1
|
Al Kadi M, Yamashita M, Shimojima M, Yoshikawa T, Ebihara H, Okuzaki D, Kurosu T. Cytokine storm and vascular leakage in severe dengue: insights from single-cell RNA profiling. Life Sci Alliance 2025; 8:e202403008. [PMID: 40127923 PMCID: PMC11933670 DOI: 10.26508/lsa.202403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Severe dengue is characterized by vascular leakage triggered by a hyperinflammatory response, though the underlying mechanisms remain unclear. Our previous mouse model study highlighted the importance of small intestine in severe disease and identified key cytokines (IL-17A, TNF-α, and IL-6) involved. Here, we used a Fixed RNA Profiling assay to characterize key cytokine- and effector-producing cells, along with their receptor expression. Type 3 innate lymphoid cells (ILC3), Th17 cells, and γδ T cells emerged as pathologically relevant IL-17A/F-producing cells. These cells expressed IL-1β and IL-23 receptors, underscoring the significance of these signaling pathways. IL-1β was produced by M2-like macrophages, dendritic cells, and neutrophils, whereas M1-like macrophages, which differentiated post-infection, produced IL-23, TNF-α, and IL-6, acting as initiators and amplifiers of the cytokine storm. Newly differentiated neutrophils produced IL-1β and effector molecule matrix metalloprotease-8, suggesting a dual role in exacerbating the cytokine storm and directly mediating vascular leakage. Identified macrophages and neutrophils exhibited atypical characteristics. These findings provide new pathological insights into severe dengue and broader mechanism underlying cytokine storm-related diseases.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Maika Yamashita
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Bjerre FA, Nielsen JV, Burton M, Dhumale P, Jørgensen MG, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH. Single-cell transcriptomics of clinical grade adipose-derived regenerative cells reveals consistency between donors independent of gender and BMI. Stem Cell Res Ther 2025; 16:109. [PMID: 40038777 PMCID: PMC11881426 DOI: 10.1186/s13287-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Adipose-derived regenerative cells (ADRCs) also referred to as the stromal vascular fraction, provide an ample source of stem cells with widespread regenerative therapeutic use. Being heterogenous in nature, possibly affecting the clinical outcome after stem cell treatment, the ADRC- donor, -BMI, and -gender may have a large impact on ADRC composition and quality but this remains largely unexplored. Herein, we provide a comprehensive single-cell RNA sequencing ADRC mapping across two cell trial intervention studies but found no gender- or BMI-related variations, except for a minor female increase in PI16/CD55-expressing stem cells. Indeed, ADRC heterogeneity was surprisingly minimal between donors. This provides important decision-making support on adipose stem cell donor selection for stem cell treatments, and suggest that donor, gender and BMI should be regarded as less influential.
Collapse
Affiliation(s)
- Frederik Adam Bjerre
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Andersen Group, University of Southern Denmark, Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Mark Burton
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Andersen Group, University of Southern Denmark, Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Andersen Group, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Juzenas S, Goda K, Kiseliovas V, Zvirblyte J, Quintinal-Villalonga A, Siurkus J, Nainys J, Mazutis L. inDrops-2: a flexible, versatile and cost-efficient droplet microfluidic approach for high-throughput scRNA-seq of fresh and preserved clinical samples. Nucleic Acids Res 2025; 53:gkae1312. [PMID: 39797728 PMCID: PMC11724362 DOI: 10.1093/nar/gkae1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples. Moreover, as the scale of single-cell sequencing continues to expand, accommodating diverse workflows and cost-effective multi-biospecimen profiling becomes more critical. Herein, we present inDrops-2, an open-source scRNA-seq technology designed to profile live or preserved cells with a sensitivity matching that of state-of-the-art commercial systems but at a 6-fold lower cost. We demonstrate the flexibility of inDrops-2, by implementing two prominent scRNA-seq protocols, based on exponential and linear amplification of barcoded-complementary DNA, and provide useful insights into the advantages and disadvantages inherent to each approach. We applied inDrops-2 to simultaneously profile multiple human lung carcinoma samples that had been subjected to cell preservation, long-term storage and multiplexing to obtain a multiregional cellular profile of the tumor microenvironment. The scalability, sensitivity and cost efficiency make inDrops-2 stand out among other droplet-based scRNA-seq methods, ideal for large-scale studies on rare cell molecular signatures.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Karolis Goda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Vaidotas Kiseliovas
- Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY, 10065, USA
| | - Justina Zvirblyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | | | - Juozas Siurkus
- Thermo Fisher Scientific Baltics, Research and Development, Vilnius, 02241, Lithuania
| | | | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
- Department of Molecular Biology, Umea University, Umea, 901 87, Sweden
| |
Collapse
|
4
|
De Simone M, Hoover J, Lau J, Bennett H, Wu B, Chen C, Menon H, Au-Yeung A, Lear S, Vaidya S, Shi M, Lund J, Xavier-Magalhães A, Liang Y, Kurdoglu A, O’Gorman W, Modrusan Z, Le D, Darmanis S. A comprehensive analysis framework for evaluating commercial single-cell RNA sequencing technologies. Nucleic Acids Res 2025; 53:gkae1186. [PMID: 39675380 PMCID: PMC11754665 DOI: 10.1093/nar/gkae1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
This study examined nine prominent commercially available single-cell RNA sequencing (scRNA-seq) kits across four technology groups. Each kit was characterized using peripheral blood mononuclear cells (PBMCs) from a single donor, which enabled consistent assessment of factors such as analytical performance, protocol duration and cost. The Chromium Fixed RNA Profiling kit from 10× Genomics, with its probe-based RNA detection method, demonstrated the best overall performance. The Rhapsody WTA kit from Becton Dickinson exhibited a balance between performance and cost. Importantly, we introduce the read utilization metric, which differentiates scRNA-seq kits based on the efficiency of converting sequencing reads into usable counts. Thus, read utilization is an important feature that substantially impacts sensitivity and cost. With data from 169, 262 cells, our work provides a comprehensive comparison of commercial scRNA-seq technologies to facilitate the effective implementation of single-cell studies.
Collapse
Affiliation(s)
- Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Jonathan Hoover
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Hayley M Bennett
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Bing Wu
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Cynthia Chen
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Amelia Au-Yeung
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Sean Lear
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Jessica M Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Ahmet Kurdoglu
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - William E O’Gorman
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| |
Collapse
|
5
|
Utkina M, Shcherbakova A, Deviatiiarov R, Ryabova A, Loguinova M, Trofimov V, Kuznetsova A, Petropavlovskiy M, Salimkhanov R, Maksimov D, Albert E, Golubeva A, Asaad W, Urusova L, Bondarenko E, Lapshina A, Shutova A, Beltsevich D, Gusev O, Dzeranova L, Melnichenko G, Minniakhmetov I, Dedov I, Mokrysheva N, Popov S. Comparative evaluation of ACetic - MEthanol high salt dissociation approach for single-cell transcriptomics of frozen human tissues. Front Cell Dev Biol 2025; 12:1469955. [PMID: 39839668 PMCID: PMC11748064 DOI: 10.3389/fcell.2024.1469955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025] Open
Abstract
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge. Here, we utilized the acetic-methanol dissociation approach (ACME) to capture transcriptional profiles of individual cells from fresh-frozen tissue samples. This method combines acetic acid-based dissociation and methanol-based fixation. In our study, we optimized this approach for human endocrine tissue samples for the first time. We incorporated a high-salt washing buffer instead of the standard PBS to stabilize RNA and prevent RNases reactivation during rehydration. We have designated this optimized protocol as ACME HS (ACetic acid-MEthanol High Salt). This technique aims to preserve cell morphology and RNA integrity, minimizing transcriptome changes and providing a more accurate representation of mature mRNA. We compared the ability of enzymatic, ACME HS, and nuclei isolation methods to preserve major cell types, gene expression, and standard quality parameters across 41 tissue samples. Our results demonstrated that ACME HS effectively dissociates and fixes cells, preserving cell morphology and high RNA integrity. This makes ACME HS a valuable alternative for scRNA-seq protocols involving challenging tissues where obtaining a live cell suspension is difficult or disruptive.
Collapse
Affiliation(s)
- Marina Utkina
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | | | - Ruslan Deviatiiarov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
- Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Alina Ryabova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Marina Loguinova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Valentin Trofimov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Anna Kuznetsova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | | | - Rustam Salimkhanov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Denis Maksimov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene Albert
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Golubeva
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Walaa Asaad
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Lilia Urusova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ekaterina Bondarenko
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Anastasia Lapshina
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Alexandra Shutova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Dmitry Beltsevich
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Oleg Gusev
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
- Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Larisa Dzeranova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Galina Melnichenko
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ivan Dedov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Natalya Mokrysheva
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Sergey Popov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| |
Collapse
|
6
|
Lyu A, Fan Z, Clark M, Lea A, Luong D, Setayesh A, Starzinski A, Wolters R, Arias-Badia M, Allaire K, Wu K, Gurunathan V, Valderrábano L, Wei XX, Miller RA, Van Allen EM, Fong L. Evolution of myeloid-mediated immunotherapy resistance in prostate cancer. Nature 2025; 637:1207-1217. [PMID: 39633050 PMCID: PMC11779626 DOI: 10.1038/s41586-024-08290-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Patients with advanced metastatic castration-resistant prostate cancer (mCRPC) are refractory to immune checkpoint inhibitors (ICIs)1,2, partly because there are immunosuppressive myeloid cells in tumours3,4. However, the heterogeneity of myeloid cells has made them difficult to target, making blockade of the colony stimulating factor-1 receptor (CSF1R) clinically ineffective. Here we use single-cell profiling on patient biopsies across the disease continuum and find that a distinct population of tumour-associated macrophages with elevated levels of SPP1 transcripts (SPP1hi-TAMs) becomes enriched with the progression of prostate cancer to mCRPC. In syngeneic mouse modelling, an analogous macrophage population suppresses CD8+ T cell activity in vitro and promotes ICI resistance in vivo. Furthermore, Spp1hi-TAMs are not responsive to anti-CSF1R antibody treatment. Pathway analysis identifies adenosine signalling as a potential mechanism for SPP1hi-TAM-mediated immunotherapeutic resistance. Indeed, pharmacological inhibition of adenosine A2A receptors (A2ARs) significantly reverses Spp1hi-TAM-mediated immunosuppression in CD8+ T cells in vitro and enhances CRPC responsiveness to programmed cell death protein 1 (PD-1) blockade in vivo. Consistent with preclinical results, inhibition of A2ARs using ciforadenant in combination with programmed death 1 ligand 1 (PD-L1) blockade using atezolizumab induces clinical responses in patients with mCRPC. Moreover, inhibiting A2ARs results in a significant decrease in SPP1hi-TAM abundance in CRPC, indicating that this pathway is involved in both induction and downstream immunosuppression. Collectively, these findings establish SPP1hi-TAMs as key mediators of ICI resistance in mCRPC through adenosine signalling, emphasizing their importance as both a therapeutic target and a potential biomarker for predicting treatment efficacy.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zenghua Fan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew Clark
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Averey Lea
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Setayesh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alec Starzinski
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Wolters
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kate Allaire
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kai Wu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vibha Gurunathan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Valderrábano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eliezer M Van Allen
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Mulet I, Grueso-Cortina C, Cortés-Cano M, Gerovska D, Wu G, Iakab SA, Jimenez-Blasco D, Curtabbi A, Hernansanz-Agustín P, Ketchum H, Manjarrés-Raza I, Wunderlich FT, Bolaños JP, Dawlaty MM, Hopf C, Enríquez JA, Araúzo-Bravo MJ, Tapia N. TET3 regulates terminal cell differentiation at the metabolic level. Nat Commun 2024; 15:9749. [PMID: 39557858 PMCID: PMC11573987 DOI: 10.1038/s41467-024-54044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
TET-family members play a critical role in cell fate commitment. Indeed, TET3 is essential to postnatal development due to yet unknown reasons. To define TET3 function in cell differentiation, we have profiled the intestinal epithelium at single-cell level from wild-type and Tet3 knockout mice. We have found that Tet3 is mostly expressed in differentiated enterocytes. In the absence of TET3, enterocytes exhibit an aberrant differentiation trajectory and do not acquire a physiological cell identity due to an impairment in oxidative phosphorylation, specifically due to an ATP synthase assembly deficiency. Moreover, spatial metabolomics analysis has revealed that Tet3 knockout enterocytes exhibit an unphysiological metabolic profile when compared with their wild-type counterparts. In contrast, no metabolic differences have been observed between both genotypes in the stem cell compartment where Tet3 is mainly not expressed. Collectively, our findings suggest a mechanism by which TET3 regulates mitochondrial function and, thus, terminal cell differentiation at the metabolic level.
Collapse
Affiliation(s)
- Isabel Mulet
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Carmen Grueso-Cortina
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Mireia Cortés-Cano
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stefania Alexandra Iakab
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Andrea Curtabbi
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Harmony Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Israel Manjarrés-Raza
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | | | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - José Antonio Enríquez
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Natalia Tapia
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
8
|
Alías-Segura S, Pazos F, Chagoyen M. Differential expression and co-expression reveal cell types relevant to genetic disorder phenotypes. Bioinformatics 2024; 40:btae646. [PMID: 39468724 PMCID: PMC11549017 DOI: 10.1093/bioinformatics/btae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
MOTIVATION Knowledge of the specific cell types affected by genetic alterations in rare diseases is crucial for advancing diagnostics and treatments. Despite significant progress, the cell types involved in the majority of rare disease manifestations remain largely unknown. In this study, we integrated scRNA-seq data from non-diseased samples with known genetic disorder genes and phenotypic information to predict the specific cell types disrupted by pathogenic mutations for 482 disease phenotypes. RESULTS We found significant phenotype-cell type associations focusing on differential expression and co-expression mechanisms. Our analysis revealed that 13% of the associations documented in the literature were captured through differential expression, while 42% were elucidated through co-expression analysis, also uncovering potential new associations. These findings underscore the critical role of cellular context in disease manifestation and highlight the potential of single-cell data for the development of cell-aware diagnostics and targeted therapies for rare diseases. AVAILABILITY AND IMPLEMENTATION All code generated in this work is available at https://github.com/SergioAlias/sc-coex.
Collapse
Affiliation(s)
- Sergio Alías-Segura
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Málaga, Málaga, 29071, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Monica Chagoyen
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
9
|
Ellman DG, Bjerre FA, Bak ST, Mathiesen SB, Harvald EB, Jensen CH, Andersen DC. Protocol to achieve high-resolution single-cell transcriptomics of cardiomyocytes in multiple species. STAR Protoc 2024; 5:103194. [PMID: 39096494 PMCID: PMC11345562 DOI: 10.1016/j.xpro.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) remains state-of-the-art for transcriptomic cell-mapping. Here, we provide a protocol to generate high-resolution scRNA-seq of rare cardiomyocyte populations (e.g., regenerating/dividing, etc.) from mouse and zebrafish hearts as well as induced pluripotent stem cells, collected in time to achieve detailed transcriptomic insight. We describe the serial steps of viability staining, methanol fixation, storage, and cell sorting to preserve RNA integrity suited for scRNA-seq as well as the quality assessment of the data as shown by examples. For complete details on the use and execution of this protocol, please refer to Bak et al.1.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Frederik Adam Bjerre
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark; Amplexa Genetics, 5000 Odense C, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Harken Jensen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
10
|
Mo X, Wang C, Pu Q, Zhang Z, Wu D. Revealing genetic causality between blood-based biomarkers and major depression in east Asian ancestry. Front Psychiatry 2024; 15:1424958. [PMID: 39323965 PMCID: PMC11423294 DOI: 10.3389/fpsyt.2024.1424958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Major Depression (MD) is a common mental disorder. In East Asian ancestry, the association, causality, and shared genetic basis between blood-based biomarkers and MD remain unclear. Methods We investigated the relationships between blood-based biomarkers and MD through a cross-sectional study and Mendelian randomization (MR) analysis. Cross-trait analysis and enrichment analyses were used to highlight the shared genetic determinants and biological pathways. We conducted summary data-based MR to identify shared genes, which were then validated using a transcriptome dataset from drug-naïve patients with MD. Results In the cross-sectional study, C-Reactive Protein showed the significantly positive correlation with depressive symptoms, while hematocrit, hemoglobin, and uric acid exhibited significantly negative correlations. In MR analysis, basophil count (BASO) and low-density lipoprotein cholesterol (LDLc) had a significant causal effect on MD. The enrichment analysis indicated a significant role of inflammatory cytokines and oxidative stress. The shared genes MFN2, FAM55C, GCC2, and SCAPER were validated, with MFN2 identified as a pleiotropic gene involved in MD, BASO, and LDLc. Discussion This study highlighted that BASO and LDLc have a causal effect on MD in East Asian ancestry. The pathological mechanisms of MD are related not only to inflammatory cytokines and oxidative stress but also to down regulation of MFN2 expression and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoxiao Mo
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuyi Pu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Redd PS, Merting AD, Klement JD, Poschel DB, Yang D, Liu K. In vitro antibody-mediated SARS-CoV-2 infection suppression through human ACE2 receptor blockade. Immunol Lett 2024; 268:106887. [PMID: 38925442 PMCID: PMC11256821 DOI: 10.1016/j.imlet.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2+ human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.
Collapse
Affiliation(s)
- Priscilla S Redd
- CheMedImmune Inc., Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia. Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
12
|
Bernadskaya YY, Kuan A, Tjärnberg A, Brandenburg J, Zheng P, Wiechecki K, Kaplan N, Failla M, Bikou M, Madilian O, Wang W, Christiaen L. Cell cycle-driven transcriptome maturation confers multilineage competence to cardiopharyngeal progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604718. [PMID: 39091743 PMCID: PMC11291048 DOI: 10.1101/2024.07.23.604718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During development, stem and progenitor cells divide and transition through germ layer- and lineage-specific multipotent states to generate the diverse cell types that compose an animal. Defined changes in biomolecular composition underlie the progressive loss of potency and acquisition of lineage-specific characteristics. For example, multipotent cardiopharyngeal progenitors display multilineage transcriptional priming, whereby both the cardiac and pharyngeal muscle programs are partially active and coexist in the same progenitor cells, while their daughter cells engage in a cardiac or pharyngeal muscle differentiation path only after cell division. Here, using the tunicate Ciona, we studied the acquisition of multilineage competence and the coupling between fate decisions and cell cycle progression. We showed that multipotent cardiopharyngeal progenitors acquire the competence to produce distinct Tbx1/10(+) and (-) daughter cells shortly before mitosis, which is necessary for Tbx1/10 activation. By combining transgene-based sample barcoding with single cell RNA-seq (scRNA-seq), we uncovered transcriptome-wide dynamics in migrating cardiopharyngeal progenitors as cells progress through G1, S and G2 phases. We termed this process "transcriptome maturation", and identified candidate "mature genes", including the Rho GAP-coding gene Depdc1, which peak in late G2. Functional assays indicated that transcriptome maturation fosters cardiopharyngeal competence, in part through multilineage priming and proper oriented and asymmetric division that influences subsequent fate decisions, illustrating the concept of "behavioral competence". Both classic feedforward circuits and coupling with cell cycle progression drive transcriptome maturation, uncovering distinct levels of coupling between cell cycle progression and fateful molecular transitions. We propose that coupling competence and fate decision with the G2 and G1 phases, respectively, ensures the timely deployment of lineage-specific programs.
Collapse
Affiliation(s)
| | - Ariel Kuan
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Ping Zheng
- Fang Centre, Ocean University of China, Qingdao, China
| | - Keira Wiechecki
- Department of Biology, New York University, New York, NY, USA
| | - Nicole Kaplan
- Department of Biology, New York University, New York, NY, USA
| | - Margaux Failla
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| | - Maria Bikou
- Department of Biology, New York University, New York, NY, USA
| | - Oliver Madilian
- Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Department of Biology, New York University, New York, NY, USA
- Fang Centre, Ocean University of China, Qingdao, China
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
13
|
Mattar P, Reginato A, Lavados C, Das D, Kalyani M, Martinez-Lopez N, Sharma M, Skovbjerg G, Skytte JL, Roostalu U, Subbarayan R, Picarda E, Zang X, Zhang J, Guha C, Schwartz G, Rajbhandari P, Singh R. Insulin and leptin oscillations license food-entrained browning and metabolic flexibility. Cell Rep 2024; 43:114390. [PMID: 38900636 PMCID: PMC11562929 DOI: 10.1016/j.celrep.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Andressa Reginato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christian Lavados
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Debajyoti Das
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Manu Kalyani
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Elodie Picarda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prashant Rajbhandari
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajat Singh
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Huang S, Shi W, Li S, Fan Q, Yang C, Cao J, Wu L. Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis. LAB ON A CHIP 2024; 24:2601-2621. [PMID: 38669201 DOI: 10.1039/d4lc00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Cells are the fundamental building blocks of living systems, exhibiting significant heterogeneity. The transcriptome connects the cellular genotype and phenotype, and profiling single-cell transcriptomes is critical for uncovering distinct cell types, states, and the interplay between cells in development, health, and disease. Nevertheless, single-cell transcriptome analysis faces daunting challenges due to the low abundance and diverse nature of RNAs in individual cells, as well as their heterogeneous expression. The advent and continuous advancements of next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies have solved these problems and facilitated the high-throughput, sensitive, full-length, and rapid profiling of single-cell RNAs. In this review, we provide a broad introduction to current methodologies for single-cell transcriptome sequencing. First, state-of-the-art advancements in high-throughput and full-length single-cell RNA sequencing (scRNA-seq) platforms using NGS are reviewed. Next, TGS-based long-read scRNA-seq methods are summarized. Finally, a brief conclusion and perspectives for comprehensive single-cell transcriptome analysis are discussed.
Collapse
Affiliation(s)
- Shanqing Huang
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weixiong Shi
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyu Li
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiao Cao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
15
|
Laisné M, Rodgers B, Benlamara S, Wicinski J, Nicolas A, Djerroudi L, Gupta N, Ferry L, Kirsh O, Daher D, Philippe C, Okada Y, Charafe-Jauffret E, Cristofari G, Meseure D, Vincent-Salomon A, Ginestier C, Defossez PA. A novel bioinformatic approach reveals cooperation between Cancer/Testis genes in basal-like breast tumors. Oncogene 2024; 43:1369-1385. [PMID: 38467851 PMCID: PMC11065691 DOI: 10.1038/s41388-024-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Collapse
Affiliation(s)
- Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Sarah Benlamara
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | - Lounes Djerroudi
- Department of Pathology, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Diana Daher
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | |
Collapse
|
16
|
Zelikson N, Ben S, Caspi M, Tarabe R, Shaleve Y, Pri-Paz Basson Y, Tayer-Shifman O, Goldberg E, Kivity S, Rosin-Arbesfeld R. Wnt signaling regulates chemokine production and cell migration of circulating human monocytes. Cell Commun Signal 2024; 22:229. [PMID: 38622714 PMCID: PMC11020454 DOI: 10.1186/s12964-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The β-catenin dependent canonical Wnt signaling pathway plays a crucial role in maintaining normal homeostasis. However, when dysregulated, Wnt signaling is closely associated with various pathological conditions, including inflammation and different types of cancer.Here, we show a new connection between the leukocyte inflammatory response and the Wnt signaling pathway. Specifically, we demonstrate that circulating human primary monocytes express distinct Wnt signaling components and are susceptible to stimulation by the classical Wnt ligand-Wnt-3a. Although this stimulation increased the levels of β-catenin protein, the expression of the classical Wnt-target genes was not affected. Intriguingly, treating circulating human monocytes with Wnt-3a induces the secretion of cytokines and chemokines, enhancing monocyte migration. Mechanistically, the enhanced monocyte migration in response to Wnt stimuli is mediated through CCL2, a strong monocyte-chemoattractant.To further explore the physiological relevance of these findings, we conducted ex-vivo experiments using blood samples of patients with rheumatic joint diseases (RJD) - conditions where monocytes are known to be dysfunctional. Wnt-3a generated a unique cytokine expression profile, which was significantly distinct from that observed in monocytes obtained from healthy donors.Thus, our results provide the first evidence that Wnt-3a may serve as a potent stimulator of monocyte-driven immune processes. These findings contribute to our understanding of inflammatory diseases and, more importantly, shed light on the role of a core signaling pathway in the circulation.
Collapse
Affiliation(s)
- Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaina Ben
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raneen Tarabe
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Shaleve
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Pri-Paz Basson
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oshrat Tayer-Shifman
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Goldberg
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaye Kivity
- Rheumatology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Coulter EM, Bewicke-Copley F, Mossner M, Graham TA, Fitzgibbon J, Okosun J. Defining an Optimized Workflow for Enriching and Analyzing Residual Tumor Populations Using Intracellular Markers. J Mol Diagn 2024; 26:245-256. [PMID: 38280422 DOI: 10.1016/j.jmoldx.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor relapse is well recognized to arise from treatment-resistant residual populations. Strategies enriching such populations for in-depth downstream analyses focus on tumor-specific surface markers; however, enrichment using intracellular biomarkers remains challenging. Using B-cell lymphoma as an exemplar, we demonstrate feasibility to enrich B-cell lymphoma 2 (BCL2)high populations, a surrogate marker for t(14;18)+ lymphomas, for use in downstream applications. Different fixation protocols were assessed for impact on antibody expression and RNA integrity; glyoxal fixation demonstrated superior results regarding minimal effects on surface and intracellular expression, and RNA quality, compared with alternative fixatives evaluated. Furthermore, t(14;18)+ B cells were effectively detected using intracellular BCL2 overexpression to facilitate tumor cell enrichment. Tumor cell populations were enriched using the cellenONE F1.4 single-cell sorting platform, which detected and dispensed BCL2high-expressing cells directly into library preparation reagents for transcriptome analyses. Sorted glyoxal-fixed cells generated good quality sequencing libraries, with high concordance between live and fixed single-cell transcriptomic profiles, discriminating cell populations predominantly on B-cell biology. Overall, we successfully developed a proof-of-concept workflow employing a robust cell preparation protocol for intracellular markers combined with cell enrichment using the cellenONE platform, providing an alternative to droplet-based technologies when cellular input is low or requires prior enrichment to detect rare populations. This workflow has wider prognostic and therapeutic potential to study residual cells in a pan-cancer setting.
Collapse
Affiliation(s)
- Eve M Coulter
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; AstraZeneca, Waltham, Massachusetts
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
18
|
Ismail KA, Mukherjee M, Kareta MS, Lopez SMC. Enabling methanol fixation of pediatric nasal wash during respiratory illness for single cell sequencing in comparison with fresh samples. Pediatr Res 2024; 95:835-842. [PMID: 37758866 DOI: 10.1038/s41390-023-02780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) including pneumonia, bronchitis, and bronchiolitis is the sixth leading cause of mortality around the world and leading cause of death in children under 5 years. Systemic immune response to viral infection is well characterized. However, there is little data regarding the immune response at the upper respiratory tract mucosa. The upper respiratory mucosa is the site of viral entry, initial replication and the first barrier against respiratory infections. Lower respiratory tract samples can be challenging to obtain and require more invasive procedures. However, nasal wash (NW) samples from the upper respiratory tract can be obtained with minimal discomfort to the patient. METHOD In a pilot study, we developed a protocol using NW samples obtained from hospitalized children with LRTI that enables single cell RNA sequencing (scRNA-seq) after the NW sample is methanol-fixed. RESULTS We found no significant changes in scRNA-seq qualitative and quantitative parameters between methanol-fixed and fresh NW samples. CONCLUSIONS We present a novel protocol to enable scRNA-seq in NW samples from children admitted with LRTI. With the inherent challenges associated with clinical samples, the protocol described allows for processing flexibility as well as multicenter collaboration. IMPACT There are no significant differences in scRNA-seq qualitative and quantitative parameters between methanol fixed and fresh Pediatric Nasal wash samples. The study demonstrates the effectiveness of methanol fixation process on preserving respiratory samples for single cell sequencing. This enables Pediatric Nasal wash specimen for single cell RNA sequencing in pediatric patients with respiratory tract infection and allows processing flexibility and multicenter collaboration.
Collapse
Affiliation(s)
- Khaled A Ismail
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, USA
| | - Malini Mukherjee
- Functional Genomics and Bioinformatics Core, Sioux Falls, SD, USA
| | - Michael S Kareta
- Functional Genomics and Bioinformatics Core, Sioux Falls, SD, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, USA
| | - Santiago M C Lopez
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, USA.
- Children's Health Specialty Clinic, Sanford Children's Hospital, Sioux Falls, SD, USA.
| |
Collapse
|
19
|
Hume AJ, Olejnik J, White MR, Huang J, Turcinovic J, Heiden B, Bawa PS, Williams CJ, Gorham NG, Alekseyev YO, Connor JH, Kotton DN, Mühlberger E. Heat Inactivation of Nipah Virus for Downstream Single-Cell RNA Sequencing Does Not Interfere with Sample Quality. Pathogens 2024; 13:62. [PMID: 38251369 PMCID: PMC10818917 DOI: 10.3390/pathogens13010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus-host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) 4 pathogens is that protocols are typically developed without consideration of virus inactivation during the procedure. To ensure complete inactivation of virus-containing samples for downstream analyses, an adaptation of the workflow is needed. Focusing on a commercially available microfluidic partitioning scRNA-seq platform to prepare samples for scRNA-seq, we tested various chemical and physical components of the platform for their ability to inactivate Nipah virus (NiV), a BSL-4 pathogen that belongs to the group of nonsegmented negative-sense RNA viruses. The only step of the standard protocol that led to NiV inactivation was a 5 min incubation at 85 °C. To comply with the more stringent biosafety requirements for BSL-4-derived samples, we included an additional heat step after cDNA synthesis. This step alone was sufficient to inactivate NiV-containing samples, adding to the necessary inactivation redundancy. Importantly, the additional heat step did not affect sample quality or downstream scRNA-seq results.
Collapse
Affiliation(s)
- Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Mitchell R. White
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
- The Pulmonary Center and Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jacquelyn Turcinovic
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Baylee Heiden
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Pushpinder S. Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
| | - Christopher J. Williams
- Department of Medicine, Single Cell Sequencing Core Facility, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Nickolas G. Gorham
- Microarray and Sequencing Resource Core Facility, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - John H. Connor
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; (J.H.); (P.S.B.); (D.N.K.)
- The Pulmonary Center and Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (A.J.H.); (J.O.); (M.R.W.); (J.T.); (B.H.); (J.H.C.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
20
|
Wyler E. Single-Cell RNA-Sequencing of RVFV Infection. Methods Mol Biol 2024; 2824:361-372. [PMID: 39039423 DOI: 10.1007/978-1-0716-3926-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
On the RNA level, viral infections are characterized by perturbations in the host cell transcriptome as well as the development of viral genetic information. Investigating the abundance and dynamic of RNA molecules can provide ample information to understand many aspects of the infection, from viral replication to pathogenesis. A key aspect therein is the resolution of the data, as infections are generally highly heterogeneous. Even in simple model systems such as cell lines, viral infections happen in a very asynchronous way. Quantifying RNAs at single-cell resolution can therefore substantially increase our understanding of these processes.Whereas measuring the RNA in bulk, that is, in samples containing thousands to hundreds of thousands of cells, is established and widely used since many years, methods for studying not only just a few different RNAs in individual cells became widely available only recently. Here, I outline and compare current concepts and methodologies for using single-cell RNA-sequencing to study virus infections. This covers sample preparation, cell preservation, biosafety considerations, and various experimental methods, with a special focus on the aspects that are important for studying virus infections. Since there is not "the one" method for doing single-cell RNA-sequencing, I will not provide a detailed protocol. Rather, this chapter should serve as a primer for getting started with single-cell RNA-sequencing experiments of virus infections and discusses the criteria that allow readers to choose the best procedures for their specific research question.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany.
| |
Collapse
|
21
|
Mai D, Jahn A, Murray T, Morikubo M, Lim PN, Cervantes MM, Pham LK, Nemeth J, Urdahl K, Diercks AH, Aderem A, Rothchild AC. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011871. [PMID: 38236787 PMCID: PMC10796046 DOI: 10.1371/journal.ppat.1011871] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Alveolar macrophages (AMs) play a critical role during Mycobacterium tuberculosis (Mtb) infection as the first cells in the lung to encounter bacteria. We previously showed that AMs initially respond to Mtb in vivo by mounting a cell-protective, rather than pro-inflammatory response. However, the plasticity of the initial AM response was unknown. Here, we characterize how previous exposure to Mycobacterium, either through subcutaneous vaccination with Mycobacterium bovis (scBCG) or through a contained Mtb infection (coMtb) that mimics aspects of concomitant immunity, impacts the initial response by AMs. We find that both scBCG and coMtb accelerate early innate cell activation and recruitment and generate a stronger pro-inflammatory response to Mtb in vivo by AMs. Within the lung environment, AMs from scBCG vaccinated mice mount a robust interferon-associated response, while AMs from coMtb mice produce a broader inflammatory response that is not dominated by Interferon Stimulated Genes. Using scRNAseq, we identify changes to the frequency and phenotype of airway-resident macrophages following Mycobacterium exposure, with enrichment for both interferon-associated and pro-inflammatory populations of AMs. In contrast, minimal changes were found for airway-resident T cells and dendritic cells after exposures. Ex vivo stimulation of AMs with Pam3Cys, LPS and Mtb reveal that scBCG and coMtb exposures generate stronger interferon-associated responses to LPS and Mtb that are cell-intrinsic changes. However, AM profiles that were unique to each exposure modality following Mtb infection in vivo are dependent on the lung environment and do not emerge following ex vivo stimulation. Overall, our studies reveal significant and durable remodeling of AMs following exposure to Mycobacterium, with evidence for both AM-intrinsic changes and contributions from the altered lung microenvironments. Comparisons between the scBCG and coMtb models highlight the plasticity of AMs in the airway and opportunities to target their function through vaccination or host-directed therapies.
Collapse
Affiliation(s)
- Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ana Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Tara Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Morikubo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Animal Biotechnology and Biomedical Sciences Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Johannes Nemeth
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kevin Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
22
|
Madaci L, Gard C, Nin S, Sarrabay A, Baier C, Venton G, Rihet P, Puthier D, Loriod B, Costello R. Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation. Diseases 2023; 12:1. [PMID: 38275564 PMCID: PMC10814800 DOI: 10.3390/diseases12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION The application of single-cell RNA sequencing has greatly improved our understanding of various cellular and molecular mechanisms involved in physiological and pathophysiological processes. However, obtaining living cells for this technique can be difficult under certain conditions. To solve this problem, the methanol fixation method appeared as a promising alternative for routine clinical use. MATERIALS AND METHODS In this study, we selected two AML samples that had been fixed in methanol for 12-18 months. Once the cells were rehydrated, these samples were subjected to single-cell RNA sequencing. We then compared the results obtained from these samples with those obtained from the same samples cryopreserved in DMSO. RESULTS We used a previously validated methanol fixation protocol to perform scRNA-seq on DMSO cryopreserved cells and cells fixed in methanol for more than one year. Preliminary results show that methanol fixation induces some genetic and transcriptional modification compared with DMSO cryopreservation but remains a valuable method for single-cell analysis of primary human leukemia cells. CONCLUSIONS The initial findings from this study highlight certain resemblances in methanol fixation over a 12-month period and cryopreservation with DMSO, along with associated transcriptional level modifications. However, we observed genetic degradation in the fixation condition when extending beyond one year. Despite certain study limitations, it is evident that short-term methanol fixation can be effectively used for leukemia blast samples. Its ease of implementation holds the potential to simplify the integration of this technique into routine clinical practice.
Collapse
Affiliation(s)
- Lamia Madaci
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Charlyne Gard
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Sébastien Nin
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Alexandre Sarrabay
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Céline Baier
- Advanced BioDesign, Parc Technologique de Lyon, 655 Allée des Parcs, 69800 Saint Priest, France
| | - Geoffroy Venton
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Pascal Rihet
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Denis Puthier
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Béatrice Loriod
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
| | - Régis Costello
- TAGC, TGML, INSERM, UMR1090, Aix-Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France; (L.M.); (C.G.); (S.N.); (G.V.); (P.R.); (D.P.); (B.L.)
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| |
Collapse
|
23
|
Kostic M, Raymond JJ, Freyre CAC, Henry B, Tumkaya T, Khlghatyan J, Dvornik J, Li J, Hsiao JS, Cheon SH, Chung J, Sun Y, Dolmetsch RE, Worringer KA, Ihry RJ. Patient Brain Organoids Identify a Link between the 16p11.2 Copy Number Variant and the RBFOX1 Gene. ACS Chem Neurosci 2023; 14:3993-4012. [PMID: 37903506 PMCID: PMC10655044 DOI: 10.1021/acschemneuro.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.
Collapse
Affiliation(s)
- Milos Kostic
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Joseph J. Raymond
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Christophe A. C. Freyre
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Beata Henry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Tayfun Tumkaya
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Jivan Khlghatyan
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jill Dvornik
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jingyao Li
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jack S. Hsiao
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Seon Hye Cheon
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jonathan Chung
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Yishan Sun
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Ricardo E. Dolmetsch
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Kathleen A. Worringer
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Robert J. Ihry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| |
Collapse
|
24
|
Nakanishi T, Willett J, Farjoun Y, Allen RJ, Guillen-Guio B, Adra D, Zhou S, Richards JB. Alternative splicing in lung influences COVID-19 severity and respiratory diseases. Nat Commun 2023; 14:6198. [PMID: 37794074 PMCID: PMC10550956 DOI: 10.1038/s41467-023-41912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Alternative splicing generates functional diversity in isoforms, impacting immune response to infection. Here, we evaluate the causal role of alternative splicing in COVID-19 severity and susceptibility by applying two-sample Mendelian randomization to cis-splicing quantitative trait loci and the results from COVID-19 Host Genetics Initiative. We identify that alternative splicing in lung, rather than total expression of OAS1, ATP11A, DPP9 and NPNT, is associated with COVID-19 severity. MUC1 and PMF1 splicing is associated with COVID-19 susceptibility. Colocalization analyses support a shared genetic mechanism between COVID-19 severity with idiopathic pulmonary fibrosis at the ATP11A and DPP9 loci, and with chronic obstructive lung diseases at the NPNT locus. Last, we show that ATP11A, DPP9, NPNT, and MUC1 are highly expressed in lung alveolar epithelial cells, both in COVID-19 uninfected and infected samples. These findings clarify the importance of alternative splicing in lung for COVID-19 and respiratory diseases, providing isoform-based targets for drug discovery.
Collapse
Affiliation(s)
- Tomoko Nakanishi
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
- Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Julian Willett
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Yossi Farjoun
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Five Prime Sciences Inc, Montréal, QC, Canada
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Darin Adra
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
- Five Prime Sciences Inc, Montréal, QC, Canada.
- Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada.
- Department of Twin Research, King's College London, London, UK.
| |
Collapse
|
25
|
Sánchez-Carbonell M, Jiménez Peinado P, Bayer-Kaufmann C, Hennings JC, Hofmann Y, Schmidt S, Witte OW, Urbach A. Effect of methanol fixation on single-cell RNA sequencing of the murine dentate gyrus. Front Mol Neurosci 2023; 16:1223798. [PMID: 37860083 PMCID: PMC10582346 DOI: 10.3389/fnmol.2023.1223798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to evaluate the transcriptomic landscape and heterogeneity of thousands of cells in parallel. However, complex study designs or the unavailability of in-house instruments require the temporal disconnection between sample preparation and library construction, raising the need for efficient sample preservation methods which are compatible with scRNA-seq downstream analysis. Several studies evaluated the effect of methanol fixation as preservation method, yet none of them deeply assessed its effect on adult primary dissociated brain tissue. Here, we evaluated its effect on murine dentate gyrus (DG) single cell suspensions and on subsequent scRNA-seq downstream analysis by performing SOrting and Robot-assisted Transcriptome SEQuencing (SORT-seq), a partially robotized version of the CEL-seq2 protocol. Our results show that MeOH fixation preserves RNA integrity and has no apparent effects on cDNA library construction. They also suggest that fixation protects from sorting-induced cell stress and increases the proportion of high-quality cells. Despite evidence of mRNA leakage in fixed cells, their relative gene expression levels correlate well with those of fresh cells and fixation does not significantly affect the variance of the dataset. Moreover, it allows the identification of all major DG cell populations, including neural precursors, granule neurons and different glial cell types, with a tendency to preserve more neurons that are underrepresented in fresh samples. Overall, our data show that MeOH fixation is suitable for preserving primary neural cells for subsequent single-cell RNA profiling, helping to overcome challenges arising from complex workflows, improve experimental flexibility and facilitate scientific collaboration.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Hofmann
- Department of Internal Medicine V, Jena University Hospital, Jena, Germany
| | - Silvio Schmidt
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Aging Research Center (ARC) Jena, Jena, Germany
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Aging Research Center (ARC) Jena, Jena, Germany
| |
Collapse
|
26
|
Bageritz J, Krausse N, Yousefian S, Leible S, Valentini E, Boutros M. Glyoxal as an alternative fixative for single-cell RNA sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad160. [PMID: 37494060 PMCID: PMC10542564 DOI: 10.1093/g3journal/jkad160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Single-cell RNA sequencing has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms, and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for single-cell RNA sequencing experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for single-cell RNA sequencing applications. Using Drop-seq methodology, we detected a large number of transcripts and genes from glyoxal-fixed Drosophila cells after single-cell RNA sequencing. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single-cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allow high-quality single-cell RNA sequencing applications.
Collapse
Affiliation(s)
- Josephine Bageritz
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Niklas Krausse
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Schayan Yousefian
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Svenja Leible
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Erica Valentini
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, BioQuant and Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH, Sheikh SP. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep 2023; 13:14401. [PMID: 37658225 PMCID: PMC10474028 DOI: 10.1038/s41598-023-41535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.
Collapse
Affiliation(s)
- Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | | | - Mark Burton
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | | | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Søren Paludan Sheikh
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark.
| |
Collapse
|
28
|
Yi PC, Zhuo L, Lin J, Chang C, Goddard A, Yoon OK. Impact of delayed PBMC processing on functional and genomic assays. J Immunol Methods 2023:113514. [PMID: 37353001 DOI: 10.1016/j.jim.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are commonly isolated from whole blood samples in clinical trials. Isolated PBMCs can be cryopreserved for use in downstream assays such as flow cytometry, single-cell RNA sequencing (scRNA-seq) and enzyme-linked immunosorbent spot (ELISpot) assays to aid understanding of disease biology and treatment effects, and biomarker identification. However, due to logistical practicalities, delays from blood collection to PBMC processing may exceed 24 h, which can potentially affect PBMC function and, ultimately, downstream assay results. Whole blood samples from 20 healthy adults were collected and incubated at 20-25 °C for 2-48 h before PBMC processing. PBMC viability was measured, and flow cytometry immunophenotyping, scRNA-seq and ELISpot were performed following increasing PBMC processing delays. The RosetteSep™ granulocyte depletion kit was used to evaluate the impact of granulocyte contamination following processing delay. Processed scRNA-seq reads were used to identify cell clusters based on marker genes. scRNA-seq data was further used to determine gene expression correlation and pathway activity score in major PBMC cell types (T cells, B cells, natural killer cells, monocytes and dendritic cells) between PBMC preparations subjected to shorter (2-4 h) and longer (8-48 h) processing delays. ELISpot assays evaluated the impact of processing delays on the number of interferon-γ (IFN-γ) secreting cells from ex vivo stimulated PBMCs. PBMC viability was reduced after a 48-h processing delay. Flow cytometry showed that granulocyte contamination of PBMCs increased after 24 h. Cluster analysis of scRNA-seq data identified 23 immune cell type gene expression clusters that were not significantly changed upon granulocyte depletion. Gene expression correlations across the major PBMC cell types were < 0.8 after 24 h of delay compared with 2 or 4 h of delay. Inflammatory, proliferation and signaling pathway activities increased, whereas IFN-γ and metabolic pathway activities decreased with increasing PBMC processing delays. The number of IFN-γ secreting cells trended towards a reduction as PBMC processing delays increased. PBMC processing delays should be minimised when designing clinical trials to reduce outcome variability in downstream assays. Ideally clinical trial sites should have on-site PBMC processing capabilities or be located close to such facilities.
Collapse
Affiliation(s)
- Ping-Cheng Yi
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Luting Zhuo
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA
| | - Julie Lin
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Calvin Chang
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Audrey Goddard
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Oh Kyu Yoon
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA.
| |
Collapse
|
29
|
Sant P, Rippe K, Mallm JP. Approaches for single-cell RNA sequencing across tissues and cell types. Transcription 2023; 14:127-145. [PMID: 37062951 PMCID: PMC10807473 DOI: 10.1080/21541264.2023.2200721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Single-cell sequencing of RNA (scRNA-seq) has advanced our understanding of cellular heterogeneity and signaling in developmental biology and disease. A large number of complementary assays have been developed to profile transcriptomes of individual cells, also in combination with other readouts, such as chromatin accessibility or antibody-based analysis of protein surface markers. As scRNA-seq technologies are advancing fast, it is challenging to establish robust workflows and up-to-date protocols that are best suited to address the large range of research questions. Here, we review scRNA-seq techniques from mRNA end-counting to total RNA in relation to their specific features and outline the necessary sample preparation steps and quality control measures. Based on our experience in dealing with the continuously growing portfolio from the perspective of a central single-cell facility, we aim to provide guidance on how workflows can be best automatized and share our experience in coping with the continuous expansion of scRNA-seq techniques.
Collapse
Affiliation(s)
- Pooja Sant
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Karsten Rippe
- Division Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
30
|
Gutiérrez-Franco A, Ake F, Hassan MN, Cayuela NC, Mularoni L, Plass M. Methanol fixation is the method of choice for droplet-based single-cell transcriptomics of neural cells. Commun Biol 2023; 6:522. [PMID: 37188816 DOI: 10.1038/s42003-023-04834-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The main critical step in single-cell transcriptomics is sample preparation. Several methods have been developed to preserve cells after dissociation to uncouple sample handling from library preparation. Yet, the suitability of these methods depends on the cell types to be processed. In this project, we perform a systematic comparison of preservation methods for droplet-based single-cell RNA-seq on neural and glial cells derived from induced pluripotent stem cells. Our results show that while DMSO provides the highest cell quality in terms of RNA molecules and genes detected per cell, it strongly affects the cellular composition and induces the expression of stress and apoptosis genes. In contrast, methanol fixed samples display a cellular composition similar to fresh samples and provide a good cell quality and little expression biases. Taken together, our results show that methanol fixation is the method of choice for performing droplet-based single-cell transcriptomics experiments on neural cell populations.
Collapse
Affiliation(s)
- Ana Gutiérrez-Franco
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain
| | - Franz Ake
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mohamed N Hassan
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain
| | - Natalie Chaves Cayuela
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Spain.
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
31
|
Scully T, Klein A. A mannitol-based buffer improves single-cell RNA sequencing of high-salt marine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538465. [PMID: 37163054 PMCID: PMC10168337 DOI: 10.1101/2023.04.26.538465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables discovery of novel cell states by transcriptomic profiling with minimal prior knowledge, making it useful for studying non-model organisms. For most marine organisms, however, cells are viable at a higher salinity than is compatible with scRNA-seq, impacting data quality and cell representation. We show that a low-salinity phosphate buffer supplemented with D-mannitol (PBS-M) enables higher-quality scRNA-seq of blood cells from the tunicate Ciona robusta. Using PBS-M reduces cell death and ambient mRNA, revealing cell states not otherwise detected. This simple protocol modification could enable or improve scRNA-seq for the majority of marine organisms.
Collapse
Affiliation(s)
- Tal Scully
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Oder B, Chatzidimitriou A, Langerak AW, Rosenquist R, Österholm C. Recent revelations and future directions using single-cell technologies in chronic lymphocytic leukemia. Front Oncol 2023; 13:1143811. [PMID: 37091144 PMCID: PMC10117666 DOI: 10.3389/fonc.2023.1143811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease with varying outcomes. In the last decade, the application of next-generation sequencing technologies has allowed extensive mapping of disease-specific genomic, epigenomic, immunogenetic, and transcriptomic signatures linked to CLL pathogenesis. These technologies have improved our understanding of the impact of tumor heterogeneity and evolution on disease outcome, although they have mostly been performed on bulk preparations of nucleic acids. As a further development, new technologies have emerged in recent years that allow high-resolution mapping at the single-cell level. These include single-cell RNA sequencing for assessment of the transcriptome, both of leukemic and non-malignant cells in the tumor microenvironment; immunogenetic profiling of B and T cell receptor rearrangements; single-cell sequencing methods for investigation of methylation and chromatin accessibility across the genome; and targeted single-cell DNA sequencing for analysis of copy-number alterations and single nucleotide variants. In addition, concomitant profiling of cellular subpopulations, based on protein expression, can also be obtained by various antibody-based approaches. In this review, we discuss different single-cell sequencing technologies and how they have been applied so far to study CLL onset and progression, also in response to treatment. This latter aspect is particularly relevant considering that we are moving away from chemoimmunotherapy to targeted therapies, with a potentially distinct impact on clonal dynamics. We also discuss new possibilities, such as integrative multi-omics analysis, as well as inherent limitations of the different single-cell technologies, from sample preparation to data interpretation using available bioinformatic pipelines. Finally, we discuss future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Blaž Oder
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Anton W. Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Characterization of bone marrow heterogeneity in NK-AML (M4/M5) based on single-cell RNA sequencing. Exp Hematol Oncol 2023; 12:25. [PMID: 36879313 PMCID: PMC9987113 DOI: 10.1186/s40164-023-00391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) is a heterogeneous hematological malignancy that contains a minor population of self-renewing leukemia stem cells (LSCs), which complicate efforts to achieve long-term survival. We performed single-cell RNA sequencing to profile 39,288 cells from 6 bone marrow (BM) aspirates including 5 NK-AML (M4/M5) patients and 1 healthy donor. The single-cell transcriptome atlas and gene expression characteristics of each cell population in NK-AML (M4/M5) and healthy BM were obtained. In addition, we identified a distinct LSC-like cluster with possible biomarkers in NK-AML (M4/M5) and verified 6 genes using qRT‒PCR and bioinformatic analyses. In conclusion, we utilized single-cell technologies to provide an atlas of NK-AML (M4/M5) cell heterogeneity, composition, and biomarkers with implications for precision medicine and targeted therapies.
Collapse
|
34
|
Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc Natl Acad Sci U S A 2023; 120:e2217868120. [PMID: 36719923 PMCID: PMC9963017 DOI: 10.1073/pnas.2217868120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) has the potential to unravel the differences in metabolism across both cell types and cell states but requires new computational methods. Here, we present a method for generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq profiles. Specifically, we developed a method to estimate the minimum number of cells required to pool to obtain stable models, a bootstrapping strategy for estimating statistical inference, and a faster version of the task-driven integrative network inference for tissues algorithm for generating context-specific GEMs. In addition, we evaluated the effect of different RNA-Seq normalization methods on model topology and differences in models generated from single-cell and bulk RNA-Seq data. We applied our methods on data from mouse cortex neurons and cells from the tumor microenvironment of lung cancer and in both cases found that almost every cell subtype had a unique metabolic profile. In addition, our approach was able to detect cancer-associated metabolic differences between cancer cells and healthy cells, showcasing its utility. We also contextualized models from 202 single-cell clusters across 19 human organs using data from Human Protein Atlas and made these available in the web portal Metabolic Atlas, thereby providing a valuable resource to the scientific community. With the ever-increasing availability of single-cell RNA-Seq datasets and continuously improved GEMs, their combination holds promise to become an important approach in the study of human metabolism.
Collapse
|
35
|
Ru B, Huang J, Zhang Y, Aldape K, Jiang P. Estimation of cell lineages in tumors from spatial transcriptomics data. Nat Commun 2023; 14:568. [PMID: 36732531 PMCID: PMC9895078 DOI: 10.1038/s41467-023-36062-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Spatial transcriptomics (ST) technology through in situ capturing has enabled topographical gene expression profiling of tumor tissues. However, each capturing spot may contain diverse immune and malignant cells, with different cell densities across tissue regions. Cell type deconvolution in tumor ST data remains challenging for existing methods designed to decompose general ST or bulk tumor data. We develop the Spatial Cellular Estimator for Tumors (SpaCET) to infer cell identities from tumor ST data. SpaCET first estimates cancer cell abundance by integrating a gene pattern dictionary of copy number alterations and expression changes in common malignancies. A constrained regression model then calibrates local cell densities and determines immune and stromal cell lineage fractions. SpaCET provides higher accuracy than existing methods based on simulation and real ST data with matched double-blind histopathology annotations as ground truth. Further, coupling cell fractions with ligand-receptor coexpression analysis, SpaCET reveals how intercellular interactions at the tumor-immune interface promote cancer progression.
Collapse
Affiliation(s)
- Beibei Ru
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yu Zhang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Patil AR, Schug J, the HPAP Consortium, Naji A, Kaestner KH, Faryabi RB, Vahedi G. Computational workflow and interactive analysis of single-cell expression profiling of islets generated by the Human Pancreas Analysis Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522578. [PMID: 36711819 PMCID: PMC9881881 DOI: 10.1101/2023.01.03.522578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.
Collapse
|
37
|
Han JL, Song YX, Yao WJ, Zhou J, Du Y, Xu T. Follicle-Stimulating Hormone Provokes Macrophages to Secrete IL-1β Contributing to Atherosclerosis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:25-32. [PMID: 36368721 DOI: 10.4049/jimmunol.2200475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 02/17/2024]
Abstract
Abnormally high follicle-stimulating hormone (FSH) has been reported to associate with cardiovascular diseases in prostate cancer patients with specific androgen deprivation therapy and in menopausal women. All of the cardiovascular diseases were involved in atherosclerosis. However, the pathogenic mechanism of FSH-associated atherosclerosis remains uncertain. Apolipoprotein E-deficient mice were chosen to develop atherosclerosis, of which the plaques were analyzed with administration of short- and long-term FSH imitating androgen deprivation therapy-induced and menopausal FSH elevation. The study showed that short- and long-term exposure of FSH significantly accelerated atherosclerosis progression in apolipoprotein E-deficient mice, manifested as strikingly increased plaques in the aorta and its roots, increased macrophage content, reduced fibrin, and an enlarged necrotic core, suggesting a decrease in plaque stability. Furthermore, expression profiles from the Gene Expression Omnibus GSE21545 dataset revealed that macrophage inflammation was tightly associated with FSH-induced atherosclerotic progression. The human monocyte cell line THP-1 was induced by PMA and worked as a macrophage model to detect inflammatory factors and cellular functions. FSH remarkably promoted the expression of IL-1β in macrophages and strikingly increased the chemotactic migratory capacity of macrophages toward MCP-1, but the promigratory capacity of FSH was attenuated in foam cells. Overall, we revealed that FSH significantly promoted the inflammatory response and migration of macrophages, thereby provoking atherosclerosis development.
Collapse
Affiliation(s)
- Jing-Li Han
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yu-Xuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wei-Juan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China;
| |
Collapse
|
38
|
Teng X, Mou DC, Li HF, Jiao L, Wu SS, Pi JK, Wang Y, Zhu ML, Tang M, Liu Y. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. Mol Med 2022; 28:135. [DOI: 10.1186/s10020-022-00563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms.
Methods
Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells.
Results
SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPβ/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis.
Conclusion
Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.
Collapse
|
39
|
Single-cell sequencing unveils key contributions of immune cell populations in cancer-associated adipose wasting. Cell Discov 2022; 8:122. [PMCID: PMC9663454 DOI: 10.1038/s41421-022-00466-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractAdipose tissue loss seen with cancer-associated cachexia (CAC) may functionally drive cachexia development. Using single-cell transcriptomics, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of white adipose tissues from patients with or without CAC. We report depot- and disease-specific clusters and developmental trajectories of adipose progenitors and immune cells. In adipose tissues with CAC, clear pro-inflammatory transitions were discovered in adipose progenitors, macrophages and CD8+ T cells, with dramatically remodeled cell interactome among these cells, implicating a synergistic effect in promoting tissue inflammation. Remarkably, activated CD8+ T cells contributed specifically to increased IFNG expression in adipose tissues from cachexia patients, and displayed a significant pro-catabolic effect on adipocytes in vitro; whereas macrophage depletion resulted in significantly rescued adipose catabolism and alleviated cachexia in a CAC animal model. Taken together, these results unveil causative mechanisms underlying the chronical inflammation and adipose wasting in CAC.
Collapse
|
40
|
Bosch-Camós L, Alonso U, Esteve-Codina A, Chang CY, Martín-Mur B, Accensi F, Muñoz M, Navas MJ, Dabad M, Vidal E, Pina-Pedrero S, Pleguezuelos P, Caratù G, Salas ML, Liu L, Bataklieva S, Gavrilov B, Rodríguez F, Argilaguet J. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog 2022; 18:e1010931. [PMID: 36350837 PMCID: PMC9645615 DOI: 10.1371/journal.ppat.1010931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine. African swine fever (ASF) pandemic is currently the number one threat for the porcine industry worldwide. Lack of treatments hampers its control, and the insufficient knowledge regarding the immune effector mechanisms required for protection hinders rational vaccine design. Here we present the first comprehensive study characterizing the complex cellular immune response involved in cross-protection against ASF. We show that, upon in vitro reactivation, cells from immune pigs induce a Th1-biased recall response that in turn enhances the antiviral innate response. Our results suggest that this positive feedback regulation of innate immunity plays a key role in the early control of ASF virus infection. Altogether, this work represents a step forward in the understanding of ASF immunology and provide critical immune components that should be considered to more rationally design future ASF vaccines.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Uxía Alonso
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Chia-Yu Chang
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Accensi
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia animals. Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Muñoz
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - María J. Navas
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enric Vidal
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Sonia Pina-Pedrero
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Patricia Pleguezuelos
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María L. Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, Madrid, Spain
| | - Lihong Liu
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, Bulgaria
| | - Fernando Rodríguez
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| | - Jordi Argilaguet
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail: (FR); (JA)
| |
Collapse
|
41
|
Lee H, Joo JY, Sohn DH, Kang J, Yu Y, Park HR, Kim YH. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med 2022; 20:504. [PMID: 36329504 PMCID: PMC9635198 DOI: 10.1186/s12967-022-03702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontitis is a major inflammatory disease of the oral mucosa that is not limited to the oral cavity but also has systemic consequences. Although the importance of chronic periodontitis has been emphasized, the systemic immune response induced by periodontitis and its therapeutic effects remain elusive. Here, we report the transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with periodontitis. Methods Using single-cell RNA sequencing, we profiled PBMCs from healthy controls and paired pre- and post-treatment patients with periodontitis. We extracted differentially expressed genes and biological pathways for each cell type and calculated activity scores reflecting cellular characteristics. Intercellular crosstalk was classified into therapy-responsive and -nonresponsive pathways. Results We analyzed pan-cellular differentially expressed genes caused by periodontitis and found that most cell types showed a significant increase in CRIP1, which was further supported by the increased levels of plasma CRIP1 observed in patients with periodontitis. In addition, activated cell type-specific ligand-receptor interactions, including the BTLA, IFN-γ, and RESISTIN pathways, were prominent in patients with periodontitis. Both the BTLA and IFN-γ pathways returned to similar levels in healthy controls after periodontal therapy, whereas the RESISTIN pathway was still activated even after therapy. Conclusion These data collectively provide insights into the transcriptome changes and molecular interactions that are responsive to periodontal treatment. We identified periodontitis-specific systemic inflammatory indicators and suggest unresolved signals of non-surgical therapy as future therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03702-2.
Collapse
Affiliation(s)
- Hansong Lee
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Ji-Young Joo
- grid.262229.f0000 0001 0719 8572Department of Periodontology, School of Dentistry, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Dong Hyun Sohn
- grid.262229.f0000 0001 0719 8572Department of Microbiology and Immunology, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Junho Kang
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yeuni Yu
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Hae Ryoun Park
- grid.262229.f0000 0001 0719 8572Department of Oral Pathology, School of Dentistry, Pusan National University, 49 Busandaehak- ro, 50612 Yangsan, Republic of Korea
| | - Yun Hak Kim
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Anatomy, School of Medicine, Pusan National University, 49 Busandaehak-ro, 50612 Yangsan, Republic of Korea
| |
Collapse
|
42
|
Roos K, Rooda I, Keif RS, Liivrand M, Smolander OP, Salumets A, Velthut-Meikas A. Single-cell RNA-seq analysis and cell-cluster deconvolution of the human preovulatory follicular fluid cells provide insights into the pathophysiology of ovarian hyporesponse. Front Endocrinol (Lausanne) 2022; 13:945347. [PMID: 36339426 PMCID: PMC9635625 DOI: 10.3389/fendo.2022.945347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reduction in responsiveness to gonadotropins or hyporesponsiveness may lead to the failure of in vitro fertilization (IVF), due to a low number of retrieved oocytes. The ovarian sensitivity index (OSI) is used to reflect the ovarian responsiveness to gonadotropin stimulation before IVF. Although introduced to clinical practice already years ago, its usefulness to predict clinical outcomes requires further research. Nevertheless, pathophysiological mechanisms of ovarian hyporesponse, along with advanced maternal age and in younger women, have not been fully elucidated. Follicles consist of multiple cell types responsible for a repertoire of biological processes including responding to pituitary gonadotropins necessary for follicle growth and oocyte maturation as well as ovulation. Encouraging evidence suggests that hyporesponse could be influenced by many contributing factors, therefore, investigating the variability of ovarian follicular cell types and their gene expression in hyporesponders is highly informative for increasing their prognosis for IVF live birth. Due to advancements in single-cell analysis technologies, the role of somatic cell populations in the development of infertility of ovarian etiology can be clarified. Here, somatic cells were collected from the fluid of preovulatory ovarian follicles of patients undergoing IVF, and RNA-seq was performed to study the associations between OSI and gene expression. We identified 12 molecular pathways differentially regulated between hypo- and normoresponder patient groups (FDR<0.05) from which extracellular matrix organization, post-translational protein phosphorylation, and regulation of Insulin-like Growth Factor (IGF) transport and uptake by IGF Binding Proteins were regulated age-independently. We then generated single-cell RNA-seq data from matching follicles revealing 14 distinct cell clusters. Using cell cluster-specific deconvolution from the bulk RNA-seq data of 18 IVF patients we integrated the datasets as a novel approach and discovered that the abundance of three cell clusters significantly varied between hypo- and normoresponder groups suggesting their role in contributing to the deviations from normal ovarian response to gonadotropin stimulation. Our work uncovers new information regarding the differences in the follicular gene expression between hypo- and normoresponders. In addition, the current study fills the gap in understanding the inter-patient variability of cell types in human preovulatory follicles, as revealed by single-cell analysis of follicular fluid cells.
Collapse
Affiliation(s)
- Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Nova Vita Clinic AS, Tallinn, Estonia
| | - Ilmatar Rooda
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Robyn-Stefany Keif
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Liivrand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
43
|
Shih AJ, Adelson RP, Vashistha H, Khalili H, Nayyar A, Puran R, Herrera R, Chatterjee PK, Lee AT, Truskinovsky AM, Elmaliki K, DeFranco M, Metz CN, Gregersen PK. Single-cell analysis of menstrual endometrial tissues defines phenotypes associated with endometriosis. BMC Med 2022; 20:315. [PMID: 36104692 PMCID: PMC9476391 DOI: 10.1186/s12916-022-02500-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Endometriosis is a common, complex disorder which is underrecognized and subject to prolonged delays in diagnosis. It is accompanied by significant changes in the eutopic endometrial lining. METHODS We have undertaken the first single-cell RNA-sequencing (scRNA-Seq) comparison of endometrial tissues in freshly collected menstrual effluent (ME) from 33 subjects, including confirmed endometriosis patients (cases) and controls as well as symptomatic subjects (who have chronic symptoms suggestive of endometriosis but have not been diagnosed). RESULTS We identify a unique subcluster of proliferating uterine natural killer (uNK) cells in ME-tissues from controls that is almost absent from endometriosis cases, along with a striking reduction of total uNK cells in the ME of cases (p < 10-16). In addition, an IGFBP1+ decidualized subset of endometrial stromal cells are abundant in the shed endometrium of controls when compared to cases (p < 10-16) confirming findings of compromised decidualization of cultured stromal cells from cases. By contrast, endometrial stromal cells from cases are enriched in cells expressing pro-inflammatory and senescent phenotypes. An enrichment of B cells in the cases (p = 5.8 × 10-6) raises the possibility that some may have chronic endometritis, a disorder which predisposes to endometriosis. CONCLUSIONS We propose that characterization of endometrial tissues in ME will provide an effective screening tool for identifying endometriosis in patients with chronic symptoms suggestive of this disorder. This constitutes a major advance, since delayed diagnosis for many years is a major clinical problem in the evaluation of these patients. Comprehensive analysis of ME is expected to lead to new diagnostic and therapeutic approaches to endometriosis and other associated reproductive disorders such as female infertility.
Collapse
Affiliation(s)
- Andrew J Shih
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Himanshu Vashistha
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ashima Nayyar
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Radha Puran
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Rixsi Herrera
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Annette T Lee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
| | - Alexander M Truskinovsky
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
- Department of Pathology, North Shore University Hospital, Northwell Health, 300 Community Drive, Manhasset, NY, USA
| | - Kristine Elmaliki
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Margaret DeFranco
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christine N Metz
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| |
Collapse
|
44
|
Verhoeven BM, Mei S, Olsen TK, Gustafsson K, Valind A, Lindström A, Gisselsson D, Fard SS, Hagerling C, Kharchenko PV, Kogner P, Johnsen JI, Baryawno N. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3:100657. [PMID: 35688160 PMCID: PMC9245004 DOI: 10.1016/j.xcrm.2022.100657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022]
Abstract
Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.
Collapse
Affiliation(s)
- Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anders Valind
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Axel Lindström
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Shahrzad Shirazi Fard
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Catharina Hagerling
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
45
|
De Alwis R, Hansson J, Lindgren D, Schoch S, Tejera A, Scholtz B, Elfving P, Möller C, Nilsson H, Johansson M, Axelson H. Size‑based isolation and detection of renal carcinoma cells from whole blood. Mol Clin Oncol 2022; 16:101. [PMID: 35463211 PMCID: PMC9022084 DOI: 10.3892/mco.2022.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is a tumour type with an indolent growth pattern and rather vague symptoms. The present study developed a platform for liquid biopsy of RCC based upon the isolation of circulating tumour cells (CTCs). Founded on the observation that RCC tumour cells are considerably larger than leucocytes, the present study employed a microfluidics-based system for isolation of RCC CTCs from whole blood. Using this system, it was revealed that 66% of spiked-in RCC tumour cells could be retrieved using this approach. Furthermore, it was demonstrated that these cells could be molecularly detected with digital PCR using RCC-specific genes down to one tumour cell, whilst avoiding detection in samples lacking tumour cells. Finally, subtype specific transcripts were identified to distinguish the different subtypes of RCC, which were then validated in patient tumours. The present study established a novel workflow for the isolation of RCC CTCs from whole blood, with the potential to detect these cells irrespective of subtype.
Collapse
Affiliation(s)
- Roger De Alwis
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Jennifer Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Sarah Schoch
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Alexander Tejera
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bianca Scholtz
- Department of Urology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Peter Elfving
- Department of Urology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Martin Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| |
Collapse
|
46
|
Arora D, Robey PG. Recent updates on the biological basis of heterogeneity in bone marrow stromal cells/skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:3-16. [PMID: 35837340 PMCID: PMC9255791 DOI: 10.12336/biomatertransl.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrowderived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other "mesenchymal stem/stromal cells", and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.
Collapse
Affiliation(s)
- Deepika Arora
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Department of Commerce, Gaithersburg, MD, USA
- Department of Biotechnology, School of Biological Engineering & Life Sciences, Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Meerut, India
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
47
|
M Ascensión A, Ibáñez-Solé O, Inza I, Izeta A, Araúzo-Bravo MJ. Triku: a feature selection method based on nearest neighbors for single-cell data. Gigascience 2022; 11:giac017. [PMID: 35277963 PMCID: PMC8917514 DOI: 10.1093/gigascience/giac017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Feature selection is a relevant step in the analysis of single-cell RNA sequencing datasets. Most of the current feature selection methods are based on general univariate descriptors of the data such as the dispersion or the percentage of zeros. Despite the use of correction methods, the generality of these feature selection methods biases the genes selected towards highly expressed genes, instead of the genes defining the cell populations of the dataset. RESULTS Triku is a feature selection method that favors genes defining the main cell populations. It does so by selecting genes expressed by groups of cells that are close in the k-nearest neighbor graph. The expression of these genes is higher than the expected expression if the k-cells were chosen at random. Triku efficiently recovers cell populations present in artificial and biological benchmarking datasets, based on adjusted Rand index, normalized mutual information, supervised classification, and silhouette coefficient measurements. Additionally, gene sets selected by triku are more likely to be related to relevant Gene Ontology terms and contain fewer ribosomal and mitochondrial genes. CONCLUSION Triku is developed in Python 3 and is available at https://github.com/alexmascension/triku.
Collapse
Affiliation(s)
- Alex M Ascensión
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
| | - Olga Ibáñez-Solé
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
| | - Iñaki Inza
- Intelligent Systems Group, Computer Science Faculty, University of the Basque Country, Donostia-San Sebastian, 20018, Spain
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
| | - Marcos J Araúzo-Bravo
- Biodonostia Health Research Institute, Computational Biology and Systems Biomedicine Group, Paseo Dr. Begiristain, s/n, Donostia-San Sebastian, 20014, Spain
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, German
- IKERBASQUE, Basque Foundation for Science, Euskadi plaza 5, Bilbao, 48009, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
48
|
Cho I, Chang JB. Simultaneous expansion microscopy imaging of proteins and mRNAs via dual-ExM. Sci Rep 2022; 12:3360. [PMID: 35233025 PMCID: PMC8888644 DOI: 10.1038/s41598-022-06903-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Simultaneous nanoscale imaging of mRNAs and proteins of the same specimen can provide better information on the translational regulation, molecular trafficking, and molecular interaction of both normal and diseased biological systems. Expansion microscopy (ExM) is an attractive option to achieve such imaging; however, simultaneous ExM imaging of proteins and mRNAs has not been demonstrated. Here, a technique for simultaneous ExM imaging of proteins and mRNAs in cultured cells and tissue slices, which we termed dual-expansion microscopy (dual-ExM), is demonstrated. First, we verified a protocol for the simultaneous labeling of proteins and mRNAs. Second, we combined the simultaneous labeling protocol with ExM to enable the simultaneous ExM imaging of proteins and mRNAs in cultured cells and mouse brain slices and quantitatively study the degree of signal retention after expansion. After expansion, both proteins and mRNAs can be visualized with a resolution beyond the diffraction limit of light in three dimensions. Dual-ExM is a versatile tool to study complex biological systems, such as the brain or tumor microenvironments, at a nanoscale resolution.
Collapse
Affiliation(s)
- In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
49
|
Kleino I, Nowlan K, Kotimaa J, Kekäläinen E. Optimising protein detection with fixable custom oligo-labelled antibodies for single-cell multi-omics approaches. Biotechnol J 2022; 17:e2100213. [PMID: 35174641 DOI: 10.1002/biot.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIM Single-cell RNA sequencing (scRNA-seq) is a powerful method utilising transcriptomic data for detailed characterisation of heterogeneous cell populations. The use of oligonucleotide-labelled antibodies for targeted proteomics addresses the shortcomings of the scRNA-seq-only based approach by improving detection of low expressing targets. However, optimisation of large antibody panels is challenging and depends on the availability of co-functioning oligonucleotide-labelled antibodies. MAIN METHODS AND RESULTS We present here a simple adjustable oligonucleotide-antibody conjugation method which enables desired level of oligo-conjugation per antibody. The mean labelling in the produced antibody batches varied from 1 to 6 oligos per antibody. In the scRNA-seq multimodal experiment, the highest sensitivity was seen with moderate antibody labelling as the high activation and/or labelling was detrimental to antibody performance. The conjugates were also tested for compatibility with the fixation and freeze storage protocols. The oligo-antibody signal was stable in fixed cells indicating feasibility of the stain, fix, store, and analyse later type of workflow for multimodal scRNA-seq. CONCLUSIONS AND IMPLICATIONS Optimised oligo-labelling will improve detection of weak protein targets in scRNA-seq multimodal experiments and reduce sequencing costs due to a more balanced amplification of different antibody signals in CITE-seq libraries. Furthermore, the use of a pre-stain, fix, run later protocol will allow for flexibility, facilitate sample pooling, and ease logistics in scRNA-seq multimodal experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iivari Kleino
- Translational Immunology Research Program, University of Helsinki
| | - Kirsten Nowlan
- Doctoral Programme in Biomedicine, University of Helsinki
| | - Juha Kotimaa
- Complement Group, University of Helsinki, Department of Bacteriology and Immunology
| | - Eliisa Kekäläinen
- Dept. of Bacteriology and Immunology, University of Helsinki, and Helsinki University Hospital
| |
Collapse
|
50
|
Rauschmeier R, Reinhardt A, Gustafsson C, Glaros V, Artemov AV, Dunst J, Taneja R, Adameyko I, Månsson R, Busslinger M, Kreslavsky T. Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. J Exp Med 2021; 219:212923. [PMID: 34919144 PMCID: PMC8689665 DOI: 10.1084/jem.20211406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The generation of high-affinity antibodies against pathogens and vaccines requires the germinal center (GC) reaction, which relies on a complex interplay between specialized effector B and CD4 T lymphocytes, the GC B cells and T follicular helper (TFH) cells. Intriguingly, several positive key regulators of the GC reaction are common for both cell types. Here, we report that the transcription factor Bhlhe40 is a crucial cell-intrinsic negative regulator affecting both the B and T cell sides of the GC reaction. In activated CD4 T cells, Bhlhe40 was required to restrain proliferation, thus limiting the number of TFH cells. In B cells, Bhlhe40 executed its function in the first days after immunization by selectively restricting the generation of the earliest GC B cells but not of early memory B cells or plasmablasts. Bhlhe40-deficient mice with progressing age succumbed to a B cell lymphoma characterized by the accumulation of monoclonal GC B-like cells and polyclonal TFH cells in various tissues.
Collapse
Affiliation(s)
- René Rauschmeier
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Annika Reinhardt
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis Glaros
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Artem V. Artemov
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Endocrinology Research Centre, Moscow, Russian Federation
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|