1
|
Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P, Duan Z, Wang X. Latroeggtoxin-VI improves depression by regulating the composition and function of gut microbiota in a mouse model of depression. J Med Microbiol 2025; 74. [PMID: 40202502 DOI: 10.1099/jmm.0.001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Introduction. Depression has become one of the mental diseases that seriously affect human health. Its mechanism is very complex, and many factors influence the condition. An imbalance of the gut microbiota is being considered as a factor that impacts the occurrence and progression of depression. Future therapies may therefore tap into this connection, treating depression through manipulation of the gut microbiome.Hypothesis/Gap Statement. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from Latrodectus tredecimguttatus eggs, was previously demonstrated to inhibit excessive inflammation and improve depression behaviours, suggesting that it might be able to regulate the balance of gut microbiota. The aim of this study was to explore the effects of LPS and LETX-VI on depressive behaviours and gut microbiota and to analyse correlations between changes in the gut microbiota and depressive behaviours.Methodology. A murine model of depression was established, and the effects of LPS and LETX-VI treatment on depressive behaviours and gut microbiota were investigated.Results. In the murine model, depressive behaviour was induced by LPS; the ratio of Firmicutes to Bacteroidetes (F/B) and the number of pro-inflammatory bacteria in the gut microbiota increased (P<0.01), while butyric acid-producing bacteria with anti-inflammatory effect decreased (P<0.05). Furthermore, the metabolic function of the gut microbiota was disrupted, and the level of virulence factors among gut microbiota was up-regulated (P<0.05). Association analysis showed that the changes in the composition and function of gut microbiota were closely related to the depression phenotype of mice, suggesting that the abnormal function of gut microbiota is linked to depression. However, when LETX-VI was applied before LPS injection, the LPS-induced changes in the gut microbiota were alleviated, and the depressive behaviour greatly improved.Conclusion. LETX-VI can prevent depressive behaviour by regulating the composition and/or function of the gut microbiota.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhigui Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
2
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
3
|
Zhang W, Jia J, Yang Y, Ye D, Li Y, Li D, Wang J. Estradiol metabolism by gut microbiota in women's depression pathogenesis: inspiration from nature. Front Psychiatry 2025; 16:1505991. [PMID: 39935532 PMCID: PMC11811108 DOI: 10.3389/fpsyt.2025.1505991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The recurrence and treatment resistance of depression remain significant issues, primarily due to an inadequate understanding of its pathogenesis. Recent scientific evidence indicates that gut microbiota influence estradiol metabolism and are associated with the development of depression in nonpremenopausal women. Integrating existing studies on the regulation of estradiol metabolism by microorganisms in nature and the relevance of its degradation products to depression, recent scientific explorations have further elucidated the key mechanisms by which gut microbiota catabolize estradiol through specific metabolic pathways. These emerging scientific findings suggest that the unique metabolic effects of gut microbiota on estradiol may be one of the central drivers in the onset and course of depression in non-menopausal women.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghan Jia
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Yuhang Yang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Dawei Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
5
|
Hasnain MA, Kang D, Moon GS. Research trends of next generation probiotics. Food Sci Biotechnol 2024; 33:2111-2121. [PMID: 39130671 PMCID: PMC11315851 DOI: 10.1007/s10068-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.
Collapse
Affiliation(s)
- Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Dae‑Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Gi-Seong Moon
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
- Major in Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
6
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
7
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
8
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
9
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Wang Z, Su X. Dose effect of high-docosahexaenoic acid tuna oil on dysbiosis in high-fat diet mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5531-5543. [PMID: 35368101 DOI: 10.1002/jsfa.11908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of tuna oil, which is different from the fish oil commonly studied, and its higher docosahexaenoic acid (DHA) content, have attracted much scientific attention in recent years. In this study, prepared tuna oil with higher DHA (HDTO) content was employed. It was the first to integrate microbiome and metabolome from a dose-effect perspective to investigate the influence of HDTO on gut dysbiosis and metabolic disorders in diet-induced obese mice. RESULTS Higher DHA tuna oil was effective in reversing high-fat-diet-induced metabolic disorders and altering the composition and function of gut microbiota, but these effects were not uniformly dose dependent. The flora and metabolites that were targeted to be regulated by HDTO supplementation were Prevotella, Bifidobacterium, Olsenella, glycine, l-aspartate, l-serine, l-valine, l-isoleucine, l-threonine, l-tyrosine, glyceric acid, glycerol, butanedioic acid, and citrate, respectively. Functional pathway analysis revealed that alterations in these metabolic biomarkers were associated with six main metabolic pathways: glycine, serine, and threonine metabolism; glycerolipid metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis, and the citrate cycle (TCA cycle). CONCLUSION Various doses of HDTO could attenuate endogenous disorders to varying degrees by regulating multiple perturbed pathways to the normal state. This explicit dose research for novel fish oil with high-DHA will provide a valuable reference for those seeking to exploit its clinical therapeutic potential. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- Shandong beiyou biotechnology Co., Ltd., Weifang, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Yang Y, Zhao S, Yang X, Li W, Si J, Yang X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci Lett 2022; 774:136474. [DOI: 10.1016/j.neulet.2022.136474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
|
11
|
Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis 2021; 20:65. [PMID: 34233682 PMCID: PMC8262044 DOI: 10.1186/s12944-021-01491-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its complications constitute a substantial burden. Considerable published research describes the novel relationships between obesity and gut microbiota communities. It is becoming evident that microbiota behave in a pivotal role in their ability to influence homeostatic mechanisms either to the benefit or detriment of host health, the extent of which is not fully understood. A greater understanding of the contribution of gut microbiota towards host pathophysiology is revealing new therapeutic avenues to tackle the global obesity epidemic. This review focuses on causal relationships and associations with obesity, proposed central mechanisms encouraging the development of obesity and promising prospective methods for microbiota manipulation.
Collapse
Affiliation(s)
- A L Cunningham
- Department of Surgery, Swansea Bay University Health Board, Swansea, SA2 8QA, UK. .,Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK.
| | - J W Stephens
- Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - D A Harris
- Department of Surgery, Swansea Bay University Health Board, Swansea, SA2 8QA, UK.,Swansea University Medical School, Swansea University, Swansea, SA2 8QA, UK
| |
Collapse
|
12
|
Kim H, Kim M, Myoung K, Kim W, Ko J, Kim KP, Cho EG. Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry. Int J Mol Sci 2020; 21:E8076. [PMID: 33138039 PMCID: PMC7663264 DOI: 10.3390/ijms21218076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus plantarum is a popular probiotic species due to its safe and beneficial effects on humans; therefore, novel L. plantarum strains have been isolated and identified from various dietary products. Given that bacteria-derived extracellular vesicles (EVs) have been considered as efficient carriers of bioactive materials and shown to evoke cellular responses effectively, L. plantarum-derived EVs are expected to efficiently elicit health benefits. Herein, we identified L. plantarum APsulloc 331261 living in green tea leaves and isolated EVs from the culture medium. We performed quantitative lipidomic analysis of L. plantarum APsulloc 331261 derived EVs (LEVs) using liquid chromatography-mass spectrometry. In comparison to L. plantarum APsulloc 331261, in LEVs, 67 of 320 identified lipid species were significantly increased and 19 species were decreased. In particular, lysophosphatidylserine(18:4) and phosphatidylcholine(32:2) were critically increased, showing over 21-fold enrichment in LEVs. In addition, there was a notable difference between LEVs and the parent cells in the composition of phospholipids. Our results suggest that the lipidomic profile of bacteria-derived EVs is different from that of the parent cells in phospholipid content and composition. Given that lipids are important components of EVs, quantitative and comparative analyses of EV lipids may improve our understanding of vesicle biogenesis and lipid-mediated intercellular communication within or between living organisms.
Collapse
Affiliation(s)
- Hyoseon Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea; (H.K.); (M.K.)
| | - Minjung Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea; (H.K.); (M.K.)
| | - Kilsun Myoung
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea; (K.M.); (W.K.); (J.K.)
| | - Wanil Kim
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea; (K.M.); (W.K.); (J.K.)
- Division of Cosmetic Science & Technology, Daegu Haany University, Gyeongsan 38610, Korea
| | - Jaeyoung Ko
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea; (K.M.); (W.K.); (J.K.)
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea; (H.K.); (M.K.)
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02453, Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, R&D Center, Amorepacific Corporation, Yongin 17074, Korea; (K.M.); (W.K.); (J.K.)
| |
Collapse
|
13
|
Lai J, Jiang J, Zhang P, Xi C, Wu L, Gao X, Zhang D, Du Y, Li Q, Diao X, Lu S, Wang Z, Song X, Hu S. Gut microbial clues to bipolar disorder: State-of-the-art review of current findings and future directions. Clin Transl Med 2020; 10:e146. [PMID: 32898322 PMCID: PMC7423187 DOI: 10.1002/ctm2.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of microorganisms inhabiting in the human gut play an essential role in maintaining physical and mental health. The connections between gut microbiome and neuropsychiatric diseases have been recently identified. The pathogenesis of bipolar disorder, a spectrum of diseases manifesting with mood and energy fluctuations, also seems to be involved in the bidirectional modulation of the microbiome-gut-brain (MGB) axis. In this review, we briefly introduce the concept of MGB axis, and then focus on the previous findings in human studies associated with bipolar disorder. These studies provided preliminary evidences on the gut microbial alterations in bipolar disorder. Limitations in these studies and future directions in this research field, such as fecal microbiome transplantation and microbiome-targeted therapy, were discussed. A research framework linking gut microbiome to determinants and health-related outcomes in BD was also proposed. Better characterizing and understanding of gut microbial biosignatures in bipolar patients contribute to clarify the etiology of this intractable disease and pave the new way for treatment innovation.
Collapse
Affiliation(s)
- Jianbo Lai
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Jiajun Jiang
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peifen Zhang
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caixi Xi
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lingling Wu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xingle Gao
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danhua Zhang
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanli Du
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qunxiao Li
- Department of PsychiatryHangzhou Fuyang Third People's HospitalHangzhouChina
| | - Xiangyuan Diao
- Department of Psychiatrythe First Hospital of JiaxingJiaxingChina
| | - Shaojia Lu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Zheng Wang
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Xueqin Song
- Department of PsychiatryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaohua Hu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| |
Collapse
|
14
|
Gong S, Ye T, Wang M, Wang M, Li Y, Ma L, Yang Y, Wang Y, Zhao X, Liu L, Yang M, Chen H, Qian J. Traditional Chinese Medicine Formula Kang Shuai Lao Pian Improves Obesity, Gut Dysbiosis, and Fecal Metabolic Disorders in High-Fat Diet-Fed Mice. Front Pharmacol 2020; 11:297. [PMID: 32269525 PMCID: PMC7109517 DOI: 10.3389/fphar.2020.00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is a risk factor for many metabolic disorders including cardiovascular diseases, diabetes, and fatty liver disease. Although there are accumulating evidences supporting the assumption that regulating gut microbiota as well as its metabolic status is able to mitigate obesity, the inner relationship between the obesity-related gut microbiota and the relevant metabolites are not well defined. In current study, we applied a traditional herbal formula Kang Shuai Lao Pian (KSLP) to HFD-fed mice and evaluated its effect against obesity. Emphases were addressed on identifying profiles of gut microbiota and fecal metabolites with the aid of 16S rRNA gene sequencing and non-target fecal metabolomics techniques. We showed that KSLP could improve HFD-induced obesity, glucose tolerance disorder, as well as gut dysbiosis. In the gut, KSLP corrected the increased abundance of Firmicutes and Proteobacteria, increased ratio of Firmicutes/Bacteroidetes, and decreased abundance of Bacteroidetes caused by HFD. KSLP also reversed HFD-induced significant changes in the abundance of certain genus including Intestinimonas, Oscillibacter, Christensenellaceae_R-7_group, Ruminococcaceae_UCG-010, and Aliihoeflea. Pearson correlation analysis indicated that except for Ruminococcaceae_UCG-010, other four genera had positive correlations with obesity. In addition, 22 key fecal metabolites responding to KSLP treatment were identified. Pearson correlation analysis showed that those metabolites are intimately related to KSLP effective genera of Intestinimonas, Oscillibacter, and Christensenellaceae_R-7_group. Our results indicate that KSLP is a promising traditional Chinese medicine (TCM) applicable for individuals with HFD habit. Intestinimonas, Oscillibacter, and Christensenellaceae_R-7_group might be responsible for the regulatory effect of KSLP. Linking of obesity phenotypes with gut microbiota as well as fecal metabolites is therefore a powerful research strategy to reveal the mechanism of obesity and the targets of intervention.
Collapse
Affiliation(s)
- Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Mengying Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lina Ma
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulian Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Liu
- Technical Center, Chiatai Qingchunbao Pharmaceutical Co. Ltd, Hangzhou, China
| | - Min Yang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12030792. [PMID: 32192218 PMCID: PMC7146354 DOI: 10.3390/nu12030792] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a public health problem and has a prevalence of 0.6%-1.7% in children. As well as psychiatric symptoms, dysbiosis and gastrointestinal comorbidities are also frequently reported. The gut-brain microbiota axis suggests that there is a form of communication between microbiota and the brain underlying some neurological disabilities. The aim of this study is to describe and compare the composition of gut microbiota in children with and without ASD. METHODS Electronic databases were searched as far as February 2020. Meta-analyses were performed using RevMan5.3 to estimate the overall relative abundance of gut bacteria belonging to 8 phyla and 17 genera in children with ASD and controls. RESULTS We included 18 studies assessing a total of 493 ASD children and 404 controls. The microbiota was mainly composed of the phyla Bacteroidetes, Firmicutes, and Actinobacteria, all of which were more abundant in the ASD children than in the controls. Children with ASD showed a significantly higher abundance of the genera Bacteroides, Parabacteroides, Clostridium, Faecalibacterium, and Phascolarctobacterium and a lower percentage of Coprococcus and Bifidobacterium. DISCUSSION This meta-analysis suggests that there is a dysbiosis in ASD children which may influence the development and severity of ASD symptomatology. Further studies are required in order to obtain stronger evidence of the effectiveness of pre- or probiotics in reducing autistic behaviors.
Collapse
Affiliation(s)
- Lucía Iglesias-Vázquez
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Health Science, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.I.-V.); (V.A.)
| | - Georgette Van Ginkel Riba
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Victoria Arija
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Health Science, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.I.-V.); (V.A.)
| | - Josefa Canals
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- Correspondence: ; Tel.: +34-977-55-80-74
| |
Collapse
|
16
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
17
|
Abstract
The microbiome is proving to be increasingly important for human brain functioning. A series of recent studies have shown that the microbiome influences the central nervous system in various ways, and consequently acts on the psychological well-being of the individual by mediating, among others, the reactions of stress and anxiety. From a specifically neuroethical point of view, according to some scholars, the particular composition of the microbiome-qua microbial community-can have consequences on the traditional idea of human individuality. Another neuroethical aspect concerns the reception of this new knowledge in relation to clinical applications. In fact, attention to the balance of the microbiome-which includes eating behavior, the use of psychobiotics and, in the treatment of certain diseases, the use of fecal microbiota transplantation-may be limited or even prevented by a biased negative attitude. This attitude derives from a prejudice related to everything that has to do with the organic processing of food and, in general, with the human stomach and intestine: the latter have traditionally been regarded as low, dirty, contaminated and opposed to what belongs to the mind and the brain. This biased attitude can lead one to fail to adequately consider the new anthropological conceptions related to the microbiome, resulting in a state of health, both physical and psychological, inferior to what one might have by paying the right attention to the knowledge available today. Shifting from the ubiquitous high-low metaphor (which is synonymous with superior-inferior) to an inside-outside metaphor can thus be a neuroethical strategy to achieve a new and unbiased reception of the discoveries related to the microbiome.
Collapse
|
18
|
Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front Genet 2019; 10:98. [PMID: 30838027 PMCID: PMC6389720 DOI: 10.3389/fgene.2019.00098] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota plays an important role in the bidirectional communication between the gut and the central nervous system. Mounting evidence suggests that gut microbiota can influence the brain function via neuroimmune and neuroendocrine pathways as well as the nervous system. Advances in gene sequencing techniques further facilitate investigating the underlying relationship between gut microbiota and psychiatric disorders. In recent years, researchers have preliminarily explored the gut microbiota in patients with mood disorders. The current review aims to summarize the published human studies of gut microbiota in mood disorders. The findings showed that microbial diversity and taxonomic compositions were significantly changed compared with healthy individuals. Most of these findings revealed that short-chain fatty acids-producing bacterial genera were decreased, while pro-inflammatory genera and those involved in lipid metabolism were increased in patients with depressive episodes. Interestingly, the abundance of Actinobacteria, Enterobacteriaceae was increased and Faecalibacterium was decreased consistently in patients with either bipolar disorder or major depressive disorder. Some studies further indicated that specific bacteria were associated with clinical characteristics, inflammatory profiles, metabolic markers, and pharmacological treatment. These studies present preliminary evidence of the important role of gut microbiota in mood disorders, through the brain-gut-microbiota axis, which emerges as a promising target for disease diagnosis and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Bo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yan-Li Du
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Lie-Min Ruan
- Department of Mental Health, Ningbo First Hospital, Ningbo, China
| | - Shao-Hua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Vray M, Hedible BG, Adam P, Tondeur L, Manirazika A, Randremanana R, Mainassara H, Briend A, Artaud C, von Platen C, Altmann M, Jambou R. A multicenter, randomized controlled comparison of three renutrition strategies for the management of moderate acute malnutrition among children aged from 6 to 24 months (the MALINEA project). Trials 2018; 19:666. [PMID: 30514364 PMCID: PMC6278112 DOI: 10.1186/s13063-018-3027-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this open-label, randomized controlled trial conducted in four African countries (Madagascar, Niger, Central African Republic, and Senegal) is to compare three strategies of renutrition for moderate acute malnutrition (MAM) in children based on modulation of the gut microbiota with enriched flours alone, enriched flours with prebiotics or enriched flours coupled with antibiotic treatment. METHODS To be included, children aged between 6 months and 2 years are preselected based on mid-upper-arm circumference (MUAC) and are included based on a weight-for-height Z-score (WHZ) between - 3 and - 2 standard deviations (SD). As per current protocols, children receive renutrition treatment for 12 weeks and are assessed weekly to determine improvement. The primary endpoint is recovery, defined by a WHZ ≥ - 1.5 SD after 12 weeks of treatment. Data collected include clinical and socioeconomic characteristics, side effects, compliance and tolerance to interventions. Metagenomic analysis of gut microbiota is conducted at inclusion, 3 months, and 6 months. The cognitive development of children is evaluated in Senegal using only the Developmental Milestones Checklist II (DMC II) questionnaire at inclusion and at 3, 6, and 9 months. The data will be correlated with renutrition efficacy and metagenomic data. DISCUSSION This study will provide new insights for the treatment of MAM, as well as original data on the modulation of gut microbiota during the renutrition process to support (or not) the microbiota hypothesis of malnutrition. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT03474276 Last update 28 May 2018.
Collapse
Affiliation(s)
- Muriel Vray
- Unité d’Epidémiologie des Maladies Infectieuses, Institut Pasteur Dakar, Dakar, Senegal
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Boris G. Hedible
- Unité d’Epidémiologie des Maladies Infectieuses, Institut Pasteur Dakar, Dakar, Senegal
| | - Pierrick Adam
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Laura Tondeur
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Alexandre Manirazika
- Unité d’Epidémiologie Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Rindra Randremanana
- Unité d’Epidémiologie, Institut Pasteur de Madagascar, BP1274, 101 Antananarivo, Madagascar
| | | | - André Briend
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
- Tampere Centre for Child Health Research, University of Tampere, Lääkärinkatu 1, 33014 Tampere, Finland
| | - Cecile Artaud
- Centre de recherche Transactionnel, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Cassandre von Platen
- Centre de recherche Transactionnel, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Mathias Altmann
- Action Contre la Faim, 14/16 Boulevard Douaumont – CS 80060, PARIS CEDEX 17, 75854 Paris, France
| | - Ronan Jambou
- Department of Parasites and Vector Insects, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
20
|
Liang S, Wu X, Jin F. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Front Integr Neurosci 2018; 12:33. [PMID: 30271330 PMCID: PMC6142822 DOI: 10.3389/fnint.2018.00033] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Mental disorders and neurological diseases are becoming a rapidly increasing medical burden. Although extensive studies have been conducted, the progress in developing effective therapies for these diseases has still been slow. The current dilemma reminds us that the human being is a superorganism. Only when we take the human self and its partner microbiota into consideration at the same time, can we better understand these diseases. Over the last few centuries, the partner microbiota has experienced tremendous change, much more than human genes, because of the modern transformations in diet, lifestyle, medical care, and so on, parallel to the modern epidemiological transition. Existing research indicates that gut microbiota plays an important role in this transition. According to gut-brain psychology, the gut microbiota is a crucial part of the gut-brain network, and it communicates with the brain via the microbiota-gut-brain axis. The gut microbiota almost develops synchronously with the gut-brain, brain, and mind. The gut microbiota influences various normal mental processes and mental phenomena, and is involved in the pathophysiology of numerous mental and neurological diseases. Targeting the microbiota in therapy for these diseases is a promising approach that is supported by three theories: the gut microbiota hypothesis, the "old friend" hypothesis, and the leaky gut theory. The effects of gut microbiota on the brain and behavior are fulfilled by the microbiota-gut-brain axis, which is mainly composed of the nervous pathway, endocrine pathway, and immune pathway. Undoubtedly, gut-brain psychology will bring great enhancement to psychology, neuroscience, and psychiatry. Various microbiota-improving methods including fecal microbiota transplantation, probiotics, prebiotics, a healthy diet, and healthy lifestyle have shown the capability to promote the function of the gut-brain, microbiota-gut-brain axis, and brain. It will be possible to harness the gut microbiota to improve brain and mental health and prevent and treat related diseases in the future.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Liu WC, Tomino Y, Lu KC. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120. Toxins (Basel) 2018; 10:toxins10090367. [PMID: 30208594 PMCID: PMC6162782 DOI: 10.3390/toxins10090367] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and p-cresol, or p-cresyl sulfate (PCS), are markedly accumulated in the organs of chronic kidney disease (CKD) patients. These toxins can induce inflammatory reactions and enhance oxidative stress, prompting glomerular sclerosis and interstitial fibrosis, to aggravate the decline of renal function. Consequently, uremic toxins play an important role in the worsening of renal and cardiovascular functions. Furthermore, they destroy the quantity and quality of bone. Oral sorbent AST-120 reduces serum levels of uremic toxins in CKD patients by adsorbing the precursors of IS and PCS generated by amino acid metabolism in the intestine. Accordingly, AST-120 decreases the serum IS levels and reduces the production of reactive oxygen species by endothelial cells, to impede the subsequent oxidative stress. This slows the progression of cardiovascular and renal diseases and improves bone metabolism in CKD patients. Although large-scale studies showed no obvious benefits from adding AST-120 to the standard therapy for CKD patients, subsequent sporadic studies may support its use. This article summarizes the mechanisms of the uremic toxins, IS, and PCS, and discusses the multiple effects of AST-120 in CKD patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City 435, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan.
| | - Yasuhiko Tomino
- Asian Pacific Renal Research Promotion Office, Medical Corporation SHOWAKAI, Tokyo 160-0023, Japan.
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan.
| |
Collapse
|
22
|
Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing Depression from the Microbiota⁻Gut⁻Brain Axis. Int J Mol Sci 2018; 19:ijms19061592. [PMID: 29843470 PMCID: PMC6032096 DOI: 10.3390/ijms19061592] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Major depression is one of the leading causes of disability, morbidity, and mortality worldwide. The brain⁻gut axis functions are disturbed, revealed by a dysfunction of the brain, immune system, endocrine system, and gut. Traditional depression treatments all target the brain, with different drugs and/or psychotherapy. Unfortunately, most of the patients have never received any treatment. Studies indicate that gut microbiota could be a direct cause for the disorder. Abnormal microbiota and the microbiota⁻gut⁻brain dysfunction may cause mental disorders, while correcting these disturbance could alleviate depression. Nowadays, the gut microbiota modulation has become a hot topic in treatment research of mental disorders. Depression is closely related with the health condition of the brain⁻gut axis, and maintaining/restoring the normal condition of gut microbiota helps in the prevention/therapy of mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Abstract
Humans have over 100 trillion bacteria, highly abundant in the intestinal tract. Evidence suggests that intestinal microbiota is associated with the neuro-endocrine-immune pathways and can be associated with various mood disorders. This review summarizes findings from studies looking into neurobiochemical, neuroendocrine, and neuroimmune system mechanisms of the gut-brain axis to determine the relationship between intestinal microbiota and mood disorders. The effect of prebiotics, probiotics and antibiotics on mood disorders are also discussed, with the aim to propose some new therapeutic strategies for mood disorders.
Collapse
Affiliation(s)
- Lu Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Takada M, Nishida K, Gondo Y, Kikuchi-Hayakawa H, Ishikawa H, Suda K, Kawai M, Hoshi R, Kuwano Y, Miyazaki K, Rokutan K. Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: a double-blind, randomised, placebo-controlled trial. Benef Microbes 2017; 8:153-162. [PMID: 28443383 DOI: 10.3920/bm2016.0150] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study examined whether Lactobacillus casei strain Shirota (LcS) improves sleep quality under psychological stress. A double-blind, placebo-controlled trial was conducted in healthy 4th year medical students exposed to academic examination stress. The trial was repeated over two consecutive years in different groups of students, and the data were pooled. For 8 weeks prior to and 3 weeks after a national standardised examination, a total of 48 and 46 subjects received a daily dose of 100 ml of LcS-fermented milk or non-fermented placebo milk, respectively. Study measures included subjective anxiety, overnight single-channel electroencephalography (EEG) recordings, and the Oguri-Shirakawa-Azumi (OSA) sleep inventory scores of subjective sleep quality. Total OSA scores were significantly lower than baseline on the day before the exam and recovered after the exam, indicating a stress-induced decline in sleep quality. There was a significant positive effect of LcS treatment on OSA factors for sleepiness on rising and sleep length. Sleep latency measured by EEG lengthened as the exam approached in the placebo group but was significantly suppressed in the LcS group. The percentage of stage 3 non-REM (N3) sleep decreased in the placebo group as the exam approached, whereas it was maintained in the LcS group throughout the trial. Delta power during the first sleep cycle, measured as an index of sleep intensity, increased as the exam approached in the LcS group and was significantly higher than in the placebo group. These findings suggest that daily consumption of LcS may help to maintain sleep quality during a period of increasing stress. The observed retention of N3 sleep and increased delta power in the LcS group may have contributed to higher perceived sleep satisfaction.
Collapse
Affiliation(s)
- M Takada
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K Nishida
- 2 Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - Y Gondo
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - H Kikuchi-Hayakawa
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - H Ishikawa
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K Suda
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - M Kawai
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - R Hoshi
- 3 Faculty of Research and Development, Yakult Honsha Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - Y Kuwano
- 2 Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - K Miyazaki
- 1 Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K Rokutan
- 2 Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
25
|
Abstract
Dysbiosis is a key term in human microbiome research, especially when microbiome patterns are associated with disease states. Although some questions have been raised about how this term is applied, its use continues undiminished in the literature. We investigate the ways in which microbiome researchers discuss dysbiosis and then assess the impact of different concepts of dysbiosis on microbiome research. After an overview of the term's historical roots, we conduct quantitative and qualitative analyses of a large selection of contemporary dysbiosis statements. We categorize both short definitions and longer conceptual statements about dysbiosis. Further analysis allows us to identify the problematic implications of how dysbiosis is used, particularly with regard to causal hypotheses and normal-abnormal distinctions. We suggest that researchers should reflect carefully on the ways in which they discuss dysbiosis, in order for the field to continue to develop greater predictive scope and explanatory depth.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, University of Bordeaux, Bordeaux, France
- Immunoconcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | - Maureen A O'Malley
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, University of Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry 2017; 51:810-821. [PMID: 28068788 PMCID: PMC5518919 DOI: 10.1177/0004867416686694] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES This trial investigated whether probiotics improved mood, stress and anxiety in a sample selected for low mood. We also tested whether the presence or severity of irritable bowel syndrome symptoms, and levels of proinflammatory cytokines, brain-derived neurotrophic factor and other blood markers, would predict or impact treatment response. METHOD Seventy-nine participants (10 dropouts) not currently taking psychotropic medications with at least moderate scores on self-report mood measures were randomly allocated to receive either a probiotic preparation (containing Lactobacillus helveticus and Bifidobacterium longum) or a matched placebo, in a double-blind trial for 8 weeks. Data were analysed as intent-to-treat. RESULTS No significant difference was found between the probiotic and placebo groups on any psychological outcome measure (Cohen's d range = 0.07-0.16) or any blood-based biomarker. At end-point, 9 (23%) of those in the probiotic group showed a ⩾60% change on the Montgomery-Åsberg Depression Rating Scale (responders), compared to 10 (26%) of those in the placebo group ([Formula: see text], p = ns). Baseline vitamin D level was found to moderate treatment effect on several outcome measures. Dry mouth and sleep disruption were reported more frequently in the placebo group. CONCLUSIONS This study found no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers. The lack of observed effect on mood symptoms may be due to the severity, chronicity or treatment resistance of the sample; recruiting an antidepressant-naive sample experiencing mild, acute symptoms of low mood, may well yield a different result. Future studies taking a preventative approach or using probiotics as an adjuvant treatment may also be more effective. Vitamin D levels should be monitored in future studies in the area. The results of this trial are preliminary; future studies in the area should not be discouraged.
Collapse
Affiliation(s)
- Amy R Romijn
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
- School of Psychology, Early Years and Therapeutic Studies, University of South Wales, Pontypridd, UK
| | - Julia J Rucklidge
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Roeline G Kuijer
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Chris Frampton
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
27
|
Bruce-Keller AJ, Fernandez-Kim SO, Townsend RL, Kruger C, Carmouche R, Newman S, Salbaum JM, Berthoud HR. Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS One 2017; 12:e0175577. [PMID: 28441394 PMCID: PMC5404786 DOI: 10.1371/journal.pone.0175577] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Maternal obesity is known to predispose offspring to metabolic and neurodevelopmental abnormalities. While the mechanisms underlying these phenomena are unclear, high fat diets dramatically alter intestinal microbiota, and gut microbiota can impact physiological function. To determine if maternal diet-induced gut dysbiosis can disrupt offspring neurobehavioral function, we transplanted high fat diet- (HFD) or control low fat diet-associated (CD) gut microbiota to conventionally-housed female mice. Recipient mice were then bred and the behavioral phenotype of male and female offspring was tracked. While maternal behavior was unaffected, neonatal offspring from HFD dams vocalized less upon maternal separation than pups from CD dams. Furthermore, weaned male offspring from HFD dams had significant and selective disruptions in exploratory, cognitive, and stereotypical/compulsive behavior compared to male offspring from CD dams; while female offspring from HFD dams had increases in body weight and adiposity. 16S metagenomic analyses confirmed establishment of divergent microbiota in CD and HFD dams, with alterations in diversity and taxonomic distribution throughout pregnancy and lactation. Likewise, significant alterations in gut microbial diversity and distribution were noted in offspring from HFD dams compared to CD dams, and in males compared to females. Regression analyses of behavioral performance against differentially represented taxa suggest that decreased representation of specific members of the Firmicutes phylum predict behavioral decline in male offspring. Collectively, these data establish that high fat diet-induced maternal dysbiosis is sufficient to disrupt behavioral function in murine offspring in a sex-specific manner. Thus these data reinforce the essential link between maternal diet and neurologic programming in offspring and suggest that intestinal dysbiosis could link unhealthy modern diets to the increased prevalence of neurodevelopmental and childhood disorders.
Collapse
Affiliation(s)
- Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - R. Leigh Townsend
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Claudia Kruger
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Richard Carmouche
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Susan Newman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| |
Collapse
|
28
|
Mechanism of development of depression and probiotics as adjuvant therapy for its prevention and management. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.mhp.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Navarro F, Liu Y, Rhoads JM. Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol 2016; 22:10093-10102. [PMID: 28028357 PMCID: PMC5155168 DOI: 10.3748/wjg.v22.i46.10093] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/05/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
Children with autism are commonly affected by gastrointestinal problems such as abdominal pain, constipation and diarrhea. In recent years, there has been a growing interest in the use of probiotics in this population, as it hypothetically may help to improve bowel habits and the behavioral and social functioning of these individuals. The gut microbiome plays an important role in the pathophysiology of organic as well as functional gastrointestinal disorders. Microbial modification with the use of antibiotics, probiotics, and fecal transplantation have been effective in the treatment of conditions such as recurrent Clostridium difficile infection, pouchitis, and irritable bowel syndrome. The present review presents a number of reported clinical, immunological and microbiome-related changes seen in children with autism compared to normally developed children. It also discusses gut inflammation, permeability concerns, and absorption abnormalities that may contribute to these problems. Most importantly, it discusses evidence, from human and animal studies, of a potential role of probiotics in the treatment of gastrointestinal symptoms in children with autism.
Collapse
|
30
|
Seaman DR. Toxins, Toxicity, and Endotoxemia: A Historical and Clinical Perspective for Chiropractors. JOURNAL OF CHIROPRACTIC HUMANITIES 2016; 23:68-76. [PMID: 27920621 PMCID: PMC5127911 DOI: 10.1016/j.echu.2016.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The purpose of this commentary is to review the notion of toxicity in the context of chiropractic practice. DISCUSSION The belief that body toxicity is the cause of disease has been promoted for thousands of years. Prior to the emergence of the chiropractic profession, the medical profession embraced the notion that the body becomes "toxic," requiring detoxification interventions or surgery. The legacy of body toxicity within the chiropractic approach to patient care began with Daniel David Palmer. Today, some sectors within the medical and chiropractic professions continue to embrace the concept of body toxicity and the related need to engage in detoxifying treatments. The most common areas of focus for detoxification are the intestines and liver; however, the nature of the toxicity in these organs has yet to be defined or measured. In contrast, diet-induced systemic bacterial endotoxemia is a measureable state that is known to be promoted by a diet rich in sugar, flour, and refined oil. This suggests that bacterial endotoxin may be a candidate toxin to consider in the clinical context, as many common conditions, such as obesity, metabolic syndrome, diabetes, interstitial cystitis, depression, and migraine headache, are known to be promoted by endotoxemia. CONCLUSION A diet rich in refined sugar, flour, and oils may induce proinflammatory changes within intestinal microbiota that lead to systemic, low-grade endotoxemia, which is a common variety of "toxicity" that is measurable and worthy of research consideration. Introducing a diet to reduce endotoxemia, rather than attempting to target a specific organ, appears to be a rational clinical approach for addressing the issue of toxicity.
Collapse
Affiliation(s)
- David R Seaman
- National University of Health Sciences, Pinellas Park, FL
| |
Collapse
|
31
|
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Environ Health Rep 2016; 3:270-86. [PMID: 27436048 PMCID: PMC5763918 DOI: 10.1007/s40572-016-0100-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.
Collapse
Affiliation(s)
- Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Philip H Siebler
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Dominic Schmidt
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James E Hassell
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Paula S Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James H Fox
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081, Ulm, Germany
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine & Rehabilitation, University of Colorado, Anschutz School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, 80220, USA
| | - Andrew J Hoisington
- Department of Civil and Environmental Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain MIRECC, Denver, CO, 80220, USA
- VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | | | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Kenneth P Wright
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles L Raison
- School of Human Ecology and School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Graham A W Rook
- Center for Clinical Microbiology, UCL (University College London), WC1E 6BT, London, UK
| |
Collapse
|
32
|
Harakeh SM, Khan I, Kumosani T, Barbour E, Almasaudi SB, Bahijri SM, Alfadul SM, Ajabnoor GMA, Azhar EI. Gut Microbiota: A Contributing Factor to Obesity. Front Cell Infect Microbiol 2016; 6:95. [PMID: 27625997 PMCID: PMC5003832 DOI: 10.3389/fcimb.2016.00095] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/17/2016] [Indexed: 12/25/2022] Open
Abstract
Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD) and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM) have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 10(14) microorganisms reside within the lower human intestine and many of these 10(14) microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition) with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review. Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics, and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity.
Collapse
Affiliation(s)
- Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Imran Khan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Taha Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Elie Barbour
- Department of Animal and Veterinary Sciences, Faculty of Agricultural and Food Sciences, American University of BeirutBeirut, Lebanon; Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Saad B Almasaudi
- Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia
| | - Suhad M Bahijri
- Clinical Biochemistry Department, College of Medicine, Nutrition Unit-King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | | | - Ghada M A Ajabnoor
- Clinical Biochemistry Department, College of Medicine, Nutrition Unit-King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
33
|
Dodd S, Fernandes BS, Dean OM. Future Directions for Pharmacotherapies for Treatment-resistant Bipolar Disorder. Curr Neuropharmacol 2016; 13:656-62. [PMID: 26467413 PMCID: PMC4761635 DOI: 10.2174/1570159x13666150630175841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/29/2023] Open
Abstract
Current pharmacological treatments for bipolar disorder (BD) are limited and efficacy has historically been discovered through serendipity. There is now scope for new drug development, focused on the underlying biology of BD that is not targeted by current therapies. The need for novel treatments is urgent when considering treatment resistant BD, where current therapies have failed. While established drugs targeting the monoamine systems continue to be worthwhile, new biological targets including inflammatory and oxidative an nitrosative pathways, apoptotic and neurotrophic pathways, mitochondrial pathways, the N-methyl-Daspartate (NMDA)-receptor complex, the purinergic system, neuropeptide system, cholinergic system and melatonin pathways are all being identified as potential anchors for the discovery of new agents. Many agents are experimental and efficacy data is limited, however further investigation may provide a new line for drug discovery, previously stalled by lack of corporate interest.
Collapse
Affiliation(s)
| | | | - Olivia M Dean
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
34
|
Ahuja NK, Ahuja A. Gastroenvironmental distress: metaphorical antecedents of the gut microbiome. MEDICAL HUMANITIES 2016; 42:121-127. [PMID: 26856356 DOI: 10.1136/medhum-2015-010784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
The human gut has been viewed for centuries as a potential mediator of systemic disease. The theory of autointoxication, which found its clearest articulation in the late nineteenth and early twentieth centuries, focused on altered bowel habits as the cause of widespread physical decay and advocated for the pursuit of health through regular defecation. More recently, under the banner of the microbiome, research on commensal bacteria makes a similar case for associations between alimentary dynamics and illness manifestations far outside the gastrointestinal tract. Surface distinctions between these two conceptual frameworks are apparently antipodal, the former championing emptiness and sterility, the latter abundance and restoration. Within both models, however, persists a common anxiety about the detrimental effects of civilisation on the body in relation to the natural world. As scientific understanding of the microbiome continues to mature, acknowledging the historical and moral parameters of its borrowed ecological idiom may facilitate critical distinctions between what is true and what feels like it should be.
Collapse
Affiliation(s)
- Nitin K Ahuja
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amisha Ahuja
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
35
|
Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep 2016; 15:1945-56. [PMID: 27210745 DOI: 10.1016/j.celrep.2016.04.074] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Daniele Mattei
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Markus M Heimesaat
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Stefan Bereswill
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - André Fischer
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Marie Alutis
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Timothy French
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Dolores Hambardzumyan
- Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892-9760, USA
| | - Ildiko R Dunay
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
36
|
Felice VD, Quigley EM, Sullivan AM, O'Keeffe GW, O'Mahony SM. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord 2016; 27:1-8. [PMID: 27013171 DOI: 10.1016/j.parkreldis.2016.03.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting 1-2% of the population over 65 years of age. The primary neuropathology is the loss of midbrain dopaminergic neurons, resulting in characteristic motor deficits, upon which the clinical diagnosis is based. However, a number of significant non-motor symptoms (NMS) are also evident that appear to have a greater impact on the quality of life of these patients. In recent years, it has become increasingly apparent that neurobiological processes can be modified by the bi-directional communication that occurs along the brain-gut axis. The microbiota plays a key role in this communication throughout different routes in both physiological and pathological conditions. Thus, there has been an increasing interest in investigating how microbiota changes within the gastrointestinal tract may be implicated in health and disease including PD. Interestingly α-synuclein-aggregates, the cardinal neuropathological feature in PD, are present in both the submucosal and myenteric plexuses of the enteric nervous system, prior to their appearance in the brain, indicating a possible gut to brain route of "prion-like" spread. In this review we highlight the potential importance of gut to brain signalling in PD with particular focus on the role of the microbiota as major player in this communication.
Collapse
Affiliation(s)
- Valeria D Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Eamonn M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland; Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, and Weill Cornell Medical College, 6550 Fannin St, SM 1001, Houston, TX 77030, USA
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland. http://publish.ucc.ie/researchprofiles/C003/somahony
| |
Collapse
|
37
|
Lyte M. Microbial Endocrinology: An Ongoing Personal Journey. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:1-24. [PMID: 26589212 DOI: 10.1007/978-3-319-20215-0_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of microbial endocrinology is covered from a decidedly personal perspective. Specific focus is given to the role of microbial endocrinology in the evolutionary symbiosis between man and microbe as it relates to both health and disease. Since the first edition of this book series 5 years ago, the role of microbial endocrinology in the microbiota-gut-brain axis is additionally discussed. Future avenues of research are suggested.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
38
|
Romijn AR, Rucklidge JJ. Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 2015; 73:675-93. [DOI: 10.1093/nutrit/nuv025] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Nicoletti G, Corbella M, Jaber O, Marone P, Scevola D, Faga A. Non-pathogenic microflora of a spring water with regenerative properties. Biomed Rep 2015; 3:758-762. [PMID: 26623012 PMCID: PMC4660603 DOI: 10.3892/br.2015.507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022] Open
Abstract
The Comano spring water (Comano, Italy) has been demonstrated to improve skin regeneration, not only by increasing keratinocyte proliferation and migration, but also by modulating the regenerated collagen and elastic fibers in the dermis. However, such biological properties may not be entirely explained by its mineral composition only. As the non-pathogenic bacterial populations have demonstrated an active role in different biological processes, the potential presence of non-pathogenic bacterial species within the Comano spring water was investigated in order to identify any possible correlation between these bacterial populations and the demonstrated biological properties of this water. The water was collected at the spring using an aseptic procedure and multiple cultures were carried out. A total of 9 different strains were isolated, which were Aeromonas hydrophila, Brevundimonas vesicularis, Chromobacterium violaceum, Citrobacter youngae, Empedobacter brevis, Pantoea agglomerans, Pseudomonas putida, Pseudomonas stutzeri and Streptococcus mitis. All the isolated bacterial strains, although showing a rare potential virulence, demonstrated peculiar and favorable metabolic attitudes in controlling environmental pollution. The therapeutical effects of certain spring waters are currently being proven as correlated not only to their peculiar mineral composition, but also to the complex activity of their resident non-pathogenic bacterial populations. Although the present study provided only preliminary data, some of the non-pathogenic bacterial populations that were identified in the Comano spring water are likely to produce molecular mediators with a role in the wound healing process that, thus far, remain unknown. Numerous other unknown bacterial species, comprehensively termed DNA-rich 'dark matter', are likely to contribute to the Comano water regenerative properties as well. Therefore, the non-pathogenic bacterial populations of the Comano spring water are possibly credited for its demonstrated regenerative properties.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, I-27100 Pavia, Italy ; Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, I-27100 Pavia, Italy ; Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Centre, University of Pavia, I-27100 Pavia, Italy
| | - Marta Corbella
- Department of Infectious Diseases, San Matteo Research and Care Institute, I-27100 Pavia, Italy
| | - Omar Jaber
- Plastic and Reconstructive Surgery, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, I-27100 Pavia, Italy ; Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, I-27100 Pavia, Italy ; Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Centre, University of Pavia, I-27100 Pavia, Italy
| | - Piero Marone
- Department of Infectious Diseases, San Matteo Research and Care Institute, I-27100 Pavia, Italy
| | - Daniele Scevola
- Department of Infectious Diseases, San Matteo Research and Care Institute, I-27100 Pavia, Italy ; Department of Internal Medicine and Medical Therapeutics, University of Pavia, I-27100 Pavia, Italy
| | - Angela Faga
- Plastic and Reconstructive Surgery, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, I-27100 Pavia, Italy ; Plastic and Reconstructive Surgery Unit, Salvatore Maugeri Research and Care Institute, I-27100 Pavia, Italy ; Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Centre, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
40
|
Hilimire MR, DeVylder JE, Forestell CA. Fermented foods, neuroticism, and social anxiety: An interaction model. Psychiatry Res 2015; 228:203-8. [PMID: 25998000 DOI: 10.1016/j.psychres.2015.04.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/04/2023]
Abstract
Animal models and clinical trials in humans suggest that probiotics can have an anxiolytic effect. However, no studies have examined the relationship between probiotics and social anxiety. Here we employ a cross-sectional approach to determine whether consumption of fermented foods likely to contain probiotics interacts with neuroticism to predict social anxiety symptoms. A sample of young adults (N=710, 445 female) completed self-report measures of fermented food consumption, neuroticism, and social anxiety. An interaction model, controlling for demographics, general consumption of healthful foods, and exercise frequency, showed that exercise frequency, neuroticism, and fermented food consumption significantly and independently predicted social anxiety. Moreover, fermented food consumption also interacted with neuroticism in predicting social anxiety. Specifically, for those high in neuroticism, higher frequency of fermented food consumption was associated with fewer symptoms of social anxiety. Taken together with previous studies, the results suggest that fermented foods that contain probiotics may have a protective effect against social anxiety symptoms for those at higher genetic risk, as indexed by trait neuroticism. While additional research is necessary to determine the direction of causality, these results suggest that consumption of fermented foods that contain probiotics may serve as a low-risk intervention for reducing social anxiety.
Collapse
Affiliation(s)
- Matthew R Hilimire
- College of William and Mary, Department of Psychology, P.O. Box 8795, Williamsburg, VA 23187 USA.
| | - Jordan E DeVylder
- University of Maryland, School of Social Work, 525 W Redwood St., Baltimore, MD 21201 USA
| | - Catherine A Forestell
- College of William and Mary, Department of Psychology, P.O. Box 8795, Williamsburg, VA 23187 USA
| |
Collapse
|
41
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|
42
|
Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7:2930-46. [PMID: 25894657 PMCID: PMC4425181 DOI: 10.3390/nu7042930] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/21/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Evelien P J G Neis
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
43
|
Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, Taylor CM, Welsh DA, Berthoud HR. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 2015; 77:607-15. [PMID: 25173628 PMCID: PMC4297748 DOI: 10.1016/j.biopsych.2014.07.012] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/26/2014] [Accepted: 07/06/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND The prevalence of mental illness, particularly depression and dementia, is increased by obesity. Here, we test the hypothesis that obesity-associated changes in gut microbiota are intrinsically able to impair neurocognitive behavior in mice. METHODS Conventionally housed, nonobese, adult male C57BL/6 mice maintained on a normal chow diet were subjected to a microbiome depletion/transplantation paradigm using microbiota isolated from donors on either a high-fat diet (HFD) or control diet. Following re-colonization, mice were subjected to comprehensive behavioral and biochemical analyses. RESULTS The mice given HFD microbiota had significant and selective disruptions in exploratory, cognitive, and stereotypical behavior compared with mice with control diet microbiota in the absence of significant differences in body weight. Sequencing-based phylogenetic analysis confirmed the presence of distinct core microbiota between groups, with alterations in α- and β-diversity, modulation in taxonomic distribution, and statistically significant alterations to metabolically active taxa. HFD microbiota also disrupted markers of intestinal barrier function, increased circulating endotoxin, and increased lymphocyte expression of ionized calcium-binding adapter molecule 1, toll-like receptor 2, and toll-like receptor 4. Finally, evaluation of brain homogenates revealed that HFD-shaped microbiota increased neuroinflammation and disrupted cerebrovascular homeostasis. CONCLUSIONS Collectively, these data reinforce the link between gut dysbiosis and neurologic dysfunction and suggest that dietary and/or pharmacologic manipulation of gut microbiota could attenuate the neurologic complications of obesity.
Collapse
Affiliation(s)
| | - J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge
| | - Meng Luo
- Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Eugene Blanchard
- Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Christopher M Taylor
- Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - David A Welsh
- Departments of Internal MedicineLouisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge
| |
Collapse
|
44
|
Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part II. J Physiol Anthropol 2015; 34:9. [PMID: 25889196 PMCID: PMC4353476 DOI: 10.1186/s40101-014-0040-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Famed microbiologist René J. Dubos (1901–1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He recognized the co-evolutionary relationship between microbiota and the human host. Almost 2 decades before the hygiene hypothesis, he suggested that children in developed nations were becoming too sanitized (vs. our ancestral past) and that scientists should determine whether the childhood environment should be “dirtied up in a controlled manner.” He also argued that oft-celebrated growth chart increases via changes in the global food supply and dietary patterns should not be equated to quality of life and mental health. Here in the second part of our review, we reflect the words of Dubos off contemporary research findings in the areas of diet, the gut-brain-axis (microbiota and anxiety and depression) and microbial ecology. Finally, we argue, as Dubos did 40 years ago, that researchers should more closely examine the relevancy of silo-sequestered, reductionist findings in the larger picture of human quality of life. In the context of global climate change and the epidemiological transition, an allergy epidemic and psychosocial stress, our review suggests that discussions of natural environments, urbanization, biodiversity, microbiota, nutrition, and mental health, are often one in the same.
Collapse
|
45
|
Bull MJ, Plummer NT. Part 2: Treatments for Chronic Gastrointestinal Disease and Gut Dysbiosis. Integr Med (Encinitas) 2015; 14:25-33. [PMID: 26770128 PMCID: PMC4566455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Part 1 of this review discussed the connection between the human gut microbiota and health. Manipulation of the intestinal microbiota holds promise as a prospective therapy for gut dysbiosis, ameliorating symptoms of gastrointestinal and systemic diseases and restoring health. The concept of probiotics has existed for more than 100 y, and modern research methods have established sound scientific support for the perceived benefits of probiotic bacteria, which mainly include Lactobacillus and Bifidobacterium genera. On the basis of these evidence-based functional approaches, dietary interventions that supplement the normal diet with probiotics or prebiotics are now considered as potentially viable alternatives or adjuncts to the use of steroids, immunosuppressants, and/or surgical interventions. Studies investigating the impact on gastrointestinal disorders, such as diarrhea, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS); and systemic metabolic diseases, such as type 2 diabetes and obesity, in response to the use of probiotics and prebiotics are reviewed. Further, fecal microbial transplantation (FMT) is discussed as an exciting development in the treatment of gut dysbiosis using microbes.
Collapse
|
46
|
Raison CL, Hale MW, Williams LE, Wager TD, Lowry CA. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol 2015; 5:1580. [PMID: 25628593 PMCID: PMC4292224 DOI: 10.3389/fpsyg.2014.01580] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders.
Collapse
Affiliation(s)
- Charles L. Raison
- Department of Psychiatry, Norton School of Family and Consumer Sciences, College of Medicine, College of Agriculture and Life Sciences, University of ArizonaTucson, AZ, USA
| | - Matthew W. Hale
- Department of Psychology, School of Psychological Science, La Trobe UniversityBundoora, Australia
| | - Lawrence E. Williams
- Marketing Division, Leeds School of Business, University of Colorado BoulderBoulder, CO, USA
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulder, CO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado BoulderBoulder, CO, USA
| |
Collapse
|
47
|
Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:373-403. [PMID: 24997043 DOI: 10.1007/978-1-4939-0897-4_17] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.
Collapse
Affiliation(s)
- Yuliya E Borre
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
48
|
Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 2014; 138:179-87. [PMID: 25446201 DOI: 10.1016/j.physbeh.2014.10.033] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Development of Autism Spectrum Disorders (ASD), including autism, is based on a combination of genetic predisposition and environmental factors. Recent data propose the etiopathogenetic role of intestinal microflora in autism. The aim of this study was to elucidate changes in fecal microbiota in children with autism and determine its role in the development of often present gastrointestinal (GI) disorders and possibly other manifestations of autism in Slovakia. The fecal microflora of 10 children with autism, 9 siblings and 10 healthy children was investigated by real-time PCR. The fecal microbiota of autistic children showed a significant decrease of the Bacteroidetes/Firmicutes ratio and elevation of the amount of Lactobacillus spp. Our results also showed a trend in the incidence of elevated Desulfovibrio spp. in children with autism reaffirmed by a very strong association of the amount of Desulfovibrio spp. with the severity of autism in the Autism Diagnostic Interview (ADI) restricted/repetitive behavior subscale score. The participants in our study demonstrated strong positive correlation of autism severity with the severity of GI dysfunction. Probiotic diet supplementation normalized the Bacteroidetes/Firmicutes ratio, Desulfovibrio spp. and the amount of Bifidobacterium spp. in feces of autistic children. We did not find any correlation between plasma levels of oxytocin, testosterone, DHEA-S and fecal microbiota, which would suggest their combined influence on autism development. This pilot study suggests the role of gut microbiota in autism as a part of the "gut-brain" axis and it is a basis for further investigation of the combined effect of microbial, genetic, and hormonal changes for development and clinical manifestation of autism.
Collapse
Affiliation(s)
| | | | | | - Jan Bakos
- Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | |
Collapse
|
49
|
|
50
|
Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CLG, Schweinfurth LAB, Goga J, Khushalani S, Yolken RH. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord 2014; 16:13m01579. [PMID: 24940526 DOI: 10.4088/pcc.13m01579] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/18/2013] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE A range of immune system abnormalities have been associated with schizophrenia. Probiotic compounds modulate the immune response and offer a potential treatment strategy for schizophrenia. Probiotic compounds have also been observed to improve gastrointestinal dysfunction, which is a common problem in individuals with schizophrenia. We performed a randomized, double-blind, placebo-controlled trial to examine whether probiotic supplementation can reduce symptom severity in patients with schizophrenia receiving antipsychotic treatment and also whether probiotics are associated with bowel functioning. METHODS Outpatients with schizophrenia (N = 65) meeting DSM-IV criteria and with at least moderately severe psychotic symptoms were enrolled in the study from December 2010-August 2012. Following a 2-week placebo run-in period, patients were randomly assigned to 14 weeks of double-blind adjunctive probiotic (combined Lactobacillus rhamnosus strain GG and Bifidobacterium animalis subsp. lactis strain Bb12) or placebo therapy. Psychiatric symptoms were assessed biweekly with the Positive and Negative Syndrome Scale (PANSS), and patients were queried weekly about their gastrointestinal functioning. RESULTS Repeated-measures analysis of variance showed no significant differences in the PANSS total score between probiotic and placebo supplementation (F = 1.28, P = .25). However, patients in the probiotic group were less likely to develop severe bowel difficulty over the course of the trial (hazard ratio = 0.23; 95% CI, 0.09-0.61, P = .003). CONCLUSIONS Probiotic supplementation may help prevent a common somatic symptom associated with schizophrenia. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01242371.
Collapse
Affiliation(s)
- Faith B Dickerson
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Cassie Stallings
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Andrea Origoni
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Emily Katsafanas
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Christina L G Savage
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Lucy A B Schweinfurth
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Joshana Goga
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Sunil Khushalani
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| | - Robert H Yolken
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System (Drs Dickerson, Goga, and Khushalani and Mss Stallings, Origoni, Katsafanas, Savage, and Schweinfurth); and Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine (Dr Yolken), Baltimore, Maryland
| |
Collapse
|