1
|
Adamczyk NS, Ishihara S, Obeidat AM, Ren D, Miller RJ, Malfait AM, Miller RE. FM-dye inhibition of Piezo2 relieves acute inflammatory and osteoarthritis knee pain in mice of both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643683. [PMID: 40166233 PMCID: PMC11956942 DOI: 10.1101/2025.03.17.643683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Musculoskeletal pain is a significant burden affecting billions of people with little progress in the development of pharmaceutical pain relief options. The mechanically-activated ion channel Piezo2 has been shown to play a role in mechanical sensitization; however there has been little progress in examining therapeutics that target this molecule. The goal of this study was to assess the effect of two FM-dyes, FM1-43 or FM4-64, in reducing acute inflammatory and osteoarthritis knee joint pain in mice of both sexes. In our acute model of Complete Freund's adjuvant (CFA)-induced joint pain, mice intra-articularly injected with FM1-43 exhibited an attenuation of knee hyperalgesia 90 minutes following injection. In vivo calcium imaging of the dorsal root ganglion (DRG) also demonstrated a reduction in nociceptor responses to mechanical forces applied to the knee joint of CFA mice following FM-dye injection. Male and female WT mice subjected to partial medial meniscectomy (PMX) surgery as a model of osteoarthritis developed more severe knee hyperalgesia than nociceptor-specific Piezo2 conditional knock-out mice. Intra-articular injection of FM1-43 reduced both knee hyperalgesia and weight-bearing asymmetry in this model and had no effect in Piezo2 conditional knock-out mice. Finally, in mice with spontaneous osteoarthritis associated with aging, intra-articular injection of FM-dyes also reduced knee hyperalgesia. In conclusion, inhibiting Piezo2 genetically or pharmacologically was effective in reducing pain-related behaviors in mice of both sexes in the setting of inflammatory and osteoarthritis knee pain. These studies provide evidence of the therapeutic potential of targeting Piezo2 in musculoskeletal pain conditions.
Collapse
Affiliation(s)
- Natalie S. Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Alia M. Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Dongjun Ren
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Richard J. Miller
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Rachel E. Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| |
Collapse
|
2
|
Piña R, Ugarte G, Guevara C, Pino R, Valdebenito K, Romero S, Gómez del Campo A, Cornejo VH, Pertusa M, Madrid R. A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage. Front Pharmacol 2024; 15:1484387. [PMID: 39703391 PMCID: PMC11655194 DOI: 10.3389/fphar.2024.1484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca2+ imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery in vivo, we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch. We found that cold allodynia induced by IoN-CCI is linked to an increase in the proportion of cold-sensitive neurons (CSNs) contributing to this branch and a shift in their thermal thresholds to higher temperatures. These changes are correlated to a reduction of the Kv1.1-1.2-dependent brake potassium current IKD in IoN CSNs and a rise in the percentage of trigeminal neurons expressing TRPM8. The analysis of the electrophysiological properties of CSNs contributing to the IoN suggests that painful cold hypersensitivity involves the recruitment of silent nociceptive afferents that become sensitive to mild cold in response to nerve damage. Notably, pharmacological suppression of TRPM8 channels and AAV-based transduction of trigeminal neurons with the Kv1.1 channel in vivo effectively reverted the nociceptive phenotype in injured animals. Altogether, our results unveil a crucial role of TRPM8 and Kv1 channels in orofacial cold allodynia, suggesting that both the specific TRPM8-blocking and the AAV-driven expression of potassium channels underlying IKD in trigeminal neurons can be effective tools to revert this damage-triggered sensory alteration.
Collapse
Affiliation(s)
- Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camilo Guevara
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
| | - Richard Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine Valdebenito
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sofía Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Ana Gómez del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Víctor Hugo Cornejo
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| |
Collapse
|
3
|
Huang Z, Huang Y, Ning X, Li H, Li Q, Wu J. The functional effects of Piezo channels in mesenchymal stem cells. Stem Cell Res Ther 2023; 14:222. [PMID: 37633928 PMCID: PMC10464418 DOI: 10.1186/s13287-023-03452-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.
Collapse
Affiliation(s)
- Zhilong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiner Ning
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Haodi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qiqi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Villarino NW, Hamed YMF, Ghosh B, Dubin AE, Lewis AH, Odem MA, Loud MC, Wang Y, Servin-Vences MR, Patapoutian A, Marshall KL. Labeling PIEZO2 activity in the peripheral nervous system. Neuron 2023; 111:2488-2501.e8. [PMID: 37321223 PMCID: PMC10527906 DOI: 10.1016/j.neuron.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.
Collapse
Affiliation(s)
- Nicholas W Villarino
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yasmeen M F Hamed
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Britya Ghosh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrienne E Dubin
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Max A Odem
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meaghan C Loud
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kara L Marshall
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Bataille A, Le Gall C, Misery L, Talagas M. Merkel Cells Are Multimodal Sensory Cells: A Review of Study Methods. Cells 2022; 11:cells11233827. [PMID: 36497085 PMCID: PMC9737130 DOI: 10.3390/cells11233827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aβ low-threshold mechanoreceptor (Aβ-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.
Collapse
Affiliation(s)
- Adeline Bataille
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Correspondence:
| | - Christelle Le Gall
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Laurent Misery
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Matthieu Talagas
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| |
Collapse
|
6
|
Vieira WF, Malange KF, de Magalhães SF, Lemes JBP, Dos Santos GG, Nishijima CM, de Oliveira ALR, da Cruz-Höfling MA, Tambeli CH, Parada CA. Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics modulation. Sci Rep 2022; 12:16730. [PMID: 36202956 PMCID: PMC9537322 DOI: 10.1038/s41598-022-19947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1β. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1β levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Kauê Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Silviane Fernandes de Magalhães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Júlia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Gilson Gonçalves Dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
7
|
Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo Channels: Awesome Mechanosensitive Structures in Cellular Mechanotransduction and Their Role in Bone. Int J Mol Sci 2021; 22:ijms22126429. [PMID: 34208464 PMCID: PMC8234635 DOI: 10.3390/ijms22126429] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels' functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels' function in bone by highlighting Piezo1's role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.
Collapse
Affiliation(s)
- Xia Xu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kang Ru
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunxian Jia
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zarnaz Khan
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| | - Lifang Hu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| |
Collapse
|
8
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
9
|
Eskandari MR, Eftekhari P, Abbaszadeh S, Noubarani M, Shafaghi B, Pourahmad J. Inhibition of Different Pain Pathways Attenuates Oxidative Stress in Glial Cells: A Mechanistic View on Neuroprotective Effects of Different Types of Analgesics. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:204-215. [PMID: 34903982 PMCID: PMC8653691 DOI: 10.22037/ijpr.2021.114476.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropathic pain results from trauma or diseases affecting the central nervous system (CNS) and triggers a cascade of events in different CNS parts that eventually lead to oxidative injury. This study was aimed to investigate the protective effects of some selected analgesics in neuropathic pain-induced oxidative damage in the isolated glial cells of the rat brain. In this experiment, rats were randomly divided into 5 main groups. Rats in group 1 received no medication, whereas rats in groups 2 to 5 received ASA (aspirin), celecoxib, morphine, and etanercept daily, respectively. Each main group divides into 3 subgroups: normal, sham, and neuropathic pain model rats. The glial cells of the rat brain were isolated at different time points. Our results demonstrate that neuropathic pain induces ROS generation as the major cause of mitochondrial membrane potential collapse (%∆Ψm) and lysosomal membrane rupture, which result in oxidative damage of the glial cells. In addition, ASA and celecoxib had protective effects on the neuropathic pain-induced oxidative stress markers, including ROS production, mitochondrial membrane potential collapse, and lysosomal membrane leakiness at different time points. Furthermore, the oxidative damage markers were significantly decreased by morphine and etanercept in all investigated days. Since arachidonic acid metabolites and TNF-α are produced during neuropathic pain and inflammation, it can be concluded that the inhibition of the substances production or inhibition of the ligands binding with their receptors would help to decrease the destructive effects of neuropathic pain in the glial cells of rat brain.
Collapse
Affiliation(s)
- Mohammad Reza Eskandari
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Parivash Eftekhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Maryam Noubarani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Bijan Shafaghi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Goodwin G, Bove GM, Dayment B, Dilley A. Characterizing the Mechanical Properties of Ectopic Axonal Receptive Fields in Inflamed Nerves and Following Axonal Transport Disruption. Neuroscience 2020; 429:10-22. [PMID: 31874241 DOI: 10.1016/j.neuroscience.2019.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
Abstract
Radiating pain is a significant feature of chronic musculoskeletal pain conditions such as radiculopathies, repetitive motion disorders and whiplash associated disorders. It is reported to be caused by the development of mechanically-sensitive ectopic receptive fields along intact nociceptor axons at sites of peripheral neuroinflammation (neuritis). Since inflammation disrupts axonal transport, we have hypothesised that anterogradely-transported mechanically sensitive ion channels accumulate at the site of disruption, which leads to axonal mechanical sensitivity (AMS). In this study, we have characterised the mechanical properties of the ectopic axonal receptive fields in the rat and have examined the contribution of mechanically sensitive ion channels to the development of AMS following neuritis and vinblastine-induced axonal transport disruption. In both models, there was a positive force-discharge relationship and mechanical thresholds were low (∼9 mN/mm2). All responses were attenuated by Ruthenium Red and FM1-43, which block mechanically sensitive ion channels. In both models, the transport of TRPV1 and TRPA1 was disrupted, and intraneural injection of agonists of these channels caused responses in neurons with AMS following neuritis but not vinblastine treatment. In summary, these data support a role for mechanically sensitive ion channels in the development of AMS.
Collapse
Affiliation(s)
- George Goodwin
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | | | - Bryony Dayment
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Andrew Dilley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK.
| |
Collapse
|
11
|
Bianchi F, George JH, Malboubi M, Jerusalem A, Thompson MS, Ye H. Engineering a uniaxial substrate-stretching device for simultaneous electrophysiological measurements and imaging of strained peripheral neurons. Med Eng Phys 2019; 67:1-10. [PMID: 30878301 DOI: 10.1016/j.medengphy.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Peripheral nerves are continuously subjected to mechanical strain during everyday movements, but excessive stretch can lead to damage and neuronal cell functionality can also be impaired. To better understand cellular processes triggered by stretch, it is necessary to develop in vitro experimental methods that allow multiple concurrent measurements and replicate in vivo mechanical conditions. Current commercially available cell stretching devices do not allow flexible experimental design, restricting the range of possible multi-physics measurements. Here, we describe and characterise a custom-built uniaxial substrate-straining device, with which neurons cultured on aligned patterned surfaces (50 µm wide grooves) can be strained up to 70% and simultaneously imaged with widefield and confocal imaging (up to 100x magnification). Furthermore, direct and indirect electrophysiological measurements by patch clamping and calcium imaging can be made during strain application. We characterise the strain applied to cells cultured in deformable wells by using finite element method simulations and experimental data, showing local surface strains of up to 60% with applied strains of up to 25%. We also show how patterned substrates do not alter the mechanical properties of the system compared to unpatterned surfaces whilst still inducing a homogeneous cell response to strain. The characterisation of this device will be useful for research into investigating the effect of whole-cell mechanical stretch on neurons at both single cell and network scales, with applications found in peripheral neuropathy modelling and in platforms for preventive and regenerative studies.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Julian H George
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; Department of Mechanical Engineering, The University of Birmingham, Birmingham B15 2TT, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Mark S Thompson
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
12
|
Pham TQ, Kawaue T, Hoshi T, Tanaka Y, Miyata T, Sano A. Role of extrinsic mechanical force in the development of the RA-I tactile mechanoreceptor. Sci Rep 2018; 8:11085. [PMID: 30038295 PMCID: PMC6056429 DOI: 10.1038/s41598-018-29390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022] Open
Abstract
Rapidly adapting type I (RA-I) mechanoreceptors play an important role in sensing the low-frequency vibration aspects of touch. The structure of the RA-I mechanoreceptor is extremely complex regardless of its small size, limiting our understanding of its mechanotransduction. As a result of the emergence of bioengineering, we previously proposed an in vitro bioengineering approach for RA-I receptors to overcome this limitation. Currently, the in vitro bioengineering approach for the RA-I receptor is not realizable given the lack of knowledge of its morphogenesis. This paper demonstrates our first attempt to interpret the cellular morphogenesis of the RA-I receptor. We found indications of extrinsic mechanical force nearby the RA-I receptor in the developing fingertip. Using a mechanical compression device, the axon of dorsal root ganglion (DRG) neurons buckled in vitro into a profile that resembled the morphology of the RA-I receptor. This work encourages further implementation of this bioengineering approach in tactile receptor-related research.
Collapse
Affiliation(s)
- Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | | | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| |
Collapse
|
13
|
Anderson E, Schneider E, Bagriantsev S. Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in Vertebrates. CURRENT TOPICS IN MEMBRANES 2017; 79:197-217. [PMID: 28728817 PMCID: PMC5630267 DOI: 10.1016/bs.ctm.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensitivity is a fundamental physiological capacity, which pertains to all life forms. Progress has been made with regard to understanding mechanosensitivity in bacteria, flies, and worms. In vertebrates, however, the molecular identity of mechanotransducers in somatic and neuronal cells has only started to appear. The Piezo family of mechanogated ion channels marks a pivotal milestone in understanding mechanosensitivity. Piezo1 and Piezo2 have now been shown to participate in a number of processes, ranging from arterial modeling to sensing muscle stretch. In this review, we focus on Piezo2 and its role in mediating mechanosensation and proprioception in vertebrates.
Collapse
|
14
|
Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function. Neuron 2016; 91:107-18. [DOI: 10.1016/j.neuron.2016.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/02/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
|
15
|
Bewick GS, Cahusac PMB, Banks RW. Combined Recording of Mechanically Stimulated Afferent Output and Nerve Terminal Labelling in Mouse Hair Follicle Lanceolate Endings. J Vis Exp 2016. [PMID: 27213522 PMCID: PMC6622044 DOI: 10.3791/53854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A novel dissection and recording technique is described for monitoring afferent firing evoked by mechanical displacement of hairs in the mouse pinna. The technique is very cost-effective and easily undertaken with materials commonly found in most electrophysiology laboratories, or easily purchased. The dissection is simple and fast, with the mechanical displacement provided by a generic electroceramic wafer controlled by proprietary software. The same software also records and analyses the electroneurogram output. The recording of the evoked nerve activity is through a commercial differential amplifier connected to fire-polished standard glass microelectrodes. Helpful tips are given for improving the quality of the preparation, the stimulation and the recording conditions to optimize recording quality. The system is suitable for assaying the electrophysiological and optical properties of lanceolate terminals of palisade endings of hair follicles, as well as the outcomes from their pharmacological and/or genetic manipulation. An example of combining electrical recording with mechanical stimulation and labeling with a styryl pyridinium vital dye is given.
Collapse
Affiliation(s)
- Guy S Bewick
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen;
| | | | - Robert W Banks
- School of Biological & Biomedical Sciences, University of Durham
| |
Collapse
|
16
|
Bewick GS. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals. J Anat 2016; 227:194-213. [PMID: 26179025 PMCID: PMC4523322 DOI: 10.1111/joa.12337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 01/22/2023] Open
Abstract
This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob’s technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system might actually be a useful therapeutic drug target for clinical conditions such as hypertension and muscle spasticity. This has been a fascinating 15-year journey in collaboration with Bob who, as well as having an astute scientific mind, is also a great enthusiast, motivator and friend. I hope this exciting and enjoyable journey will continue well into the future.
Collapse
Affiliation(s)
- Guy S Bewick
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
17
|
Bewick GS, Banks RW. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin. J Vis Exp 2016:e53855. [PMID: 27077818 PMCID: PMC4841365 DOI: 10.3791/53855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given.
Collapse
Affiliation(s)
- Guy S Bewick
- School of Medical Sciences, University of Aberdeen;
| | - Robert W Banks
- School of Biological & Biomedical Sciences, University of Durham
| |
Collapse
|
18
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Banafshe HR, Hajhashemi V, Minaiyan M, Mesdaghinia A, Abed A. Antinociceptive effects of maprotiline in a rat model of peripheral neuropathic pain: possible involvement of opioid system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:752-7. [PMID: 26557963 PMCID: PMC4633457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Neuropathic pain remains a clinical problem and is poorly relieved by conventional analgesics. This study was designed to determine whether maprotiline administration was effective in alleviating symptoms of neuropathic pain and whether the antinociceptive effect of maprotiline mediated through the opioid system. MATERIALS AND METHODS Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats, which resulted in thermal hyperalgesia, and mechanical and cold allodynia. Maprotiline (10, 20 and 40 mg/kg, IP) was administered on the 7(th) and 14(th) days after surgery. To study the role of the opioid system in the antinociceptive effects of maprotiline, maprotiline (20 mg/kg, IP) was administered in combination with naloxone (1 mg/kg, SC) on the 7(th) post-surgery day. Behavioral tests were done at 45 min after drug injections on the 7(th) and 14(th) days after surgery. RESULTS Systemic administration of maprotiline blocked heat hyperalgesia, cold allodynia and reduced mechanical allodynia. Also antihyperalgesic effect of maprotiline was reversed by pretreatment with naloxone. CONCLUSION Our results suggest that maprotiline can be considered a potential therapeutic for the treatment of neuropathic pain, and the opioid system may be involved in the antihyperalgesic effects of maprotiline.
Collapse
Affiliation(s)
- Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mesdaghinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abed
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 2014; 289:31673-31681. [PMID: 25305018 DOI: 10.1074/jbc.r114.612697] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature.
Collapse
Affiliation(s)
- Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520; Yale Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick G Gallagher
- Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
22
|
Bewick GS, Banks RW. Mechanotransduction in the muscle spindle. Pflugers Arch 2014; 467:175-90. [PMID: 24888691 PMCID: PMC4281366 DOI: 10.1007/s00424-014-1536-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/09/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
The focus of this review is on the principal sensory ending of the mammalian muscle spindle, known as the primary ending. The process of mechanosensory transduction in the primary ending is examined under five headings: (i) action potential responses to defined mechanical stimuli—representing the ending's input–output properties; (ii) the receptor potential—including the currents giving rise to it; (iii) sensory-terminal deformation—measurable changes in the shape of the primary-ending terminals correlated with intrafusal sarcomere length, and what may cause them; (iv) putative stretch-sensitive channels—pharmacological and immunocytochemical clues to their identity; and (v) synaptic-like vesicles—the physiology and pharmacology of an intrinsic glutamatergic system in the primary and other mechanosensory endings, with some thoughts on the possible role of the system. Thus, the review highlights spindle stretch-evoked output is the product of multi-ionic receptor currents plus complex and sophisticated regulatory gain controls, both positive and negative in nature, as befits its status as the most complex sensory organ after the special senses.
Collapse
Affiliation(s)
- Guy S Bewick
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK,
| | | |
Collapse
|
23
|
Jia Z, Ikeda R, Ling J, Gu JG. GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons. Mol Brain 2013; 6:57. [PMID: 24344923 PMCID: PMC3899620 DOI: 10.1186/1756-6606-6-57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022] Open
Abstract
Rapidly adapting mechanically activated channels (RA) are expressed in primary afferent neurons and identified as Piezo2 ion channels. We made whole-cell voltage-clamp recordings from cultured dorsal root ganglion (DRG) neurons to study RA channel regulation. RA currents showed gradual increases in current amplitude (current "run-up") after establishing whole-cell mode when 0.33 mM GTP or 0.33 mM GTPγS was included in the patch pipette internal solution. RA current run-up was also observed in HEK293 cells that heterologously expressed Piezo2 ion channels. No significant RA current run-up was observed in DRG neurons when GTP was omitted from the patch pipette internal solution, when GTP was replaced with 0.33 mM GDP, or when recordings were made under the perforated patch-clamp recording configuration. Our findings revealed a GTP-dependent up-regulation of the function of piezo2 ion channels in DRG neurons.
Collapse
Affiliation(s)
- Zhanfeng Jia
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Ryo Ikeda
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Jennifer Ling
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Jianguo G Gu
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
24
|
Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2013; 2:120068. [PMID: 22724068 PMCID: PMC3376737 DOI: 10.1098/rsob.120068] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential (TRP) channels TRPC3 and TRPC6 are expressed in both sensory neurons and cochlear hair cells. Deletion of TRPC3 or TRPC6 in mice caused no behavioural phenotype, although loss of TRPC3 caused a shift of rapidly adapting (RA) mechanosensitive currents to intermediate-adapting currents in dorsal root ganglion sensory neurons. Deletion of both TRPC3 and TRPC6 caused deficits in light touch and silenced half of small-diameter sensory neurons expressing mechanically activated RA currents. Double TRPC3/TRPC6 knock-out mice also showed hearing impairment, vestibular deficits and defective auditory brain stem responses to high-frequency sounds. Basal, but not apical, cochlear outer hair cells lost more than 75 per cent of their responses to mechanical stimulation. FM1-43-sensitive mechanically gated currents were induced when TRPC3 and TRPC6 were co-expressed in sensory neuron cell lines. TRPC3 and TRPC6 are thus required for the normal function of cells involved in touch and hearing, and are potential components of mechanotransducing complexes.
Collapse
Affiliation(s)
- Kathryn Quick
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roudaut Y, Lonigro A, Coste B, Hao J, Delmas P, Crest M. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels (Austin) 2013; 6:234-45. [PMID: 23146937 DOI: 10.4161/chan.22213] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.
Collapse
Affiliation(s)
- Yann Roudaut
- Aix-Marseille Université, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Sevrain D, Le Grand Y, Buhé V, Jeanmaire C, Pauly G, Carré JL, Misery L, Lebonvallet N. Two-photon microscopy of dermal innervation in a human re-innervated model of skin. Exp Dermatol 2013; 22:290-1. [DOI: 10.1111/exd.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- David Sevrain
- Laboratoire de Spectrométrie et Optique Laser; Université de Brest; UEB; Brest; France
| | - Yann Le Grand
- Laboratoire de Spectrométrie et Optique Laser; Université de Brest; UEB; Brest; France
| | - Virginie Buhé
- Laboratoire des Neurosciences de Brest; Université de Brest; LNB EA4685 UEB; Brest; France
| | - Christine Jeanmaire
- BASF Beauty Creations; BASF Beauty Care Solutions France SAS; Pulnoy; France
| | - Gilles Pauly
- BASF Beauty Creations; BASF Beauty Care Solutions France SAS; Pulnoy; France
| | - Jean-Luc Carré
- Laboratoire des Neurosciences de Brest; Université de Brest; LNB EA4685 UEB; Brest; France
| | - Laurent Misery
- Laboratoire des Neurosciences de Brest; Université de Brest; LNB EA4685 UEB; Brest; France
| | | |
Collapse
|
27
|
Banks RW, Cahusac PMB, Graca A, Kain N, Shenton F, Singh P, Njå A, Simon A, Watson S, Slater CR, Bewick GS. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles. J Physiol 2013; 591:2523-40. [PMID: 23440964 PMCID: PMC3678041 DOI: 10.1113/jphysiol.2012.243659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca2+ sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor.
Collapse
Affiliation(s)
- Robert W Banks
- University of Aberdeen, School of Medical Sciences, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eijkelkamp N, Linley J, Torres J, Bee L, Dickenson A, Gringhuis M, Minett M, Hong G, Lee E, Oh U, Ishikawa Y, Zwartkuis F, Cox J, Wood J. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 2013; 4:1682. [PMID: 23575686 PMCID: PMC3644070 DOI: 10.1038/ncomms2673] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023] Open
Abstract
Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1-/- mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1-Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain.
Collapse
Affiliation(s)
- N Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht 3584 EA, The Netherlands
- There authors shared first authorship
| | - J.E. Linley
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- There authors shared first authorship
| | - J.M. Torres
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Granada, Granada 18012, Spain
| | - L. Bee
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - A.H. Dickenson
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - M. Gringhuis
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - M.S. Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - G.S. Hong
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - E. Lee
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - U. Oh
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - Y. Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - F.J. Zwartkuis
- Department of Physiological Chemistry, University Medical Center Utrecht, Center for Biomedical Genetics and Cancer Genomics Center, Utrecht 3584 CG, The Netherlands
| | - J.J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - J.N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
29
|
|
30
|
Bautista DM, Lumpkin EA. Perspectives on: information and coding in mammalian sensory physiology: probing mammalian touch transduction. ACTA ACUST UNITED AC 2012; 138:291-301. [PMID: 21875978 PMCID: PMC3171080 DOI: 10.1085/jgp.201110637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
31
|
Guimarães AG, Xavier MA, de Santana MT, Camargo EA, Santos CA, Brito FA, Barreto EO, Cavalcanti SCH, Antoniolli ÂR, Oliveira RCM, Quintans-Júnior LJ. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:253-63. [DOI: 10.1007/s00210-011-0715-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/19/2011] [Indexed: 01/22/2023]
|
32
|
Noxious mechanosensation - molecules and circuits. Curr Opin Pharmacol 2011; 12:4-8. [PMID: 22056025 DOI: 10.1016/j.coph.2011.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
Drugs that block mechanically-evoked pain would be useful for many common pain conditions, but appropriate drug development targets have yet to be defined. There is increasing evidence that both peripheral sensory neuron wiring patterns as well as the expression of transducing molecules are important for modality specific pain sensations. Progress in identifying the cell types, candidate transducing molecules and wiring patterns involved in mechanosensation has been dramatic over the past few years. Here we focus on potential mechano-transducing channels, and the relevant cell types and wiring patterns that provide clues for new analgesic drug development strategies.
Collapse
|
33
|
Nishikawa S. Fluorescent AM1-43 and FM1-43 probes for dental sensory nerves and cells: Their labeling mechanisms and applications. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
34
|
Chiang LY, Poole K, Oliveira BE, Duarte N, Sierra YAB, Bruckner-Tuderman L, Koch M, Hu J, Lewin GR. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci 2011; 14:993-1000. [PMID: 21725315 DOI: 10.1038/nn.2873] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/10/2011] [Indexed: 11/09/2022]
Abstract
Laminin-332 is a major component of the dermo-epidermal skin basement membrane and maintains skin integrity. The transduction of mechanical force into electrical signals by sensory endings in the skin requires mechanosensitive channels. We found that mouse epidermal keratinocytes produce a matrix that is inhibitory for sensory mechanotransduction and that the active molecular component is laminin-332. Substrate-bound laminin-332 specifically suppressed one type of mechanosensitive current (rapidly adapting) independently of integrin-receptor activation. This mechanotransduction suppression could be exerted locally and was mediated by preventing the formation of protein tethers necessary for current activation. We also found that laminin-332 could locally control sensory axon branching behavior. Loss of laminin-332 in humans led to increased sensory terminal branching and may lead to a de-repression of mechanosensitive currents. These previously unknown functions for this matrix molecule may explain some of the extreme pain experienced by individuals with epidermolysis bullosa who are deficient in laminin-332.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Animals
- Animals, Newborn
- Axons/physiology
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/pharmacology
- Cell Adhesion Molecules/ultrastructure
- Cells, Cultured
- Coculture Techniques
- Collagen Type VII/metabolism
- Epidermolysis Bullosa, Junctional/metabolism
- Epidermolysis Bullosa, Junctional/pathology
- Ganglia, Spinal/cytology
- Growth Cones/drug effects
- Growth Cones/physiology
- Growth Cones/ultrastructure
- Humans
- Keratinocytes/cytology
- Lidocaine/analogs & derivatives
- Lidocaine/pharmacology
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Membrane Potentials/genetics
- Membrane Potentials/physiology
- Mice
- Microscopy, Atomic Force/methods
- Microscopy, Electron, Transmission/methods
- Neurofilament Proteins/metabolism
- Patch-Clamp Techniques/methods
- Physical Stimulation
- Reaction Time/drug effects
- Reaction Time/genetics
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Skin/innervation
- Skin/metabolism
- Skin/pathology
- Sodium Channel Blockers/pharmacology
- TRPV Cation Channels/metabolism
- Tetrodotoxin/pharmacology
- Time Factors
- Ubiquitin Thiolesterase/metabolism
- Kalinin
Collapse
Affiliation(s)
- Li-Yang Chiang
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hao J, Delmas P. Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator. Nat Protoc 2011; 6:979-90. [PMID: 21720312 DOI: 10.1038/nprot.2011.343] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanotransduction constitutes the basis of a variety of physiological processes, such as the senses of touch, balance, proprioception and hearing. In vertebrates, mechanosensation is mediated by mechanosensory receptors. The aptitude of these mechanoreceptors for detecting mechanical information relies on the presence of mechanosensitive channels that transform mechanical forces into electrical signals. However, advances in understanding mechanical transduction processes have proven difficult because sensory nerve endings have historically been inaccessible to patch-clamp recording. We report here an in vitro model of mechanotransduction that allows the application of focal force on sensory neuron membrane during whole-cell patch clamping. This technique, called mechano-clamp, provides an opportunity to explore the properties and identities of mechanotransducer channels in mammalian sensory neurons. The protocol-from tissue dissociation to patch-clamp recording-can be completed in 7 h.
Collapse
Affiliation(s)
- Jizhe Hao
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
36
|
Breunig E, Kludt E, Czesnik D, Schild D. The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels. J Biol Chem 2011; 286:28041-8. [PMID: 21646359 DOI: 10.1074/jbc.m111.233890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.
Collapse
Affiliation(s)
- Esther Breunig
- Department of Neurophysiology and Cellular Biophysics, University of Göttingen,37073 Göttingen, Germany
| | | | | | | |
Collapse
|
37
|
Cha M, Ling J, Xu GY, Gu JG. Shear mechanical force induces an increase of intracellular Ca2+ in cultured Merkel cells prepared from rat vibrissal hair follicles. J Neurophysiol 2011; 106:460-9. [PMID: 21562195 DOI: 10.1152/jn.00274.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Merkel cells have been proposed to play a role in mechanical transduction of light touch in mammals. In the present study, Merkel cells were prepared from upper segments of rat vibrissal hair follicles and maintained in culture. Reponses of these cells to shear mechanical forces were examined by Ca(2+) imaging technique. Shear forces of ≥ 0.8 dyn/cm(2) that were delivered to the cells by the application of normal bath solution significantly increased intracellular Ca(2+) levels ([Ca(2+)](i)) in some of these cells, and up to 30% cells responded to 1.6 dyn/cm(2) shear force applied for 20 s. Gd(3+) (100 μM), a compound widely used to inhibit mechanically activated channels, abolished shear force-induced increases of [Ca(2+)](i) in these cells. Reduction of extracellular Ca(2+) concentration from 2 mM to 0.2 mM also abolished shear force-induced increases of [Ca(2+)](i) in these cells. In addition to shear force, we found that many shear force-responding cells also responded to hypotonic solution. However, the response to hypotonic solution was not abolished by Gd(3+) (100 μM). We also found that all shear force-responding cells responded to ATP (100 μM) with large increases of [Ca(2+)](i). The responses to ATP remained in the presence of Gd(3+). Taken together, our results suggest that Merkel cells in culture are sensitive to shear force stress, osmotic, and chemical stimuli and that shear force-induced increases of [Ca(2+)](i) may be mediated by the activation of mechanically activated channels.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Anesthesiology and Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, USA
| | | | | | | |
Collapse
|
38
|
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12:139-53. [PMID: 21304548 DOI: 10.1038/nrn2993] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.
Collapse
Affiliation(s)
- Patrick Delmas
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | | | |
Collapse
|
39
|
Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nat Protoc 2010; 5:714-24. [DOI: 10.1038/nprot.2010.15] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Jelínková A, Malínská K, Simon S, Kleine-Vehn J, Parezová M, Pejchar P, Kubes M, Martinec J, Friml J, Zazímalová E, Petrásek J. Probing plant membranes with FM dyes: tracking, dragging or blocking? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:883-92. [PMID: 20003134 DOI: 10.1111/j.1365-313x.2009.04102.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Remarkable progress in various techniques of in vivo fluorescence microscopy has brought an urgent need for reliable markers for tracking cellular structures and processes. The goal of this manuscript is to describe unexplored effects of the FM (Fei Mao) styryl dyes, which are widely used probes that label processes of endocytosis and vesicle trafficking in eukaryotic cells. Although there are few reports on the effect of styryl dyes on membrane fluidity and the activity of mammalian receptors, FM dyes have been considered as reliable tools for tracking of plant endocytosis. Using plasma membrane-localized transporters for the plant hormone auxin in tobacco BY-2 and Arabidopsis thaliana cell suspensions, we show that routinely used concentrations of FM 4-64 and FM 5-95 trigger transient re-localization of these proteins, and FM 1-43 affects their activity. The active process of re-localization is blocked neither by inhibitors of endocytosis nor by cytoskeletal drugs. It does not occur in A. thaliana roots and depends on the degree of hydrophobicity (lipophilicity) of a particular FM dye. Our results emphasize the need for circumspection during in vivo studies of membrane proteins performed using simultaneous labelling with FM dyes.
Collapse
Affiliation(s)
- Adriana Jelínková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rugiero F, Drew LJ, Wood JN. Kinetic properties of mechanically activated currents in spinal sensory neurons. J Physiol 2009; 588:301-14. [PMID: 19948656 DOI: 10.1113/jphysiol.2009.182360] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dorsal root ganglion neurons in vitro express a number of types of mechanically activated currents that are thought to underlie somatic mechanosensory transduction in vivo. We have studied the inactivation properties of these currents to assess how they might influence the electrophysiological responses of dorsal root ganglion (DRG) neurons to mechanical stimulation. We show that the speed of ramp-like mechanical stimulation determines the dynamics of mechanically activated current responses and hence the type of DRG neuron most likely to be activated. We also show that both rapidly and slowly adapting currents inactivate as a function of membrane stretch. However, the rapidly adapting current inactivation time course is mainly dependent on channel opening whilst slowly adapting current kinetics are dependent on membrane stretch. In response to repeated stimulation, slowly adapting currents inactivate less and recover more quickly than rapidly adapting currents. Therefore, vibratory stimuli tend to inactivate rapidly adapting currents whilst static stimuli tend to inactivate slowly adapting currents. Current clamp experiments show that, physiologically, the response of different types of sensory neurons is dictated primarily by the static or dynamic nature of the mechanical stimulus and the interplay between voltage-gated and mechanically gated ion channels expressed in these neurons.
Collapse
Affiliation(s)
- François Rugiero
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
42
|
Boulais N, Pennec JP, Lebonvallet N, Pereira U, Rougier N, Dorange G, Chesné C, Misery L. Rat Merkel cells are mechanoreceptors and osmoreceptors. PLoS One 2009; 4:e7759. [PMID: 19898622 PMCID: PMC2770322 DOI: 10.1371/journal.pone.0007759] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/13/2009] [Indexed: 01/15/2023] Open
Abstract
Merkel cells (MCs) associated with nerve terminals constitute MC-neurite complexes, which are involved in slowly-adapting type I mechanoreception. Although MCs are known to express voltage-gated Ca2+ channels and hypotonic-induced membrane deformation is known to lead to Ca2+ transients, whether MCs initiate mechanotransduction is currently unknown. To answer to this question, rat MCs were transfected with a reporter vector, which enabled their identification. Their properties were investigated through electrophysiological studies. Voltage-gated K+, Ca2+ and Ca2+-activated K+ (KCa) channels were identified, as previously described. Here, we also report the activation of Ca2+ channels by histamine and their inhibition by acetylcholine. As a major finding, we demonstrated that direct mechanical stimulations induced strong inward Ca2+ currents in MCs. Depolarizations were dependent on the strength and the length of the stimulation. Moreover, touch-evoked currents were inhibited by the stretch channel antagonist gadolinium. These data confirm the mechanotransduction capabilities of MCs. Furthermore, we found that activation of the osmoreceptor TRPV4 in FM1-43-labeled MCs provoked neurosecretory granule exocytosis. Since FM1-43 blocks mechanosensory channels, this suggests that hypo-osmolarity activates MCs in the absence of mechanotransduction. Thus, mechanotransduction and osmoreception are likely distinct pathways.
Collapse
Affiliation(s)
- Nicholas Boulais
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
- Bioprédic International, Rennes, France
| | - Jean-Pierre Pennec
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | - Nicolas Lebonvallet
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | - Ulysse Pereira
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | | | - Germaine Dorange
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
| | | | - Laurent Misery
- University of Brest, European University of Brittany, Laboratory on Nervous Factors and Tissular Structure, EA4326, CHU, Brest, France
- * E-mail:
| |
Collapse
|
43
|
Lechner SG, Lewin GR. Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J Physiol 2009; 587:3493-503. [PMID: 19505980 PMCID: PMC2742277 DOI: 10.1113/jphysiol.2009.175059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y(2) nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents.
Collapse
Affiliation(s)
- Stefan G Lechner
- Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Str. 10, 3125 Berlin, Germany
| | | |
Collapse
|
44
|
Sumiyama K, Tajiri H, Kato F, Imura T, Ono K, Ikeda K, Imazu H, Gostout CJ. Pilot study for in vivo cellular imaging of the muscularis propria and ex vivo molecular imaging of myenteric neurons (with video). Gastrointest Endosc 2009; 69:1129-34. [PMID: 19215917 DOI: 10.1016/j.gie.2008.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/02/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is challenging to optimally sample the muscularis propria endoscopically for the diagnosis of muscle layer diseases, especially for motility disorders resulting from neuroenteric dysfunction. OBJECTIVES Ultramagnification in vivo imaging of the muscularis mucosa and ex vivo identification of myenteric neuronal elements by confocal microscopy. DESIGN Ex vivo and in vivo porcine animal studies. SETTING Short-term study in an animal laboratory. INTERVENTIONS The muscularis propria in the stomach and esophagus was accessed by resecting the mucosal layer with endoscopic submucosal dissection or cap EMR techniques or by creating a submucosal space by the submucosal endoscopy with mucosal flap technique. The muscularis propria was stained with Nissl stains and 2 types of neuronal molecular stains. The muscular layer was imaged with the endocytoscope in vivo. The muscularis stained with molecular-based stains was also evaluated with a confocal microscope. RESULTS Cellular microstructures resembling spindle-shaped smooth muscle cells were visualized by endocytoscopy in vivo. Confocal endoscopic microscopy demonstrated that in vivo topical application of neuronal molecular stains successfully stained the muscularis and specifically highlighted neuron-like cells. LIMITATION Animal model pilot study. CONCLUSIONS In vivo endoscopic histologic evaluation of the muscularis propria is technically feasible and easy. Minimally invasive advanced endoscopic imaging may be useful for the diagnosis and study of neuroenteric disorders at the level of the muscularis propria, avoiding surgical full-thickness tissue sampling.
Collapse
Affiliation(s)
- Kazuki Sumiyama
- Department of Endoscopy, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Neuroscience 2008; 159:559-69. [PMID: 19162133 DOI: 10.1016/j.neuroscience.2008.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated Na(+) channels Na(v)1.8 and Na(v)1.9 are expressed by a subset of primary sensory neurons and have been implicated in various pain states. Although recent studies suggest involvement of TTX-R Na(+) channels in sensory synaptic transmission and spinal pain processing, it remains unknown whether TTX-R Na(+) channels are expressed and function presynaptically. We examined expression of TTX-R channels at sensory synapses formed between rat dorsal root ganglion (DRG) and spinal cord (SC) neurons in a DRG/SC co-culture system. Immunostaining showed extensive labeling of presynaptic axonal boutons with Na(v)1.8- and Na(v)1.9-specific antibodies. Measurements using the fluorescent Na(+) indicator SBFI demonstrated action potential-induced presynaptic Na(+) entry that was resistant to tetrodotoxin (TTX) but was blocked by lidocaine. Furthermore, presynaptic [Ca(2+)](i) elevation in response to a single action potential was not affected by TTX in TTX-resistant DRG neurons. Finally, glutamatergic synaptic transmission was not inhibited by TTX in more than 50% of synaptic pairs examined; subsequent treatment with lidocaine completely blocked these TTX-resistant excitatory postsynaptic currents. Taken together, these results provide evidence for presynaptic expression of functional TTX-R Na(+) channels that may be important for shaping presynaptic action potentials and regulating transmitter release at the first sensory synapse.
Collapse
|
46
|
Pryazhnikov E, Khiroug L. Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes. Glia 2008; 56:38-49. [PMID: 17910050 DOI: 10.1002/glia.20590] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes release a variety of transmitter molecules, which mediate communication between glial cells in the brain and modulate synaptic transmission. ATP is a major glia-derived transmitter, but the mechanisms and kinetics of ATP release from astrocytes remain largely unknown. Here, we combined epifluorescence and total internal reflection fluorescence microscopy to monitor individual quinacrine-loaded ATP-containing vesicles undergoing exocytosis in cultured astrocytes. In resting cells, vesicles exhibited three-dimensional motility, spontaneous docking and release at low rate. Extracellular ATP application induced a Ca(2+)-dependent increase in the rate of exocytosis, which persisted for several minutes. Using UV flash photolysis of caged Ca(2+), the threshold [Ca(2+)](i) for ATP exocytosis was found to be approximately 350 nM. Subthreshold [Ca(2+)](i) transients predominantly induced vesicle docking at plasma membrane without subsequent release. ATP exocytosis triggered either by purinergic stimulation or by Ca(2+) uncaging occurred after a substantial delay ranging from tens to hundreds of seconds, with only approximately 4% of release occurring during the first 30 s. The time course of the cargo release from vesicles had two peaks centered on <or=10 s and 60 s. These results demonstrate that: (1) [Ca(2+)](i) elevations in cultured astrocytes trigger docking and release of ATP-containing vesicles; (2) vesicle docking and release have different Ca(2+) thresholds; (3) ATP exocytosis is delayed by several minutes and highly asynchronous; (4) two populations of ATP-containing vesicles with distinct (fast and slow) time course of cargo release exist in cultured astrocytes.
Collapse
Affiliation(s)
- Evgeny Pryazhnikov
- Neuroscience Center, University of Helsinki, P.O. Box 56 (Viikinkaari 4), FIN-00014, Helsinki, Finland
| | | |
Collapse
|
47
|
Nishikawa S. Styryl Pyridinium Dyes FM1-43 and AM1-43 for Visualization of Sensory Nerve Fibers and Cells in Dental and Craniofacial Tissues of Small Experimental Animals. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN. High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2007; 2:e515. [PMID: 17565368 PMCID: PMC1885214 DOI: 10.1371/journal.pone.0000515] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Cells, Cultured
- Electrophysiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Intercellular Signaling Peptides and Proteins
- Ion Channels/drug effects
- Male
- Mechanotransduction, Cellular/drug effects
- Mice
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Pain/drug therapy
- Peptide Fragments/pharmacology
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Spider Venoms/pharmacology
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Biology, University College London, London, United Kingdom
| | - Francois Rugiero
- Department of Biology, University College London, London, United Kingdom
| | - Paolo Cesare
- Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello, Rome, Italy
| | - Jonathan E. Gale
- Centre for Auditory Research, University College London Ear Institute, London, United Kingdom
| | - Bjarke Abrahamsen
- Department of Biology, University College London, London, United Kingdom
| | - Sarah Bowden
- Ionix Pharmaceuticals Ltd, Cambridge, United Kingdom
| | | | - Michelle Robinson
- Department of Biology, University College London, London, United Kingdom
| | | | | | - Richard J. Lewis
- Xenome Ltd, Indooroopilly, Queensland, Australia
- Institute for Molecular Bioscience and School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John N. Wood
- Department of Biology, University College London, London, United Kingdom
| |
Collapse
|