedialis, respectively. Besides classical bacteriological typing, molecular approaches such as MLVA, MLSA, and whole-genome sequencing (WGS) can differentiate these species but are cumbersome to perform. Methods We compared the DNA and genome sequences of 12 strains isolated from nine marine mammals, with highly zoonotic B. melitensis, B. abortus, and B. suis, and the publicly available genomes of B. ceti and B. pinnipedialis. In silico pipelines were used to detect the antimicrobial resistance (AMR), plasmid, and virulence genes (VGs) by screening six open-source and one home-made library. Results and discussion Our results show that easier-to-use HRM-PCR, Bruce-ladder, and Suis-ladder can separate marine Brucella sp., and the results are fully concordant with other molecular methods, such as WGS. However, the restriction fragment length polymorphism (RFLP) method cannot discriminate between B. pinnipedialis and B. ceti B1-94-like isolates. MLVA-16 results divided the investigated strains into three clades according to their preferred host, which was confirmed in WGS. In silico analysis did not find any AMR and plasmid genes, suggesting antimicrobial susceptibility of marine Brucella, while the presence of the VGs btpA gene was variable dependent on the clade. Conclusion The HRM-PCR and Suis-ladder are quick, easy, and cost-effective methods to identify marine Brucella sp. Moreover, in silico genome analyses can give useful insights into the genetic virulence and pathogenicity potential of marine Brucella strains.
Collapse
Affiliation(s)
- Guillaume Girault
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Luca Freddi
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Maryne Jay
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Ludivine Perrot
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Alexandre Dremeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Antoine Drapeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Acacia Ferreira Vicente
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Virginie Mick
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Claire Ponsart
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Vitomir Djokic
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
5
|
Martino L, Cuvertoret-Sanz M, Wilkinson S, Allepuz A, Perlas A, Ganges L, Pérez L, Domingo M. Serological Investigation for Brucella ceti in Cetaceans from the Northwestern Mediterranean Sea. Animals (Basel) 2024; 14:2417. [PMID: 39199951 PMCID: PMC11350667 DOI: 10.3390/ani14162417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Neurobrucellosis in cetaceans, caused by Brucella ceti, is a relevant cause of death in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Serological tests are not used as a routinary technique for the diagnosis of this infection. We briefly describe the pathological findings of nine free-ranging stranded cetaceans diagnosed with Brucella disease or infection in our veterinary necropsy service from 2012 to 2022. The findings included focal diskospondylitis and non-suppurative meningitis, choroiditis and radiculitis. Additionally, an exploratory serological study was conducted in sixty-six frozen sera collected in the period 2012-2022 from fifty-seven striped dolphins, five Risso's dolphins (Grampus griseus), two common bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis) and one pilot whale (Globicephala melas) to compare antibody levels in Brucella-infected (n = 8) and non-infected (n = 58) animals, classified by the cause of death, sex, age class and cetacean morbillivirus (CeMV) infection status. The authors hypothesized that active infection in cases of neurobrucellosis would elicit a stronger, detectable humoral response compared to subclinical infections. We performed a commercial competition ELISA (cELISA) using serial serum dilutions for each sample, considering a percentage of inhibition (PI) of ≥40% as positive. A titer of 1:160 was arbitrarily determined as the seropositivity threshold. Seropositive species included striped dolphins and Risso's dolphins. Seroprevalence was higher in animals with neurobrucellosis (87.5%) compared to the overall seroprevalence (31.8%) and to other causes of death, indicating, likely, a high sensitivity but low specificity for neurobrucellosis. Animals with chronic CeMV seemed to have higher seroprevalences, as well as juveniles, which also had a higher disease prevalence. These results indicate, as in other studies, that antibodies are not decisive against clinical brucellosis, although they may indicate a carrier state, and that CeMV may influence Brucella epidemiology. More research is required to elucidate the epidemiology and pathogenesis and to resolve the complicated host-pathogen interaction in Brucella species.
Collapse
Affiliation(s)
- Laura Martino
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - María Cuvertoret-Sanz
- Servei de Diagnòstic de Patologia Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.C.-S.); (S.W.)
| | - Sarah Wilkinson
- Servei de Diagnòstic de Patologia Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.C.-S.); (S.W.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - Albert Perlas
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - Llilianne Ganges
- IRTA—Institut de Recerca en Sanitat Animal, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain;
| | - Lola Pérez
- Facultat de Veterinària de Barcelona, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Mariano Domingo
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| |
Collapse
|
6
|
Khairullah AR, Kurniawan SC, Puspitasari Y, Aryaloka S, Silaen OSM, Yanestria SM, Widodo A, Moses IB, Effendi MH, Afnani DA, Ramandinianto SC, Hasib A, Riwu KHP. Brucellosis: Unveiling the complexities of a pervasive zoonotic disease and its global impacts. Open Vet J 2024; 14:1081-1097. [PMID: 38938422 PMCID: PMC11199761 DOI: 10.5455/ovj.2024.v14.i5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024] Open
Abstract
One zoonotic infectious animal disease is brucellosis. The bacteria that cause brucellosis belong to the genus Brucella. Numerous animal and human species are affected by brucellosis, with an estimated 500,000 human cases recorded annually worldwide. The occurrence of new areas of infection and the resurgence of infection in already infected areas indicate how dynamically brucellosis is distributed throughout different geographic regions. Bacteria originate from the blood and are found in the reticuloendothelial system, the liver, the spleen, and numerous other locations, including the joints, kidneys, heart, and genital tract. Diagnosis of this disease can be done by bacterial isolation, molecular tests, modified acid-fast stain, rose bengal test (RBT), milk ring test, complement fixation test, enzyme-linked immunosorbent assay, and serum agglutination test. The primary sign of a Brucella abortus infection is infertility, which can result in abortion and the birth of a frail fetus that may go on to infect other animals. In humans, the main symptoms are acute febrile illness, with or without localization signs, and chronic infection. Female cattle have a greater risk of contracting Brucella disease. Human populations at high risk of contracting brucellosis include those who care for cattle, veterinarians, slaughterhouse employees, and butchers. Antibiotic treatment of brucellosis is often unsuccessful due to the intracellular survival of Brucella and its adaptability in macrophages. A "one health" strategy is necessary to control illnesses like brucellosis.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, The Netherlands
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
7
|
ATTIA EL HILI H, MAATOUK K. [Zoonotic potential of brucellosis in marine mammals]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i1.2024.489. [PMID: 38846127 PMCID: PMC11151931 DOI: 10.48327/mtsi.v4i1.2024.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/15/2023] [Indexed: 06/09/2024]
Abstract
Introduction Brucellosis in marine mammals (cetacean and pinnipeds) has emerged in a very significant way during the last two decades. Currently Brucella ceti and Brucella pinnipedialis are the two recognized species in marine mammals, but available information is still limited. Several genotypes have been identified, and studies on the relationship between sequence type (ST) and organ pathogenicity or tropism have indicated differences in pathogenesis between B. ceti sequences in cetaceans. The zoonotic potential of this disease is based on the identification of the main sources of introduction and spread of Brucella spp. in the marine environment as well as on the factors of exposure of marine mammals and humans to the bacteria. Bibliographic review This article is a bibliographical review on marine mammal brucellosis, including the features, sources and transmission modes of each Brucella species, as well as their potential pathogenicity in animals and humans. Conclusion Different genotypes of marine Brucella spp have been isolated from marine mammal species but without any evidence of pathology induced by these bacteria. Associated lesions are variable and include subcutaneous abscesses, meningo-encephalomyelitis, pneumonia, myocarditis, osteoarthritis, orchitis, endometritis, placentitis and abortion. The isolation of marine B. spp from marine mammal respiratory parasites associated to lung injury has raised the intriguing possibility that they may serve as a vector for the transmission of this bacterium.The severity of marine B. spp remains unknown due to the lack of an estimate of the prevalence of this disease in marine mammals. The number of suspected human cases is still very limited. However, by analogy with other germs of the genus Brucella responsible for abortion in ruminants and for a febrile and painful state in human beings, prevention measures are essential. The significant increase in the number of strandings coupled with a high seroprevalence in certain species of marine mammals must be considered for people in direct or indirect contact with these animals. Ongoing epidemiological monitoring combined with extensive post-mortem examinations (necropsy, bacteriology and sequencing) of all species of stranded marine mammals would deepen knowledge on the zoonotic potential of marine Brucella species.
Collapse
Affiliation(s)
| | - Kaouthar MAATOUK
- Institut national des sciences et technologies de la mer, Monastir, Tunisie
| |
Collapse
|
8
|
Vargas-Castro I, Crespo-Picazo JL, Fayos M, Jiménez-Martínez MDLÁ, Torre-Fuentes L, Álvarez J, Moura AE, Hernández M, Buendía A, Barroso-Arévalo S, García-Seco T, Pérez-Sancho M, De Miguel MJ, Andrés-Barranco S, Marco-Cabedo V, Peñin-Villahoz G, Muñoz PM, Domínguez L, García-Párraga D, Sánchez-Vizcaíno JM. New insights into the pathogenesis and transmission of Brucella pinnipedialis: systemic infection in two bottlenose dolphins ( Tursiops truncatus). Microbiol Spectr 2023; 11:e0199723. [PMID: 37800951 PMCID: PMC10848334 DOI: 10.1128/spectrum.01997-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Brucella spp. are zoonotic pathogens that can affect both terrestrial and marine mammals. Brucella ceti has been identified in various cetacean species, but only one sequence type (ST27) has been reported in humans. However, it is important to conduct surveillance studies to better understand the impact of marine Brucella species on marine mammals, a typically understudied host group. Here, we describe a systemic infection by two related strains of Brucella pinnipedialis (ST25) in a couple of live-stranded bottlenose dolphins, with more severe lesions in the younger animal. Furthermore, B. pinnipedialis was first detected in milk from a female cetacean that stranded with its offspring. Our study reveals novel insights into the epidemiology and pathological consequences of B. pinnipedialis infections in cetaceans, emphasizing the crucial importance of ongoing surveillance and accurate diagnosis to understand the impact of this pathogen on marine mammal populations.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | | | - Manena Fayos
- Centro de Recuperación de Fauna Silvestre de Cantabria, Santander, Spain
| | | | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - André E. Moura
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Hernández
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Aranzazu Buendía
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - María Jesús De Miguel
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España, Spain
| | - Sara Andrés-Barranco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España, Spain
| | - Vicente Marco-Cabedo
- />Fundación Oceanogràfic. Oceanogràfic. Ciudad de las Artes y las Ciencias, Valencia, Spain
| | | | - Pilar María Muñoz
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Daniel García-Párraga
- />Fundación Oceanogràfic. Oceanogràfic. Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Grattarola C, Petrella A, Lucifora G, Di Francesco G, Di Nocera F, Pintore A, Cocumelli C, Terracciano G, Battisti A, Di Renzo L, Farina D, Di Francesco CE, Crescio MI, Zoppi S, Dondo A, Iulini B, Varello K, Mignone W, Goria M, Mattioda V, Giorda F, Di Guardo G, Janowicz A, Tittarelli M, De Massis F, Casalone C, Garofolo G. Brucella ceti Infection in Striped Dolphins from Italian Seas: Associated Lesions and Epidemiological Data. Pathogens 2023; 12:1034. [PMID: 37623994 PMCID: PMC10459742 DOI: 10.3390/pathogens12081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Brucella ceti infections have been increasingly reported in cetaceans. In this study, we analyzed all cases of B. ceti infection detected in striped dolphins stranded along the Italian coastline between 2012 and 2021 (N = 24). We focused on the pathogenic role of B. ceti through detailed pathological studies, and ad hoc microbiological, biomolecular, and serological investigations, coupled with a comparative genomic analysis of the strains. Neurobrucellosis was observed in 20 animals. The primary histopathologic features included non-suppurative meningoencephalitis (N = 9), meningitis (N = 6), and meningoencephalomyelitis (N = 5), which was also associated with typical lesions in other tissues (N = 8). Co-infections were detected in more than half of the cases, mostly involving Cetacean Morbillivirus (CeMV). The 24 B. ceti isolates were assigned primarily to sequence type 26 (ST26) (N = 21) and, in a few cases, ST49 (N = 3). The multilocus sequence typing (cgMLST) based on whole genome sequencing (WGS) data showed that strains from Italy clustered into four genetically distinct clades. Plotting these clades onto a geographic map suggests a link between their phylogeny and the topographical distribution. These results support the role of B. ceti as a primary neurotropic pathogen for striped dolphins and highlight the utility of WGS data in understanding the evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (A.P.); (D.F.)
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 89852 Vibo Valentia, Italy;
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.D.F.); (L.D.R.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | - Cristiano Cocumelli
- Istituto Zooprofilattico del Lazio e della Toscana, 00178 Roma, Italy; (C.C.); (A.B.)
| | | | - Antonio Battisti
- Istituto Zooprofilattico del Lazio e della Toscana, 00178 Roma, Italy; (C.C.); (A.B.)
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.D.F.); (L.D.R.)
| | - Donatella Farina
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (A.P.); (D.F.)
| | | | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Walter Mignone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (C.E.D.F.); (G.D.G.)
| | - Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Fabrizio De Massis
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| |
Collapse
|
10
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
11
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
12
|
Duignan P. Aquatic Mammals. PATHOLOGY AND EPIDEMIOLOGY OF AQUATIC ANIMAL DISEASES FOR PRACTITIONERS 2023:214-350. [DOI: 10.1002/9781119839729.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
RETROSPECTIVE REVIEW OF NEUROLOGIC DISEASE IN STRANDED ATLANTIC HARBOR SEALS ( PHOCA VITULINA CONCOLOR) ALONG THE NEW ENGLAND COAST. J Zoo Wildl Med 2023; 53:705-713. [PMID: 36640072 DOI: 10.1638/2021-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Harbor seals (Phoca vitulina) are a common species admitted to marine mammal rehabilitation facilities. As important indicators of marine ecosystem health, monitoring trends of disease in harbor seal populations is critical. However, few studies have evaluated neurologic disease in this species. The general objective of this study was to retrospectively review and delineate neurologic disease in free-ranging Atlantic harbor seals (P. vitulina concolor) that stranded along the New England (United States) coast and entered a rehabilitation facility between 2006 and 2019. Any Atlantic harbor seal that stranded live along the New England coast during the study period and was diagnosed with neurologic disease on either antemortem or postmortem evaluation was included; medical records and pathologic reports were reviewed. From 211 records, 24 animals met the inclusion criteria. Prevalence of neurologic disease was 11% in the study population and six major categories of neurologic disease were identified including: inflammatory (54%), idiopathic (33%), trauma (4%), congenital (4%), and degenerative (4%). Of the seals diagnosed with neurologic disease, 13 (54%) seals died during rehabilitation, 10 (42%) seals were euthanized, and 1 (4%) seal survived to release. Unique cases seen included a seal with Dandy-Walker-like malformation and another seal with histopathologic findings compatible with neuroaxonal dystrophy, a degenerative process that has not been previously reported in marine mammals. This study contributes to the overall knowledge of the health of free-ranging Atlantic harbor seals and may aid clinicians in characterizing neurologic conditions that may be present in seals undergoing rehabilitation.
Collapse
|
14
|
Pathogen Exposure in White Whales ( Delphinapterus leucas) in Svalbard, Norway. Pathogens 2022; 12:pathogens12010058. [PMID: 36678406 PMCID: PMC9864568 DOI: 10.3390/pathogens12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The Svalbard white whale (Delphinapterus leucas) population is one of the smallest in the world, making it particularly vulnerable to challenges such as climate change and pathogens. In this study, serum samples from live captured (2001−2016) white whales from this region were investigated for influenza A virus (IAV) antibodies (Abs) (n = 27) and RNA (n = 25); morbillivirus (MV) Abs (n = 3) and RNA (n = 25); Brucella spp. Abs; and Toxoplasma gondii Abs (n = 27). IAV Abs were found in a single adult male that was captured in Van Mijenfjorden in 2001, although no IAV RNA was detected. Brucella spp. Abs were found in 59% of the sample group (16/27). All MV and T. gondii results were negative. The results show that Svalbard white whales have been exposed to IAV and Brucella spp., although evidence of disease is lacking. However, dramatic changes in climate and marine ecosystems are taking place in the Arctic, so surveillance of health parameters, including pathogens, is critical for tracking changes in the status of this vulnerable population.
Collapse
|
15
|
Jamil T, Akar K, Erdenlig S, Murugaiyan J, Sandalakis V, Boukouvala E, Psaroulaki A, Melzer F, Neubauer H, Wareth G. Spatio-Temporal Distribution of Brucellosis in European Terrestrial and Marine Wildlife Species and Its Regional Implications. Microorganisms 2022; 10:1970. [PMID: 36296246 PMCID: PMC9608583 DOI: 10.3390/microorganisms10101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Brucellosis is an important bacterial zoonosis of domestic and wildlife species. This disease has a significant public health concern and is characterized by reproductive failure resulting in economic losses in the livestock industry. Among thirteen known species, B. abortus, B. melitensis, B. suis, and B. canis are human pathogens. Brucellosis has been extensively investigated in humans and domestic animals. However, the situation in wildlife is still not completely reported and studied. Therefore, a systematic literature search and screening were done to clarify the situation of brucellosis in wildlife in Europe. Sixty-five articles from a total of 13,424 reports published between 1991 and 2021 were selected, applying defined inclusion criteria. Wild boars and brown hares were the most often studied terrestrial wildlife species, whereas seals and porpoises were the most often investigated marine wildlife. Poland, Croatia, and Belgium showed the highest seroprevalences of wild boars caused by B. suis biovar 2. In marine wildlife, brucellosis was mainly caused by B. ceti and B. pinnipedialis. Most samples were from carcasses. Thus, sera could not be collected. It is worrisome that B.abortus and B. melitensis were reported from both terrestrial and marine wild animals, posing a zoonotic threat to people exposed to wild animals. Currently, there is no approved vaccine available for wild animals. The main challenges are the development of specific diagnostics and their validation for use in wildlife.
Collapse
Affiliation(s)
- Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut, 07743 Jena, Germany
| | - Kadir Akar
- NRL for Brucellosis, Pendik Veterinary Control Institute, 34890 Istanbul, Turkey
| | - Sevil Erdenlig
- Faculty of Veterinary Medicine, Harran University, 63300 Şanlıurfa, Turkey
| | | | - Vassilios Sandalakis
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71110 Heraklion, Greece
| | - Evridiki Boukouvala
- Hellenic Agricultural Organization—DIMITRA, Veterinary Research Institute, 57001 Thessaloniki, Greece
| | - Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71110 Heraklion, Greece
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut, 07743 Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Fredrich-Loeffler-Institut, 07743 Jena, Germany
| |
Collapse
|
16
|
Orsini M, Ianni A, Zinzula L. Brucella ceti and Brucella pinnipedialis genome characterization unveils genetic features that highlight their zoonotic potential. Microbiologyopen 2022; 11:e1329. [PMID: 36314752 PMCID: PMC9597259 DOI: 10.1002/mbo3.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.
Collapse
Affiliation(s)
- Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratory of Microbial Ecology and GenomicsLegnaroItaly
| | - Andrea Ianni
- Research Unit in Hygiene, Statistics and Public HealthCampus Bio‐Medico di Roma UniversityRomeItaly
| | - Luca Zinzula
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Centro di Educazione Ambientale e alla Sostenibilità (CEAS) Laguna di NoraPulaItaly
| |
Collapse
|
17
|
Emelyanova A, Savolainen A, Oksanen A, Nieminen P, Loginova O, Abass K, Rautio A. Research on Selected Wildlife Infections in the Circumpolar Arctic-A Bibliometric Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11260. [PMID: 36141528 PMCID: PMC9517571 DOI: 10.3390/ijerph191811260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
One Health, a multidisciplinary approach to public health, which integrates human, animal, and environmental studies, is prudent for circumpolar Arctic health research. The objective of our bibliometric review was to identify and compare research in select infectious diseases in Arctic wildlife species with importance to human health indexed in English language databases (PubMed, Scopus) and the Russian database eLibrary.ru. Included articles (in English and Russian languages) needed to meet the following criteria: (1) data comes from the Arctic, (2) articles report original research or surveillance reports, (3) articles were published between 1990 and 2018, and (4) research relates to naturally occurring infections. Of the included articles (total n = 352), most were from Russia (n = 131, 37%), Norway (n = 58, 16%), Canada (n = 39, 11%), and Alaska (n = 39, 11%). Frequently reported infectious agents among selected mammals were Trichinella spp. (n = 39), Brucella spp. (n = 25), rabies virus (n = 11), Echinococcus spp. (n = 10), and Francisella tularensis (n = 9). There were 25 articles on anthrax in eLibrary.ru, while there were none in the other two databases. We identified future directions where opportunities for further research, collaboration, systematic reviews, or monitoring programs are possible and needed.
Collapse
Affiliation(s)
- Anastasia Emelyanova
- Thule Institute, University of Oulu & University of the Arctic, P.O. Box 7300, FI-90014 Oulu, Finland
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90590 Oulu, Finland
| | - Audrey Savolainen
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90590 Oulu, Finland
- Finnish Food Authority (FINPAR), Elektroniikkatie 3, FI-90590 Oulu, Finland
| | - Antti Oksanen
- Finnish Food Authority (FINPAR), Elektroniikkatie 3, FI-90590 Oulu, Finland
| | - Pentti Nieminen
- Medical Informatics and Data Analysis Research Group, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Olga Loginova
- Laboratory of Parasite Systematics and Evolution, Center for Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, 119071 Moscow, Russia
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90590 Oulu, Finland
| | - Arja Rautio
- Thule Institute, University of Oulu & University of the Arctic, P.O. Box 7300, FI-90014 Oulu, Finland
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90590 Oulu, Finland
| |
Collapse
|
18
|
Curtiss JB, Colegrove KM, Dianis A, Kinsel MJ, Ahmed N, Fauquier D, Rowles T, Niemeyer M, Rotstein DS, Maddox CW, Terio KA. Brucella ceti sequence type 23, 26, and 27 infections in North American cetaceans. DISEASES OF AQUATIC ORGANISMS 2022; 148:57-72. [PMID: 35200159 DOI: 10.3354/dao03644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brucella ceti infection is associated with a variety of disease outcomes in cetaceans globally. Multiple genotypes of B. ceti have been identified. This retrospective aimed to determine if specific lesions were associated with different B. ceti DNA sequence types (STs). Characterization of ST was performed on 163 samples from 88 free-ranging cetaceans, including common bottlenose dolphin Tursiops truncatus (T.t.; n = 73), common short-beaked dolphin Delphinus delphis (D.d.; n = 7), striped dolphin Stenella coeruleoalba (n = 3), Pacific white-sided dolphin Lagenorhynchus obliquidens (n = 2), sperm whale Physeter macrocephalus (n = 2), and harbour porpoise Phocoena phocoena (n = 1), that stranded along the coast of the US mainland and Hawaii. ST was determined using a previously described insertion sequence 711 quantitative PCR. Concordance with 9-locus multi-locus sequence typing was assessed in a subset of samples (n = 18). ST 26 was most commonly identified in adult dolphins along the US east coast with non-suppurative meningoencephalitis (p = 0.009). Animals infected with ST 27 were predominately perinates that were aborted or died shortly after birth with evidence of in utero pneumonia (p = 0.035). Reproductive tract inflammation and meningoencephalitis were also observed in adult T.t. and D.d. with ST 27, though low sample size limited interpretation. ST 23 infections can cause disease in cetacean families other than porpoises (Phocoenidae), including neurobrucellosis in D.d. In total, 11 animals were potentially infected with multiple STs. These data indicate differences in pathogenesis among B. ceti STs in free-ranging cetaceans, and infection with multiple STs is possible.
Collapse
Affiliation(s)
- Jeffrey B Curtiss
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, IL 60513, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ohishi K, Kobayashi M, Maruyama T. Anti-Brucella antibodies in seals at coastal locations of Hokkaido, Japan, with focus on life stages. J Vet Med Sci 2022; 84:543-547. [PMID: 35173087 PMCID: PMC9096050 DOI: 10.1292/jvms.21-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The enzyme-linked immunosorbent assay (ELISA) was applied to detect antibodies against
Brucella abortus in serum samples from four seal species at nine
coastal locations of Hokkaido, Japan. These antibodies were detected in 27% (32/118) of
Western Pacific harbor seals (Phoca vitulina stejnegeri) at Cape Erimo.
The antibodies were observed in spotted seals (P. largha) in one out of
six at Nemuro, in two out of three at Rebun Island, in one out of two at Bakkai, and in
examined one at Soya. They were also found in respective examined one ribbon seal
(Histriophoca fasciata) and one ringed seal (Pusa
hispida) at Akkeshi. Harbor seals that tested positive were mostly yearlings
(35%, 20/57) and juveniles (45%, 10/22), while only one pup (1/13) and one subadult (1/5)
tested positive with low titers of the antibody; no antibodies were observed in adults
(n=21). These results suggest that Brucella mainly infected harbor seals
from the environment while weaning, and the bacteria were cleared during the early life
stage of the seals. In spotted seals, however, antibodies were also detected in adults,
suggesting that spotted seals could become infected with Brucella even as
adults. It is also possible that a different, more persistent strain of
Brucella may have infected the spotted seals.
Collapse
Affiliation(s)
- Kazue Ohishi
- School of Engineering, Tokyo Polytechnic University.,Department of Clinical Engineering, Kanagawa Institute of Technology
| | - Mari Kobayashi
- Graduate School of Bioindustry, Tokyo University of Agriculture.,Incorporated Non Profit Organization Marine Wildlife Center of Japan
| | | |
Collapse
|
20
|
Davison NJ, Dagleish MP, Ten Doeschate M, Muchowski J, Perrett LL, Rocchi M, Whatmore AM, Brownlow A. Meningoencephalitis in a common minke whale Balaenoptera acutorostrata associated with Brucella pinnipedialis and gamma-herpesvirus infection. DISEASES OF AQUATIC ORGANISMS 2021; 144:231-235. [PMID: 34042070 DOI: 10.3354/dao03590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatal marine Brucella infections with histologic lesions specific to the central nervous system (CNS), known as neurobrucellosis, have been described in 5 species of odontocete cetaceans in the UK: striped dolphins Stenella coeruleoalba, Atlantic white-sided dolphins Lagenorhynchus acutus, short-beaked common dolphins Delphinus delphis, long-finned pilot whale Globicephala melas and Sowerby's beaked whale Mesoplodon bidens. To date, these CNS lesions have only been associated with Brucella ceti ST26 and not with B. pinnipedialis, which is rarely isolated from cetaceans and, although commonly found in various seal species, has never been associated with any pathology. This paper describes the first report of neurobrucellosis in a common minke whale Balaenoptera acutorostrata which was associated with the isolation of Brucella pinnipedialis ST24 and co-infection with Balaenoptera acutorostrata gamma-herpesvirus 2. This is the first report of neurobrucellosis in any species of mysticete and the first report of Brucella pinnipedialis in association with any pathology in any species of marine mammal, which may be due to co-infection with a herpesvirus, as these are known to be associated with immunosuppression.
Collapse
Affiliation(s)
- Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, SRUC Northern Faculty, An Lòchran, Inverness Campus, Inverness IV2 5NA, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Whole-Genome Sequence of a Brucella pinnipedialis Sequence Type 54 Strain Isolated from a Hooded Seal ( Cystophora cristata) from the North Atlantic Ocean, Norway. Microbiol Resour Announc 2021; 10:10/18/e00271-21. [PMID: 33958398 PMCID: PMC8103868 DOI: 10.1128/mra.00271-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammal species. We report the first complete genome sequence of a Brucella strain isolated from a hooded seal (Cystophora cristata), Brucella pinnipedialis strain 23a-1 of sequence type 54, found in the North Atlantic Ocean surrounding Norway.
Collapse
|
22
|
Chidumayo NN. Estimation of Brucella and Mycobacterium bovis contamination in bovine milk in Africa. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.37-41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bovine brucellosis and tuberculosis are zoonotic bacterial diseases transmitted through the consumption of raw milk and dairy products. Many developed countries have eliminated bovine brucellosis and tuberculosis in their cattle herds, however, the diseases are still endemic in Africa. Despite the public health risk of these pathogens, the sale and consumption of unpasteurized milk are still common in some African countries. This study aimed to estimate the prevalence of Brucella and Mycobacterium bovis in bovine milk.
Materials and Methods: A conceptual model for milk contamination was constructed and 1 million simulations were performed using data from published articles.
Results: Brucella milk contamination was estimated at a median of 8.68% (interquartile range [IQR]: 5.95-11.97%; range: 2.41-25.16%). The median prevalence of M. bovis was estimated at 6.86% (IQR: 4.25-9.40%; range: 0.01-15.16%).
Conclusion: These results indicate that there is a risk of Brucella and M. bovis transmission through the consumption of unpasteurized milk. The findings of this study highlight the need to improve the safety and quality of informally marketed milk in the region.
Collapse
Affiliation(s)
- Nozyechi Ngulube Chidumayo
- Department of Clinical Studies, University of Zambia, School of Veterinary Medicine, P. O. Box 32379, Lusaka, Zambia
| |
Collapse
|
23
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
24
|
Sánchez-Sarmiento AM, Ruoppolo V, Muelbert MM, Ferreira Neto JS, Catão-Dias JL. Serological screening for Brucella spp. and Leptospira spp. antibodies in southern elephant seals Mirounga leonina from Elephant Island, Antarctica, in 2003 and 2004. DISEASES OF AQUATIC ORGANISMS 2020; 142:161-170. [PMID: 33331283 DOI: 10.3354/dao03548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brucella spp. and Leptospira spp. antibodies were surveyed in 35 southern elephant seals (SESs) Mirounga leonina at Elephant Island (South Shetland Islands), western Antarctic peninsula, in the Austral summer of 2003 and 2004. The rose Bengal test and a commercial competitive ELISA (c-ELISA) were used to detect Brucella spp. exposure, and the microscopic agglutination test (MAT) with 22 live serovars was used to determine anti-Leptospira spp. antibodies. We found evidence of Brucella spp. exposure in 3 of 35 (8.6%) SESs tested via the c-ELISA displaying high percentage inhibition (PI), similar to other studies in pinnipeds in which Brucella spp. antibodies have been determined. Two of the 3 positives were pups (PI = 70.4 and 86.6%), while the third was an adult female (PI = 48.8%). The 3 c-ELISA positive SESs were additionally tested via the serum agglutination test but were found to be negative. All individuals were negative for antibodies against 22 Leptospira spp. serovars by MAT. These results contribute to the knowledge and monitoring of zoonotic pathogens with epizootic potential in Southern Ocean pinnipeds. Given the potential impact that pathogens may have on the abundance of wild (sometimes threatened and endangered) populations, constant monitoring and surveillance are required to prevent pathogen spread, particularly under forecast climate change scenarios.
Collapse
Affiliation(s)
- Angélica Maria Sánchez-Sarmiento
- Laboratório de Patologia Comparada de Animais Selvagens, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP 05508-270, Brazil
| | | | | | | | | |
Collapse
|
25
|
Cuvertoret-Sanz M, López-Figueroa C, O'Byrne A, Canturri A, Martí-Garcia B, Pintado E, Pérez L, Ganges L, Cobos A, Abarca ML, Raga JA, Van Bressem MF, Domingo M. Causes of cetacean stranding and death on the Catalonian coast (western Mediterranean Sea), 2012-2019. DISEASES OF AQUATIC ORGANISMS 2020; 142:239-253. [PMID: 33331291 DOI: 10.3354/dao03550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The causes of cetacean stranding and death along the Catalan coast between 2012 and 2019 were systematically investigated. Necropsies and detailed pathological investigations were performed on 89 well-preserved stranded cetaceans, including 72 striped dolphins Stenella coeruleoalba, 9 Risso's dolphins Grampus griseus, 5 bottlenose dolphins Tursiops truncatus, 1 common dolphin Delphinus delphis, 1 Cuvier's beaked whale Ziphius cavirostris and 1 fin whale Balaenoptera physalus. The cause of death was determined for 89.9% of the stranded cetaceans. Fisheries interaction was the most frequent cause of death in striped dolphins (27.8%) and bottlenose dolphins (60%). Cetacean morbillivirus (CeMV) was detected on the Catalan coast from 2016 to 2017, causing systemic disease and death in 8 of the 72 (11.1%) striped dolphins. Chronic CeMV infection of the central nervous system was observed from 2018-2019 in a further 5 striped dolphins. Thus, acute and chronic CeMV disease caused mortality in 18% of striped dolphins and 14.6% of all 89 cetaceans. Brucella ceti was isolated in 6 striped dolphins and 1 bottlenose dolphin with typical brucellosis lesions and in 1 striped dolphin with systemic CeMV. Sinusitis due to severe infestation by the nematode parasite Crassicauda grampicola caused the death of 4 out of 6 adult Risso's dolphins. Maternal separation, in some cases complicated with septicemia, was a frequent cause of death in 13 of 14 calves. Other less common causes of death were encephalomalacia of unknown origin, septicemia, peritonitis due to gastric perforation by parasites and hepatitis caused by Sarcocystis spp.
Collapse
Affiliation(s)
- María Cuvertoret-Sanz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McFee WE, Wu D, Colegrove K, Terio K, Balthis L, Young R. Occurrence of Brucella ceti in stranded bottlenose dolphins Tursiops truncatus coincides with calving season. DISEASES OF AQUATIC ORGANISMS 2020; 141:185-193. [PMID: 33089823 DOI: 10.3354/dao03526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brucellosis is a disease caused by the Gram-negative facultative intracellular bacterium Brucella spp. In terrestrial species, this zoonotic bacterium is a global public health risk, but there is also concern over the zoonotic potential of marine forms, such as B. ceti, which affects cetaceans. Due to the detection of B. ceti in samples from bottlenose dolphins Tursiops truncatus during the 2010-2014 Gulf of Mexico Unusual Mortality Event, a long-term study of the prevalence of Brucella in stranded bottlenose dolphins from South Carolina, USA, was conducted. From 2012 through 2017, 282 stranded bottlenose dolphins were tested for B. ceti via real-time PCR. Nearly 32% of the dolphins tested positive in at least one sample (brain, lung, blowhole swab). Very little information exists in the literature on the occurrence of Brucella spp. in marine mammals, though in terrestrial species, such as cattle and elk, higher prevalence is often reported in spring. Similar results were found in this study with the peak occurrence being between March and June, a known period of calving in South Carolina. Results from this study provide important insights into the occurrence of the marine bacterium B. ceti.
Collapse
Affiliation(s)
- Wayne E McFee
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA
| | | | | | | | | | | |
Collapse
|
27
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
28
|
Garofolo G, Petrella A, Lucifora G, Di Francesco G, Di Guardo G, Pautasso A, Iulini B, Varello K, Giorda F, Goria M, Dondo A, Zoppi S, Di Francesco CE, Giglio S, Ferringo F, Serrecchia L, Ferrantino MAR, Zilli K, Janowicz A, Tittarelli M, Mignone W, Casalone C, Grattarola C. Occurrence of Brucella ceti in striped dolphins from Italian Seas. PLoS One 2020; 15:e0240178. [PMID: 33007030 PMCID: PMC7531818 DOI: 10.1371/journal.pone.0240178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/21/2020] [Indexed: 01/15/2023] Open
Abstract
Brucella ceti infections have been increasingly reported in cetaceans, although a very limited characterization of Mediterranean Brucella spp. isolates has been previously reported and relatively few data exist about brucellosis among cetaceans in Italy. To address this gap, we studied 8 cases of B. ceti infection in striped dolphins (Stenella coeruleoalba) stranded along the Italian coastline from 2012 to 2018, investigated thanks to the Italian surveillance activity on stranded cetaceans. We focused on cases of stranding in eastern and western Italian seas, occurred along the Apulia (N = 6), Liguria (N = 1) and Calabria (N = 1) coastlines, through the analysis of gross and microscopic findings, the results of microbiological, biomolecular and serological investigations, as well as the detection of other relevant pathogens. The comparative genomic analysis used whole genome sequences of B. ceti from Italy paired with the publicly available complete genomes. Pathological changes consistent with B. ceti infection were detected in the central nervous system of 7 animals, showing non-suppurative meningoencephalitis. In 4 cases severe coinfections were detected, mostly involving Dolphin Morbillivirus (DMV). The severity of B. ceti-associated lesions supports the role of this microbial agent as a primary neurotropic pathogen for striped dolphins. We classified the 8 isolates into the common sequence type 26 (ST-26). Whole genome SNP analysis showed that the strains from Italy clustered into two genetically distinct clades. The first clade comprised exclusively the isolates from Ionian and Adriatic Seas, while the second one included the strain from the Ligurian Sea and those from the Catalonian coast. Plotting these clades onto the geographic map suggests a link between their phylogeny and topographical distribution. These results represent the first extensive characterization of B. ceti isolated from Italian waters reported to date and show the usefulness of WGS for understanding of the evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Vibo Valentia, Italy
| | - Gabriella Di Francesco
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | | | - Barbara Iulini
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Katia Varello
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Federica Giorda
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria Goria
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Alessandro Dondo
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Simona Zoppi
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | | | - Stefania Giglio
- M.A.R.E. Calabria Association, Montepaone (Catanzaro), Italy
| | - Furio Ferringo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | - Katiuscia Zilli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Walter Mignone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Cristina Casalone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Carla Grattarola
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- * E-mail:
| |
Collapse
|
29
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
30
|
Gilbert MJ, IJsseldijk LL, Rubio-García A, Gröne A, Duim B, Rossen J, Zomer AL, Wagenaar JA. After the bite: bacterial transmission from grey seals ( Halichoerus grypus) to harbour porpoises ( Phocoena phocoena). ROYAL SOCIETY OPEN SCIENCE 2020; 7:192079. [PMID: 32537205 PMCID: PMC7277243 DOI: 10.1098/rsos.192079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Recent population growth of the harbour porpoise (Phocoena phocoena), grey seal (Halichoerus grypus) and common seal (Phoca vitulina) in the North Sea has increased potential interaction between these species. Grey seals are known to attack harbour porpoises. Some harbour porpoises survive initially, but succumb eventually, often showing severely infected skin lesions. Bacteria transferred from the grey seal oral cavity may be involved in these infections and eventual death of the animal. In humans, seal bites are known to cause severe infections. In this study, a 16S rRNA-based microbiome sequencing approach is used to identify the oral bacterial diversity in harbour porpoises, grey seals and common seals; detect the potential transfer of bacteria from grey seals to harbour porpoises by biting and provide insights in the bacteria with zoonotic potential present in the seal oral cavity. β-diversity analysis showed that 12.9% (4/31) of the harbour porpoise skin lesion microbiomes resembled seal oral microbiomes, while most of the other skin lesion microbiomes also showed seal-associated bacterial species, including potential pathogens. In conclusion, this study shows that bacterial transmission from grey seals to harbour porpoises by biting is highly likely and that seal oral cavities harbour many bacterial pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Maarten J. Gilbert
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Reptile, Amphibian and Fish Conservation Netherlands (RAVON), Nijmegen, The Netherlands
| | - Lonneke L. IJsseldijk
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division of Pathology, Utrecht University, Utrecht, The Netherlands
| | - Ana Rubio-García
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Sealcentre, Pieterburen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea Gröne
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division of Pathology, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - John Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
31
|
Detection of Brucella ceti in Two Indo-Pacific Finless Porpoises ( Neophocaena Phocaenoides) Stranded in Hong Kong. J Wildl Dis 2020; 56:698-701. [PMID: 32216678 DOI: 10.7589/2019-05-113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella ceti has been detected in several species of free-ranging odontocetes, in several geographic areas but it has not been reported in Indo-Pacific finless porpoises (Neophocaena phocaenoides) nor in any odontocetes in waters in the South China Sea. Sampling of odontocetes stranded in Hong Kong Special Administrative Region, People's Republic of China, was carried out as part of a stranding monitoring program to evaluate the pathogens harbored by these threatened species. A real-time PCR method targeting the Brucella genus-specific 31kDa Brucella cell surface salt extractable (bcsp31) gene, gene sequencing, and phylogenetic characterisation produced three PCR products of the expected size and sequence, from two stranded Indo-Pacific finless porpoises. The PCR products were obtained from brain tissue from of a neonate and from mammary fluid from a sexually mature female. Further testing for this pathogen should be performed to determine whether Brucella ceti might have a detrimental effect on reproduction and calf survival in Indo-Pacific finless porpoises and pose a threat to the conservation of this species. The importance of biosafety and biosecurity measures when handling cetaceans or their tissues and products in the South China Sea is also highlighted.
Collapse
|
32
|
Mackie JT, Blyde D, Harris L, Roe WD, Keyburn AL. Brucellosis associated with stillbirth in a bottlenose dolphin in Australia. Aust Vet J 2020; 98:92-95. [PMID: 32030727 DOI: 10.1111/avj.12903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 01/31/2023]
Abstract
A captive adult female bottlenose dolphin presented with stillbirth. The placenta appeared oedematous. No other gross lesions were evident in the placenta or the stillborn calf. Histopathology revealed mild multifocal placentitis and foetal encephalitis. Brucella sp. was isolated from lung, liver, spleen and kidney. Sequence and phylogenetic analysis demonstrated this organism to be most similar to Brucella ceti sequence type (ST) 27. Brucella sp. DNA was detected in formalin-fixed paraffin-embedded placenta and brain by real-time PCR using primers targeting the IS711 gene. Immunohistochemical staining revealed Brucella sp. antigen in placental inflammation. This is the first report of isolation of Brucella sp. from a marine mammal in the Southern Hemisphere and the first report of marine Brucella-associated disease in Australia.
Collapse
Affiliation(s)
- J T Mackie
- QML Vetnostics, Murarrie, Queensland, Australia
| | - D Blyde
- Sea World, Main Beach, Queensland, Australia
| | - L Harris
- QML Vetnostics, Murarrie, Queensland, Australia
| | - W D Roe
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - A L Keyburn
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
33
|
Keyburn AL, Buller N. Brucella: not your ‘typical’ intracellular pathogen. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Currently the genus Brucella consists of a group of bacteria that are genetically monospecific yet phenotypically diverse, and a recent genetic and phenotypic divergent group known as ‘atypical' Brucellae. The host range is extremely varied and includes mammals, including humans, terrestrial animals and marine mammals, but now extends to reptiles and amphibians. Almost all Brucella species are zoonotic. The disease collectively termed Brucellosis leads to abortion and reproductive disease in animals, whereas human infection presents as a non-specific undulating fever accompanied by general malaise, chills, joint pain, muscle aches, genitourinary disease and adverse pregnancy outcomes. These Gram-negative coccobacilli invade and replicate in the host macrophages where they can limit the effects of the host immune system and antibiotic treatment. Due to the phenotypic and genotypic diversity and close relationship with Ochrobactrum species, the genus Brucella presents challenges for accurate identification and recognition of new species.
Collapse
|
34
|
Esquible JA, Burek-Huntington K, Atkinson S, Klink AC, Bortz E, Goldstein TA, Beckmen K, Pabilonia K, Tiller R. Pathological findings and survey for pathogens associated with reproductive failure in perinatal Steller sea lions Eumetopias jubatus. DISEASES OF AQUATIC ORGANISMS 2019; 137:131-144. [PMID: 31854331 DOI: 10.3354/dao03421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Steller sea lions (SSLs) Eumetopias jubatus experienced a population decline in the 1960s, leading to the listing of the western stock as endangered and the eastern stock as threatened under the US Endangered Species Act. A decrease of births in the western stock beginning in the late 1960s indicates that reproductive failure may have contributed to the decline. We evaluated the role pathogens play in spontaneous abortions, premature births and neonatal deaths in SSLs. Archived tissues from carcasses (n = 19) collected in Alaska from 2002 to 2015 were tested by PCR for Coxiella burnetii, Brucella spp., Chlamydia and morbilliviruses. Animals examined included 47% premature pups, 32% aborted fetuses, 11% neonates and 11% intrauterine fetuses. Gross necropsy and histology findings were summarized in the context of the PCR findings. Tissues were negative for Chlamydia and C. burnetii. Brucella spp. were detected in the lung tissues of 3 animals, including 1 positive for the ST27 strain, the first detection of Brucella spp. DNA in SSLs. Phocine distemper virus was detected in 3 animals in 2 skin lesions and 1 placenta by hemi-nested diagnostic qRT-PCR. Both skin and the placental lesions had vesiculoulcerative changes, and 1 skin lesion contained inclusion bodies in syncytia and upon histologic examination, suggesting that the lesions may be associated with an infection reminiscent of phocine distemper virus, the first in SSLs. We highlight the continuing need for disease surveillance programs to improve our understanding of the prevalence and potential population impacts of these infectious disease agents for pinnipeds in Alaskan waters.
Collapse
Affiliation(s)
- J A Esquible
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 107 Alex Hately, Bethel, AK 99559, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sierra E, Fernández A, Felipe-Jiménez I, Zucca D, Di Francesco G, Díaz-Delgado J, Sacchini S, Rivero MA, Arbelo M. Neurobrucellosis in a common bottlenose dolphin (Tursiops truncatus) stranded in the Canary Islands. BMC Vet Res 2019; 15:353. [PMID: 31638986 PMCID: PMC6805616 DOI: 10.1186/s12917-019-2089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/12/2019] [Indexed: 11/15/2022] Open
Abstract
Background Brucella spp. isolation is increasingly reported in cetaceans, although associated pathologies, including lesions of the musculoskeletal and nervous systems, are less frequently described. Concerning the nervous system, Brucella sp. infection causing meningitis, meningoencephalitis or meningoencephalomyelitis have been extensively reported in striped dolphins (Stenella coeruleoalba), and less frequently in other cetacean species. Case presentation A juvenile female common bottlenose dolphin (Tursiops truncatus) was found stranded alive in Lanzarote (Canary Islands, Spain) in 2005, but died shortly after. On physical examination, the dolphin showed a moderate body condition and was classified as code 2 (fresh dead) at the time of necropsy. The main gross findings were severe multiorgan parasitism, thickened and congested leptomeninges, and (sero)fibrino-suppurative and proliferative arthritis of the shoulder joint. Histopathological examination revealed the distinct features of a sub-acute systemic disease associated with Cetacean Morbillivirus (CeMV) infection. However, brain lesions diverged from those reported in systemic CeMV infection. This led to suspect that there was a coinfecting pathogen, based on the characteristics of the inflammatory response and the lesion distribution pattern in the central nervous system. Brucella sp. was detected in the brain tissue by PCR and Brucella antigen was demonstrated by immunohistochemistry in the brain and shoulder joint lesions. Conclusions The zoonotic potential of marine mammal strains of Brucella has been demonstrated both in natural and laboratory conditions. In this study, PCR detected Brucella sp. in the brain of a common bottlenose dolphin stranded in the Canary Islands; the dolphin was also co-infected with CeMV. This is the first detection of Brucella sp. infection in a stranded cetacean in this archipelago. Therefore, we stress the importance of taking adequate measures during the handling of these species to prevent the transmissions of the infection to humans.
Collapse
Affiliation(s)
- Eva Sierra
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain.
| | - Idaira Felipe-Jiménez
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| | - Daniele Zucca
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| | - Gabriella Di Francesco
- National and international Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale Abruzzo e Molise, Teramo, Italy
| | - Josué Díaz-Delgado
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain.,Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.,Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL), College Station, TX, USA
| | - Simona Sacchini
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| | - Miguel A Rivero
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| | - Manuel Arbelo
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, Universidad de Las Palmas de Gran Canaria, 35416, Arucas, Gran Canaria, Canary Islands, Spain
| |
Collapse
|
36
|
Li X, Zhao C, Liu Y, Li Y, Lian F, Wang D, Zhang Y, Wang J, Song X, Li J, Yang Y, Xu K. Fluorescence signal amplification assay for the detection of B. melitensis 16M, based on peptide-mediated magnetic separation technology and a AuNP-mediated bio-barcode assembled by quantum dot technology. Analyst 2019; 144:2704-2715. [PMID: 30864589 DOI: 10.1039/c9an00028c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the Brucella spp. are facultative intracellular bacteria that can cause global brucellosis, a zoonotic disease. Herein, a novel fluorescence signal amplification (FSA) method for the rapid detection of B. melitensis 16M was developed based on peptide-mediated magnetic separation (PMS) technology and Au nanoparticle (AuNP)-mediated bio-barcode assay technology assembled by quantum dots (QDs). The PMS technology was used to specifically capture and isolate B. melitensis 16M from food. The immunomagnetic bead-B. melitensis 16M bioconjugates (IMBs-B. melitensis 16M) were then identified by IgY on the surface of AuNPs and the oligonucleotide chains on the surface of the gold nanoparticles were hybridized with bio-barcodes assembled by quantum dots (QD-probe2). The IMB/B. melitensis 16M/IgY-AuNP-probe1/QD-probe2 bioconjugates were concentrated by magnetic separation. Therefore, as the concentration of B. melitensis 16M in the sample increased, the unbound QD-probe2 in the supernatant reduced, and the B. melitensis 16M in the sample could be indirectly measured by detecting the fluorescence in the supernatant. This FSA method can detect B. melitensis 16M concentration in the range of 10 to 106 cfu ml-1 without pre-enrichment, and the limit of detection (LOD) is as low as 10 cfu ml-1 with high specificity. Furthermore, the proposed method for the detection of B. melitensis 16M has a LOD of 1.07 × 102 cfu ml-1 and a linear range from 102 to 107 cfu ml-1 in milk, and a LOD of 1.72 × 102 cfu ml-1, and a linear range from 102 to 106 cfu ml-1 in lamb leach. In addition, this method takes less than 3 h to perform. Thus, the assay that was developed in this study shows promise for rapid, sensitive, and specific detection of B. melitensis 16M.
Collapse
Affiliation(s)
- Xinxin Li
- School of Public Health of Jilin University, Changchun, Jilin 130021, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sánchez-Sarmiento AM, Carvalho VL, Díaz-Delgado J, Ressio RA, Fernandes NCCA, Guerra JM, Sacristán C, Groch KR, Silvestre-Perez N, Ferreira-Machado E, Costa-Silva S, Navas-Suárez P, Meirelles ACO, Favero C, Marigo J, Bertozzi CP, Colosio AC, Marcondes MCC, Cremer MJ, Dos Santos Silva N, Ferreira Neto JS, Keid LB, Soares R, Sierra E, Fernández A, Catão-Dias JL. Molecular, serological, pathological, immunohistochemical and microbiological investigation of Brucella spp. in marine mammals of Brazil reveals new cetacean hosts. Transbound Emerg Dis 2019; 66:1674-1692. [PMID: 30980699 DOI: 10.1111/tbed.13203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Brucella-exposure and infection is increasingly recognized in marine mammals worldwide. To better understand the epidemiology and health impacts of Brucella spp. in marine mammals of Brazil, molecular (conventional PCR and/or real-time PCR), serological (Rose Bengal Test [RBT], Competitive [c]ELISA, Serum Agglutination Test [SAT]), pathological, immunohistochemical (IHC) and/or microbiological investigations were conducted in samples of 129 stranded or by-caught marine mammals (orders Cetartiodactyla [n = 124], Carnivora [n = 4] and Sirenia [n = 1]). Previous serological tests performed on available sera of 27 of the 129 animals (26 cetaceans and one manatee), indicated 10 seropositive cetaceans. Conventional PCR and/or real-time PCR performed in cases with available organs (n = 119) and/or blood or swabs (n = 10) revealed 4/129 (3.1%) Brucella-infected cetaceans (one of them with positive serology; the remaining three with no available sera). Pathological, IHC and/or microbiological analyses conducted in PCR/real-time PCR and/or seropositive cases (n = 13) revealed Brucella-type lesions, including meningitis/meningoencephalitis, pneumonia, necrotizing hepatitis, pericarditis and osteoarthritis in some of those animals, and positive IHC was found in all of them (excepting two live-stranded animals without available organs). Brucella spp. culture attempts were unsuccessful. Our results demonstrated exposure, asymptomatic, acute and chronic Brucella sp. infection in several cetacean species in the Brazilian coast, highlighting the role of this pathogen in stranding and/or death, particularly in Clymene dolphin (Stenella clymene) and short-finned pilot whale (Globicephala macrorhynchus) off Ceará State. Novel hosts susceptible to Brucella included the franciscana (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis) and the spinner dolphin (Stenella longirostris). Additionally, three coinfection cases involving Brucella spp. and cetacean morbillivirus, Edwarsiella tarda and Proteus mirabilis were detected. To the best of our knowledge, this is the first long-term and large-scale survey of Brucella spp. in marine mammals of South America, widening the spectrum of susceptible hosts and geographical distribution range of this agent with zoonotic potential.
Collapse
Affiliation(s)
- Angélica M Sánchez-Sarmiento
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos-AQUASIS, Caucaia, Brazil
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Kátia R Groch
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Natalia Silvestre-Perez
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Samira Costa-Silva
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro Navas-Suárez
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana C O Meirelles
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos-AQUASIS, Caucaia, Brazil
| | - Cintia Favero
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Juliana Marigo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Carolina P Bertozzi
- Instituto de Biociências, campus do Litoral Paulista, IB/CLP - Universidade Estadual Paulista - UNESP, São Vicente, Brazil
| | | | | | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, University of the Region of Joinville, São Francisco do Sul, Brazil
| | - Nairléia Dos Santos Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and animal Science, University of São Paulo, São Paulo, Brazil
| | - Jose Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and animal Science, University of São Paulo, São Paulo, Brazil
| | - Lara B Keid
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Rodrigo Soares
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and animal Science, University of São Paulo, São Paulo, Brazil
| | - Eva Sierra
- Institute for Animal Health and Food Hygiene, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Antonio Fernández
- Institute for Animal Health and Food Hygiene, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - José L Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Lalsiamthara J, Senevirathne A, Lee JH. Partial protection induced by Salmonella based Brucella vaccine candidate in pregnant guinea pigs. Vaccine 2019; 37:899-902. [PMID: 30661832 DOI: 10.1016/j.vaccine.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/05/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Residual virulence is a major drawback in current Brucella vaccines. Live vaccines induce abortions in pregnant animals. Hence, a novel anti-Brucella vaccine was developed utilizing rough Salmonella delivering four Brucella antigens. Safety implications during pregnancy, humoral immune responses, and protective efficacy against wild type Brucella was investigated in guinea pig model. The vaccine did not induce abortions or severe complications in pregnant guinea pigs when administered 4 × 108 CFU via intraperitoneal route. Systemic IgG determination against antigen components reveals induction of immunity via the Salmonella delivery. Protection efficacy against abortions was 33.3% (2/6) when midterm sow challenged with virulent Brucella 544 strain while none was protected in control group. Lower Brucella recovery in spleen and liver and reduced histopathological burden were also noticed. Although abortion induced by Brucella challenge was not completely prevented, the vaccine candidate may perform better with optimization of vaccination such as inoculation dose optimization.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 570-752 Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 570-752 Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 570-752 Iksan, Republic of Korea.
| |
Collapse
|
39
|
Kim WK, Moon JY, Cho JS, Ochirkhuyag E, Akanda MR, Park BY, Hur J. Protective efficacy of an inactivated Brucella abortus vaccine candidate lysed by GI24 against brucellosis in Korean black goats. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:68-74. [PMID: 30670904 PMCID: PMC6318821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/02/2018] [Indexed: 06/09/2023]
Abstract
The efficacy of GI24-lysed Brucella abortus cells as a vaccine candidate against brucellosis in goats was evaluated on 2 groups of Korean black goats. Group A goats were immunized subcutaneously (SC) with sterile phosphate-buffered saline, whereas group B goats were immunized SC with approximately 3 × 109 lysed B. abortus cells. Subcutaneous immunization with the lysed cells did not cause any negative impact on the overall clinical status, such as behavior and appetite, throughout the study period. The enzyme-linked immunosorbent assay (ELISA) optical densities values for B. abortus lipopolysaccharide in serum were considerably higher in group B than those in group A. Also, the levels of the cytokines interleukin 4 (IL-4), tumor necrosis factor-alpha (TNF-α), and interferon gamma (IFN-γ) were significantly elevated in group B compared with those in group A. Following intraconjunctival challenge with B. abortus strain 544, the severity of brucellosis in terms of infection index and colonization of B. abortus in tissues was significantly lower in group B than in group A. The present study concluded that 3 of 5 goats immunized with GI24-lysed bacteria were completely protected against challenge. Future investigations are required to improve the protective efficacy offered by lysed B. abortus cells for practical applications in small ruminants.
Collapse
Affiliation(s)
- Wong-Kyong Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Ja-Young Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Jeong-Sang Cho
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Enkhsaikhan Ochirkhuyag
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Md Rashedunnabi Akanda
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Byung-Yong Park
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Kim, Moon, Cho, Ochirkhuyag, Hur); Veterinary Histology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro 79, Iksan, Jeollabuk-do, Republic of Korea (Akanda, Park)
| |
Collapse
|
40
|
Sankarasubramanian J, Vishnu US, Gunasekaran P, Rajendhran J. Development and evaluation of a core genome multilocus sequence typing (cgMLST) scheme for Brucella spp. INFECTION GENETICS AND EVOLUTION 2019; 67:38-43. [DOI: 10.1016/j.meegid.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
|
41
|
Scotter SE, Tryland M, Nymo IH, Hanssen L, Harju M, Lydersen C, Kovacs KM, Klein J, Fisk AT, Routti H. Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:9-18. [PMID: 30317087 DOI: 10.1016/j.envpol.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.
Collapse
Affiliation(s)
- Sophie E Scotter
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Ingebjørg H Nymo
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway; Norwegian Veterinary Institute, Stakkevollveien 23, N-9010, Tromsø, Norway
| | - Linda Hanssen
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Mikael Harju
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | | | - Kit M Kovacs
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway
| | - Jörn Klein
- University College of Southeast Norway (USN), Post Box 235, N-3603, Kongsberg, Norway
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Heli Routti
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway.
| |
Collapse
|
42
|
Rhyan J, Garner M, Spraker T, Lambourn D, Cheville N. Brucella pinnipedialis in lungworms Parafilaroides sp. and Pacific harbor seals Phoca vitulina richardsi: proposed pathogenesis. DISEASES OF AQUATIC ORGANISMS 2018; 131:87-94. [PMID: 30460915 DOI: 10.3354/dao03291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brucella spp. were first isolated from marine mammals in 1994 and since have been described in numerous pinniped and cetacean species with nearly global distribution. Microscopic, electron microscopic, or culture results have shown lungworms in harbor seals to be infected with brucellae, suggesting that the lungworms may serve a role in this infection. In this study, we reviewed archived and more recent case material from 5 Pacific harbor seals from Washington State (USA) with evidence of B. pinnipedialis infection in the lungworm Parafilaroides sp. Twenty-two sections of lung containing approximately 220 Parafilaroides sp., stained with an immunohistochemical technique using antibody to B. abortus, showed approximately 80 (36%) infected nematodes. A few brucellae were also present in lung parenchyma in proximity to nematodes. Infection was present in the first- and fourth-stage larvae in the seal lung and intestines, as well as in the male and female reproductive organs of adult nematodes. Infected sperm deposits in the nematode uterus were suggestive of venereal transmission between lungworms. Massive infection of some degenerate adult lungworms and evidence of degeneration of some developing larvae in utero were observed. Based on these observations, we suggest that Parafilaroides sp., rather than the Pacific harbor seal Phoca vitulina richardsi, is the preferred host of B. pinnipedialis infection.
Collapse
Affiliation(s)
- Jack Rhyan
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO 80521, USA
| | | | | | | | | |
Collapse
|
43
|
Lalsiamthara J, Won G, Lee JH. Effect of immunization routes and protective efficacy of Brucella antigens delivered via Salmonella vector vaccine. J Vet Sci 2018; 19:416-425. [PMID: 29366302 PMCID: PMC5974523 DOI: 10.4142/jvs.2018.19.3.416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 11/20/2022] Open
Abstract
An anti-Brucella vaccine candidate comprised of purified Brucella lipopolysaccharide (LPS) and a cocktail of four Salmonella Typhimurium (ST)-Brucella vectors was reported previously. Each vector constitutively expressed highly conserved Brucella antigens (rB), viz., lumazine synthase (BLS), proline racemase subunit A, outer membrane protein-19 (Omp19), and Cu-Zn superoxide dismutase (SOD). The present study determined a relative level of protection conferred by each single strain. Upon virulent challenge, the challenge strain was recovered most abundantly in non-immunized control mice, with the ST-Omp19-, ST-BLS-, LPS-, and ST-SOD-immunized mice showing much less burden. Indirect enzyme-linked immunosorbent assay-based assay also confirmed the induction of antigen-specific immunoglobulin G for each antigen delivered. In a route-wise comparison of the combined vaccine candidate, intraperitoneal (IP), intramuscular (IM), and subcutaneous immunizations revealed an indication of highly efficient routes of protection. Splenocytes of mice immunized via IM and IP routes showed significant relative expression of IL-17 upon antigenic pulsing. Taken together, each of the Brucella antigens delivered by ST successfully induced an antigen-specific immune response, and it was also evident that an individual antigen strain can confer a considerable degree of protection. More effective protection was observed when the candidate was inoculated via IP and IM routes.
Collapse
Affiliation(s)
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
44
|
BRUCELLA PINNIPEDIALIS IN GREY SEALS ( HALICHOERUS GRYPUS) AND HARBOR SEALS ( PHOCA VITULINA) IN THE NETHERLANDS. J Wildl Dis 2018; 54:439-449. [PMID: 29697310 DOI: 10.7589/2017-05-097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals ( Halichoerus grypus; n=11) and harbor seals ( Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/39) seals were found to be positive for Brucella by IS 711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean.
Collapse
|
45
|
Sonne C, Andersen-Ranberg E, Rajala EL, Agerholm JS, Bonefeld-Jørgensen E, Desforges JP, Eulaers I, Jenssen BM, Koch A, Rosing-Asvid A, Siebert U, Tryland M, Mulvad G, Härkönen T, Acquarone M, Nordøy ES, Dietz R, Magnusson U. Seroprevalence for Brucella spp. in Baltic ringed seals ( Phoca hispida ) and East Greenland harp ( Pagophilus groenlandicus ) and hooded ( Cystophora cristata ) seals. Vet Immunol Immunopathol 2018; 198:14-18. [DOI: 10.1016/j.vetimm.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 01/22/2023]
|
46
|
Foster G, Nymo IH, Kovacs KM, Beckmen KB, Brownlow AC, Baily JL, Dagleish MP, Muchowski J, Perrett LL, Tryland M, Lydersen C, Godfroid J, McGovern B, Whatmore AM. First isolation of Brucella pinnipedialis and detection of Brucella antibodies from bearded seals Erignathus barbatus. DISEASES OF AQUATIC ORGANISMS 2018; 128:13-20. [PMID: 29565250 DOI: 10.3354/dao03211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brucella species infecting marine mammals was first reported in 1994 and in the years since has been documented in various species of pinnipeds and cetaceans. While these reports have included species that inhabit Arctic waters, the few available studies on bearded seals Erignathus barbatus have failed to detect Brucella infection to date. We report the first isolation of Brucella pinnipedialis from a bearded seal. The isolate was recovered from the mesenteric lymph node of a bearded seal that stranded in Scotland and typed as ST24, a sequence type associated typically with pinnipeds. Furthermore, serological studies of free-ranging bearded seals in their native waters detected antibodies to Brucella in seals from the Chukchi Sea (1990-2011; 19%) and Svalbard (1995-2007; 8%), whereas no antibodies were detected in bearded seals from the Bering Sea or Bering Strait or from captive bearded seals.
Collapse
Affiliation(s)
- Geoffrey Foster
- SAC Consulting Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Prevalence of antibodies against Brucella spp. in West Greenland polar bears (Ursus maritimus) and East Greenland muskoxen (Ovibos moschatus). Polar Biol 2018. [DOI: 10.1007/s00300-018-2307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Nymo IH, Rødven R, Beckmen K, Larsen AK, Tryland M, Quakenbush L, Godfroid J. Brucella Antibodies in Alaskan True Seals and Eared Seals-Two Different Stories. Front Vet Sci 2018; 5:8. [PMID: 29445729 PMCID: PMC5797734 DOI: 10.3389/fvets.2018.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Brucella pinnipedialis was first isolated from true seals in 1994 and from eared seals in 2008. Although few pathological findings have been associated with infection in true seals, reproductive pathology including abortions, and the isolation of the zoonotic strain type 27 have been documented in eared seals. In this study, a Brucella enzyme-linked immunosorbent assay (ELISA) and the Rose Bengal test (RBT) were initially compared for 206 serum samples and a discrepancy between the tests was found. Following removal of lipids from the serum samples, ELISA results were unaltered while the agreement between the tests was improved, indicating that serum lipids affected the initial RBT outcome. For the remaining screening, we used ELISA to investigate the presence of Brucella antibodies in sera of 231 eared and 1,412 true seals from Alaskan waters sampled between 1975 and 2011. In eared seals, Brucella antibodies were found in two Steller sea lions (Eumetopias jubatus) (2%) and none of the 107 Northern fur seals (Callorhinus ursinus). The low seroprevalence in eared seals indicate a low level of exposure or lack of susceptibility to infection. Alternatively, mortality due to the Brucella infection may remove seropositive animals from the population. Brucella antibodies were detected in all true seal species investigated; harbor seals (Phoca vitulina) (25%), spotted seals (Phoca largha) (19%), ribbon seals (Histriophoca fasciata) (16%), and ringed seals (Pusa hispida hispida) (14%). There was a low seroprevalence among pups, a higher seroprevalence among juveniles, and a subsequent decreasing probability of seropositivity with age in harbor seals. Similar patterns were present for the other true seal species; however, solid conclusions could not be made due to sample size. This pattern is in accordance with previous reports on B. pinnipedialis infections in true seals and may suggest environmental exposure to B. pinnipedialis at the juvenile stage, with a following clearance of infection. Furthermore, analyses by region showed minor differences in the probability of being seropositive for harbor seals from different regions regardless of the local seal population trend, signifying that the Brucella infection may not cause significant mortality in these populations. In conclusion, the Brucella infection pattern is very different for eared and true seals.
Collapse
Affiliation(s)
- Ingebjørg H Nymo
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rolf Rødven
- Bioscience, Fishery and Economy, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kimberlee Beckmen
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK, United States
| | - Anett K Larsen
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Morten Tryland
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lori Quakenbush
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK, United States
| | - Jacques Godfroid
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
49
|
Banai M, Itin R, Bardenstein S. Perspectives and Outcomes of the Activity of a Reference Laboratory for Brucellosis. Front Vet Sci 2018; 4:234. [PMID: 29354639 PMCID: PMC5760530 DOI: 10.3389/fvets.2017.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
One health is an emerging conceptual approach geared to harmonize the activities of the public health, veterinary services, and extension services within a single operative structure. Brucellosis is an important zoonosis worldwide, mostly involving nomadic populations but may often affect transboundary animal management and exotic domesticated animal farming such as camels and buffalo. Here, we provide contemporary knowledge on the disease and its causative agent, a Gram-negative bacteria belonging to the genus Brucella. Further, because of the zoonotic importance, we emphasize the need to assign a national reference laboratory for the disease and discuss how this would integrate into a "One Health" system. Brucella vaccines are live attenuated strains possessing the smooth phenotype, and vaccination, therefore, hampers the ability to maintain a national surveillance program due to concerns regarding the false positive vaccine-induced responses. In order to overcome these failings, we developed a combined approach based on rapid screening of mass numbers of serum samples by the fluorescence polarization assay, a cost-effective and accurate method, and confirmation of the true positive reactors by the complement fixation test, a highly specific method that is less sensitive to vaccine-induced antibodies. We demonstrate how, despite the high vaccination coverage of the small ruminant population in Israel, our results proved to be effective in discriminating between vaccinated and infected animals. The speed and accuracy of the method further justified immediate declaration of 37% of flocks as cleansed from brucellosis, thus reducing the burden of repeated tests among this population.
Collapse
Affiliation(s)
- Menachem Banai
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Rita Itin
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | |
Collapse
|
50
|
Colegrove KM, Burek-Huntington KA, Roe W, Siebert U. Pinnipediae. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7150363 DOI: 10.1016/b978-0-12-805306-5.00023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter reviews common diseases of pinnipeds, including species in the Otariidae (fur seals and sea lions), Phocidae (true seals), and Odobenidae (walrus) families. Much of the knowledge on pathologic conditions of pinnipeds comes from necropsies of stranded animals and those housed in captivity. As such, disease knowledge is biased toward species frequently housed in zoos and aquaria, those that strand more commonly, or those in which free-ranging populations are more easily accessible. Though historically systematic evaluations of wild populations have rarely been accomplished, in the past 10 years, with advances in marine mammal medicine and anesthesia, biologists and veterinarians more frequently completed live animal health field investigations to evaluate health and disease in free-ranging pinniped populations.
Collapse
|