1
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
3
|
Russell J, Chen L, Liu A, Wang J, Ghosh S, Zhong X, Shi H, Beutler B, Nair-Gill E. Lrp10 suppresses IL7R limiting CD8 T cell homeostatic expansion and anti-tumor immunity. EMBO Rep 2024; 25:3601-3626. [PMID: 38956225 PMCID: PMC11315911 DOI: 10.1038/s44319-024-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.
Collapse
Affiliation(s)
- Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Luming Chen
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Subarna Ghosh
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
4
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Russell J, Chen L, Liu A, Wang J, Ghosh S, Zhong X, Shi H, Beutler B, Nair-Gill E. Lrp10 suppresses IL7R limiting CD8 T cell homeostatic expansion and anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570738. [PMID: 38106103 PMCID: PMC10723380 DOI: 10.1101/2023.12.08.570738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Signals emanating from the T cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T cell function. Through forward genetic screening in mice, we discovered that loss-of-function mutations in LDL receptor related protein 10 ( Lrp10 ) caused naïve and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. Lrp10 was induced with T cell activation and its expression post-translationally suppressed IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhanced T cell homeostatic expansion through IL7R signaling. Lrp10 -deficient mice were also intrinsically resistant to syngeneic tumors. This phenotype depended on dense tumor infiltration of CD8 T cells that displayed increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.
Collapse
|
6
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Guo L, Cao J, Hou J, Li Y, Huang M, Zhu L, Zhang L, Lee Y, Duarte ML, Zhou X, Wang M, Liu CC, Martens Y, Chao M, Goate A, Bu G, Haroutunian V, Cai D, Zhang B. Sex specific molecular networks and key drivers of Alzheimer's disease. Mol Neurodegener 2023; 18:39. [PMID: 37340466 PMCID: PMC10280841 DOI: 10.1186/s13024-023-00624-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Jianwei Hou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Min Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yeji Lee
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael Chao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Vahram Haroutunian
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, MIRECC, Bronx, NY, 10468, USA
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
9
|
Kamal M, Tokmakjian L, Knox J, Mastrangelo P, Ji J, Cai H, Wojciechowski JW, Hughes MP, Takács K, Chu X, Pei J, Grolmusz V, Kotulska M, Forman-Kay JD, Roy PJ. A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle reveals a structure rich in phase-separating proteins. eLife 2022; 11:e79396. [PMID: 36259463 PMCID: PMC9629831 DOI: 10.7554/elife.79396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. Forty-eight percent of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Levon Tokmakjian
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| | - Jessica Knox
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Peter Mastrangelo
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jingxiu Ji
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Hao Cai
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Jakub W Wojciechowski
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Kristóf Takács
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Xiaoquan Chu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Jianfeng Pei
- Department of Computer Science and Technology, Tsinghua UniversityBeijingChina
| | - Vince Grolmusz
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Malgorzata Kotulska
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Julie Deborah Forman-Kay
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Peter J Roy
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| |
Collapse
|
10
|
Grochowska MM, Bonifati V, Mandemakers W. CRISPR/Cas9-mediated LRP10 Knockout in HuTu-80 and HEK 293T Cell Lines. Bio Protoc 2022; 12:e4521. [PMID: 36313194 PMCID: PMC9548521 DOI: 10.21769/bioprotoc.4521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Loss-of-function (LoF) variants in the low-density lipoprotein receptor-related protein 10 gene ( LRP10 ) have been recently implicated in the development of neurodegenerative diseases, including Parkinson's disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB). However, despite the genetic evidence, little is known about the LRP10 protein function in health and disease. Here, we describe a detailed protocol to efficiently generate a LRP10 LoF model in two independent LRP10-expressing cell lines, HuTu-80 and HEK 293T, using the CRISPR/Cas9 genome-editing tool. Our method efficiently generates bi-allelic LRP10 knockout (KO), which can be further utilized to elucidate the physiological LRP10 protein function and to model some aspects of neurodegenerative disorders. Graphical abstract: CRISPR/Cas9 workflow for the generation of the LRP10 KO. (1) Designed single guide RNA (sgRNA) is cloned into CRISPR/Cas9 px458 plasmid. (2) Cells are transfected with the CRISPR/Cas9 plasmid containing sgRNA. (3) Two days post transfection, cells are dissociated and sorted as single cells by fluorescence-activated cell sorting (FACS). (4) After several weeks, expanded clonal lines are (5) verified with Sanger sequencing for the presence of INDELs ( in sertions or del etions), RT-qPCR for the amounts of LRP10 mRNA transcript, and Western blotting for the analysis of the LRP10 protein levels.
Collapse
Affiliation(s)
- Martyna M. Grochowska
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
,
*For correspondence:
;
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Wim Mandemakers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
,
*For correspondence:
;
| |
Collapse
|
11
|
Ultra-sensitive techniques for detecting neurological biomarkers: Prospects for early diagnosis. Biochem Biophys Res Commun 2021; 584:15-18. [PMID: 34753063 DOI: 10.1016/j.bbrc.2021.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
Identifying reliable biomarkers and ultra-sensitive techniques are crucial for the early detection of neurodegenerative disorders (NDDs) to improve the clinical diagnosis and development of effective disease-modifying treatments. Here, we discussed recent technological advancements that enabled scientists to monitor brain health by detecting biological molecules even at lower levels. These technologies enabled the detection of neurological biomarkers in blood, revolutionizing the diagnosis and prognosis of NDDs. Moreover, it provided a better understanding of disease pathology's long-term effects, resulting in fewer invasive tests, early diagnosis, faster drug development, and possibly more effective therapies as possible outcomes.
Collapse
|
12
|
Cuchillo-Ibañez I, Lennol MP, Escamilla S, Mata-Balaguer T, Valverde-Vozmediano L, Lopez-Font I, Ferrer I, Sáez-Valero J. The apolipoprotein receptor LRP3 compromises APP levels. Alzheimers Res Ther 2021; 13:181. [PMID: 34727970 PMCID: PMC8565065 DOI: 10.1186/s13195-021-00921-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aβ42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPβ) pathways, as well as Aβ peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucía Valverde-Vozmediano
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Neuropatología, Hospital Universitario de Bellvitge, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
13
|
Liao TW, Wang CC, Chung WH, Su SC, Chin SH, Fung HC, Wu YR. Role of LRP10 in Parkinson's disease in a Taiwanese cohort. Parkinsonism Relat Disord 2021; 89:79-83. [PMID: 34246039 DOI: 10.1016/j.parkreldis.2021.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Variants in the low-density lipoprotein receptor-related protein 10 (LRP10), linked to inherited forms of α-synucleinopathies, have been reported. Nine variants of LRP10 were identified in the first such report, and subsequent studies have identified possible pathogenic variants in patients with sporadic Parkinson's disease (PD). Few studies have investigated the role of LRP10 in PD. We sought to validate the role of this gene in Taiwanese patients with PD. METHODS In total, 1277 individuals were included in this study (669 had PD and 608 were controls). The entire LRP10 coding exons and exon-intron boundaries were sequenced in 103 probands with early-onset PD or familial PD. We then genotyped the newly identified variants from the 103 patients and previously reported potential pathogenic variants in our cohort. The frequencies of variants were analyzed. RESULTS Five new and possibly pathogenic variants were identified initially. In total, 14 potentially pathogenic variants (including nine previously reported and five newly identified variants) were analyzed thereafter. We did not find any significant associations between any variant and the risk of PD. However, c.1424+5delG was identified in a patient with sporadic PD who was diagnosed as having PD and dementia and who had prominent psychiatric symptoms. CONCLUSION Although we identified a patient with sporadic PD and dementia carrying a c.1424+5delG variant, our data did not provide sufficient evidence to support the role of LRP10 in PD in Taiwanese adults.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Szu-Han Chin
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hon Chung Fung
- Fu Jen Faculty of Theology of St. Robert Bellarmine, Fu Jen University Clinic Taiwan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan,Taiwan.
| |
Collapse
|
14
|
Grochowska MM, Carreras Mascaro A, Boumeester V, Natale D, Breedveld GJ, Geut H, van Cappellen WA, Boon AJW, Kievit AJA, Sammler E, Parchi P, Cortelli P, Alessi DR, van de Berg WDJ, Bonifati V, Mandemakers W. LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol 2021; 142:117-137. [PMID: 33913039 PMCID: PMC8217053 DOI: 10.1007/s00401-021-02313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Loss-of-function variants in the low-density lipoprotein receptor-related protein 10 (LRP10) gene have been associated with autosomal-dominant Parkinson's disease (PD), PD dementia, and dementia with Lewy bodies (DLB). Moreover, LRP10 variants have been found in individuals diagnosed with progressive supranuclear palsy and amyotrophic lateral sclerosis. Despite this genetic evidence, little is known about the expression and function of LRP10 protein in the human brain under physiological or pathological conditions. To better understand how LRP10 variants lead to neurodegeneration, we first performed an in-depth characterisation of LRP10 expression in post-mortem brains and human-induced pluripotent stem cell (iPSC)-derived astrocytes and neurons from control subjects. In adult human brain, LRP10 is mainly expressed in astrocytes and neurovasculature but undetectable in neurons. Similarly, LRP10 is highly expressed in iPSC-derived astrocytes but cannot be observed in iPSC-derived neurons. In astrocytes, LRP10 is present at trans-Golgi network, plasma membrane, retromer, and early endosomes. Interestingly, LRP10 also partially co-localises and interacts with sortilin-related receptor 1 (SORL1). Furthermore, although LRP10 expression and localisation in the substantia nigra of most idiopathic PD and DLB patients and LRP10 variant carriers diagnosed with PD or DLB appeared unchanged compared to control subjects, significantly enlarged LRP10-positive vesicles were detected in a patient carrying the LRP10 p.Arg235Cys variant. Last, LRP10 was detected in Lewy bodies (LB) at late maturation stages in brains from idiopathic PD and DLB patients and in LRP10 variant carriers. In conclusion, high LRP10 expression in non-neuronal cells and undetectable levels in neurons of control subjects indicate that LRP10-mediated pathogenicity is initiated via cell non-autonomous mechanisms, potentially involving the interaction of LRP10 with SORL1 in vesicle trafficking pathways. Together with the specific pattern of LRP10 incorporation into mature LBs, these data support an important mechanistic role for disturbed vesicle trafficking and loss of LRP10 function in neurodegenerative diseases.
Collapse
Affiliation(s)
- Martyna M Grochowska
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Domenico Natale
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Centre (OIC), Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Neurology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Manini A, Straniero L, Monfrini E, Percetti M, Vizziello M, Franco G, Rimoldi V, Zecchinelli A, Pezzoli G, Corti S, Comi GP, Duga S, Di Fonzo A. Screening of LRP10 mutations in Parkinson's disease patients from Italy. Parkinsonism Relat Disord 2021; 89:17-21. [PMID: 34216936 DOI: 10.1016/j.parkreldis.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) belongs to a family of neurodegenerative diseases characterized by alpha-synuclein accumulation in neurons, whose etiopathogenesis remains largely uncovered. Recently, LRP10 has been associated with PD, Parkinson's disease Dementia (PDD) and Dementia with Lewy Bodies (DLB) by linkage analysis and positional cloning in an Italian family with late-onset PD. After the first characterization of a LRP10 pathogenic variant, other eight mutations have been detected in an international series of 660 probands with either a clinical or pathological diagnosis of PD, PDD or DLB. However, the results of following replication studies were inconclusive and the pathogenic role of LRP10 is still debated. The aim of this study is to sequence the LRP10 gene in an Italian cohort of clinically-diagnosed PD patients and to compare the frequency of the identified variants with the ones found in a large cohort of Italian exomes. METHODS A cohort of 664 PD patients was analyzed by targeted Next Generation Sequencing approach. Identified LRP10 variants were subsequently confirmed by Sanger sequencing and searched for in an in-house database including 3596 Italian exomes. RESULTS We identified three PD patients carrying a rare heterozygous, potentially pathogenic variant (p.R296C, p.R549Q, p.R661C). None of them was detected in 3596 Italian exomes. Two of them (p.R296C and p.R661C) have been previously reported in one sporadic PD and one definite Progressive supranuclear palsy patients respectively. All three carriers had late-onset PD responsive to levodopa, characterized by both motor and non-motor features, but no cognitive impairment. CONCLUSION We report three rare possibly-pathogenic LRP10 variants in PD patients from Italy. Further investigations are required to definitively establish their role in alpha-synucleinopathies.
Collapse
Affiliation(s)
- Arianna Manini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Percetti
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Maria Vizziello
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Franco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Anna Zecchinelli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy; Parkinson Institute, ASST "Gaetano Pini-CTO", Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy; Parkinson Institute, ASST "Gaetano Pini-CTO", Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo Pietro Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
16
|
Vergouw LJM, Geut H, Breedveld G, Kuipers DJS, Quadri M, Rozemuller AJM, van Swieten JC, de Jong FJ, van de Berg WDJ, Bonifati V. Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia. J Alzheimers Dis 2021; 76:1161-1170. [PMID: 32597809 PMCID: PMC7505004 DOI: 10.3233/jad-200318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Objective: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. Methods: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. Results: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer’s disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. Conclusion: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Hanneke Geut
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Guido Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Demy J S Kuipers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marialuisa Quadri
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | | | - Annemieke J M Rozemuller
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John C van Swieten
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Frank Jan de Jong
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
18
|
Jiang S, Zhang CY, Tang L, Zhao LX, Chen HZ, Qiu Y. Integrated Genomic Analysis Revealed Associated Genes for Alzheimer's Disease in APOE4 Non-Carriers. Curr Alzheimer Res 2020; 16:753-763. [PMID: 31441725 DOI: 10.2174/1567205016666190823124724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). LOAD patients carrying or not carrying APOE4 manifest distinct clinico-pathological characteristics. APOE4 has been shown to play a critical role in the pathogenesis of AD by affecting various aspects of pathological processes. However, the pathogenesis involved in LOAD not-carrying APOE4 remains elusive. OBJECTIVE We aimed to identify the associated genes involved in LOAD not-carrying APOE4. METHODS An integrated genomic analysis of datasets of genome-wide association study, genome-wide expression profiling and genome-wide linkage scan and protein-protein interaction network construction were applied to identify associated gene clusters in APOE4 non-carriers. The role of one of hub gene of an APOE4 non-carrier-associated gene cluster in tau phosphorylation was studied by knockdown and western blot. RESULTS We identified 12 gene clusters associated with AD APOE4 non-carriers. The hub genes associated with AD in these clusters were MAPK8, POU2F1, XRCC1, PRKCG, EXOC6, VAMP4, SIRT1, MME, NOS1, ABCA1 and LDLR. The associated genes for APOE4 non-carriers were enriched in hereditary disorder, neurological disease and psychological disorders. Moreover, knockdown of PRKCG to reduce the expression of protein kinase Cγ isoform enhanced tau phosphorylation at Thr181 and Thr231 and the expression of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in the presence of APOE3 but not APOE4. CONCLUSION The study provides new insight into the mechanism of distinct pathogenesis of LOAD not carrying APOE4 and prompts the functional exploration of identified genes based on APOE genotypes.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Chun-Yun Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling Tang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Vergouw LJM, Melhem S, Donker Kaat L, Chiu WZ, Kuipers DJS, Breedveld G, Boon AJW, Wang LS, Naj AC, Mlynarksi E, Cantwell L, Quadri M, Ross OA, Dickson DW, Schellenberg GD, van Swieten JC, Bonifati V, de Jong FJ. LRP10 variants in progressive supranuclear palsy. Neurobiol Aging 2020; 94:311.e5-311.e10. [PMID: 32527607 PMCID: PMC8281359 DOI: 10.1016/j.neurobiolaging.2020.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/31/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
The aim of this study was to explore whether variants in LRP10, recently associated with Parkinson's disease and dementia with Lewy bodies, are observed in 2 large cohorts (discovery and validation cohort) of patients with progressive supranuclear palsy (PSP). A total of 950 patients with PSP were enrolled: 246 patients with PSP (n = 85 possible (35%), n = 128 probable (52%), n = 33 definite (13%)) in the discovery cohort and 704 patients with definite PSP in the validation cohort. Sanger sequencing of all LRP10 exons and exon-intron boundaries was performed in the discovery cohort, and whole-exome sequencing was performed in the validation cohort. Two patients from the discovery cohort and 8 patients from the validation cohort carried a rare, heterozygous, and possibly pathogenic LRP10 variant (p.Gly326Asp, p.Asp389Asn, and p.Arg158His, p.Cys220Tyr, p.Thr278Ala, p.Gly306Asp, p.Glu486Asp, p.Arg554∗, p.Arg661Cys). In conclusion, possibly pathogenic LRP10 variants occur in a small fraction of patients with PSP and may be overrepresented in these patients compared with controls. This suggests that possibly pathogenic LRP10 variants may play a role in the development of PSP.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Laura Donker Kaat
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wang Z Chiu
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Guido Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam C Naj
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mlynarksi
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frank Jan de Jong
- Department of Neurology and Alzheimer Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Analysis of p.Tyr307Asn variant in the LRP10 gene in Parkinson’s disease in southern Spain. Neurobiol Aging 2020; 93:142.e1-142.e3. [DOI: 10.1016/j.neurobiolaging.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 01/19/2023]
|
21
|
Li C, Chen Y, Ou R, Gu X, Wei Q, Cao B, Zhang L, Hou Y, Liu K, Chen X, Song W, Zhao B, Wu Y, Shang H. Mutation analysis of LRP10 in a large Chinese familial Parkinson disease cohort. Neurobiol Aging 2020; 99:99.e1-99.e6. [PMID: 32950273 DOI: 10.1016/j.neurobiolaging.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Recently, LRP10 has been identified as a causative gene for Parkinson's disease (PD). However, subsequent studies showed inconsistent conclusions. To explore its relevance to PD, we systematically analyzed LRP10 rare mutations in a large Han Chinese familial PD cohort of 385 unrelated probands using segregation analysis, transcriptional effect analysis, and burden test. As a result, 3 missense variants and 1 splicing region variant in LRP10 were identified in 4 probands. Segregation analysis revealed 1 variant p.Arg66His cosegregating with PD status, 1 variant p.Ala613Ser not, and the other variant p.Gln581His unknown. The variant c.406+5G>T located at the splicing region has no effect on splicing, suggesting it is likely a rare neutral intronic variant. The burden test suggested no significant over-representation of rare variants in PD probands. Therefore, more robust independent studies are warranted to explore the pathogenicity of LRP10 mutations.
Collapse
Affiliation(s)
- ChunYu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - YongPing Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - RuWei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - XiaoJing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - QianQian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - LingYu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - YanBing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - KunCheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - XuePing Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - HuiFang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Rare, pathogenic variants in LRP10 are associated with amyotrophic lateral sclerosis in patients from mainland China. Neurobiol Aging 2020; 97:145.e17-145.e22. [PMID: 32690342 DOI: 10.1016/j.neurobiolaging.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Low-density lipoprotein receptor-related protein 10 (LRP10) is associated with a series of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease which share genetic risk factors and pathophysiological processes with amyotrophic lateral sclerosis (ALS). To investigate whether LRP10 variants could cause a predisposition to ALS, we screened rare, pathogenic LRP10 variants among a cohort of 584 patients with ALS from mainland China and performed burden analysis using data from a large external database. A total of 7 rare, pathogenic variants in LRP10, of which one (c.1182A>T, p.R394S) was novel, were identified in 11 unrelated patients. Burden analysis revealed significant associations between ALS and LRP10 at both the gene and single-variant levels (c.1721G>A, p.R574Q; c.1182A>T, p.R394S; and c.1681C>T, p.R561C). Interestingly, patients with sporadic ALS carrying variant c.1721G>A tended to have a bulbar onset, increased phenotype severity, and a worse prognosis. Our findings first provide independent evidence that rare, pathogenic LRP10 variants may be risk factors for ALS and delineate a special phenotype in patients with sporadic ALS carrying variant c.1721G>A.
Collapse
|
23
|
Parkinson's disease: proteinopathy or lipidopathy? NPJ PARKINSONS DISEASE 2020; 6:3. [PMID: 31909184 PMCID: PMC6941970 DOI: 10.1038/s41531-019-0103-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Lipids play a more significant role in Parkinson’s disease and its related brain disorders than is currently recognized, supporting a “lipid cascade”. The 14 kDa protein α-synuclein (αS) is strongly associated with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), other synucleinopathies such as multiple system atrophy, and even certain forms of Alzheimer’s disease. Rigorously deciphering the biochemistry of αS in native systems is the key to developing treatments. αS is highly expressed in the brain, the second most lipid-rich organ, and has been proposed to be a lipid-binding protein that physiologically interacts with phospholipids and fatty acids (FAs). αS-rich cytoplasmic inclusions called Lewy bodies and Lewy neurites are the hallmark lesions of synucleinopathies. Excess αS–membrane interactions may trigger proteinaceous αS aggregation by stimulating its primary nucleation. However, αS may also exert its toxicity prior to or independent of its self-aggregation, e.g., via excessive membrane interactions, which may be promoted by certain lipids and FAs. A complex αS-lipid landscape exists, which comprises both physiological and pathological states of αS. As novel insights about the composition of Lewy lesions occur, new lipid-related PD drug candidates emerge, and genome-wide association studies (GWAS) increasingly validate new hits in lipid-associated pathways, it seems timely to review our current knowledge of lipids in PD and consider the roles for these pathways in synucleinopathies.αS ↔ lipid interplay: aspects of cellular αS homeostasis (blue oval), aspects of lipid homeostasis (green oval), and overlapping aspects. Pathological states are labeled in red. Simplified schematic of both select αS and select lipid species. Several existing publications suggest αS effects on lipids and vice versa, as indicated by arrows. DG diglyceride, ER endoplasmic reticulum, FA fatty acid, LD, lipid droplet, TG triglyceride. ![]()
Collapse
|
24
|
Mutation analysis of LRP10 in Japanese patients with familial Parkinson's disease, progressive supranuclear palsy, and frontotemporal dementia. Neurobiol Aging 2019; 84:235.e11-235.e16. [DOI: 10.1016/j.neurobiolaging.2019.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
|
25
|
Uemura T, Waguri S. Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anat Sci Int 2019; 95:12-21. [DOI: 10.1007/s12565-019-00505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
|
26
|
Zhang Y, Xie H, Tang W, Zeng X, Lin Y, Xu L, Xiao L, Xu J, Wu Z, Yuan D. Trichostatin A, a Histone Deacetylase Inhibitor, Alleviates Eosinophilic Meningitis Induced by Angiostrongylus cantonensis Infection in Mice. Front Microbiol 2019; 10:2280. [PMID: 31636619 PMCID: PMC6787401 DOI: 10.3389/fmicb.2019.02280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase inhibitor (HDACi) has been used in the treatment of neurodegenerative or autoimmune diseases. Angiostrongyliasis cantonensis caused by Angiostrongylus cantonensis infection is an emerging zoonosis of human eosinophilic meningitis or meningoencephalitis. Progressive neuronal apoptosis is the pathological basis of behavioral dysfunctions in angiostrongyliasis cantonensis. Neurological defects after anthelmintic treatment for angiostrongyliasis cantonensis are still common. In this study, we examined the effects of trichostatin A (TSA), a HDACi, on eosinophilic meningitis induced by A. cantonensis in mice. Intragastric administration of TSA significantly ameliorated brain injury and decreased cognitive impairments in mice at 15 days post-infection. TSA administration effectively reduced the inflammatory factor levels of iNOS, TNF-α, IL-5, IL-6, and IL-13 in infected mice. TSA treatment counteracted apoptosis with reduced expression levels of cleaved caspase-3, -4, -6, and RIP3 in A. cantonensis infected mice. In addition, TSA administration reduced total HDAC activity and increased the acetylation of histone H3 and H4 in the brain tissue of infected mice. The underlying mechanism of TSA on eosinophilic meningitis might be associated with decreased NF-κB p65 nuclear accumulation by inhibiting IκB phosphorylation. Furthermore, a co-expressive network of NF-κB p65 with 22 other genes was constructed according to our previous transcriptomic data in infected mice. We identified the correlations in the gene expression of NF-κB p65 with Lrp10, Il12rb1, Nfkbia, Ube2n, and Ube2d1 in infected mice after TSA administration. Thus, TSA has a protective effect on the progression of eosinophilic meningitis induced by A. cantonensis in mice.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Hui Xie
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Wenyan Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingda Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yu Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lian Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Dongjuan Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 825] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
28
|
Hybertson BM, Gao B, Bose S, McCord JM. Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury. Antioxidants (Basel) 2019; 8:antiox8050119. [PMID: 31058853 PMCID: PMC6563026 DOI: 10.3390/antiox8050119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Bioactive phytochemicals in Rosmarinus officinalis, Withania somnifera, and Sophora japonica have a long history of human use to promote health. In this study we examined the cellular effects of a combination of extracts from these plant sources based on specified levels of their carnosol/carnosic acid, withaferin A, and luteolin levels, respectively. Individually, these bioactive compounds have previously been shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which binds to the antioxidant response element (ARE) and regulates the expression of a wide variety of cytoprotective genes. We found that combinations of these three plant extracts act synergistically to activate the Nrf2 pathway, and we identified an optimized combination of the three agents which we named PB125 for use as a dietary supplement. Using microarray, quantitative reverse transcription-PCR, and RNA-seq technologies, we examined the gene expression induced by PB125 in HepG2 (hepatocellular carcinoma) cells, including canonical Nrf2-regulated genes, noncanonical Nrf2-regulated genes, and genes which appear to be regulated by non-Nrf2 mechanisms. Ingenuity Pathway Analysis identified Nrf2 as the primary pathway for gene expression changes by PB125. Pretreatment with PB125 protected cultured HepG2 cells against an oxidative stress challenge caused by cumene hydroperoxide exposure, by both cell viability and cell injury measurements. In summary, PB125 is a phytochemical dietary supplement comprised of extracts of three ingredients, Rosmarinus officinalis, Withania somnifera, and Sophora japonica, with specified levels of carnosol/carnosic acid, withaferin A, and luteolin, respectively. Each ingredient contributes to the activation of the Nrf2 pathway in unique ways, which leads to upregulation of cytoprotective genes and protection of cells against oxidative stress and supports the use of PB125 as a dietary supplement to promote healthy aging.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Qiao GJ, Chen L, Wu JC, Li ZR. Identification of an eight-gene signature for survival prediction for patients with hepatocellular carcinoma based on integrated bioinformatics analysis. PeerJ 2019; 7:e6548. [PMID: 30918751 PMCID: PMC6431139 DOI: 10.7717/peerj.6548] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/25/2019] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death worldwide. Despite recent advances in imaging techniques and therapeutic intervention for HCC, the low overall 5-year survival rate of HCC patients remains unsatisfactory. This study aims to find a gene signature to predict clinical outcomes in HCC. Methods Bioinformatics analysis including Cox’s regression analysis, Kaplan-Meier (KM) and receiver operating characteristic curve (ROC) analysis and the random survival forest algorithm were performed to mine the expression profiles of 553 hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public database. Results We selected a signature comprising eight protein-coding genes (DCAF13, FAM163A, GPR18, LRP10, PVRIG, S100A9, SGCB, and TNNI3K) in the training dataset (AUC = 0.77 at five years, n = 332). The signature stratified patients into high- and low-risk groups with significantly different survival in the training dataset (median 2.20 vs. 8.93 years, log-rank test P < 0.001) and in the test dataset (median 2.68 vs. 4.24 years, log-rank test P = 0.004, n = 221, GSE14520). Further multivariate Cox regression analysis showed that the signature was an independent prognostic factor for patients with HCC. Compared with TNM stage and another reported three-gene model, the signature displayed improved survival prediction power in entire dataset (AUC signature = 0.66 vs. AUC TNM = 0.64 vs. AUC gene model = 0.60, n = 553). Stratification analysis shows that it can be used as an auxiliary marker for many traditional staging models. Conclusions We constructed an eight-gene signature that can be a novel prognostic marker to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Guo-Jie Qiao
- Institute of Tropical Agriculture and Forestry, Hainan University, Hainkou, China.,Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Hainan Medical College, Hainkou, China
| | - Liang Chen
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Hainan Medical College, Hainkou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Hainan Medical College, Hainkou, China
| | - Zhou-Ri Li
- Institute of Tropical Agriculture and Forestry, Hainan University, Hainkou, China.,Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Hainan Medical College, Hainkou, China
| |
Collapse
|
30
|
Quadri M, Mandemakers W, Grochowska MM, Masius R, Geut H, Fabrizio E, Breedveld GJ, Kuipers D, Minneboo M, Vergouw LJM, Carreras Mascaro A, Yonova-Doing E, Simons E, Zhao T, Di Fonzo AB, Chang HC, Parchi P, Melis M, Correia Guedes L, Criscuolo C, Thomas A, Brouwer RWW, Heijsman D, Ingrassia AMT, Calandra Buonaura G, Rood JP, Capellari S, Rozemuller AJ, Sarchioto M, Fen Chien H, Vanacore N, Olgiati S, Wu-Chou YH, Yeh TH, Boon AJW, Hoogers SE, Ghazvini M, IJpma AS, van IJcken WFJ, Onofrj M, Barone P, Nicholl DJ, Puschmann A, De Mari M, Kievit AJ, Barbosa E, De Michele G, Majoor-Krakauer D, van Swieten JC, de Jong FJ, Ferreira JJ, Cossu G, Lu CS, Meco G, Cortelli P, van de Berg WDJ, Bonifati V. LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies: a genome-wide linkage and sequencing study. Lancet Neurol 2018; 17:597-608. [PMID: 29887161 DOI: 10.1016/s1474-4422(18)30179-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. METHODS Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. FINDINGS Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent-albeit limited-evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. INTERPRETATION Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. FUNDING Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
Collapse
Affiliation(s)
- Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Roy Masius
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands; Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Edito Fabrizio
- Department of Neurological Sciences, "Sapienza" Università degli Studi di Roma, Rome, Italy
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Demy Kuipers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Michelle Minneboo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Leonie J M Vergouw
- Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Ekaterina Yonova-Doing
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Medical Research Council/British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Erik Simons
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Avans Hogeschool, Breda, Netherlands
| | - Tianna Zhao
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessio B Di Fonzo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hsiu-Chen Chang
- Neuroscience Research Centre, Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Marta Melis
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Leonor Correia Guedes
- Department of Neurosciences and Mental Health, Neurology, Santa Maria Hospital, Centro Hospitalar Lisboa Norte (CHLN), Lisbon, Portugal; Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging, and Medical Sciences, Gabriele d'Annunzio University, Chieti-Pescara, Italy; Aging Research Centre, Centro di Scienze dell'invecchiamento, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | | | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Angela M T Ingrassia
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Giovanna Calandra Buonaura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Janneke P Rood
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sabina Capellari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; UOC Clinica Neurologica, Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy
| | - Annemieke J Rozemuller
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Marianna Sarchioto
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Hsin Fen Chien
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Nicola Vanacore
- National Centre for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Bluebee, Rijswijk, Netherlands
| | - Yah-Huei Wu-Chou
- Human Molecular Genetics Laboratory, Department of Medical Research, Chang Gung Memorial Hospital and Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, and School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Agnita J W Boon
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Susanne E Hoogers
- Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus Medical Center, Rotterdam, Netherlands
| | - Arne S IJpma
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Marco Onofrj
- Department of Neuroscience, Imaging, and Medical Sciences, Gabriele d'Annunzio University, Chieti-Pescara, Italy; Aging Research Centre, Centro di Scienze dell'invecchiamento, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Paolo Barone
- Centre for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Salerno, Italy
| | | | - Andreas Puschmann
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | | | - Anneke J Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Egberto Barbosa
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | | | | | - Frank J de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Chin-Song Lu
- Neuroscience Research Centre, Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Giuseppe Meco
- Department of Neurology and Psychiatry, Research Centre for Social Diseases (CIMS), "Sapienza" Università degli Studi di Roma, Rome, Italy; Neurological Centre of Latium [Gruppo NEUROMED]) Centro Studi Clinici Malattia di Parkinson, Rome, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands.
| | | |
Collapse
|
31
|
A novel link between trafficking and Lewy body disorders. Lancet Neurol 2018; 17:571-573. [PMID: 29887160 DOI: 10.1016/s1474-4422(18)30214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
|
32
|
Mañucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF. Cellular Trafficking of Amyloid Precursor Protein in Amyloidogenesis Physiological and Pathological Significance. Mol Neurobiol 2018; 56:812-830. [PMID: 29797184 DOI: 10.1007/s12035-018-1106-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 12/26/2022]
Abstract
The accumulation of excess intracellular or extracellular amyloid beta (Aβ) is one of the key pathological events in Alzheimer's disease (AD). Aβ is generated from the cleavage of amyloid precursor protein (APP) by beta secretase-1 (BACE1) and gamma secretase (γ-secretase) within the cells. The endocytic trafficking of APP facilitates amyloidogenesis while at the cell surface, APP is predominantly processed in a non-amyloidogenic manner. Several adaptor proteins bind to both APP and BACE1, regulating their trafficking and recycling along the secretory and endocytic pathways. The phosphorylation of APP at Thr668 and BACE1 at Ser498, also influence their trafficking. Neurotrophins and proneurotrophins also influence APP trafficking through their receptors. In this review, we describe the molecular trafficking pathways of APP and BACE1 that lead to Aβ generation, the involvement of different signaling molecules or adaptor proteins regulating APP and BACE1 subcellular localization. We have also discussed how neurotrophins could modulate amyloidogenesis through their receptors.
Collapse
Affiliation(s)
- Noralyn Basco Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Khalil Saadipour
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
33
|
Miller JA, Guillozet-Bongaarts A, Gibbons LE, Postupna N, Renz A, Beller AE, Sunkin SM, Ng L, Rose SE, Smith KA, Szafer A, Barber C, Bertagnolli D, Bickley K, Brouner K, Caldejon S, Chapin M, Chua ML, Coleman NM, Cudaback E, Cuhaciyan C, Dalley RA, Dee N, Desta T, Dolbeare TA, Dotson NI, Fisher M, Gaudreault N, Gee G, Gilbert TL, Goldy J, Griffin F, Habel C, Haradon Z, Hejazinia N, Hellstern LL, Horvath S, Howard K, Howard R, Johal J, Jorstad NL, Josephsen SR, Kuan CL, Lai F, Lee E, Lee F, Lemon T, Li X, Marshall DA, Melchor J, Mukherjee S, Nyhus J, Pendergraft J, Potekhina L, Rha EY, Rice S, Rosen D, Sapru A, Schantz A, Shen E, Sherfield E, Shi S, Sodt AJ, Thatra N, Tieu M, Wilson AM, Montine TJ, Larson EB, Bernard A, Crane PK, Ellenbogen RG, Keene CD, Lein E. Neuropathological and transcriptomic characteristics of the aged brain. eLife 2017; 6. [PMID: 29120328 PMCID: PMC5679757 DOI: 10.7554/elife.31126] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.
Collapse
Affiliation(s)
| | | | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, United States
| | - Anne Renz
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Allison E Beller
- Department of Pathology, University of Washington, Seattle, United States
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, United States
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, United States
| | - Shannon E Rose
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, United States
| | - Chris Barber
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, United States
| | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, United States
| | - Mindy L Chua
- Department of Pathology, University of Washington, Seattle, United States
| | - Natalie M Coleman
- Department of Pathology, University of Washington, Seattle, United States
| | - Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, United States
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, United States
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, United States
| | - Tim A Dolbeare
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Fisher
- Allen Institute for Brain Science, Seattle, United States
| | | | - Garrett Gee
- Allen Institute for Brain Science, Seattle, United States
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, United States
| | - Fiona Griffin
- Allen Institute for Brain Science, Seattle, United States
| | - Caroline Habel
- Allen Institute for Brain Science, Seattle, United States
| | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, United States
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, United States
| | - Leanne L Hellstern
- Department of Pathology, University of Washington, Seattle, United States
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Kim Howard
- Department of Pathology, University of Washington, Seattle, United States
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, United States
| | - Justin Johal
- Allen Institute for Brain Science, Seattle, United States
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, United States
| | - Samuel R Josephsen
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Florence Lai
- Allen Institute for Brain Science, Seattle, United States
| | - Eric Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, United States
| | - Xianwu Li
- Department of Pathology, University of Washington, Seattle, United States
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, United States
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, United States
| | | | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Elizabeth Y Rha
- Department of Pathology, University of Washington, Seattle, United States
| | - Samantha Rice
- Department of Pathology, University of Washington, Seattle, United States
| | - David Rosen
- Allen Institute for Brain Science, Seattle, United States
| | - Abharika Sapru
- Department of Pathology, University of Washington, Seattle, United States
| | - Aimee Schantz
- Department of Pathology, University of Washington, Seattle, United States
| | - Elaine Shen
- Allen Institute for Brain Science, Seattle, United States
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, United States
| | - Shu Shi
- Allen Institute for Brain Science, Seattle, United States
| | - Andy J Sodt
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, United States
| | - Angela M Wilson
- Department of Pathology, University of Washington, Seattle, United States
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, United States
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, United States
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, United States
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| |
Collapse
|
34
|
Gonias SL, Karimi-Mostowfi N, Murray SS, Mantuano E, Gilder AS. Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival. PLoS One 2017; 12:e0186649. [PMID: 29088295 PMCID: PMC5663383 DOI: 10.1371/journal.pone.0186649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional databases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR) mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research.
Collapse
Affiliation(s)
- Steven L. Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Nicki Karimi-Mostowfi
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- The Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrew S. Gilder
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
35
|
Lanchec E, Désilets A, Béliveau F, Flamier A, Mahmoud S, Bernier G, Gris D, Leduc R, Lavoie C. The type II transmembrane serine protease matriptase cleaves the amyloid precursor protein and reduces its processing to β-amyloid peptide. J Biol Chem 2017; 292:20669-20682. [PMID: 29054928 DOI: 10.1074/jbc.m117.792911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
Recent studies have reported that many proteases, besides the canonical α-, β-, and γ-secretases, cleave the amyloid precursor protein (APP) and modulate β-amyloid (Aβ) peptide production. Moreover, specific APP isoforms contain Kunitz protease-inhibitory domains, which regulate the proteolytic activity of serine proteases. This prompted us to investigate the role of matriptase, a member of the type II transmembrane serine protease family, in APP processing. Using quantitative RT-PCR, we detected matriptase mRNA in several regions of the human brain with an enrichment in neurons. RNA sequencing data of human dorsolateral prefrontal cortex revealed relatively high levels of matriptase RNA in young individuals, whereas lower levels were detected in older individuals. We further demonstrate that matriptase and APP directly interact with each other and that matriptase cleaves APP at a specific arginine residue (Arg-102) both in vitro and in cells. Site-directed (Arg-to-Ala) mutagenesis of this cleavage site abolished matriptase-mediated APP processing. Moreover, we observed that a soluble, shed matriptase form cleaves endogenous APP in SH-SY5Y cells and that this cleavage significantly reduces APP processing to Aβ40. In summary, this study identifies matriptase as an APP-cleaving enzyme, an activity that could have important consequences for the abundance of Aβ and in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Erwan Lanchec
- From the Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Antoine Désilets
- From the Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - François Béliveau
- From the Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boulevard de l'Assomption, Montréal, Quebec H1T 2M4, Canada
| | - Shaimaa Mahmoud
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada, and
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boulevard de l'Assomption, Montréal, Quebec H1T 2M4, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Denis Gris
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada, and
| | - Richard Leduc
- From the Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada,
| | - Christine Lavoie
- From the Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada,
| |
Collapse
|
36
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
37
|
Petrov AM, Kasimov MR, Zefirov AL. Cholesterol in the Pathogenesis of Alzheimer's, Parkinson's Diseases and Autism: Link to Synaptic Dysfunction. Acta Naturae 2017; 9:26-37. [PMID: 28461971 PMCID: PMC5406657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
In our previous review, we described brain cholesterol metabolism in control conditions and in the case of some rare neurological pathologies linked to defects in the genes which are directly involved in the synthesis and/or traffic of cholesterol. Here, we have analyzed disruptions in cholesterol homeostasis in widespread neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and autism spectrum disorders. We particularly focused on the synaptic dysfunctions that could arise from changes in both membrane cholesterol availability and oxysterol production. Notably, alterations in the brain cholesterol metabolism and neurotransmission occur in the early stages of these pathologies and the polymorphism of the genes associated with cholesterol homeostasis and synaptic communication affects the risk of onset and severity of these diseases. In addition, pharmacological and genetic manipulations of brain cholesterol homeostasis in animal models frequently have marked effects on the progression of neurodegenerative diseases. Thus, the development of Alzheimer's, Parkinson's and autism spectrum disorders may be partially associated with an imbalance of cholesterol homeostasis that leads to changes in the membrane cholesterol and oxysterol levels that, in turn, modulates key steps in the synaptic transmission.
Collapse
Affiliation(s)
- A. M. Petrov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| | - M. R. Kasimov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| | - A. L. Zefirov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| |
Collapse
|
38
|
Andrew RJ, Kellett KAB, Thinakaran G, Hooper NM. A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. J Biol Chem 2016; 291:19235-44. [PMID: 27474742 DOI: 10.1074/jbc.r116.746032] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolysis of the amyloid precursor protein (APP) liberates various fragments including the proposed initiator of Alzheimer disease-associated dysfunctions, amyloid-β. However, recent evidence suggests that the accepted view of APP proteolysis by the canonical α-, β-, and γ-secretases is simplistic, with the discovery of a number of novel APP secretases (including δ- and η-secretases, alternative β-secretases) and additional metabolites, some of which may also cause synaptic dysfunction. Furthermore, various proteins have been identified that interact with APP and modulate its cleavage by the secretases. Here, we give an overview of the increasingly complex picture of APP proteolysis.
Collapse
Affiliation(s)
- Robert J Andrew
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Katherine A B Kellett
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Gopal Thinakaran
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Nigel M Hooper
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
39
|
Li S, Geiger NH, Soliman ML, Hui L, Geiger JD, Chen X. Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation. J Alzheimers Dis 2016; 47:73-83. [PMID: 26402756 DOI: 10.3233/jad-142223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.
Collapse
|
40
|
Larkin H, Costantino S, Seaman MNJ, Lavoie C. Calnuc Function in Endosomal Sorting of Lysosomal Receptors. Traffic 2016; 17:416-32. [DOI: 10.1111/tra.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Heidi Larkin
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| | - Santiago Costantino
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont; Université de Montréal; Montréal H1T 2M Canada
| | - Matthew N. J. Seaman
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrookes Hospital; University of Cambridge; Cambridge CB2 0XY UK
| | - Christine Lavoie
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| |
Collapse
|
41
|
Gui Y, Duan Z, Qiu X, Tang W, Gober HJ, Li D, Wang L. Multifarious effects of 17-β-estradiol on apolipoprotein E receptors gene expression during osteoblast differentiation in vitro . Biosci Trends 2016; 10:54-66. [DOI: 10.5582/bst.2016.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Zhongliang Duan
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
42
|
Mushirobira Y, Mizuta H, Luo W, Todo T, Hara A, Reading BJ, Sullivan CV, Hiramatsu N. Molecular cloning and partial characterization of a low‐density lipoprotein receptor‐related protein 13 (Lrp13) involved in vitellogenin uptake in the cutthroat trout (
Oncorhynchus clarki
). Mol Reprod Dev 2015; 82:986-1000. [DOI: 10.1002/mrd.22579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yuji Mushirobira
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Hiroko Mizuta
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Wenshu Luo
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Takashi Todo
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Akihiko Hara
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Benjamin J. Reading
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth Carolina
| | | | | |
Collapse
|
43
|
Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P, Baysal BE. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 2015; 6:6881. [PMID: 25898173 PMCID: PMC4411297 DOI: 10.1038/ncomms7881] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
The extent, regulation and enzymatic basis of RNA editing by cytidine deamination are incompletely understood. Here we show that transcripts of hundreds of genes undergo site-specific C>U RNA editing in macrophages during M1 polarization and in monocytes in response to hypoxia and interferons. This editing alters the amino acid sequences for scores of proteins, including many that are involved in pathogenesis of viral diseases. APOBEC3A, which is known to deaminate cytidines of single-stranded DNA and to inhibit viruses and retrotransposons, mediates this RNA editing. Amino acid residues of APOBEC3A that are known to be required for its DNA deamination and anti-retrotransposition activities were also found to affect its RNA deamination activity. Our study demonstrates the cellular RNA editing activity of a member of the APOBEC3 family of innate restriction factors and expands the understanding of C>U RNA editing in mammals. Aberrant RNA editing is linked to a range of neuropsychiatric and chronic diseases. Here Sharma et al. show that APOBEC3A can function as an RNA editing protein in response to physiological stimuli, significantly expanding our understanding of RNA editing and the role this may play in diseases.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - R Thomas Taggart
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Eric D Kannisto
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| | - Sally M Enriquez
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Bora E Baysal
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14203, USA
| |
Collapse
|
44
|
Abstract
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease (AD) pathogenesis and neurodegeneration. This Review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction.
Collapse
|
45
|
Yamashita T, Zhai Y, Kurata T, Hishikawa N, Morimoto N, Ohta Y, Deguchi K, Abe K. Strong Improvement of Apolipoprotein E/Low-Density Lipoprotein Receptor Signals by Telmisartan in Poststroke Spontaneously Hypertensive Stroke Resistant. J Stroke Cerebrovasc Dis 2014; 23:2240-9. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/03/2014] [Accepted: 04/03/2014] [Indexed: 10/24/2022] Open
|
46
|
Chen X, Hui L, Geiger JD. Amyloid beta accumulation in HIV-1 infected brain: the role of altered cholesterol homeostasis. CLINICAL RESEARCH IN HIV/AIDS 2014; 1:1011. [PMID: 30197929 PMCID: PMC6124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The long-term survival of HIV-1 infected individuals credited to the availability and use of effective antiretroviral therapy (ART) is unfortunately now accompanied by an almost 50% prevalence of HIV-1 associated neurocognitive disorder (HAND). Increasingly, it has been realized that HIV-1 infected people on ART have clinical and pathological observations of Alzheimer's disease (AD)-like manifestations including neurocognitive problems, intraneuronal accumulation of amyloid beta (Aβ) protein, and disturbed synaptic integrity. Part of the current challenge facing the medical community and people living with HIV-1 infection is that the pathogenesis of HAND remains unclear, and little is known about how AD-like pathology is developed as a result of HIV-1 infection and/or long-term ART treatment. Here we discuss the potential role of altered plasma cholesterol homeostasis, a prominent feature of HIV-1 infection, on the development of intraneuronal Aβ accumulation in HIV-1 infected brain. We speculate that elevated plasma LDL cholesterol, once it enters brain parenchyma via an increasingly leaky BBB, can be internalized by neurons via receptor-mediated endocytosis, a process that could promote internalization of amyloid beta precursor protein (AβPP). Unlike brain in situ synthesized apoE-cholesterol, apoB-containing LDL-cholesterol could lead to cholesterol accumulation thus disturbing neuronal endolysosome function and ultimately the accumulation of intraneuronal Aβ in HIV-1 infected brain.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| | - Liang Hui
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, USA
| |
Collapse
|
47
|
Acevedo KM, Opazo CM, Norrish D, Challis LM, Li QX, White AR, Bush AI, Camakaris J. Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells. J Biol Chem 2014; 289:11007-11019. [PMID: 24610780 DOI: 10.1074/jbc.m113.538710] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells.
Collapse
Affiliation(s)
- Karla M Acevedo
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Carlos M Opazo
- Florey Institute of Neuroscience and Mental Health, Victoria 3052, Australia, and
| | - David Norrish
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Leesa M Challis
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| | - Qiao-Xin Li
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, Victoria 3052, Australia, and
| | - James Camakaris
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia,.
| |
Collapse
|
48
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
49
|
Chen X, Hui L, Soliman ML, Geiger JD. Altered Cholesterol Intracellular Trafficking and the Development of Pathological Hallmarks of Sporadic AD. ACTA ACUST UNITED AC 2014; 1. [PMID: 25621310 DOI: 10.13188/2376-922x.1000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the rare familial early onset Alzheimer's disease (AD) that results from gene mutations in AbPP and presenilin-1, the pathogenesis of sporadic AD is much more complex and is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, the presence APOE4 is still the single strongest genetic risk factor for sporadic AD. However, the exact underlying mechanism whereby apoE4 contributes to the pathogenesis of sporadic AD remains unclear. Here, we discuss how altered cholesterol intracellular trafficking as a result of apoE4 might contribute to the development of pathological hallmarks of AD including brain deposition of amyloid beta (Ab), neurofibrillary tangles, and synaptic dysfunction.
Collapse
|
50
|
Chen X, Hui L, Geiger JD. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 5. [PMID: 26413387 DOI: 10.4172/2155-9562.1000236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of late-onset sporadic Alzheimer's disease (AD) is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, altered circulating cholesterol homeostasis, independent of the APOE genotype, continues to be implicated in brain deposition of amyloid beta protein (Aβ) and the pathogenesis of AD. It is believed that trafficking of amyloid beta precursor protein (AβPP) into endolysosomes appears to play a critical role in determining amyloidogenic processing of AβPP because this is precisely where two enzymes critically important in AβPP metabolism are located; beta amyloid converting enzyme (BACE-1) and gamma secretase enzyme. We have shown that elevated levels of LDL cholesterol promote AβPP internalization, disturb neuronal endolysosome structure and function, and increase Aβ accumulation in neuronal endolysosomes. Here, we will further discuss the linkage between elevated levels of LDL cholesterol and AD pathogenesis, and explore the underlying mechanisms whereby elevated levels of plasma LDL cholesterol promote amyloidogenesis.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Liang Hui
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| |
Collapse
|