1
|
McMullin DR, Kirkland AK, Rehman I, Kovesi T, Mallach G, Miller JD. Polycyclic aromatic hydrocarbons from environmental tobacco smoke and wood stoves dominate in settled house dust from Northwestern Ontario First Nations communities. Int J Circumpolar Health 2025; 84:2457786. [PMID: 39854166 PMCID: PMC11770864 DOI: 10.1080/22423982.2025.2457786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Rates of respiratory tract infections for children living in remote First Nations communities in the Sioux Lookout Zone in Northwestern Ontario are elevated and associated with poor indoor environmental quality including high exposures to endotoxin and serious dampness and mould damage. The studies also revealed a high prevalence of cigarette smoking and most houses have wood stoves, of variable quality. Depending on structure, polycyclic aromatic hydrocarbons (PAH) are carcinogens, immunotoxins and/or inflammatory mediators that are byproducts of the incomplete combustion of organic materials. Indoor sources of PAHs include tobacco smoke, cooking, and burning wood and/or fossil fuels for house heating. Twelve PAHs were measured in the <300 µm fraction of settled house dust by GC-MS in 59 houses. Nine PAHs were detected in all 59 houses, and median concentrations of individual PAHs measured ranged from 66 to 804 ng/g. PAHs associated with environmental tobacco smoke and with wood smoke dominated the PAH profile. Limiting tobacco smoking indoors and upgrading to low emission airtight wood stoves would improve indoor air quality and the respiratory health of children in this remote region of Ontario.
Collapse
Affiliation(s)
| | - Anna K. Kirkland
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Irbaz Rehman
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Thomas Kovesi
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Gary Mallach
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Noah TL, Alexis NE, Bennett WD, Hernandez ML, Burbank AJ, Li H, Zhou H, Jaspers I, Peden DB. Effect of prednisone on woodsmoke-induced sputum inflammation in healthy volunteers: A randomized, placebo-controlled pilot study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100347. [PMID: 39524042 PMCID: PMC11546454 DOI: 10.1016/j.jacig.2024.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Background Inhalation of biomass smoke is associated with adverse respiratory effects in those with chronic pulmonary conditions. There are few published data regarding the effects of anti-inflammatory interventions on these outcomes. Objective Our aim was to assess the effects of postexposure prednisone on woodsmoke (WS)-induced sputum neutrophilia. Methods We carried out a randomized, placebo-controlled, crossover pilot study assessing the effect of a postexposure dose of 60 mg prednisone on induced sputum inflammation after controlled exposure to WS (500 μg/m3 for 2 hours) in healthy adults who had been identified in a separate screening protocol as being "PMN responsive" to WS. Secondary end points were sputum cytokine level and mucociliary clearance as measured by γ-scintigraphy. Results A total of 11 subjects yielded complete data for the primary analysis. At 24 hours after WS exposure, there was a significant increase in sputum percentage of PMNs (%PMN) versus at baseline after placebo (median = 42% [IQR = 31%-53%]) (P = .02) but not after prednisone (median = 32% [IQR = 18%-40%]) (P = .09). Prednisone reduced Δ%PMN at 24 hours, but this difference did not reach statistical significance. However, for the 8 of 11 subjects who were PMN responsive after placebo, prednisone reduced Δ%PMN significantly (P = .05). Prednisone had no significant effects on sputum levels of IL-1β, IL-6, IL-8, or TNF-α. WS exposure tended to reduce mucociliary clearance in the placebo arm but not in the prednisone arm. Conclusions Prednisone taken immediately after exposure to WS mitigated short-term increase in sputum %PMN among healthy volunteers selected for their underlying inflammatory responsiveness to WS. Our data support future studies assessing anti-inflammatory interventions and the role of mucus clearance in WS-induced respiratory health effects.
Collapse
Affiliation(s)
- Terry L. Noah
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Neil E. Alexis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - William D. Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Michelle L. Hernandez
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Allison J. Burbank
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Haolin Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - David B. Peden
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| |
Collapse
|
3
|
Piper R, Tremper A, Katsouyanni K, Fuller GW, Green D, Font A, Walton H, Rivas I, Evangelopoulos D. Associations between short-term exposure to airborne carbonaceous particles and mortality: A time-series study in London during 2010-2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124720. [PMID: 39142429 DOI: 10.1016/j.envpol.2024.124720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbonaceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK. Daily counts of non-accidental, respiratory, and cardiovascular deaths were obtained between 2010 and 2019. For the same period, daily concentrations of carbonaceous particles: organic (OC), elemental (EC), wood-burning (WC), total carbon (TC) and equivalent black carbon (eBC) were sourced from two centrally located monitoring sites (one urban-traffic and one urban-background). Generalized additive models were used to estimate the percentage change in mortality risk associated with interquartile range increases in particulate concentrations. Lagged effects up to 3 days were examined. Stratified analyses were conducted by age, sex, and season, separate analyses were also performed by site-type. For non-accidental mortality, positive associations were observed for all particle species at lag1, including statistically significant percentage risk changes in WC (0.51% (95%CI: 0.19%, 0.82%) per IQR (0.68 μg/m3)) and OC (0.45% (95%CI: 0.04%, 0.87% per IQR (2.36 μg/m3)). For respiratory deaths, associations were greatest for particulate concentrations averaged over the current and previous 3 days, with increases in risk of 1.70% (95%CI: 0.64%, 2.77%) for WC and 1.31% (95%CI: -0.08%, 2.71%) for OC. No associations were found with cardiovascular mortality. Results were robust to adjustment for particle mass concentrations. Stratified analyses suggested particulate effects were greatest in the summer and respiratory associations more pronounced in females. Our findings are supportive of an association between carbonaceous particles and non-accidental and respiratory mortality. The strongest evidence of an effect was for WC; this is of significance given the rising popularity of wood-burning for residential space heating and energy production across Europe.
Collapse
Affiliation(s)
- Rachael Piper
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Anja Tremper
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College, London, UK; Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gary W Fuller
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - David Green
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College, London, UK
| | - Anna Font
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Education, Research and Innovation in Energy and Environment (CERI EE), 59000, Lille, France
| | - Heather Walton
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College, London, UK
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College, London, UK.
| |
Collapse
|
4
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
5
|
Ren J, Zhang Z, Cui Q, Tian H, Guo Z, Zhang Y, Chen F, Deng Y, Ma Y. The effect of indoor air filtration on biomarkers of inflammation and oxidative stress: a review and meta-analysis of randomized controlled trials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33212-33222. [PMID: 38687452 DOI: 10.1007/s11356-024-33414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Fengge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yandong Deng
- Department of Ultrasonic, the First Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
6
|
Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, Lee AKY, Seow WJ. Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. ENVIRONMENTAL RESEARCH 2023; 234:116392. [PMID: 37302739 DOI: 10.1016/j.envres.2023.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.
Collapse
Affiliation(s)
- Xin Er Frances Jin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Lu Lu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xin Yin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Yue Qian Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Alex King Yin Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
7
|
Mooney M, Panagodage Perera NK, Saw R, Waddington G, Cross TJ, Hughes D. Exercise in bushfire smoke for high performance athletes: A Position Statement from the Australian Institute of SportEndorsed by Australasian College of Sport and Exercise Physicians (ACSEP) and Sport Medicine Australia (SMA). J Sci Med Sport 2023; 26:98-108. [PMID: 36858652 DOI: 10.1016/j.jsams.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The frequency of bushfires in Australia is increasing and it is expected bushfire smoke will become a more prevalent phenomenon impacting air quality. The objective of this position statement is to provide guidance to the sport sector regarding exercise in air affected by bushfire smoke. DESIGN This is position statement from the Australian Institute of Sport, based on a narrative review of the literature regarding bushfire smoke and its effects on health and exercise performance. METHODS A narrative review of scientific publications regarding the effects of bushfire smoke on health and exercise performance. RESULTS Bushfire smoke has negative impacts on health and performance. Athletes exercising at high intensity over a prolonged duration will increase their exposure to air pollutants. Athletes with a history of elevated airway responsiveness are likely to be at increased risk of an adverse response to bushfire smoke exposure. CONCLUSIONS Athletes, coaches, support staff and sport organisations should monitor air quality (PM2.5 concentration) and make appropriate adjustments to training duration and intensity.
Collapse
Affiliation(s)
- Mathew Mooney
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/Mat_Mooney
| | - Nirmala Kanthi Panagodage Perera
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/Nim_Perera
| | - Richard Saw
- Sports Medicine, Australian Institute of Sport, Australia. https://twitter.com/_RichardSaw
| | - Gordon Waddington
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/DrGWaddington
| | - Troy J Cross
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - David Hughes
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia.
| |
Collapse
|
8
|
Ambrozim GC, Cápua LD, Perazzo LEL, Nascimento VZS, Costa JMBDS. Exposure of children to smoke in clay figures craft in Caruaru, state of Pernambuco, Brazil. Rev Bras Med Trab 2023; 21:e2023844. [PMID: 37197337 PMCID: PMC10185396 DOI: 10.47626/1679-4435-2023-844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 05/19/2023] Open
Abstract
Introduction Alto do Moura, a neighborhood located in the city of Caruaru, state of Pernambuco, Brazil, is known by the production of figurative art in clay, which uses wood as the main fuel in its finishing process. Chronic exposure to toxic gases released in combustion can trigger respiratory atopies. Objectives To identify children with respiratory atopies accompanied by the Alto do Moura Family Health Unit and the spatial distribution of furnaces used in the burning of figurative art in clay. Methods This was an exploratory, observational, descriptive, cross-sectional study analyzing 596 medical records of children with respiratory atopies living in the aforementioned neighborhood from July 2018 to October 2020. Fifty-two children aged 2 to 10 years were identified. A sociodemographic questionnaire was applied, and the location of furnaces, source of smoke, was mapped. Data were collected using the HC Maps® application, which stores and generates an electronic spreadsheet for analysis. The prevalence of respiratory atopies and the average distance between children's homes and furnaces were calculated. Results A prevalence of respiratory atopies of 8.6% was found in the population studied. Allergic rhinitis was the most common diagnosis, followed by asthma. School-age children were the most affected group, and the average distance between children's homes and furnaces was 76.8 meters. Conclusions The presence of environmental pollution resulting from burning wood for making figurative art in clay may be contributing to the occurrence of respiratory atopies in children. Preventive measures, such as using exhaust fans, opening windows, and increasing ventilation, should be encouraged.
Collapse
Affiliation(s)
| | - Lorenzo Durão Cápua
- Núcleo de Ciências da Vida, Universidade Federal de
Pernambuco, Caruaru, PE, Brazil
| | | | | | - Juliana Martins Barbosa da Silva Costa
- Núcleo de Ciências da Vida, Universidade Federal de
Pernambuco, Caruaru, PE, Brazil
- Correspondence address: Juliana Martins Barbosa da Silva Costa -
Rua José Bonifácio, 503 - Bairro Torre - CEP: 50710-001 - Recife
(PE), Brazil - E-mail:
| |
Collapse
|
9
|
White JD, Wyss AB, Hoang TT, Lee M, Richards M, Parks CG, Beane-Freeman LE, Hankinson JL, Umbach DM, London SJ. Residential Wood Burning and Pulmonary Function in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87008. [PMID: 36006053 PMCID: PMC9406613 DOI: 10.1289/ehp10734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In low- and middle-income countries, burning biomass indoors for cooking or heating has been associated with poorer lung function. In high-income countries, wood, a form of biomass, is commonly used for heating in rural areas with increasing prevalence. However, in these settings the potential impact of chronic indoor woodsmoke exposure on pulmonary function is little studied. OBJECTIVE We evaluated the association of residential wood burning with pulmonary function in case-control study of asthma nested within a U.S. rural cohort. METHODS Using sample weighted multivariable linear regression, we estimated associations between some and frequent wood burning, both relative to no exposure, in relation to forced expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), their ratio (FEV 1 / FVC ), and fractional exhaled nitric oxide (FeNO). We examined effect modification by smoking or asthma status. RESULTS Among all participants and within smoking groups, wood burning was not appreciably related to pulmonary function. However, in individuals with asthma (n = 1,083 ), frequent wood burning was significantly associated with lower FEV 1 [β : - 164 mL ; 95% confidence interval (CI): - 261 , - 66 mL ], FVC (β : - 125 mL ; 95% CI: - 230 , - 20 mL ), and FEV 1 / FVC (β : - 2 % ; 95% CI: - 4 , - 0.4 % ), whereas no appreciable association was seen in individuals without asthma (n = 1,732 ). These differences in association by asthma were statistically significant for FEV 1 (p i n t e r a c t i o n = 0.0044 ) and FEV 1 / FVC (p i n t e r a c t i o n = 0.049 ). Frequent wood burning was also associated with higher FeNO levels in all individuals (n = 2,598 ; β : 0.1 ln ( ppb ) ; 95% CI: 0.02, 0.2), but associations did not differ by asthma or smoking status. DISCUSSION Frequent exposure to residential wood burning was associated with a measure of airway inflammation (FeNO) among all individuals and with lower pulmonary function among individuals with asthma. This group may wish to reduce wood burning or consider using air filtration devices. https://doi.org/10.1289/EHP10734.
Collapse
Affiliation(s)
- Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, USA
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Orru H, Olstrup H, Kukkonen J, López-Aparicio S, Segersson D, Geels C, Tamm T, Riikonen K, Maragkidou A, Sigsgaard T, Brandt J, Grythe H, Forsberg B. Health impacts of PM 2.5 originating from residential wood combustion in four nordic cities. BMC Public Health 2022; 22:1286. [PMID: 35787793 PMCID: PMC9252027 DOI: 10.1186/s12889-022-13622-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Residential wood combustion (RWC) is one of the largest sources of fine particles (PM2.5) in the Nordic cities. The current study aims to calculate the related health effects in four studied city areas in Sweden, Finland, Norway, and Denmark. Methods Health impact assessment (HIA) was employed as the methodology to quantify the health burden. Firstly, the RWC induced annual average PM2.5 concentrations from local sources were estimated with air pollution dispersion modelling. Secondly, the baseline mortality rates were retrieved from the national health registers. Thirdly, the concentration-response function from a previous epidemiological study was applied. For the health impact calculations, the WHO-developed tool AirQ + was used. Results Amongst the studied city areas, the local RWC induced PM2.5 concentration was lowest in the Helsinki Metropolitan Area (population-weighted annual average concentration 0.46 µg m− 3) and highest in Oslo (2.77 µg m− 3). Each year, particulate matter attributed to RWC caused around 19 premature deaths in Umeå (95% CI: 8–29), 85 in the Helsinki Metropolitan Area (95% CI: 35–129), 78 in Copenhagen (95% CI: 33–118), and 232 premature deaths in Oslo (95% CI: 97–346). The average loss of life years per premature death case was approximately ten years; however, in the whole population, this reflects on average a decrease in life expectancy by 0.25 (0.10–0.36) years. In terms of the relative contributions in cities, life expectancy will be decreased by 0.10 (95% CI: 0.05–0.16), 0.18 (95% CI: 0.07–0.28), 0.22 (95% CI: 0.09–0.33) and 0.63 (95% CI: 0.26–0.96) years in the Helsinki Metropolitan Area, Umeå, Copenhagen and Oslo respectively. The number of years of life lost was lowest in Umeå (172, 95% CI: 71–260) and highest in Oslo (2458, 95% CI: 1033–3669). Conclusions All four Nordic city areas have a substantial amount of domestic heating, and RWC is one of the most significant sources of PM2.5. This implicates a substantial predicted impact on public health in terms of premature mortality. Thus, several public health measures are needed to reduce the RWC emissions.
Collapse
Affiliation(s)
- Hans Orru
- Umeå University, Sustainable Health, 901 87, Umeå, Sweden. .,University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | | | - Jaakko Kukkonen
- Finnish Meteorological Institute, P.O. Box 503, Erik Palménin aukio 1, 00101, Helsinki, Finland.,Centre for Atmospheric and Climate Physics Research, and Centre for Climate Change Research, University of Hertfordshire; College Lane, AL10 9AB, Hatfield, UK
| | - Susana López-Aparicio
- Norwegian Institute for Air Research, Instituttveien 18, P.O. Box 100, 2027, Kjeller, Norway
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, SE-60176, Norrköping, Sweden
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Tanel Tamm
- University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kari Riikonen
- Finnish Meteorological Institute, P.O. Box 503, Erik Palménin aukio 1, 00101, Helsinki, Finland
| | - Androniki Maragkidou
- Finnish Meteorological Institute, P.O. Box 503, Erik Palménin aukio 1, 00101, Helsinki, Finland
| | - Torben Sigsgaard
- Department of Public Health , Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Jørgen Brandt
- Umeå University, Sustainable Health, 901 87, Umeå, Sweden.,iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Henrik Grythe
- Norwegian Institute for Air Research, Instituttveien 18, P.O. Box 100, 2027, Kjeller, Norway
| | | |
Collapse
|
11
|
Efficiency of Emission Reduction Technologies for Residential Biomass Combustion Appliances: Electrostatic Precipitator and Catalyst. ENERGIES 2022. [DOI: 10.3390/en15114066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Residential biomass combustion has been pointed out as one of the largest sources of atmospheric pollutants. Rising awareness of the environmental effects of residential biomass combustion emissions boosted the development of different emission reduction devices that are currently available on the market for small-scale appliances. However, detailed studies on the efficiency of these devices in different combustion systems available in Southern European countries are lacking. In this study, two pollution control devices (catalytic converter and electrostatic precipitator) were tested in two different combustion systems (batch mode operated woodstove and automatically fed pellet stove) in order to assess the emission reduction potential of the devices. Pine firewood was used to fuel the woodstove. One commercial brand of pellets and an agricultural fuel (olive pit) were taken for the experiments in the pellet stove. While the efficiency of the electrostatic precipitator in reducing PM10 was only recorded for woodstove emissions (29%), the effect of the catalyst in decreasing gaseous emissions was only visible when applied to the pellet stove flue gas. For wood pellet combustion, reductions of CO and TOC emissions were in the range of 60–62% and 74–77%, respectively. For olive pit combustion, a lower decrease of 59–60% and 64% in CO and TOC emissions, respectively, was recorded.
Collapse
|
12
|
Walker ES, Fedak KM, Good N, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin RB, L’Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute differences in blood lipids and inflammatory biomarkers following controlled exposures to cookstove air pollution in the STOVES study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:565-578. [PMID: 32615777 PMCID: PMC7775880 DOI: 10.1080/09603123.2020.1785402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 05/24/2023]
Abstract
Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.
Collapse
Affiliation(s)
- Ethan S. Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kristen M. Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Robert D. Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert B. Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christian L’Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Rhiannon Shelton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Lenssen ES, Pieters RHH, Nijmeijer SM, Oldenwening M, Meliefste K, Hoek G. Short-term associations between barbecue fumes and respiratory health in young adults. ENVIRONMENTAL RESEARCH 2022; 204:111868. [PMID: 34453901 DOI: 10.1016/j.envres.2021.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies have associated biomass combustion with (respiratory) morbidity and mortality, primarily in indoor settings. Barbecuing results in high outdoor air pollution exposures, but the health effects are unknown. OBJECTIVE The objective was to investigate short-term changes in respiratory health in healthy adults, associated with exposure to barbecue fumes. METHODS 16 healthy, adult volunteers were exposed to barbecue smoke in outdoor air in rest during 1.5 h, using a repeated-measures design. Major air pollutants were monitored on-site, including particulate matter <2.5 μm (PM2.5), particle number concentrations (PNC) and black- and brown carbon. At the same place and time-of-day, subjects participated in a control session, during which they were not exposed to barbecue smoke. Before and immediately after all sessions lung function was measured. Before, immediately after, 4- and 18 h post-sessions nasal expression levels of interleukin (IL)-8, IL6 and Tumor Necrosis Factor alpha (TNFα) were determined in nasal swabs, using quantitative polymerase chain reaction. Associations between major air pollutants, lung function and inflammatory markers were assessed using mixed linear regression models. RESULTS High PM2.5 levels and PNCs were observed during barbecue sessions, with averages ranging from 553 to 1062 μg/m3 and 109,000-463,000 pt/cm3, respectively. Average black- and brown carbon levels ranged between 4.1-13.0 and 5.0-16.2 μg/m3. A 1000 μg/m3 increase in PM2.5 was associated with 2.37 (0.97, 4.67) and 2.21 (0.98, 5.00) times higher expression of IL8, immediately- and 18 h after exposure. No associations were found between air pollutants and lung function, or the expression of IL6 or TNFα. DISCUSSION Short-term exposure to air pollutants emitted from barbecuing was associated with a mild respiratory response in healthy young adults, including prolonged increase in nasal IL8 without a change in lung function and other measured inflammatory markers. The results might indicate prolonged respiratory inflammation, due to short-term exposure to barbecue fumes.
Collapse
Affiliation(s)
- Esther S Lenssen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Raymond H H Pieters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Sandra M Nijmeijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Marieke Oldenwening
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Kees Meliefste
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Groot J, Keller A, Pedersen M, Sigsgaard T, Loft S, Nybo Andersen AM. Indoor home environments of Danish children and the socioeconomic position and health of their parents: A descriptive study. ENVIRONMENT INTERNATIONAL 2022; 160:107059. [PMID: 34959195 DOI: 10.1016/j.envint.2021.107059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Housing and indoor home environments are associated with the risk of infections and asthma in children. To better understand the determinants and characteristics of these environments, we aimed to describe the associations between parental health and socioeconomic position and housing and indoor home environments of children in Denmark, and the clustering of the factors within these environments. METHODS Offspring in the Danish National Birth Cohort (DNBC) whose parents responded to the 11-year follow-up were eligible for inclusion. We included complete cases only. Data on the indoor and housing environments (i.e. variables on housing, sources of gaseous and particle pollution, mould and moisture, and pets) were collected through an online questionnaire responded to by a parent. Data on socioeconomic position were obtained through linkage with registry data on maternal education at offspring birth and household equivalized income at offspring birth. Data on parental health were obtained by linking self-reported data from the 11-year follow-up for mother and father with administrative registry data for the mother. We present descriptive statistics and exploratory factor analyses. RESULTS A total of 42 723 offspring were included for analyses. The distributions of nearly all indoor and housing environments differed according to educational and income strata, with patterns similar for both education and income. Generally, higher parental educational and income strata had more favorable indoor and housing environments (less secondhand smoking, gas stove use, mould and condensation and higher house ownership, detached house dwellings and newer building age). However, candle use was approximately similar between strata, fireplace use among lower educational and income strata tended towards the extremes (none or daily), and water damage was more common among higher educational and income strata. Parental health was strongly associated with housing and indoor home environment factors - especially parental affective disorders was strongly associated with mould. Four factors were extracted from the exploratory factor analyses, relating primarily in order of extraction to: housing ownership, mould and moisture, candle use and household density. CONCLUSION Parental health and socioeconomic position are strongly related to housing and indoor home environments. Additionally, several factors in these environments correlate strongly and cluster together. Observational studies on associations and causal effects of factors in the indoor and housing environments of children on their morbidity, must consider both of these conclusions to arrive at valid estimates and effects.
Collapse
Affiliation(s)
- Jonathan Groot
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Amélie Keller
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Pedersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Torben Sigsgaard
- Environment, Work and Health, Department of Public Health, University of Aarhus, Aarhus, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Nybo Andersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Pfaar O, Bergmann K, Bonini S, Compalati E, Domis N, Blay F, Kam P, Devillier P, Durham SR, Ellis AK, Gherasim A, Haya L, Hohlfeld JM, Horak F, Iinuma T, Jacobs RL, Jacobi HH, Jutel M, Kaul S, Kelly S, Klimek L, Larché M, Lemell P, Mahler V, Nolte H, Okamoto Y, Patel P, Rabin RL, Rather C, Sager A, Salapatek AM, Sigsgaard T, Togias A, Willers C, Yang WH, Zieglmayer R, Zuberbier T, Zieglmayer P. Technical standards in allergen exposure chambers worldwide - an EAACI Task Force Report. Allergy 2021; 76:3589-3612. [PMID: 34028057 DOI: 10.1111/all.14957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Allergen exposure chambers (AECs) can be used for controlled exposure to allergenic and non-allergenic airborne particles in an enclosed environment, in order to (i) characterize the pathological features of respiratory diseases and (ii) contribute to and accelerate the clinical development of pharmacological treatments and allergen immunotherapy for allergic disease of the respiratory tract (such as allergic rhinitis, allergic rhinoconjunctivitis, and allergic asthma). In the guidelines of the European Medicines Agency for the clinical development of products for allergen immunotherapy (AIT), the role of AECs in determining primary endpoints in dose-finding Phase II trials is emphasized. Although methodologically insulated from the variability of natural pollen exposure, chamber models remain confined to supporting secondary, rather than primary, endpoints in Phase III registration trials. The need for further validation in comparison with field exposure is clearly mandated. On this basis, the European Academy of Allergy and Clinical Immunology (EAACI) initiated a Task Force in 2015 charged to gain a better understanding of how AECs can generate knowledge about respiratory allergies and can contribute to the clinical development of treatments. Researchers working with AECs worldwide were asked to provide technical information in eight sections: (i) dimensions and structure of the AEC, (ii) AEC staff, (iii) airflow, air processing, and operating conditions, (iv) particle dispersal, (v) pollen/particle counting, (vi) safety and non-contamination measures, (vii) procedures for symptom assessments, (viii) tested allergens/substances and validation procedures. On this basis, a minimal set of technical requirements for AECs applied to the field of allergology is proposed.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Karl‐Christian Bergmann
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Sergio Bonini
- Institute of Translational Medicine Italian National Research Council Rome Italy
| | | | - Nathalie Domis
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | - Frédéric Blay
- ALYATEC Environmental Exposure Chamber Strasbourg France
- Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | | | - Philippe Devillier
- Department of Airway Diseases Pharmacology Research Laboratory‐VIM Suresnes, Exhalomics Platform, Hôpital Foch University Paris‐Saclay Suresnes France
| | | | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Sciences Queen's University Kingston ON Canada
- Allergy Research Unit Kingston General Health Research Institute Kingston ON Canada
| | - Alina Gherasim
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | | | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine and Department of Respiratory Medicine Hannover Medical School Member of the German Center for Lung Research Hannover Germany
| | | | | | | | | | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wrocław Poland
| | | | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
- Allergy Center Rhineland‐Palatinate Mainz University Medical Center Mainz Germany
| | - Mark Larché
- Divisions of Clinical Immunology & Allergy, and Respirology Department of Medicine and Firestone Institute for Respiratory Health McMaster University Hamilton ON Canada
| | | | | | | | | | - Piyush Patel
- Cliantha Research Limited Mississauga ON Canada
- Providence Therapeutics Toronto ON Canada
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research US Food and Drug Administration Silver Spring MD USA
| | | | | | | | - Torben Sigsgaard
- Department of Public Health, Section for Environment Occupation and Health Danish Ramazzini Centre Aarhus University Aarhus Denmark
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation (DAIT) National Institute of Allergy and Infectious Diseases NIH Bethesda MD USA
| | | | | | | | - Torsten Zuberbier
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Petra Zieglmayer
- Vienna Challenge Chamber Vienna Austria
- Karl Landsteiner University Krems Austria
| |
Collapse
|
16
|
Laursen KR, Rasmussen BB, Rosati B, Gutzke VH, Østergaard K, Ravn P, Kjaergaard SK, Bilde M, Glasius M, Sigsgaard T. Acute health effects from exposure to indoor ultrafine particles-A randomized controlled crossover study among young mild asthmatics. INDOOR AIR 2021; 31:1993-2007. [PMID: 34235780 DOI: 10.1111/ina.12902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5 : 96.1 μg/m3 ), (b) air mixed with emissions from candles (PM2.5 : 89.8 μg/m3 ), and c) clean filtered air (PM2.5 : 5.8 μg/m3 ). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.
Collapse
Affiliation(s)
| | | | - Bernadette Rosati
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Vibeke Heitmann Gutzke
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kirsten Østergaard
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Ravn
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Human Inhalation Study with Zinc Oxide: Analysis of Zinc Levels and Biomarkers in Exhaled Breath Condensate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 32860620 DOI: 10.1007/5584_2020_572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Workers in the zinc processing, for example, welding or hot-dip galvanizing, are exposed to aerosols consisting of particles and gases, including zinc oxide (ZnO), which can affect human health. In this study, we addressed the effects of short-term controlled exposure to nano-sized ZnO on the airway inflammatory markers in healthy volunteers. To this end, we determined the influence of ZnO inhalation on the content of zinc and biomarkers (leukotriene B4 (LTB4), peptide leukotrienes (LTC4/D4/E4), 8-iso-PGF2α, pH, and prostaglandin E2 (PGE2)) in exhaled breath condensate (EBC). Sixteen non-smoking subjects (8 females, 8 men) were exposed to filtered air (sham) or ZnO nanoparticles (0.5, 1.0, and 2.0 mg/m3) for 4 h. EBC samples were collected according to specific study design. We found that the peptide leukotrienes were below the limit of quantification (LOQ) in all the EBC samples. ZnO exposure showed no detectable effect on any other parameters investigated when comparing the two groups. The content of Zn in EBC was unaffected by ZnO inhalation at any concentration used. Therefore, we conclude that the evaluation of Zn and biomarker content in EBC would not be a suitable way to assess the exposure to inhaled ZnO.
Collapse
|
19
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
20
|
Schwartz C, Bølling AK, Carlsten C. Controlled human exposures to wood smoke: a synthesis of the evidence. Part Fibre Toxicol 2020; 17:49. [PMID: 33008417 PMCID: PMC7530963 DOI: 10.1186/s12989-020-00375-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Background Exposure to particulate matter (PM) from wood combustion represents a global health risk, encompassing diverse exposure sources; indoor exposures due to cooking in developing countries, ambient PM exposures from residential wood combustion in developed countries, and the predicted increasing number of wildfires due to global warming. Although physicochemical properties of the PM, as well as the exposure levels vary considerably between these sources, controlled human exposure studies may provide valuable insight to the harmful effects of wood smoke (WS) exposures in general. However, no previous review has focused specifically on controlled human exposure studies to WS. Results The 22 publications identified, resulting from 12 controlled human studies, applied a range of combustion conditions, exposure levels and durations, and exercise components in their WS exposure. A range of airway, cardiovascular and systemic endpoints were assessed, including lung function and heart rate measures, inflammation and oxidative stress. However, the possibility for drawing general conclusions was precluded by the large variation in study design, resulting in differences in physicochemical properties of WS, effective dose, as well as included endpoints and time-points for analysis. Overall, there was most consistency in reported effects for airways, while oxidative stress, systemic inflammation and cardiovascular physiology did not show any clear patterns. Conclusion Based on the reviewed controlled human exposure studies, conclusions regarding effects of acute WS exposure on human health are premature. Thus, more carefully conducted human studies are needed. Future studies should pay particular attention to the applied WS exposure, to assure that both exposure levels and PM properties reflect the research question.
Collapse
Affiliation(s)
- Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Anette Kocbach Bølling
- Section of Air Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213, Oslo, Norway
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
21
|
Moriarity RJ, Wilton MJ, Liberda EN, Tsuji LJS, Peltier RE. Wood smoke black carbon from Indigenous traditional cultural activities in a subarctic Cree community. Int J Circumpolar Health 2020; 79:1811517. [PMID: 32835644 PMCID: PMC7480623 DOI: 10.1080/22423982.2020.1811517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Indoor concentrations of black carbon (BC) were measured when wood was burned for traditional cultural activities in a study in a Cree community located in subarctic Canada. The study also included an intervention using a propane-fuelled heater to mitigate in situ BC. Mass concentrations of BC were measured in a game-smoking tent for 39 days and in hunting cabins on the west coast of James Bay, Canada, for 8 days. Five-minute averaged BC mass concentration (N = 12,319) data were recorded and assessed using optimised noise-reduction averaging. Mean BC mass concentrations were lower in hunting cabins (mean = 8.25 micrograms per cubic metre (µg m−3)) and higher in the game-smoking tent (mean = 15.46 µg m−3). However, excessive BC peaks were recorded in the game-smoking tent (maximum = 3076.71 µg m−3) when the fire was stoked or loaded. The intervention with the propane heater in a hunting cabin yielded a 90% reduction in measured BC mass concentrations. We do not presume that exposure to BC is of concern in hunting cabins with appropriate wood-burning appliances that are well-sealed and vent outside. In game-smoking tents, we advise that persons take intermittent breaks outside of the tent for fresh air.
Collapse
Affiliation(s)
- Robert J Moriarity
- Department of Physical and Environmental Sciences, University of Toronto , Toronto, ON, Canada
| | - Meaghan J Wilton
- Department of Physical and Environmental Sciences, University of Toronto , Toronto, ON, Canada
| | - Eric N Liberda
- School of Occupational and Environmental Health, Ryerson University , Toronto, ON, Canada
| | - Leonard J S Tsuji
- Department of Physical and Environmental Sciences, University of Toronto , Toronto, ON, Canada
| | - Richard E Peltier
- Department of Environmental Health Sciences, University of Massachusetts , Amherst, MA, USA
| |
Collapse
|
22
|
Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin R, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute changes in lung function following controlled exposure to cookstove air pollution in the subclinical tests of volunteers exposed to smoke (STOVES) study. Inhal Toxicol 2020; 32:115-123. [PMID: 32297528 DOI: 10.1080/08958378.2020.1751750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Exposure to household air pollution generated as a result of cooking and heating is a leading contributor to global disease. The effects of cookstove-generated air pollution on adult lung function, however, remain uncertain.Objectives: We investigated acute responses in lung function following controlled exposures to cookstove-generated air pollution.Methods: We recruited 48 healthy adult volunteers to undergo six two-hour treatments: a filtered-air control and emissions from five different stoves with fine particulate matter (PM2.5) targets from 10 to 500 µg/m3. Spirometry was conducted prior to exposure and immediately, and three and 24 h post-exposure. Mixed-effect models were used to estimate differences in post-exposure lung function for stove treatments versus control.Results: Immediately post-exposure, lung function was lower compared to the control for the three highest PM2.5-level stoves. The largest differences were for the fan rocket stove (target 250 µg/m3; forced vital capacity (FVC): -60 mL, 95% confidence interval (95% CI) -135, 15; forced expiratory volume (FEV1): -51 mL, 95% CI -117, 16; mid-expiratory flow (FEF25-75): -116 mL/s, 95% CI -239, 8). At 3 h post-exposure, lung function was lower compared to the control for all stove treatments; effects were of similar magnitude for all stoves. At 24 h post-exposure, results were consistent with a null association for FVC and FEV1; FEF25-75 was lower relative to the control for the gasifier, fan rocket, and three stone fire.Conclusions: Patterns suggesting short-term decreases in lung function follow from exposure to cookstove air pollution even for stove exposures with low PM2.5 levels.
Collapse
Affiliation(s)
- Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ethan S Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.,Centre for Air pollution, energy, and health Research, University of New South Wales, Sydney, Australia.,International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Robert Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Durham, NC, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Rhiannon Shelton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Abramson MJ, Wigmann C, Altug H, Schikowski T. Ambient air pollution is associated with airway inflammation in older women: a nested cross-sectional analysis. BMJ Open Respir Res 2020; 7:e000549. [PMID: 32209644 PMCID: PMC7206912 DOI: 10.1136/bmjresp-2019-000549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Air pollution is a risk factor for chronic obstructive pulmonary disease (COPD). Fraction of exhaled nitric oxide (FeNO) could be a useful biomarker for health effects of air pollutants. However, there were limited data from older populations with higher prevalence of COPD and other inflammatory conditions. METHODS We obtained data from the German Study on the influence of Air pollution on Lung function, Inflammation and Ageing. Spirometry and FeNO were measured by standard techniques. Air pollutant exposures were estimated following the European Study of Cohorts for Air Pollution Effects protocols, and ozone (O3) measured at the closest ground level monitoring station. Multiple linear regression models were fitted to FeNO with each pollutant separately and adjusted for potential confounders. RESULTS In 236 women (mean age 74.6 years), geometric mean FeNO was 15.2ppb. Almost a third (n=71, 30.1%) of the women had some chronic inflammatory respiratory condition. A higher FeNO concentration was associated with exposures to fine particles (PM2.5), PM2.5absorbance and respirable particles (PM10). There were no significant associations with PMcoarse, NO2, NOx, O3 or length of major roads within a 1 km buffer. Restricting the analysis to participants with a chronic inflammatory respiratory condition, with or without impaired lung function produced similar findings. Adjusting for diabetes did not materially alter the findings. There were no significant interactions between individual pollutants and asthma or current smoking. CONCLUSIONS This study adds to the evidence to reduce ambient PM2.5 concentrations as low as possible to protect the health of the general population.
Collapse
Affiliation(s)
- Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claudia Wigmann
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Hicran Altug
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Tamara Schikowski
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| |
Collapse
|
24
|
Andualem Z, Taddese AA, Azene ZN, Azanaw J, Dagne H. Respiratory symptoms and associated risk factors among under-five children in Northwest, Ethiopia: community based cross-sectional study. Multidiscip Respir Med 2020; 15:685. [PMID: 33117532 PMCID: PMC7542992 DOI: 10.4081/mrm.2020.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction Acute respiratory infections are still a major public health problem resulting in morbidity and mortality among under-five children. This study aims to assess the extent of respiratory symptoms and associated risk factors among under-five children in Gondar city, Northwest Ethiopia. Methods A community-based cross-sectional study was carried out from February to June 2019. From 792 study participants, data were collected via face to face interviews by using a semi-structured pre-tested questionnaire. Data were entered in Epi Info version 7, then exported to Stata 14.00 for analysis. Binary (Bivariable and Multivariable) logistic regression analysis was used to test the association of explanatory and outcome variables. Variables with p<0.05 were considered as significantly associated with the outcome variable. Results The prevalence of respiratory symptoms among under-five children was 37.5% at [95% (CI: 34.3-41)]. Uterine irritability during pregnancy [AOR = 1.89 at 95% CI: (1.11-3.23)], physical exercise during pregnancy [AOR = 0.60 at 95% CI: (0.41-0.89)], using wood and coal for heating [AOR = 2.42 at 95% CI: (1.65-3.53)], cockroaches infestation [AOR = 1.95 at 95% CI: (1.36 – 2.90)], presence of new carpets [AOR = 2.38 at 95% CI: (1.33-4.29)], damp stain [AOR = 2.45 at 95% CI: (1.02-2.69)], opening windows during cooking [AOR = 0.58 at 95% CI: (0.36-0 .93)], living less than 100 m heavy traffic [AOR = 1.94 at 95% CI: (1.16-3.27)], and living less than 100 m (unpaved roads/streets) [AOR= 2.89 at 95% CI: (1.89-4.55)] were significantly associated with respiratory symptoms. Conclusion The prevalence of respiratory symptoms among under-five children was relatively high in the study area. Personal and environmental characteristics influencing symptom occurrence were identified. Respiratory symptoms will be minimized by reducing exposure to indoor and outdoor air pollution and enhancing housing quality.
Collapse
Affiliation(s)
- Zewudu Andualem
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar
| | - Asefa Adimasu Taddese
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar
| | - Zelalem Nigussie Azene
- Department of Women's and Family Health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar
| | - Henok Dagne
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar
| |
Collapse
|
25
|
Walker ES, Fedak KM, Good N, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Dinenno F, Devlin RB, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute differences in pulse wave velocity, augmentation index, and central pulse pressure following controlled exposures to cookstove air pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) study. ENVIRONMENTAL RESEARCH 2020; 180:108831. [PMID: 31648072 PMCID: PMC6899199 DOI: 10.1016/j.envres.2019.108831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/24/2023]
Abstract
Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 μg/m3, liquefied petroleum gas = 10 μg/m3, gasifier = 35 μg/m3, fan rocket = 100 μg/m3, rocket elbow = 250 μg/m3, three stone fire = 500 μg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.
Collapse
Affiliation(s)
- Ethan S Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Frank Dinenno
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| | - Robert B Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Rhiannon Shelton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA.
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
26
|
Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin R, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute Effects on Blood Pressure Following Controlled Exposure to Cookstove Air Pollution in the STOVES Study. J Am Heart Assoc 2019; 8:e012246. [PMID: 31286826 PMCID: PMC6662148 DOI: 10.1161/jaha.119.012246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Exposure to air pollution from solid fuel used in residential cookstoves is considered a leading environmental risk factor for disease globally, but evidence for this relationship is largely extrapolated from literature on smoking, secondhand smoke, and ambient fine particulate matter (PM2.5). Methods and Results We conducted a controlled human‐exposure study (STOVES [the Subclinical Tests on Volunteers Exposed to Smoke] Study) to investigate acute responses in blood pressure following exposure to air pollution emissions from cookstove technologies. Forty‐eight healthy adults received 2‐hour exposures to 5 cookstove treatments (three stone fire, rocket elbow, fan rocket elbow, gasifier, and liquefied petroleum gas), spanning PM2.5 concentrations from 10 to 500 μg/m3, and a filtered air control (0 μg/m3). Thirty minutes after exposure, systolic pressure was lower for the three stone fire treatment (500 μg/m3PM2.5) compared with the control (−2.3 mm Hg; 95% CI, −4.5 to −0.1) and suggestively lower for the gasifier (35 μg/m3PM2.5; −1.8 mm Hg; 95% CI, −4.0 to 0.4). No differences were observed at 3 hours after exposure; however, at 24 hours after exposure, mean systolic pressure was 2 to 3 mm Hg higher for all treatments compared with control except for the rocket elbow stove. No differences were observed in diastolic pressure for any time point or treatment. Conclusions Short‐term exposure to air pollution from cookstoves can elicit an increase in systolic pressure within 24 hours. This response occurred across a range of stove types and PM2.5 concentrations, raising concern that even low‐level exposures to cookstove air pollution may pose adverse cardiovascular effects.
Collapse
Affiliation(s)
- Kristen M Fedak
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Nicholas Good
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ethan S Walker
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - John Balmes
- 2 Department of Medicine University of California San Francisco San Francisco CA
| | - Robert D Brook
- 3 Division of Cardiovascular Medicine University of Michigan Medical School Ann Arbor MI
| | - Maggie L Clark
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Tom Cole-Hunter
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO.,4 Centre for Air Pollution, Energy, and Health Research Queensland University of Technology Brisbane Australia
| | - Robert Devlin
- 5 Environmental Public Health Division United States Environmental Protection Agency Chapel Hill NC
| | - Christian L'Orange
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | | | - John Mehaffy
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Rhiannon Shelton
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ander Wilson
- 8 Department of Statistics Colorado State University Fort Collins CO
| | - John Volckens
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Jennifer L Peel
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| |
Collapse
|
27
|
Household air pollution from domestic combustion of solid fuels and health. J Allergy Clin Immunol 2019; 143:1979-1987. [DOI: 10.1016/j.jaci.2019.04.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023]
|
28
|
Gao Y, Zhang Y. Optical properties investigation of the reactions between methylglyoxal and glycine/ammonium sulfate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:112-121. [PMID: 30822732 DOI: 10.1016/j.saa.2019.02.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/19/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In recent years, "brown carbon" (BrC), as an important contributor to light absorption and climate forcing as aerosols, has been one of the forefronts in the field of atmospheric research. Aqueous BrC aerosols can be formed through aqueous reactions of methylglyoxal (MG) with nitrogen compounds, such as glycine (Gly) and ammonium sulfate (AS). When exposed to nitrogen compounds for several days, aqueous carbonyl compound MG became absorbent and fluorescent in the ultraviolet and near visible regions, according to UV/Vis and fluorescence spectroscopies. Experiment results showed that optical absorption of two aqueous BrC solutions in the spectral range of 250-480 nm significantly increased with increasing reaction time. After the reactions of MG with Gly and AS, the product absorbance followed the order of MG-Gly>MG-AS. For H2O2 oxidation photolysis, the atmospheric aqueous BrC showed the dynamic nature. Reaction kinetic, effective quantum yields and size distribution studies were conducted in the paper. Fluorescence lifetime values of the two BrC solutions were calculated. LC/MS analysis results clearly indicated that complicated organic compounds were formed in the reactions of MG with Gly and AS.
Collapse
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, China
| | - Yunhong Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
29
|
Wu CM, Adetona A, Song C(C, Naeher L, Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 75:65-69. [PMID: 30668286 PMCID: PMC6646110 DOI: 10.1080/19338244.2018.1562413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wildland firefighters are directly exposed to elevated levels of wildland fire (WF) smoke. Although studies demonstrate WF smoke exposure is associated with lung function changes, few studies that use invasive sample collection methods have been conducted to investigate underlying biochemical changes. These methods are also either unrepresentative of the deeper airways or capable of inducing inflammation. In the present study, levels of biomarkers of oxidative stress (8-isoprostane) and pro-inflammatory response (interleukin-6 [IL-6], interleukin-8 [IL-8], C-reactive protein [CRP], and soluble intercellular adhesion molecule-1 [sICAM-1]) were determined in exhaled breath condensate (EBC) samples that were collected from firefighters before, after, and next morning following prescribed burn and regular work shifts. Results show only a marginal cross-shift increase in 8-isoprostane on burn days (.05 < p value < .1), suggesting WF smoke exposure causes mild pulmonary responses.
Collapse
Affiliation(s)
- Chieh-Ming Wu
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| | | | - Chi (Chuck) Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
| | - Luke Naeher
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA
| | - Olorunfemi Adetona
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| |
Collapse
|
30
|
Exposure to Household Air Pollution from Biomass Cookstoves and Levels of Fractional Exhaled Nitric Oxide (FeNO) among Honduran Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112544. [PMID: 30428575 PMCID: PMC6267103 DOI: 10.3390/ijerph15112544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
Household air pollution is estimated to be responsible for nearly three million premature deaths annually. Measuring fractional exhaled nitric oxide (FeNO) may improve the limited understanding of the association of household air pollution and airway inflammation. We evaluated the cross-sectional association of FeNO with exposure to household air pollution (24-h average kitchen and personal fine particulate matter and black carbon; stove type) among 139 women in rural Honduras using traditional stoves or cleaner-burning Justa stoves. We additionally evaluated interaction by age. Results were generally consistent with a null association; we did not observe a consistent pattern for interaction by age. Evidence from ambient and household air pollution regarding FeNO is inconsistent, and may be attributable to differing study populations, exposures, and FeNO measurement procedures (e.g., the flow rate used to measure FeNO).
Collapse
|
31
|
Popadić D, Heßelbach K, Richter-Brockmann S, Kim GJ, Flemming S, Schmidt-Heck W, Häupl T, Bonin M, Dornhof R, Achten C, Günther S, Humar M, Merfort I. Gene expression profiling of human bronchial epithelial cells exposed to fine particulate matter (PM 2.5) from biomass combustion. Toxicol Appl Pharmacol 2018; 347:10-22. [PMID: 29596927 DOI: 10.1016/j.taap.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Désirée Popadić
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katharina Heßelbach
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sigrid Richter-Brockmann
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Gwang-Jin Kim
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephan Flemming
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Regina Dornhof
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matjaz Humar
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | - Irmgard Merfort
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
33
|
Ferguson MD, Semmens EO, Weiler E, Domitrovich J, French M, Migliaccio C, Palmer C, Dumke C, Ward T. Lung function measures following simulated wildland firefighter exposures. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:739-748. [PMID: 28609218 PMCID: PMC6101969 DOI: 10.1080/15459624.2017.1326700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Across the world, biomass smoke is a major source of air pollution and is linked with a variety of adverse health effects. This is particularly true in the western U.S. where wood smoke from wildland forest fires are a significant source of PM2.5. Wildland firefighters are impacted as they experience elevated PM2.5 concentrations over extended periods of time, often occurring during physical exertion. Various epidemiological studies have investigated wood smoke impacts on human health, including occupational field exposures experienced by wildland firefighters. As there are numerous challenges in carrying out these field studies, having the ability to research the potential health impacts to this occupational cohort in a controlled setting would provide important information that could be translated to the field setting. To this end, we have carried out a simulated wildland firefighter exposure study in a wood smoke inhalation facility. Utilizing a randomized crossover trial design, we exposed 10 participants once to clean filtered-air, 250 µg/m3, and 500 µg/m3 wood stove-generated wood smoke PM2.5. Participants exercised on a treadmill at an absolute intensity designed to simulate wildland firefighting for 1.5 hr. In addition to measured PM2.5 smoke concentrations, mean levels of CO2, CO, and % relative humidity were continuously monitored and recorded and were representative of occupational "real-world" exposures. Pulmonary function was measured at three time points: before, immediately after, and 1-hr post-exposure. Although there were some reductions in FVC, FEV1, and FVC:FEV1 measures, results of the spirometry testing did not show significant changes in lung function. The development of this wood smoke inhalational facility provides a platform to further address unique research questions related to wood smoke exposures and associated adverse health effects.
Collapse
Affiliation(s)
- Matthew D. Ferguson
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Erin O. Semmens
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Weiler
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | | | - Mary French
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | | | - Charles Palmer
- Department of Health and Human Performance, University of Montana, Missoula, Montana, USA
| | - Charles Dumke
- Department of Health and Human Performance, University of Montana, Missoula, Montana, USA
| | - Tony Ward
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
34
|
Measured Pulmonary and Systemic Markers of Inflammation and Oxidative Stress Following Wildland Firefighter Simulations. J Occup Environ Med 2017; 58:407-13. [PMID: 27058482 DOI: 10.1097/jom.0000000000000688] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE A controlled human exposure study was conducted to investigate the impact of inhalational exposures to wood smoke PM2.5 on measured concentrations of airway and systemic inflammatory biomarkers. METHODS Mimicking wildland firefighter activities, 10 participants were exposed to three doses of wood smoke PM2.5 (filtered-air, 250 μg/m, and 500 μg/m) while exercising on a treadmill. Exhaled breath condensate (EBC) and blood plasma samples were obtained pre-, immediately post-, and 1-hour postexposure. 8-isoprostane, pH, and myeloperoxidase were measured in EBC, while H2O2, surfactant protein D, and pentraxin-3 (PTX3) were measured in both EBC and plasma. RESULTS Only pH, 8-isoprostane, and PTX3 displayed significant changes when comparing pre- and postexposures. CONCLUSIONS Markers of inflammation and oxidative stress, including PTX3, pH, and 8-isoprostane in EBC and/or plasma, are sensitive to wood smoke inhalation, with further investigations warranted.
Collapse
|
35
|
Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 2016; 28:95-139. [PMID: 26915822 DOI: 10.3109/08958378.2016.1145771] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as incidences of disease-caused mortality, hospital admissions, emergency room visits and symptoms in asthma and chronic obstructive pulmonary disease patients are the health effects that are most commonly associated with community level exposure to wildland fire smoke. A few recent studies have also determined associations between acute wildland fire smoke exposure and cardiovascular health end-points. These cardiopulmonary effects were mostly observed in association with ambient air concentrations of fine particulate matter (PM2.5). However, research on the health effects of this mixture is currently limited. The health effects of acute exposures beyond susceptible populations and the effects of chronic exposures experienced by the wildland firefighter are largely unknown. Longitudinal studies of wildland firefighters during and/or after the firefighting career could help elucidate some of the unknown health impacts of cumulative exposure to wildland fire smoke, establish occupational exposure limits and help determine the types of exposure controls that may be applicable to the occupation.
Collapse
Affiliation(s)
- Olorunfemi Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA .,b Division of Environmental Health Sciences , College of Public Health, the Ohio State University , Columbus , OH , USA
| | - Timothy E Reinhardt
- c AMEC Foster Wheeler Environment & Infrastructure, Inc , Seattle , WA , USA
| | - Joe Domitrovich
- d USDA Forest Service, Missoula Technology and Development Center , Missoula , MT , USA
| | - George Broyles
- e SDA Forest Service, San Dimas Technology and Development Center , San Dimas , CA , USA
| | - Anna M Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| | - Michael T Kleinman
- f Center for Occupational and Environmental Health, University of California , Irvine , CA , USA , and
| | - Roger D Ottmar
- g USDA Forest Service, Pacific Northwest Research Station , Seattle , WA , USA
| | - Luke P Naeher
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| |
Collapse
|
36
|
Burchiel SW, Lauer FT, MacKenzie D, McClain S, Kuehl PJ, McDonald JD, Harrod KS. Changes in HPBMC markers of immmune function following controlled short-term inhalation exposures of humans to hardwood smoke. Inhal Toxicol 2016; 28:61-70. [PMID: 26895307 DOI: 10.3109/08958378.2015.1136714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines γIFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1β, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines.
Collapse
Affiliation(s)
- Scott W Burchiel
- a Department of Pharmaceutical Sciences , College of Pharmacy, The University of New Mexico , Albuquerque , NM , USA
| | - Fredine T Lauer
- a Department of Pharmaceutical Sciences , College of Pharmacy, The University of New Mexico , Albuquerque , NM , USA
| | - Debra MacKenzie
- a Department of Pharmaceutical Sciences , College of Pharmacy, The University of New Mexico , Albuquerque , NM , USA
| | - Shea McClain
- a Department of Pharmaceutical Sciences , College of Pharmacy, The University of New Mexico , Albuquerque , NM , USA
| | - Philip J Kuehl
- b Lovelace Respiratory Research Institute , Albuquerque , NM , USA , and
| | - Jacob D McDonald
- b Lovelace Respiratory Research Institute , Albuquerque , NM , USA , and
| | - Kevin S Harrod
- b Lovelace Respiratory Research Institute , Albuquerque , NM , USA , and.,c Department of Anesthesiology and Perioperative Medicine , School of Medicine, University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
37
|
Longhin E, Gualtieri M, Capasso L, Bengalli R, Mollerup S, Holme JA, Øvrevik J, Casadei S, Di Benedetto C, Parenti P, Camatini M. Physico-chemical properties and biological effects of diesel and biomass particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:366-375. [PMID: 27194366 DOI: 10.1016/j.envpol.2016.05.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/07/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.
Collapse
Affiliation(s)
- Eleonora Longhin
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Maurizio Gualtieri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development - ENEA-SSPT-MET-INAT, Strada per Crescentino 41, 13040, Saluggia, Vercelli, Italy.
| | - Laura Capasso
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Steen Mollerup
- Dept. of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033, Oslo, Norway
| | - Jørn A Holme
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - Johan Øvrevik
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - Simone Casadei
- Innovhub-SSI Fuels Division, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Cristiano Di Benedetto
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Paolo Parenti
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Marina Camatini
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| |
Collapse
|
38
|
Graczyk H, Lewinski N, Zhao J, Sauvain JJ, Suarez G, Wild P, Danuser B, Riediker M. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Part Fibre Toxicol 2016; 13:31. [PMID: 27286820 PMCID: PMC4901438 DOI: 10.1186/s12989-016-0143-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/03/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. METHODS Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. RESULTS Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). CONCLUSION A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is recommended that additional exposure metrics such as PNC are considered for occupational risk assessments. Our findings highlight the importance of increasing awareness of TIG welding fume toxicity, especially given the realities of welding workplaces that may lack ventilation; and beliefs among interviewed welders that TIG represents a cleaner and safer welding process.
Collapse
Affiliation(s)
- Halshka Graczyk
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Nastassja Lewinski
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jiayuan Zhao
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA, 02115, USA
| | - Jean-Jacques Sauvain
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Guillaume Suarez
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Pascal Wild
- Department of Scientific Management, National Institute for Research and Security, INRS, Vandoeuvre, 54500, France
| | - Brigitta Danuser
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Michael Riediker
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland. .,SAFENANO, IOM Singapore, Singapore, 048622, Singapore.
| |
Collapse
|
39
|
Chen X, Sun Y, Zhao Q, Song X, Huang W, Han Y, Shang J, Zhu T, Wu A, Luan S. Design and characterization of human exposure to generated sulfate and soot particles in a pilot chamber study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:366-376. [PMID: 26726796 DOI: 10.1080/10962247.2015.1136712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED A number of literatures have documented adverse health effects of exposure to fine particulate matter (PM2.5), and secondary sulfate aerosol and black carbon may contribute to health impacts of PM2.5 exposure. We designed an exposure system to generate sulfate and traffic soot particles, and assessed the feasibility of using it for human exposure assessment in a pilot human exposure study. In the designed exposure system, average mass concentrations of generated sulfate and soot particles were 74.19 μg/m3 and 11.54 μg/m3 in the chamber and did not vary significantly during two-hour human exposure sessions. The size ranges of generated sulfate were largely between 20 to 200 nm, whereas those of generated soot particles were in the size ranges of 50 to 200 nm. Following two-hour exposure to generated sulfate and soot particles, we observed significant increases in fractional exhaled NO (FeNO) in young and health subjects. Building on established human exposure system and health response follow-up methods, future full-scale studies focusing on the effects of mixed particulates and individual PM2.5 components would provide data in understanding the underpinning cardio-respiratory outcomes in relation to air pollution mixture exposure. IMPLICATIONS Controlled exposure is a useful design to measure the biological responses repeatedly following particulate exposures of target components and set exposure at target levels of health concerns. Our study provides rational and establishes method for future full-scale studies to focus on examining the effects of mixed particulates and individual PM2.5 components.
Collapse
Affiliation(s)
- Xi Chen
- a Peking University School of Public Health, Peking University Institute of Environmental Medicine, and Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences , Beijing , People's Republic of China
| | - Yitong Sun
- a Peking University School of Public Health, Peking University Institute of Environmental Medicine, and Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences , Beijing , People's Republic of China
| | - Qian Zhao
- a Peking University School of Public Health, Peking University Institute of Environmental Medicine, and Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences , Beijing , People's Republic of China
| | - Xiaoming Song
- a Peking University School of Public Health, Peking University Institute of Environmental Medicine, and Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences , Beijing , People's Republic of China
| | - Wei Huang
- a Peking University School of Public Health, Peking University Institute of Environmental Medicine, and Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences , Beijing , People's Republic of China
| | - Yiqun Han
- b College of Environmental Sciences and Engineering, Peking University , Beijing , People's Republic of China
| | - Jing Shang
- b College of Environmental Sciences and Engineering, Peking University , Beijing , People's Republic of China
| | - Tong Zhu
- b College of Environmental Sciences and Engineering, Peking University , Beijing , People's Republic of China
| | - Aihua Wu
- c Shenzhen Key Laboratory of Environment Simulation and Pollution Control, Peking University-Hong Kong University of Science and Technology Shenzhen-HongKong Institution , Shenzhen , Guangdong Province , People's Republic of China
| | - Shengji Luan
- c Shenzhen Key Laboratory of Environment Simulation and Pollution Control, Peking University-Hong Kong University of Science and Technology Shenzhen-HongKong Institution , Shenzhen , Guangdong Province , People's Republic of China
| |
Collapse
|
40
|
Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol 2016; 90:3029-3044. [DOI: 10.1007/s00204-016-1659-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
41
|
Sigsgaard T, Forsberg B, Annesi-Maesano I, Blomberg A, Bølling A, Boman C, Bønløkke J, Brauer M, Bruce N, Héroux ME, Hirvonen MR, Kelly F, Künzli N, Lundbäck B, Moshammer H, Noonan C, Pagels J, Sallsten G, Sculier JP, Brunekreef B. Health impacts of anthropogenic biomass burning in the developed world. Eur Respir J 2015; 46:1577-88. [PMID: 26405285 DOI: 10.1183/13993003.01865-2014] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022]
Abstract
Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health.
Collapse
Affiliation(s)
- Torben Sigsgaard
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine/Environmental Medicine, Umeå University, Umeå, Sweden
| | - Isabella Annesi-Maesano
- INSERM UMR-S 1136, Institute Pierre Louis of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases, Paris, France UPMC, UMR-S 1136, Institute Pierre Louis of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases, Paris, France
| | - Anders Blomberg
- Dept of Public Health and Clinical Medicine/Medicine, Umeå University, Umeå, Sweden
| | - Anette Bølling
- Norwegian Institute of Public Health, Division of Environmental Medicine, Dept of Air Pollution and Noise, Oslo, Norway
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Dept of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Jakob Bønløkke
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Michael Brauer
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | | | | | | | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland, University of Basel, Basel, Switzerland
| | - Bo Lundbäck
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hanns Moshammer
- Medical University of Vienna, Institute of Environmental Health, Vienna, Austria
| | - Curtis Noonan
- The University of Montana, Center for Environmental Health Sciences, Missoula, MT, USA
| | - Joachim Pagels
- Lund University, Ergonomics and Aerosol Technology, Lund, Sweden
| | - Gerd Sallsten
- Division of Occupational and Environmental Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Bert Brunekreef
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Awji EG, Chand H, Bruse S, Smith KR, Colby JK, Mebratu Y, Levy BD, Tesfaigzi Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:377-86. [PMID: 25137396 DOI: 10.1165/rcmb.2014-0142oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation.
Collapse
Affiliation(s)
- Elias G Awji
- 1 COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
| | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
44
|
Abstract
OBJECTIVE To investigate whether short-term systemic effects of wood smoke occurred in atopic subjects after experimental wood smoke exposures. METHODS A double-blind climate chamber study was conducted on 20 healthy atopic subjects with exposures to filtered air and wood smoke. Pneumoproteins, coagulation and adhesion factors, and cytokines were measured. Heart rate was monitored with pulse monitors. Data were analyzed with mixed models. RESULTS Few differences in the outcomes were observed. Plasma tissue factor remained elevated during filtered air exposure (P = 0.002). P-selectin declined independent of exposure (P = 0.0006). Interleukin-6 increased after filtered air (P = 0.03). CONCLUSIONS The study confirmed previous observations among nonatopics of limited changes after a 3-hour wood smoke exposure.
Collapse
|
45
|
Jensen A, Karottki DG, Christensen JM, Bønløkke JH, Sigsgaard T, Glasius M, Loft S, Møller P. Biomarkers of oxidative stress and inflammation after wood smoke exposure in a reconstructed Viking Age house. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:652-661. [PMID: 24889798 DOI: 10.1002/em.21877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Exposure to particles from combustion of wood is associated with respiratory symptoms, whereas there is limited knowledge about systemic effects. We investigated effects on systemic inflammation, oxidative stress and DNA damage in humans who lived in a reconstructed Viking Age house, with indoor combustion of wood for heating and cooking. The subjects were exposed to high indoor concentrations of PM2.5 (700-3,600 µg/m(3)), CO (10.7-15.3 ppm) and NO2 (140-154 µg/m(3)) during a 1-week stay. Nevertheless, there were unaltered levels of genotoxicity, determined as DNA strand breaks and formamidopyrimidine DNA glycosylase and oxoguanine DNA glycosylase 1 sensitive sites in peripheral blood mononuclear cells. There were also unaltered expression levels of OGG1, HMOX1, CCL2, IL8, and TNF levels in leukocytes. In serum, there were unaltered levels of C-reactive protein, IL6, IL8, TNF, lactate dehydrogenase, cholesterol, triglycerides, and high-density lipoproteins. The wood smoke exposure was associated with decreased serum levels of sICAM-1, and a tendency to decreased sVCAM-1 levels. There was a minor increase in the levels of circulating monocytes expressing CD31, whereas there were unaltered expression levels of CD11b, CD49d, and CD62L on monocytes after the stay in the house. In conclusion, even a high inhalation exposure to wood smoke was associated with limited systemic effects on markers of oxidative stress, DNA damage, inflammation, and monocyte activation.
Collapse
Affiliation(s)
- Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
47
|
Soppa VJ, Schins RPF, Hennig F, Hellack B, Quass U, Kaminski H, Kuhlbusch TAJ, Hoffmann B, Weinmayr G. Respiratory effects of fine and ultrafine particles from indoor sources--a randomized sham-controlled exposure study of healthy volunteers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6871-89. [PMID: 25000149 PMCID: PMC4113851 DOI: 10.3390/ijerph110706871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022]
Abstract
Particulate air pollution is linked to impaired respiratory health. We analyzed particle emissions from common indoor sources (candles burning (CB), toasting bread (TB), frying sausages (FS)) and lung function in 55 healthy volunteers (mean age 33.0 years) in a randomized cross-over controlled exposure study. Lung-deposited particle surface area concentration (PSC), size-specific particle number concentration (PNC) up to 10 µm, and particle mass concentration (PMC) of PM1, PM2.5 and PM10 were determined during exposure (2 h). FEV1, FVC and MEF25%–75% was measured before, 4 h and 24 h after exposure. Wilcoxon-rank sum tests (comparing exposure scenarios) and mixed linear regression using particle concentrations and adjusting for personal characteristics, travel time and transportation means before exposure sessions were performed. While no effect was seen comparing the exposure scenarios and in the unadjusted model, inverse associations were found for PMC from CB and FS in relation to FEV1 and MEF25%–75%. with a change in 10 µg/m3 in PM2.5 from CB being associated with a change in FEV1 of −19 mL (95%-confidence interval:−43; 5) after 4 h. PMC from TB and PNC of UFP were not associated with lung function changes, but PSC from CB was. Elevated indoor fine particles from certain sources may be associated with small decreases in lung function in healthy adults.
Collapse
Affiliation(s)
- Vanessa J Soppa
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Frauke Hennig
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Bryan Hellack
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Ulrich Quass
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Heinz Kaminski
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Thomas A J Kuhlbusch
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Barbara Hoffmann
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Gudrun Weinmayr
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|
49
|
Kraai S, Verhagen LM, Valladares E, Goecke J, Rasquin L, Colmenares P, Del Nogal B, Hermans PW, de Waard JH. High prevalence of asthma symptoms in Warao Amerindian children in Venezuela is significantly associated with open-fire cooking: a cross-sectional observational study. Respir Res 2013; 14:76. [PMID: 23870058 PMCID: PMC3723947 DOI: 10.1186/1465-9921-14-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022] Open
Abstract
Background The International Study on Asthma and Allergies in Childhood (ISAAC) reported a prevalence of asthma symptoms in 17 centers in nine Latin American countries that was similar to prevalence rates reported in non-tropical countries. It has been proposed that the continuous exposure to infectious diseases in rural populations residing in tropical areas leads to a relatively low prevalence of asthma symptoms. As almost a quarter of Latin American people live in rural tropical areas, the encountered high prevalence of asthma symptoms is remarkable. Wood smoke exposure and environmental tobacco smoke have been identified as possible risk factors for having asthma symptoms. Methods We performed a cross-sectional observational study from June 1, 2012 to September 30, 2012 in which we interviewed parents and guardians of Warao Amerindian children from Venezuela. Asthma symptoms were defined according to the ISAAC definition as self-reported wheezing in the last 12 months. The associations between wood smoke exposure and environmental tobacco smoke and the prevalence of asthma symptoms were calculated by means of univariate and multivariable logistic regression analyses. Results We included 630 children between two and ten years of age. Asthma symptoms were recorded in 164 of these children (26%). The prevalence of asthma symptoms was associated with the cooking method. Children exposed to the smoke produced by cooking on open wood fires were at higher risk of having asthma symptoms compared to children exposed to cooking with gas (AOR 2.12, 95% CI 1.18 - 3.84). Four percent of the children lived in a household where more than ten cigarettes were smoked per day and they had a higher risk of having asthma symptoms compared to children who were not exposed to cigarette smoke (AOR 2.69, 95% CI 1.11 - 6.48). Conclusion Our findings suggest that children living in rural settings in a household where wood is used for cooking or where more than ten cigarettes are smoked daily have a higher risk of having asthma symptoms.
Collapse
|
50
|
Stockfelt L, Sallsten G, Almerud P, Basu S, Barregard L. Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans. Inhal Toxicol 2013; 25:417-25. [PMID: 23808634 PMCID: PMC3793281 DOI: 10.3109/08958378.2013.798387] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Air pollution increases the risk of cardiovascular diseases. A proposed mechanism is that local airway inflammation leads to systemic inflammation, affecting coagulation and the long-term risk of atherosclerosis. One major source of air pollution is wood burning. Here we investigate whether exposure to two kinds of wood smoke, previously shown to cause airway effects, affects biomarkers of systemic inflammation, coagulation and lipid peroxidation. Methods: Thirteen healthy adults were exposed to filtered air followed by two sessions of wood smoke for three hours, one week apart. One session used smoke from the start-up phase of the wood-burning cycle, and the other smoke from the burn-out phase. Mean particle mass concentrations were 295 µg/m3 and 146 µg/m3, and number concentrations were 140 000/cm3 and 100 000/cm3, respectively. Biomarkers were analyzed in samples of blood and urine taken before and several times after exposure. Results after wood smoke exposure were adjusted for exposure to filtered air. Results: Markers of systemic inflammation and soluble adhesion molecules did not increase after wood smoke exposure. Effects on markers of coagulation were ambiguous, with minor decreases in fibrinogen and platelet counts and mixed results concerning the coagulation factors VII and VIII. Urinary F2-isoprostane, a consistent marker of in vivo lipid peroxidation, unexpectedly decreased after wood smoke exposure. Conclusions: The effects on biomarkers of inflammation, coagulation and lipid peroxidation do not indicate an increased risk of cardiovascular diseases in healthy adults by short-term exposure to wood smoke at these moderate doses, previously shown to cause airway effects.
Collapse
Affiliation(s)
- Leo Stockfelt
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|