1
|
Dong X, Matthews D, Gallo G, Darby A, Donovan-Banfield I, Goldswain H, MacGill T, Myers T, Orr R, Bailey D, Carroll M, Hiscox J. Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time. Nucleic Acids Res 2025; 53:gkaf077. [PMID: 39970290 PMCID: PMC11838042 DOI: 10.1093/nar/gkaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
In infected individuals, viruses are present as a population consisting of dominant and minor variant genomes. Most databases contain information on the dominant genome sequence. Since the emergence of SARS-CoV-2 in late 2019, variants have been selected that are more transmissible and capable of partial immune escape. Currently, models for projecting the evolution of SARS-CoV-2 are based on using dominant genome sequences to forecast whether a known mutation will be prevalent in the future. However, novel variants of SARS-CoV-2 (and other viruses) are driven by evolutionary pressure acting on minor variant genomes, which then become dominant and form a potential next wave of infection. In this study, sequencing data from 96 209 patients, sampled over a 3-year period, were used to analyse patterns of minor variant genomes. These data were used to develop unsupervised machine learning clusters to identify amino acids that had a greater potential for mutation than others in the Spike protein. Being able to identify amino acids that may be present in future variants would better inform the design of longer-lived medical countermeasures and allow a risk-based evaluation of viral properties, including assessment of transmissibility and immune escape, thus providing candidates with early warning signals for when a new variant of SARS-CoV-2 emerges.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Giulia Gallo
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Alistair Darby
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - I’ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
- Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- A*STAR Infectious Diseases Labs (ID Labs), A*STAR, Singapore, 138648, Singapore
| |
Collapse
|
2
|
Dong X, Hiscox JA. Analysis of SARS-CoV-2 Population Genetics from Samples Associated with Huanan Market and Early Cases Identifies Substitutions Associated with Future Variants of Concern. Viruses 2023; 15:1728. [PMID: 37632069 PMCID: PMC10459715 DOI: 10.3390/v15081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 began spreading through human-to-human transmission first within China and then worldwide, with increasing sequence diversity associated with time and the further spread of the virus. The spillover events in the Huanan market were associated with two lineages of SARS-CoV-2 (lineages A and B). Infecting virus populations and those in infected individuals consist of a dominant genomic sequence and minor genomic variants; these latter populations can indicate sites on the genome that may be subject to mutational changes-either neutral or advantageous sites and those that act as a reservoir for future dominant variants-when placed under selection pressure. The earliest deposited sequences with human infections associated with the Huanan market shared very close homology with each other and were all lineage B. However, there were minor genomic variants present in each sample that encompassed synonymous and non-synonymous changes. Fusion sequences characteristic of defective RNA were identified that could potentially link transmission chains between individuals. Although all the individuals appeared to have lineage B as the dominant sequence, nucleotides associated with lineage A could be found at very low frequencies. Several substitutions (but not deletions) associated with much later variants of concern (VoCs) were already present as minor genomic variants. This suggests that low-frequency substitutions at the start of a pandemic could be a reservoir of future dominant variants and/or provide information on potential sites within the genome associated with future plasticity.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L3 5RF, UK;
- Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| |
Collapse
|
3
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Dong X, Tree J, Banadyga L, He S, Zhu W, Tipton T, Gouriet J, Qiu X, Elmore MJ, Hall Y, Carroll M, Hiscox JA. Linked Mutations in the Ebola Virus Polymerase Are Associated with Organ Specific Phenotypes. Microbiol Spectr 2023; 11:e0415422. [PMID: 36946725 PMCID: PMC10101120 DOI: 10.1128/spectrum.04154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
Ebola virus (EBOV) causes a severe infection called Ebola virus disease (EVD). The pathogenesis of EBOV infection is complex, and outcome has been associated with a variety of immunological and cellular factors. Disease can result from several mechanisms, including direct organ and endothelial cell damage as a result of viral replication. During the2013 to 2016 Western Africa EBOV outbreak, several mutants emerged, with changes in the genes of nucleoprotein (NP), glycoprotein (GP), and the large (L) protein. Reverse genetic analysis has been used to investigate whether these mutations played any role in pathogenesis with mixed results depending on the experimental system used. Previous studies investigated the impact of three single nonsynonymous mutations (GP-A82V, NP-R111C, and L-D759G) on the fatality rate of mouse and ferret models and suggested that the L-D759G mutation decreased the virulence of EBOV. In this study, the effect of these three mutations was further evaluated by deep sequencing to determine viral population genetics and the host response in longitudinal samples of blood, liver, kidney, spleen, and lung tissues taken from the previous ferret model. The data indicated that the mutations were maintained in the different tissues, but the frequency of minor genomic mutations were different. In addition, compared to wild-type virus, the recombinant mutants had different within host effects, where the D759G (and accompanying Q986H) substitution in the L protein resulted in an upregulation of the immune response in the kidney, liver, spleen, and lungs. Together these studies provide insights into the biology of EBOV mutants both between and within hosts. IMPORTANCE Ebola virus infection can have dramatic effects on the human body which manifest in Ebola virus disease. The outcome of infection is either survival or death and in the former group with the potential of longer-term health consequences and persistent infection. Disease severity is undoubtedly associated with the host response, often with overt inflammatory responses correlated with poorer outcomes. The scale of the2013 to 2016 Western African Ebola virus outbreak revealed new aspects of viral biology. This included the emergence of mutants with potentially altered virulence. Biobanked tissue from ferret models of EBOV infected with different mutants that emerged in the Western Africa outbreak was used to investigate the effect of EBOV genomic variation in different tissues. Overall, the work provided insights into the population genetics of EBOV and showed that different organs in an animal model can respond differently to variants of EBOV.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Julia Tree
- UK-Health Security Agency, Salisbury, United Kingdom
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Tom Tipton
- UK-Health Security Agency, Salisbury, United Kingdom
| | - Jade Gouriet
- UK-Health Security Agency, Salisbury, United Kingdom
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | | | - Yper Hall
- UK-Health Security Agency, Salisbury, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore
| |
Collapse
|
5
|
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection. Genome Biol 2023. [PMID: 36915185 PMCID: PMC10009825 DOI: 10.1186/s13059-023-02881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.
Collapse
|
6
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
7
|
Deciphering Molecular Dynamics of Foot and Mouth Disease Virus (FMDV): A Looming Threat to Pakistan’s Dairy Industry. DAIRY 2022. [DOI: 10.3390/dairy3010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Milk is seen as a chief source of protein and other biologically available nutrients for human beings. Pakistan, the fourth largest milk-producing country, is badly affected by the contagious transboundary apthoviral disease of ungulate animals; the foot and mouth disease (FMD) virus. FMD is endemic in Pakistan and has caused significant economic loss to the dairy industry in the form of a profound decrease in milk production and increased morbidity and deaths of dairy animals. Inclusively, the case fatality ratio of FMD was 15.11%. Of the seven FMDV serotypes, (O, A, C, Asia 1, SAT 1, SAT2, and SAT 3), three serotypes (O, A, and Asia-1) are endemic in Pakistan. Rapid and highly sensitive diagnostic tools are required for efficient control of this disease. Presently, FMD in the laboratory is diagnosed via ELISA and molecular approaches, i.e., RT-PCR. Serotype-specific RT-PCR analysis not only confirms ELISA serotyping results but can also be used for the screening of ELISA negative samples. Genotypically, FMDV serotype O has a topotype (Middle East–South Asia (ME–SA) and lineage PanAsia-2) that is reported frequently from different areas of Pakistan. Confirmed cases of serotype A and Asia-1 are also reported. The information gathered can be used for understanding the molecular epidemiology of FMD in Pakistan. Further studies on the molecular dynamics of FMD could be useful for ensuring the timely diagnosis of this deadly pathogen, which would ultimately be beneficial for the mass vaccination programs of FMD in Pakistan.
Collapse
|
8
|
Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Teng Q, Li Z, Beerens N. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virol J 2022; 19:20. [PMID: 35078489 PMCID: PMC8788113 DOI: 10.1186/s12985-022-01745-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes. METHODS The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS). RESULTS We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice. CONCLUSIONS The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.
Collapse
Affiliation(s)
- Hongrui Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Guangsheng Che
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China.
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands.
| |
Collapse
|
9
|
Dose-Dependent Response to Infection with Ebola Virus in the Ferret Model and Evidence of Viral Evolution in the Eye. J Virol 2021; 95:e0083321. [PMID: 34586862 PMCID: PMC8610581 DOI: 10.1128/jvi.00833-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Filoviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years. We report the characterization of the ferret as a model for Ebola virus infection, reproducing disease and lethality observed in humans. The onset of clinical signs is rapid, and EBOV is detected in the blood, oral, and rectal swabs and all tissues studied. We identify viral RNA in the eye (a site of immune privilege) and report on specific genomic changes in EBOV present in this structure. Thus, the ferret model has utility in testing MCMs that prevent or treat long-term EBOV persistence in immune-privileged sites. IMPORTANCE Recent reemergence of Ebola in Guinea that caused over 28,000 cases between 2013 and 2016 has been linked to the original virus from that region. It appears the virus has remained in the region for at least 5 years and is likely to have been maintained in humans. Persistence of Ebola in areas of the body for extended periods of time has been observed, such as in the eye and semen. Despite the importance of reintroduction of Ebola from this route, such events are rare in the population, which makes studying medical interventions to clear persistent virus difficult. We studied various doses of Ebola in ferrets and detected virus in the eyes of most ferrets. We believe this model will enable the study of medical interventions that promote clearance of Ebola virus from sites that promote persistence.
Collapse
|
10
|
Del Amparo R, Branco C, Arenas J, Vicens A, Arenas M. Analysis of selection in protein-coding sequences accounting for common biases. Brief Bioinform 2021; 22:6105943. [PMID: 33479739 DOI: 10.1093/bib/bbaa431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The evolution of protein-coding genes is usually driven by selective processes, which favor some evolutionary trajectories over others, optimizing the subsequent protein stability and activity. The analysis of selection in this type of genetic data is broadly performed with the metric nonsynonymous/synonymous substitution rate ratio (dN/dS). However, most of the well-established methodologies to estimate this metric make crucial assumptions, such as lack of recombination or invariable codon frequencies along genes, which can bias the estimation. Here, we review the most relevant biases in the dN/dS estimation and provide a detailed guide to estimate this metric using state-of-the-art procedures that account for such biases, along with illustrative practical examples and recommendations. We also discuss the traditional interpretation of the estimated dN/dS emphasizing the importance of considering complementary biological information such as the role of the observed substitutions on the stability and function of proteins. This review is oriented to help evolutionary biologists that aim to accurately estimate selection in protein-coding sequences.
Collapse
Affiliation(s)
- Roberto Del Amparo
- CINBIO (Biomedical Research Center), University of Vigo, 36310 Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Catarina Branco
- CINBIO (Biomedical Research Center), University of Vigo, 36310 Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Jesús Arenas
- Unit of Microbiology and Immunology, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Vicens
- CINBIO (Biomedical Research Center), University of Vigo, 36310 Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- CINBIO (Biomedical Research Center), University of Vigo, 36310 Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
11
|
Schreiber SJ, Ke R, Loverdo C, Park M, Ahsan P, Lloyd-Smith JO. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol 2021; 7:veaa105. [PMID: 35186322 PMCID: PMC8087961 DOI: 10.1093/ve/veaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain reproductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clinical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based risk assessment of emergence threats.
Collapse
Affiliation(s)
| | - Ruian Ke
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris 75005, France
| | - Miran Park
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - Prianna Ahsan
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - James O Lloyd-Smith
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
An innovative data analysis strategy for accurate next-generation sequencing detection of tumor mitochondrial DNA mutations. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:232-243. [PMID: 33376630 PMCID: PMC7758456 DOI: 10.1016/j.omtn.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
Next-generation sequencing technology has been commonly applied to detect mitochondrial DNA (mtDNA) mutations, which are reported to be strongly associated with cancers. However, several key challenges still exist regarding bioinformatics analysis of mtDNA sequencing data that greatly affect the detection accuracy of mtDNA mutations. Here we comprehensively evaluated several key analysis procedures in three different sample types. We found that a trimming procedure was essential for improving mtDNA mapping performance in plasma but not tissue samples. Mapping with a revised Cambridge reference sequence and human genome 19 reference was strongly suggested for mtDNA mutation detection in plasma samples because of the extreme abundance of nuclear DNA of mitochondrial origin. Moreover, our results showed that a setting of 3 mismatches was most appropriate for mtDNA mutation calling. Importantly, we revealed the presence of a negative logarithmic relationship between mtDNA site sequencing depth and minimum detectable mutation frequency and built an innovative and efficient filtering strategy to increase the accuracy and sensitivity of mutation detection. Finally, we verified that higher sequencing depth was required for a PCR-based compared with a capture-based enrichment strategy. We established an innovative data analysis strategy that is of great significance for improving the accuracy of mtDNA mutation detection for different types of tumor samples.
Collapse
|
13
|
Dong X, Munoz-Basagoiti J, Rickett NY, Pollakis G, Paxton WA, Günther S, Kerber R, Ng LFP, Elmore MJ, Magassouba N, Carroll MW, Matthews DA, Hiscox JA. Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biol 2020; 21:238. [PMID: 32894206 PMCID: PMC7475720 DOI: 10.1186/s13059-020-02148-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral load is a major contributor to outcome in patients with Ebola virus disease (EVD), with high values leading to a fatal outcome. Evidence from the 2013-2016 Ebola virus (EBOV) outbreak indicated that different genotypes of the virus can have different phenotypes in patients. Additionally, due to the error-prone nature of viral RNA synthesis in an individual patient, the EBOV genome exists around a dominant viral genome sequence. The minor variants within a patient may contribute to the overall phenotype in terms of viral protein function. To investigate the effects of these minor variants, blood samples from patients with acute EVD were deeply sequenced. RESULTS We examine the minor variant frequency between patients with acute EVD who survived infection with those who died. Non-synonymous differences in viral proteins were identified that have implications for viral protein function. The greatest frequency of substitution was identified at three codon sites in the L gene-which encodes the viral RNA-dependent RNA polymerase (RdRp). Recapitulating this in an assay for virus replication, these substitutions result in aberrant viral RNA synthesis and correlate with patient outcome. CONCLUSIONS Together, these findings support the notion that in patients who survived EVD, in some cases, the genetic variability of the virus resulted in deleterious mutations that affected viral protein function, leading to reduced viral load. Such mutations may also lead to persistent strains of the virus and be associated with recrudescent infections.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jordana Munoz-Basagoiti
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Natasha Y. Rickett
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Georgios Pollakis
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - William A. Paxton
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa F. P. Ng
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | | | - N’faly Magassouba
- Laboratoire des fièvres hémorragiques en Guinée, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea
| | - Miles W. Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- Public Health England, Salisbury, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Singapore, Singapore
| | - Julian A. Hiscox
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| |
Collapse
|
14
|
Takatsuka J. A new cypovirus from the Japanese peppered moth, Biston robustus. J Invertebr Pathol 2020; 174:107417. [PMID: 32497527 DOI: 10.1016/j.jip.2020.107417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
A cypovirus was isolated from larvae of the Japanese peppered moth, Biston robustus. The viral genome is 23,954 bp comprising 10 segmented double-stranded RNAs with a new electropherotype among cypoviruses. Each segment encodes one putative protein and has non-coding regions that contain conserved sequences at their 5' and 3' termini, 5'-AGAA(U/A)U-3' and 5'-UGC-3', respectively. Seven proteins encoded in the genome are homologous to those of other cypoviruses at a cut-off E-value of 1 × 10-5. The maximal sequence identities of these proteins with cypovirus homologs are 24.30%-39.40%. These results indicate that the virus isolated is a novel cypovirus; herein designated as Biston robustus cypovirus 24 (BrCPV-24). This newly isolated BrCPV-24 infects the larvae of the silkworm Bombyx mori.
Collapse
Affiliation(s)
- Jun Takatsuka
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
| |
Collapse
|
15
|
Kadoya SS, Urayama SI, Nunoura T, Hirai M, Takaki Y, Kitajima M, Nakagomi T, Nakagomi O, Okabe S, Nishimura O, Sano D. Bottleneck Size-Dependent Changes in the Genetic Diversity and Specific Growth Rate of a Rotavirus A Strain. J Virol 2020; 94:e02083-19. [PMID: 32132235 PMCID: PMC7199400 DOI: 10.1128/jvi.02083-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences.IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated.
Collapse
Affiliation(s)
- Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Syun-Ichi Urayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toyoko Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Department of Environmental Studies, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
17
|
Harel N, Meir M, Gophna U, Stern A. Direct sequencing of RNA with MinION Nanopore: detecting mutations based on associations. Nucleic Acids Res 2019; 47:e148. [PMID: 31665473 PMCID: PMC7107797 DOI: 10.1093/nar/gkz907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 01/23/2023] Open
Abstract
One of the key challenges in the field of genetics is the inference of haplotypes from next generation sequencing data. The MinION Oxford Nanopore sequencer allows sequencing long reads, with the potential of sequencing complete genes, and even complete genomes of viruses, in individual reads. However, MinION suffers from high error rates, rendering the detection of true variants difficult. Here, we propose a new statistical approach named AssociVar, which differentiates between true mutations and sequencing errors from direct RNA/DNA sequencing using MinION. Our strategy relies on the assumption that sequencing errors will be dispersed randomly along sequencing reads, and hence will not be associated with each other, whereas real mutations will display a non-random pattern of association with other mutations. We demonstrate our approach using direct RNA sequencing data from evolved populations of the MS2 bacteriophage, whose small genome makes it ideal for MinION sequencing. AssociVar inferred several mutations in the phage genome, which were corroborated using parallel Illumina sequencing. This allowed us to reconstruct full genome viral haplotypes constituting different strains that were present in the sample. Our approach is applicable to long read sequencing data from any organism for accurate detection of bona fide mutations and inter-strain polymorphisms.
Collapse
Affiliation(s)
- Noam Harel
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Meir
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Stern
- School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Orton RJ, Wright CF, King DP, Haydon DT. Estimating viral bottleneck sizes for FMDV transmission within and between hosts and implications for the rate of viral evolution. Interface Focus 2019; 10:20190066. [PMID: 31897294 DOI: 10.1098/rsfs.2019.0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
RNA viruses exist as populations of closely related genomes, characterized by a high diversity of low-frequency variants. As viral genomes from one population disperse to establish new sites of replication, the fate of these low-frequency variants depends to a large extent on the size of the founding population. Focusing on foot-and-mouth disease virus (FMDV) we conjecture that variants are more likely to be transmitted through wide bottlenecks, but more likely to approach fixation in new populations following narrow bottlenecks; therefore, the longer-term rate of accumulation of 'nearly neutral' variants at high frequencies is likely to be inversely related to the bottleneck size. We examine this conjecture in vivo by estimating bottleneck sizes relating 'parent' and 'daughter' populations observed at different scales ranging from within host to between host (within the same herd, and in different herds) using a previously established method. Within hosts, we find bottleneck sizes to range from 5 to 20 viral genomes between populations transmitted from the pharynx to the serum, and from 4 to 54 between serum and lesion populations. Between hosts, we find bottleneck sizes to range from 2 to 39, suggesting inter-host bottlenecks are of a similar size to intra-host bottlenecks. We establish a statistically significant negative relationship between the probability of genomic consensus level change and bottleneck size, and present a simple sampling model that captures this empirical relationship. We also present a novel in vitro experiment to investigate the impact of bottleneck size on the frequency of mutations within FMDV populations, demonstrate that variant frequency in a population increases more rapidly during small population passages, and provide evidence for positive selection during the passage of large populations.
Collapse
Affiliation(s)
- Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | | | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Virus Adaptation and Selection Following Challenge of Animals Vaccinated against Classical Swine Fever Virus. Viruses 2019; 11:v11100932. [PMID: 31658773 PMCID: PMC6833067 DOI: 10.3390/v11100932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Vaccines against classical swine fever have proven very effective in protecting pigs from this deadly disease. However, little is known about how vaccination impacts the selective pressures acting on the classical swine fever virus (CSFV). Here we use high-throughput sequencing of viral genomes to investigate evolutionary changes in virus populations following the challenge of naïve and vaccinated pigs with the highly virulent CSFV strain “Koslov”. The challenge inoculum contained an ensemble of closely related viral sequences, with three major haplotypes being present, termed A, B, and C. After the challenge, the viral haplotype A was preferentially located within the tonsils of naïve animals but was highly prevalent in the sera of all vaccinated animals. We find that the viral population structure in naïve pigs after infection is very similar to that in the original inoculum. In contrast, the viral population in vaccinated pigs, which only underwent transient low-level viremia, displayed several distinct changes including the emergence of 16 unique non-synonymous single nucleotide polymorphisms (SNPs) that were not detectable in the challenge inoculum. Further analysis showed a significant loss of heterogeneity and an increasing positive selection acting on the virus populations in the vaccinated pigs. We conclude that vaccination imposes a strong selective pressure on viruses that subsequently replicate within the vaccinated animal.
Collapse
|
20
|
Hägglund S, Laloy E, Näslund K, Pfaff F, Eschbaumer M, Romey A, Relmy A, Rikberg A, Svensson A, Huet H, Gorna K, Zühlke D, Riedel K, Beer M, Zientara S, Bakkali-Kassimi L, Blaise-Boisseau S, Valarcher JF. Model of persistent foot-and-mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transbound Emerg Dis 2019; 67:133-148. [PMID: 31419374 PMCID: PMC7003861 DOI: 10.1111/tbed.13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Foot‐and‐mouth disease virus (FMDV) causes a highly contagious vesicular disease in livestock, with serious consequences for international trade. The virus persists in the nasopharynx of cattle and this slows down the process to obtain an FMDV‐free status after an outbreak. To study biological mechanisms, or to identify molecules that can be targeted to diagnose or interfere with persistence, we developed a model of persistent FMDV infection in bovine dorsal soft palate (DSP). Primary DSP cells were isolated after commercial slaughter and were cultured in multilayers at the air‐liquid interface. After 5 weeks of culture without further passage, the cells were infected with FMDV strain O/FRA/1/2001. Approximately, 20% of cells still had a polygonal morphology and displayed tight junctions as in stratified squamous epithelia. Subsets of cells expressed cytokeratin and most or all cells expressed vimentin. In contrast to monolayers in medium, multilayers in air demonstrated only a limited cytopathic effect. Integrin αVβ6 expression was observed in mono‐ but not in multilayers. FMDV antigen, FMDV RNA and live virus were detected from day 1 to 28, with peaks at day 1 and 2. The proportion of infected cells was highest at 24 hr (3% and 36% of cells at an MOI of 0.01 and 1, respectively). At day 28 after infection, at a time when animals that still harbour FMDV are considered carriers, FMDV antigen was detected in 0.2%–2.1% of cells, in all layers, and live virus was isolated from supernatants of 6/8 cultures. On the consensus level, the viral genome did not change within the first 24 hr after infection. Only a few minor single nucleotide variants were detected, giving no indication of the presence of a viral quasispecies. The air‐liquid interface model of DSP brings new possibilities to investigate FMDV persistence in a controlled manner.
Collapse
Affiliation(s)
- Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Katarina Näslund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Annika Rikberg
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anna Svensson
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Helene Huet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Kamila Gorna
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Jean François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
21
|
Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. mSphere 2019; 4:4/3/e00291-19. [PMID: 31243074 PMCID: PMC6595145 DOI: 10.1128/msphere.00291-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies. RNA viruses are infamous for their high rates of mutation, which produce swarms of genetic variants within individual hosts. To date, analyses of intrahost genetic diversity have focused on the primary genome sequence. However, virus phenotypes are shaped not only by primary sequence but also by the secondary structures into which this sequence folds. Such structures enable viral replication, translation, and binding of small RNAs, yet within-host variation at the structural level has not been adequately explored. We characterized the structural diversity of the 5′ untranslated region (UTR) of populations of West Nile virus (WNV) that had been subject to five serial passages in triplicate in each of three bird species. Viral genomes were sampled from host serum samples at each passage (n = 45 populations) and subjected to next-generation sequencing. For populations derived from passages 1, 3, and 5 (n = 9 populations), we predicted the impact of each mutation occurring at a frequency of ≥1% on the secondary structure of the 5′ UTR. As expected, mutations in double-stranded (DS) regions of the 5′ UTR stem structures caused structural changes of significantly greater magnitude than did mutations in single-stranded (SS) regions. Despite the greater impact of mutations in DS regions, mutations in DS and SS regions occurred at similar frequencies, with no evidence of enhanced selection against mutation in DS regions. In contrast, mutations in two regions that mediate genome cyclization and thereby regulate replication and translation, the 5′ cyclization sequence and the UAR flanking stem (UFS), were suppressed in all three hosts. IMPORTANCE The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies.
Collapse
|
22
|
Campo DS, Nayak V, Srinivasamoorthy G, Khudyakov Y. Entropy of mitochondrial DNA circulating in blood is associated with hepatocellular carcinoma. BMC Med Genomics 2019; 12:74. [PMID: 31167647 PMCID: PMC6551242 DOI: 10.1186/s12920-019-0506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Ultra-Deep Sequencing (UDS) enabled identification of specific changes in human genome occurring in malignant tumors, with current approaches calling for the detection of specific mutations associated with certain cancers. However, such associations are frequently idiosyncratic and cannot be generalized for diagnostics. Mitochondrial DNA (mtDNA) has been shown to be functionally associated with several cancer types. Here, we study the association of intra-host mtDNA diversity with Hepatocellular Carcinoma (HCC). Results UDS mtDNA exome data from blood of patients with HCC (n = 293) and non-cancer controls (NC, n = 391) were used to: (i) measure the genetic heterogeneity of nucleotide sites from the entire population of intra-host mtDNA variants rather than to detect specific mutations, and (ii) apply machine learning algorithms to develop a classifier for HCC detection. Average total entropy of HCC mtDNA is 1.24-times lower than of NC mtDNA (p = 2.84E-47). Among all polymorphic sites, 2.09% had a significantly different mean entropy between HCC and NC, with 0.32% of the HCC mtDNA sites having greater (p < 0.05) and 1.77% of the sites having lower mean entropy (p < 0.05) as compared to NC. The entropy profile of each sample was used to further explore the association between mtDNA heterogeneity and HCC by means of a Random Forest (RF) classifier The RF-classifier separated 232 HCC and 232 NC patients with accuracy of up to 99.78% and average accuracy of 92.23% in the 10-fold cross-validation. The classifier accurately separated 93.08% of HCC (n = 61) and NC (n = 159) patients in a validation dataset that was not used for the RF parameter optimization. Conclusions Polymorphic sites contributing most to the mtDNA association with HCC are scattered along the mitochondrial genome, affecting all mitochondrial genes. The findings suggest that application of heterogeneity profiles of intra-host mtDNA variants from blood may help overcome barriers associated with the complex association of specific mutations with cancer, enabling the development of accurate, rapid, inexpensive and minimally invasive diagnostic detection of cancer.
Collapse
Affiliation(s)
- David S Campo
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Vishal Nayak
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Ganesh Srinivasamoorthy
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Yury Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
23
|
Arzt J, Fish I, Pauszek SJ, Johnson SL, Chain PS, Rai DK, Rieder E, Goldberg TL, Rodriguez LL, Stenfeldt C. The evolution of a super-swarm of foot-and-mouth disease virus in cattle. PLoS One 2019; 14:e0210847. [PMID: 31022193 PMCID: PMC6483180 DOI: 10.1371/journal.pone.0210847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease that severely impacts global food security and is one of the greatest constraints on international trade of animal products. Extensive viral population diversity and rapid, continuous mutation of circulating FMD viruses (FMDVs) pose significant obstacles to the control and ultimate eradication of this important transboundary pathogen. The current study investigated mechanisms contributing to within-host evolution of FMDV in a natural host species (cattle). Specifically, vaccinated and non-vaccinated cattle were infected with FMDV under controlled, experimental conditions and subsequently sampled for up to 35 days to monitor viral genomic changes as related to phases of disease and experimental cohorts. Consensus-level genomic changes across the entire FMDV coding region were characterized through three previously defined stages of infection: early, transitional, and persistent. The overall conclusion was that viral evolution occurred via a combination of two mechanisms: emergence of full-genomic minority haplotypes from within the inoculum super-swarm, and concurrent continuous point mutations. Phylogenetic analysis indicated that individuals were infected with multiple distinct haplogroups that were pre-existent within the ancestral inoculum used to infect all animals. Multiple shifts of dominant viral haplotype took place during the early and transitional phases of infection, whereas few shifts occurred during persistent infection. Overall, this work suggests that the establishment of the carrier state is not associated with specific viral genomic characteristics. These insights into FMDV population dynamics have important implications for virus sampling methodology and molecular epidemiology.
Collapse
Affiliation(s)
- Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States of America
| | - Steven J Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Shannon L Johnson
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Patrick S Chain
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| |
Collapse
|
24
|
Arzt J, Fish I, Pauszek SJ, Johnson SL, Chain PS, Rai DK, Rieder E, Goldberg TL, Rodriguez LL, Stenfeldt C. The evolution of a super-swarm of foot-and-mouth disease virus in cattle. PLoS One 2019; 14:e0210847. [PMID: 31022193 DOI: 10.1101/512178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/05/2019] [Indexed: 05/21/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease that severely impacts global food security and is one of the greatest constraints on international trade of animal products. Extensive viral population diversity and rapid, continuous mutation of circulating FMD viruses (FMDVs) pose significant obstacles to the control and ultimate eradication of this important transboundary pathogen. The current study investigated mechanisms contributing to within-host evolution of FMDV in a natural host species (cattle). Specifically, vaccinated and non-vaccinated cattle were infected with FMDV under controlled, experimental conditions and subsequently sampled for up to 35 days to monitor viral genomic changes as related to phases of disease and experimental cohorts. Consensus-level genomic changes across the entire FMDV coding region were characterized through three previously defined stages of infection: early, transitional, and persistent. The overall conclusion was that viral evolution occurred via a combination of two mechanisms: emergence of full-genomic minority haplotypes from within the inoculum super-swarm, and concurrent continuous point mutations. Phylogenetic analysis indicated that individuals were infected with multiple distinct haplogroups that were pre-existent within the ancestral inoculum used to infect all animals. Multiple shifts of dominant viral haplotype took place during the early and transitional phases of infection, whereas few shifts occurred during persistent infection. Overall, this work suggests that the establishment of the carrier state is not associated with specific viral genomic characteristics. These insights into FMDV population dynamics have important implications for virus sampling methodology and molecular epidemiology.
Collapse
Affiliation(s)
- Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States of America
| | - Steven J Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Shannon L Johnson
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Patrick S Chain
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| |
Collapse
|
25
|
Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium as the Site of Primary and Persistent Infection. mSphere 2018; 3:3/6/e00493-18. [PMID: 30541776 PMCID: PMC6291620 DOI: 10.1128/msphere.00493-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an important livestock pathogen that is often described as the greatest constraint to global trade in animal products. The present study utilized a standardized pig-to-cow contact exposure model to demonstrate that FMDV infection of cattle initiates in the nasopharyngeal mucosa following natural virus exposure. Furthermore, this work confirmed the role of the bovine nasopharyngeal mucosa as the site of persistent FMDV infection in vaccinated and nonvaccinated cattle. The critical output of this study validates previous studies that have used simulated natural inoculation models to characterize FMDV pathogenesis in cattle and emphasizes the importance of continued research of the unique virus-host interactions that occur within the bovine nasopharynx. Specifically, vaccines and biotherapeutic countermeasures designed to prevent nasopharyngeal infection of vaccinated animals could contribute to substantially improved control of FMDV. The pathogenesis of foot-and-mouth disease virus (FMDV) in cattle was investigated through early and late stages of infection by use of an optimized experimental model for controlled contact exposure. Time-limited exposure of cattle to FMDV-infected pigs led to primary FMDV infection of the nasopharyngeal mucosa in both vaccinated and nonvaccinated cattle. In nonvaccinated cattle, the infection generalized rapidly to cause clinical disease, without apparent virus amplification in the lungs prior to establishment of viremia. Vaccinated cattle were protected against clinical disease and viremia; however, all vaccinated cattle were subclinically infected, and persistent infection occurred at similarly high prevalences in both animal cohorts. Infection dynamics in cattle were consistent and synchronous and comparable to those of simulated natural and needle inoculation systems. However, the current experimental model utilizes a natural route of virus exposure and is therefore superior for investigations of disease pathogenesis and host response. Deep sequencing of viruses obtained during early infection of pigs and cattle indicated that virus populations sampled from sites of primary infection were markedly more diverse than viruses from vesicular lesions of cattle, suggesting the occurrence of substantial bottlenecks associated with vesicle formation. These data expand previous knowledge of FMDV pathogenesis in cattle and provide novel insights for validation of inoculation models of bovine FMD studies. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important livestock pathogen that is often described as the greatest constraint to global trade in animal products. The present study utilized a standardized pig-to-cow contact exposure model to demonstrate that FMDV infection of cattle initiates in the nasopharyngeal mucosa following natural virus exposure. Furthermore, this work confirmed the role of the bovine nasopharyngeal mucosa as the site of persistent FMDV infection in vaccinated and nonvaccinated cattle. The critical output of this study validates previous studies that have used simulated natural inoculation models to characterize FMDV pathogenesis in cattle and emphasizes the importance of continued research of the unique virus-host interactions that occur within the bovine nasopharynx. Specifically, vaccines and biotherapeutic countermeasures designed to prevent nasopharyngeal infection of vaccinated animals could contribute to substantially improved control of FMDV.
Collapse
|
26
|
Reconstructing the evolutionary history of pandemic foot-and-mouth disease viruses: the impact of recombination within the emerging O/ME-SA/Ind-2001 lineage. Sci Rep 2018; 8:14693. [PMID: 30279570 PMCID: PMC6168464 DOI: 10.1038/s41598-018-32693-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 11/08/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of livestock affecting animal production and trade throughout Asia and Africa. Understanding FMD virus (FMDV) global movements and evolution can help to reconstruct the disease spread between endemic regions and predict the risks of incursion into FMD-free countries. Global expansion of a single FMDV lineage is rare but can result in severe economic consequences. Using extensive sequence data we have reconstructed the global space-time transmission history of the O/ME-SA/Ind-2001 lineage (which normally circulates in the Indian sub-continent) providing evidence of at least 15 independent escapes during 2013–2017 that have led to outbreaks in North Africa, the Middle East, Southeast Asia, the Far East and the FMD-free islands of Mauritius. We demonstrated that sequence heterogeneity of this emerging FMDV lineage is accommodated within two co-evolving divergent sublineages and that recombination by exchange of capsid-coding sequences can impact upon the reconstructed evolutionary histories. Thus, we recommend that only sequences encoding the outer capsid proteins should be used for broad-scale phylogeographical reconstruction. These data emphasise the importance of the Indian subcontinent as a source of FMDV that can spread across large distances and illustrates the impact of FMDV genome recombination on FMDV molecular epidemiology.
Collapse
|
27
|
Mahapatra M, Parida S. Foot and mouth disease vaccine strain selection: current approaches and future perspectives. Expert Rev Vaccines 2018; 17:577-591. [PMID: 29950121 DOI: 10.1080/14760584.2018.1492378] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilization of appropriate and efficient vaccines. AREAS COVERED Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. EXPERT COMMENTARY Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralization test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.
Collapse
|
28
|
Ramirez-Carvajal L, Pauszek SJ, Ahmed Z, Farooq U, Naeem K, Shabman RS, Stockwell TB, Rodriguez LL. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts. PLoS One 2018; 13:e0190977. [PMID: 29390015 PMCID: PMC5794060 DOI: 10.1371/journal.pone.0190977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008–2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008–2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.
Collapse
Affiliation(s)
- Lisbeth Ramirez-Carvajal
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
- * E-mail: (LLR); (LRC)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
| | - Zaheer Ahmed
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
- Foreign Animal Disease Diagnostic Laboratory, Animal Plant Health Inspection Service (APHIS), Plum Island Animal Disease Center, New York, United States of America
| | - Umer Farooq
- Animal Health Program, National Agricultural Research Center, Islamabad, Pakistan
| | - Khalid Naeem
- Animal Health Program, National Agricultural Research Center, Islamabad, Pakistan
| | - Reed S. Shabman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- * E-mail: (LLR); (LRC)
| |
Collapse
|
29
|
Understanding the transmission of foot-and-mouth disease virus at different scales. Curr Opin Virol 2017; 28:85-91. [PMID: 29245054 DOI: 10.1016/j.coviro.2017.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease (FMD) is highly infectious, but despite the large quantities of FMD virus released into the environment and the extreme susceptibility of host species to infection, transmission is not always predictable. Whereas virus spread in endemic settings is characterised by frequent direct and indirect animal contacts, incursions into FMD-free countries may be seeded by low-probability events such as fomite or wind-borne aerosol routes. There remains a void between data generated from small-scale experimental studies and our ability to reliably reconstruct transmission routes at different scales between farms, countries and regions. This review outlines recent transmission studies in susceptible host species, and considers new approaches that integrate virus genomics and epidemiological data to recreate and understand the spread of FMD.
Collapse
|
30
|
Bayesian inference of epidemiological parameters from transmission experiments. Sci Rep 2017; 7:16774. [PMID: 29196741 PMCID: PMC5711876 DOI: 10.1038/s41598-017-17174-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/21/2017] [Indexed: 01/18/2023] Open
Abstract
Epidemiological parameters for livestock diseases are often inferred from transmission experiments. However, there are several limitations inherent to the design of such experiments that limits the precision of parameter estimates. In particular, infection times and latent periods cannot be directly observed and infectious periods may also be censored. We present a Bayesian framework accounting for these features directly and employ Markov chain Monte Carlo techniques to provide robust inferences and quantify the uncertainty in our estimates. We describe the transmission dynamics using a susceptible-exposed-infectious-removed compartmental model, with gamma-distributed transition times. We then fit the model to published data from transmission experiments for foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV). Where the previous analyses of these data made various assumptions on the unobserved processes in order to draw inferences, our Bayesian approach includes the unobserved infection times and latent periods and quantifies them along with all other model parameters. Drawing inferences about infection times helps identify who infected whom and can also provide insights into transmission mechanisms. Furthermore, we are able to use our models to measure the difference between the latent periods of inoculated and contact-challenged animals and to quantify the effect vaccination has on transmission.
Collapse
|
31
|
Marston DA, Horton DL, Nunez J, Ellis RJ, Orton RJ, Johnson N, Banyard AC, McElhinney LM, Freuling CM, Fırat M, Ünal N, Müller T, de Lamballerie X, Fooks AR. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evol 2017; 3:vex038. [PMID: 29255631 PMCID: PMC5729694 DOI: 10.1093/ve/vex038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL UK
| | - Javier Nunez
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Centre for Virus Research, MRC-University of Glasgow, University of Glasgow, Glasgow, G61 1QH UK
| | - Nicholas Johnson
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Ashley C Banyard
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| | - Conrad M Freuling
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Müge Fırat
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Nil Ünal
- Etlik Veterinary Control Central Research Institute A.S.Kolayli Street. No.21-21/A, 06020, Etlik, Ankara, Turkey
| | - Thomas Müller
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, D-17493, Germany
| | - Xavier de Lamballerie
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ—IRD 190—Inserm 1207 – EHESP – IHU Méditerranée Infection), Faculté de Médecine de Marseille, 27, Bd Jean Moulin,13005 Marseille, cedex 05 France
| | - Anthony R Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Institute of Infection and Global Health, University of Liverpool, UK
| |
Collapse
|
32
|
Carratalà A, Shim H, Zhong Q, Bachmann V, Jensen JD, Kohn T. Experimental adaptation of human echovirus 11 to ultraviolet radiation leads to resistance to disinfection and ribavirin. Virus Evol 2017; 3:vex035. [PMID: 29225923 PMCID: PMC5714166 DOI: 10.1093/ve/vex035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of 'viral persistence' present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants.
Collapse
Affiliation(s)
- Anna Carratalà
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), CH-1015 Lausanne
| | - Hyunjin Shim
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Qingxia Zhong
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), CH-1015 Lausanne
| | - Virginie Bachmann
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), CH-1015 Lausanne
| | - Jeffrey D Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe AZ 85281, USA
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), CH-1015 Lausanne
| |
Collapse
|
33
|
Jenckel M, Blome S, Beer M, Höper D. Quasispecies composition and diversity do not reveal any predictors for chronic classical swine fever virus infection. Arch Virol 2016; 162:775-786. [PMID: 27885563 DOI: 10.1007/s00705-016-3161-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Classical swine fever (CSF) can run acute, chronic, and prenatal courses in both domestic pigs and wild boar. Although chronic infections are rare events, their epidemiological impact is very high due to the long-term shedding of virus. So far, little is known about the factors that influence disease course and outcome from either the host or virus's perspective. To elucidate the viral determinants, we analyzed the role of the viral populations for the development of chronic CSF virus (CSFV) infections. Three different animal trials that had led to both chronic and acute infections were chosen for a detailed analysis by deep sequencing. The three inocula represented sub-genogroups 2.1 and 2.3, and two viruses were wild-type CSFV, one derived from an infectious cDNA clone. These viruses and samples derived from acutely and chronically infected animals were subjected to next-generation sequencing. Subsequently, the derived full-length genomes were compared at both the consensus and the quasispecies level. At consensus level, no differences were observed between the parental viruses and the viruses obtained from chronically infected animals. Despite a considerable level of variability at the quasispecies level, no indications were found for any predictive pattern with regard to the chronicity of the CSFV infections. While there might be no direct marker for chronicity, moderate virulence of some CSFV strains in itself seems to be a crucial prerequisite for the establishment of long-term infections which does not need further genetic adaption. Thus, general host and virus factors need further investigation.
Collapse
Affiliation(s)
- Maria Jenckel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
34
|
Xia H, Beck AS, Gargili A, Forrester N, Barrett ADT, Bente DA. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci Rep 2016; 6:35819. [PMID: 27775001 PMCID: PMC5075774 DOI: 10.1038/srep35819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023] Open
Abstract
The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses.
Collapse
Affiliation(s)
- Han Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Andrew S Beck
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Naomi Forrester
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA
| |
Collapse
|
35
|
King DJ, Freimanis GL, Orton RJ, Waters RA, Haydon DT, King DP. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 44:286-292. [PMID: 27421209 PMCID: PMC5036933 DOI: 10.1016/j.meegid.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
Abstract
Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT-PCR method was developed to amplify a 7.6kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal.
Collapse
Affiliation(s)
- David J King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Graham L Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, 464 Bearsden Road, G61 1QH, UK
| | - Ryan A Waters
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
36
|
A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses. mSystems 2016; 1:mSystems00039-15. [PMID: 27822536 PMCID: PMC5069770 DOI: 10.1128/msystems.00039-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/05/2016] [Indexed: 02/08/2023] Open
Abstract
This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories.
Collapse
|
37
|
Peña J, Chen-Harris H, Allen JE, Hwang M, Elsheikh M, Mabery S, Bielefeldt-Ohmann H, Zemla AT, Bowen RA, Borucki MK. Sendai virus intra-host population dynamics and host immunocompetence influence viral virulence during in vivo passage. Virus Evol 2016; 2:vew008. [PMID: 27774301 PMCID: PMC4989884 DOI: 10.1093/ve/vew008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vivo serial passage of non-pathogenic viruses has been shown to lead to increased viral virulence, and although the precise mechanism(s) are not clear, it is known that both host and viral factors are associated with increased pathogenicity. Under- or overnutrition leads to a decreased or dysregulated immune response and can increase viral mutant spectrum diversity and virulence. The objective of this study was to identify the role of viral mutant spectra dynamics and host immunocompetence in the development of pathogenicity during in vivo passage. Because the nutritional status of the host has been shown to affect the development of viral virulence, the diet of animal model reflected two extremes of diets which exist in the global population, malnutrition and obesity. Sendai virus was serially passaged in groups of mice with differing nutritional status followed by transmission of the passaged virus to a second host species, guinea pigs. Viral population dynamics were characterized using deep sequence analysis and computational modeling. Histopathology, viral titer and cytokine assays were used to characterize viral virulence. Viral virulence increased with passage and the virulent phenotype persisted upon passage to a second host species. Additionally, nutritional status of mice during passage influenced the phenotype. Sequencing revealed the presence of several non-synonymous changes in the consensus sequence associated with passage, a majority of which occurred in the hemagglutinin-neuraminidase and polymerase genes, as well as the presence of persistent high frequency variants in the viral population. In particular, an N1124D change in the consensus sequences of the polymerase gene was detected by passage 10 in a majority of the animals. In vivo comparison of an 1124D plaque isolate to a clone with 1124N genotype indicated that 1124D was associated with increased virulence.
Collapse
Affiliation(s)
- José Peña
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | | | - Mona Hwang
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Maher Elsheikh
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Shalini Mabery
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, University of Queensland , Brisbane, Australia; and
| | - Adam T Zemla
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
38
|
Schönherz AA, Lorenzen N, Guldbrandtsen B, Buitenhuis B, Einer-Jensen K. Ultra-deep sequencing of VHSV isolates contributes to understanding the role of viral quasispecies. Vet Res 2016; 47:10. [PMID: 26743117 PMCID: PMC4705744 DOI: 10.1186/s13567-015-0298-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
The high mutation rate of RNA viruses enables the generation of a genetically diverse viral population, termed a quasispecies, within a single infected host. This high in-host genetic diversity enables an RNA virus to adapt to a diverse array of selective pressures such as host immune response and switching between host species. The negative-sense, single-stranded RNA virus, viral haemorrhagic septicaemia virus (VHSV), was originally considered an epidemic virus of cultured rainbow trout in Europe, but was later proved to be endemic among a range of marine fish species in the Northern hemisphere. To better understand the nature of a virus quasispecies related to the evolutionary potential of VHSV, a deep-sequencing protocol specific to VHSV was established and applied to 4 VHSV isolates, 2 originating from rainbow trout and 2 from Atlantic herring. Each isolate was subjected to Illumina paired end shotgun sequencing after PCR amplification and the 11.1 kb genome was successfully sequenced with an average coverage of 0.5-1.9 × 10(6) sequenced copies. Differences in single nucleotide polymorphism (SNP) frequency were detected both within and between isolates, possibly related to their stage of adaptation to host species and host immune reactions. The N, M, P and Nv genes appeared nearly fixed, while genetic variation in the G and L genes demonstrated presence of diverse genetic populations particularly in two isolates. The results demonstrate that deep sequencing and analysis methodologies can be useful for future in vivo host adaption studies of VHSV.
Collapse
Affiliation(s)
- Anna A Schönherz
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Niels Lorenzen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Bart Buitenhuis
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | | |
Collapse
|
39
|
Liu Y, Chiaromonte F, Ross H, Malhotra R, Elleder D, Poss M. Error correction and statistical analyses for intra-host comparisons of feline immunodeficiency virus diversity from high-throughput sequencing data. BMC Bioinformatics 2015; 16:202. [PMID: 26123018 PMCID: PMC4486422 DOI: 10.1186/s12859-015-0607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background Infection with feline immunodeficiency virus (FIV) causes an immunosuppressive disease whose consequences are less severe if cats are co-infected with an attenuated FIV strain (PLV). We use virus diversity measurements, which reflect replication ability and the virus response to various conditions, to test whether diversity of virulent FIV in lymphoid tissues is altered in the presence of PLV. Our data consisted of the 3′ half of the FIV genome from three tissues of animals infected with FIV alone, or with FIV and PLV, sequenced by 454 technology. Results Since rare variants dominate virus populations, we had to carefully distinguish sequence variation from errors due to experimental protocols and sequencing. We considered an exponential-normal convolution model used for background correction of microarray data, and modified it to formulate an error correction approach for minor allele frequencies derived from high-throughput sequencing. Similar to accounting for over-dispersion in counts, this accounts for error-inflated variability in frequencies – and quite effectively reproduces empirically observed distributions. After obtaining error-corrected minor allele frequencies, we applied ANalysis Of VAriance (ANOVA) based on a linear mixed model and found that conserved sites and transition frequencies in FIV genes differ among tissues of dual and single infected cats. Furthermore, analysis of minor allele frequencies at individual FIV genome sites revealed 242 sites significantly affected by infection status (dual vs. single) or infection status by tissue interaction. All together, our results demonstrated a decrease in FIV diversity in bone marrow in the presence of PLV. Importantly, these effects were weakened or undetectable when error correction was performed with other approaches (thresholding of minor allele frequencies; probabilistic clustering of reads). We also queried the data for cytidine deaminase activity on the viral genome, which causes an asymmetric increase in G to A substitutions, but found no evidence for this host defense strategy. Conclusions Our error correction approach for minor allele frequencies (more sensitive and computationally efficient than other algorithms) and our statistical treatment of variation (ANOVA) were critical for effective use of high-throughput sequencing data in understanding viral diversity. We found that co-infection with PLV shifts FIV diversity from bone marrow to lymph node and spleen. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0607-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Liu
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Howard Ross
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. .,Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14000, Czech Republic.
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
40
|
Orton RJ, Wright CF, Morelli MJ, King DJ, Paton DJ, King DP, Haydon DT. Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data. BMC Genomics 2015; 16:229. [PMID: 25886445 PMCID: PMC4425905 DOI: 10.1186/s12864-015-1456-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND RNA viruses have high mutation rates and exist within their hosts as large, complex and heterogeneous populations, comprising a spectrum of related but non-identical genome sequences. Next generation sequencing is revolutionising the study of viral populations by enabling the ultra deep sequencing of their genomes, and the subsequent identification of the full spectrum of variants within the population. Identification of low frequency variants is important for our understanding of mutational dynamics, disease progression, immune pressure, and for the detection of drug resistant or pathogenic mutations. However, the current challenge is to accurately model the errors in the sequence data and distinguish real viral variants, particularly those that exist at low frequency, from errors introduced during sequencing and sample processing, which can both be substantial. RESULTS We have created a novel set of laboratory control samples that are derived from a plasmid containing a full-length viral genome with extremely limited diversity in the starting population. One sample was sequenced without PCR amplification whilst the other samples were subjected to increasing amounts of RT and PCR amplification prior to ultra-deep sequencing. This enabled the level of error introduced by the RT and PCR processes to be assessed and minimum frequency thresholds to be set for true viral variant identification. We developed a genome-scale computational model of the sample processing and NGS calling process to gain a detailed understanding of the errors at each step, which predicted that RT and PCR errors are more likely to occur at some genomic sites than others. The model can also be used to investigate whether the number of observed mutations at a given site of interest is greater than would be expected from processing errors alone in any NGS data set. After providing basic sample processing information and the site's coverage and quality scores, the model utilises the fitted RT-PCR error distributions to simulate the number of mutations that would be observed from processing errors alone. CONCLUSIONS These data sets and models provide an effective means of separating true viral mutations from those erroneously introduced during sample processing and sequencing.
Collapse
Affiliation(s)
- Richard J Orton
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | | | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia at the IFOM-IEO Campus, Via Adamello 16, Milano, 20139, Italy.
| | - David J King
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - David J Paton
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - Donald P King
- Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
41
|
Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. J Virol 2015; 89:4760-9. [PMID: 25673712 DOI: 10.1128/jvi.03685-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3' untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for diversity assessment of within-plant virus population, since they show a highly congruent portrayal of the virus mutational landscape within a plant. The study is an important baseline for future studies of virus population dynamics, for example, during the adaptation to a new host. The comparison of the two virus sequence enrichment techniques, sequencing of virus-derived small interfering RNAs and RNA from purified viral particles, shows the strength of the latter for the detection of recombinant viral genomes and reconstruction of complete consensus viral genome sequence.
Collapse
|
42
|
Jayasundara D, Saeed I, Maheswararajah S, Chang B, Tang SL, Halgamuge SK. ViQuaS: an improved reconstruction pipeline for viral quasispecies spectra generated by next-generation sequencing. Bioinformatics 2014; 31:886-96. [DOI: 10.1093/bioinformatics/btu754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
Cunha MV, Inácio J, Freimanis G, Fusaro A, Granberg F, Höper D, King DP, Monne I, Orton R, Rosseel T. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol Biol 2014; 1247:415-36. [PMID: 25399113 PMCID: PMC7123048 DOI: 10.1007/978-1-4939-2004-4_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied. The aim of this chapter is to provide a current and prospective view on the opportunities and challenges associated with the application of massive parallel sequencing technologies to veterinary medicine, with particular focus on applications that have a potential impact on disease control and management.
Collapse
Affiliation(s)
- Mónica V. Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, IP and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Lisboa, Portugal and School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Smith MT, Bennett AM, Grubman MJ, Bundy BC. Foot-and-mouth disease: technical and political challenges to eradication. Vaccine 2014; 32:3902-8. [PMID: 24785105 DOI: 10.1016/j.vaccine.2014.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly-contagious livestock disease with global socioeconomic ramifications. The disease negatively impacts both individual farmers through reduced herd viability and nations through trade restrictions of animals and animal derivatives. Vaccines for FMD prevention have existed for over 70 years, yet the disease remains enzootic in a large percentage of the globe. FMD persistence is due in part to technical limitations of historic and current vaccine technologies. There also exist many socioeconomic and political barriers to global FMD eradication. Here we highlight the barriers to eradication and discuss potential avenues toward FMD eradication.
Collapse
Affiliation(s)
- Mark T Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Anthony M Bennett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
45
|
Kao RR, Haydon DT, Lycett SJ, Murcia PR. Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol 2014; 22:282-91. [PMID: 24661923 PMCID: PMC7125769 DOI: 10.1016/j.tim.2014.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023]
Abstract
Whole-genome sequencing is used for forensic epidemiology. Big data can transform forensic epidemiology. Clustering, biases, wildlife reservoirs, and emerging infections can all be addressed. Phylodynamics approaches to integrate epidemiological and evolutionary data have been highly successful but still face scientific challenges.
In epidemiology, the identification of ‘who infected whom’ allows us to quantify key characteristics such as incubation periods, heterogeneity in transmission rates, duration of infectiousness, and the existence of high-risk groups. Although invaluable, the existence of many plausible infection pathways makes this difficult, and epidemiological contact tracing either uncertain, logistically prohibitive, or both. The recent advent of next-generation sequencing technology allows the identification of traceable differences in the pathogen genome that are transforming our ability to understand high-resolution disease transmission, sometimes even down to the host-to-host scale. We review recent examples of the use of pathogen whole-genome sequencing for the purpose of forensic tracing of transmission pathways, focusing on the particular problems where evolutionary dynamics must be supplemented by epidemiological information on the most likely timing of events as well as possible transmission pathways. We also discuss potential pitfalls in the over-interpretation of these data, and highlight the manner in which a confluence of this technology with sophisticated mathematical and statistical approaches has the potential to produce a paradigm shift in our understanding of infectious disease transmission and control.
Collapse
Affiliation(s)
- Rowland R Kao
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - Samantha J Lycett
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - Pablo R Murcia
- Medical Research Council (MRC) Centre for Virus Research, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| |
Collapse
|
46
|
Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J Virol 2014; 88:4375-88. [PMID: 24501401 DOI: 10.1128/jvi.03181-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Avian influenza (AI) viruses of the H7 subtype have the potential to evolve into highly pathogenic (HP) viruses that represent a major economic problem for the poultry industry and a threat to global health. However, the emergence of HPAI viruses from low-pathogenic (LPAI) progenitor viruses currently is poorly understood. To investigate the origin and evolution of one of the most important avian influenza epidemics described in Europe, we investigated the evolutionary and spatial dynamics of the entire genome of 109 H7N1 (46 LPAI and 63 HPAI) viruses collected during Italian H7N1 outbreaks between March 1999 and February 2001. Phylogenetic analysis revealed that the LPAI and HPAI epidemics shared a single ancestor, that the HPAI strains evolved from the LPAI viruses in the absence of reassortment, and that there was a parallel emergence of mutations among HPAI and later LPAI lineages. Notably, an ultradeep-sequencing analysis demonstrated that some of the amino acid changes characterizing the HPAI virus cluster were already present with low frequency within several individual viral populations from the beginning of the LPAI H7N1 epidemic. A Bayesian phylogeographic analysis revealed stronger spatial structure during the LPAI outbreak, reflecting the more rapid spread of the virus following the emergence of HPAI. The data generated in this study provide the most complete evolutionary and phylogeographic analysis of epidemiologically intertwined high- and low-pathogenicity viruses undertaken to date and highlight the importance of implementing prompt eradication measures against LPAI to prevent the appearance of viruses with fitness advantages and unpredictable pathogenic properties. IMPORTANCE The Italian H7 AI epidemic of 1999 to 2001 was one of the most important AI outbreaks described in Europe. H7 viruses have the ability to evolve into HP forms from LP precursors, although the mechanisms underlying this evolutionary transition are only poorly understood. We combined epidemiological information, whole-genome sequence data, and ultradeep sequencing approaches to provide the most complete characterization of the evolution of HPAI from LPAI viruses undertaken to date. Our analysis revealed that the LPAI viruses were the direct ancestors of the HPAI strains and identified low-frequency minority variants with HPAI mutations that were present in the LPAI samples. Spatial analysis provided key information for the design of effective control strategies for AI at both local and global scales. Overall, this work highlights the importance of implementing rapid eradication measures to prevent the emergence of novel influenza viruses with severe pathogenic properties.
Collapse
|
47
|
Orton RJ, Wright CF, Morelli MJ, Juleff N, Thébaud G, Knowles NJ, Valdazo-González B, Paton DJ, King DP, Haydon DT. Observing micro-evolutionary processes of viral populations at multiple scales. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120203. [PMID: 23382425 PMCID: PMC3678327 DOI: 10.1098/rstb.2012.0203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Advances in sequencing technology coupled with new integrative approaches to data analysis provide a potentially transformative opportunity to use pathogen genome data to advance our understanding of transmission. However, to maximize the insights such genetic data can provide, we need to understand more about how the microevolution of pathogens is observed at different scales of biological organization. Here, we examine the evolutionary processes in foot-and-mouth disease virus observed at different scales, ranging from the tissue, animal, herd and region. At each scale, we observe analogous processes of population expansion, mutation and selection resulting in the accumulation of mutations over increasing time scales. While the current data are limited, rates of nucleotide substitution appear to be faster over individual-to-individual transmission events compared with those observed at a within-individual scale suggesting that viral population bottlenecks between individuals facilitate the fixation of polymorphisms. Longer-term rates of nucleotide substitution were found to be equivalent in individual-to-individual transmission compared with herd-to-herd transmission indicating that viral diversification at the herd level is not retained at a regional scale.
Collapse
Affiliation(s)
- Richard J Orton
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|