1
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
2
|
Lasso G, Grodus M, Valencia E, DeJesus V, Liang E, Delwel I, Bortz RH, Lupyan D, Ehrlich HY, Castellanos AA, Gazzo A, Wells HL, Wacharapluesadee S, Tremeau-Bravard A, Seetahal JFR, Hughes T, Lee J, Lee MH, Sjodin AR, Geldenhuys M, Mortlock M, Navarrete-Macias I, Gilardi K, Willig MR, Nava AFD, Loh EH, Asrat M, Smiley-Evans T, Magesa WS, Zikankuba S, Wolking D, Suzán G, Ojeda-Flores R, Carrington CVF, Islam A, Epstein JH, Markotter W, Johnson CK, Goldstein T, Han BA, Mazet JAK, Jangra RK, Chandran K, Anthony SJ. Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning. Cell Host Microbe 2025; 33:294-313.e11. [PMID: 39818205 PMCID: PMC11825280 DOI: 10.1016/j.chom.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species. We found that GP-NPC1 binding correlated poorly with phylogeny. By integrating binding assays with machine learning, we identified genetic factors influencing virus-receptor-binding and predicted GP-NPC1-binding avidity for additional filoviruses and bats. Moreover, combining receptor-binding avidities with bat geographic distribution and the locations of previous Ebola outbreaks allowed us to rank bats by their potential as Ebola virus hosts. This study represents a comprehensive investigation of filovirus-receptor binding in bats (1,484 GP-NPC1 pairs, 11 filoviruses, and 135 bats) and describes a multidisciplinary approach to predict susceptible species and guide filovirus host surveillance.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Veronica DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rob H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | - Hanna Y Ehrlich
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather L Wells
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Janine F R Seetahal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Tom Hughes
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Jimmy Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Mei-Ho Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Anna R Sjodin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kirsten Gilardi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Michael R Willig
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - Alessandra F D Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia - EDTA, Manaus 69.057-070, AM, Brazil
| | - Elisabeth H Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY 40508, USA
| | - Makda Asrat
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley-Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Walter S Magesa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Sijali Zikankuba
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - David Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ariful Islam
- Gulbali Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
5
|
He B, Hu T, Yan X, Pa Y, Liu Y, Liu Y, Li N, Yu J, Zhang H, Liu Y, Chai J, Sun Y, Mi S, Liu Y, Yi L, Tu Z, Wang Y, Sun S, Feng Y, Zhang W, Zhao H, Duan B, Gong W, Zhang F, Tu C. Isolation, characterization, and circulation sphere of a filovirus in fruit bats. Proc Natl Acad Sci U S A 2024; 121:e2313789121. [PMID: 38335257 PMCID: PMC10873641 DOI: 10.1073/pnas.2313789121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.
Collapse
Affiliation(s)
- Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yanhui Pa
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Jing Yu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province671000, China
| | - Yonghua Liu
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Jun Chai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province650201, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yiyin Wang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Wendong Zhang
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Huanyun Zhao
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Bofang Duan
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Wenjie Gong
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province225009, China
| |
Collapse
|
6
|
Peeters M, Champagne M, Ndong Bass I, Goumou S, Ndimbo Kumugo SP, Lacroix A, Esteban A, Meta Djomsi D, Soumah AK, Mbala Kingebeni P, Mba Djonzo FA, Lempu G, Thaurignac G, Mpoudi Ngole E, Kouanfack C, Mukadi Bamuleka D, Likofata J, Muyembe Tamfum JJ, De Nys H, Capelle J, Toure A, Delaporte E, Keita AK, Ahuka Mundeke S, Ayouba A. Extensive Survey and Analysis of Factors Associated with Presence of Antibodies to Orthoebolaviruses in Bats from West and Central Africa. Viruses 2023; 15:1927. [PMID: 37766333 PMCID: PMC10536003 DOI: 10.3390/v15091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1-27.5% versus 1.3-4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p < 0.001). Moreover, seroprevalence was highest in subadults (45.4%) when compared to mature adults (19.2%), (p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined.
Collapse
Affiliation(s)
- Martine Peeters
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Maëliss Champagne
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Innocent Ndong Bass
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Souana Goumou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Simon-Pierre Ndimbo Kumugo
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Audrey Lacroix
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Amandine Esteban
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Dowbiss Meta Djomsi
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Placide Mbala Kingebeni
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Flaubert Auguste Mba Djonzo
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Guy Lempu
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Guillaume Thaurignac
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Charles Kouanfack
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Daniel Mukadi Bamuleka
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Jean-Jacques Muyembe Tamfum
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Helene De Nys
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
- Astre, CIRAD, 6 Lanark Road, Harare, Zimbabwe
| | - Julien Capelle
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Steve Ahuka Mundeke
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| |
Collapse
|
7
|
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan- Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023; 15:v15040987. [PMID: 37112966 PMCID: PMC10145118 DOI: 10.3390/v15040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Antoinette Grobbelaar
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naazneen Moolla
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| |
Collapse
|
8
|
Jain S, Khaiboullina S, Martynova E, Morzunov S, Baranwal M. Epidemiology of Ebolaviruses from an Etiological Perspective. Pathogens 2023; 12:248. [PMID: 36839520 PMCID: PMC9963726 DOI: 10.3390/pathogens12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Since the inception of the ebolavirus in 1976, 32 outbreaks have resulted in nearly 15,350 deaths in more than ten countries of the African continent. In the last decade, the largest (2013-2016) and second largest (2018-2020) ebolavirus outbreaks have occurred in West Africa (mainly Guinea, Liberia, and Sierra Leone) and the Democratic Republic of the Congo, respectively. The 2013-2016 outbreak indicated an alarming geographical spread of the virus and was the first to qualify as an epidemic. Hence, it is imperative to halt ebolavirus progression and develop effective countermeasures. Despite several research efforts, ebolaviruses' natural hosts and secondary reservoirs still elude the scientific world. The primary source responsible for infecting the index case is also unknown for most outbreaks. In this review, we summarize the history of ebolavirus outbreaks with a focus on etiology, natural hosts, zoonotic reservoirs, and transmission mechanisms. We also discuss the reasons why the African continent is the most affected region and identify steps to contain this virus.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
9
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Cooper L, Achi JG, Rong L. Comparative analyses of small molecule and antibody inhibition on glycoprotein-mediated entry of Měngla virus with other filoviruses. J Med Virol 2022; 94:3263-3269. [PMID: 35332563 PMCID: PMC9161972 DOI: 10.1002/jmv.27739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022]
Abstract
The ability of viruses in the filoviridae family (Ebola virus (EBOV) and Marburg Virus (MARV)) to cause severe human disease and their pandemic potential makes all emerging filoviral pathogens a concern to humanity. Měnglà Virus (MLAV) belonging to the new genus Dianlovirus was recently discovered in the liver of bats from Měnglà County, Yunnan Province, China. The capacity of MLAV to utilize NPC1 as an endosomal receptor, to transduce mammalian cells, and suppress IFN response suggests that this potential pathogen could cause human illness. Despite great effort by researchers, only the viral genome has been recovered and isolation of live MLAV had been unsuccessful. Here using a pseudovirus model baring the MLAV glycoprotein (GP), we studied the protease dependence of the MLAV-GP, and the ability of small molecules and antibodies to inhibit MLAV viral entry. Like EBOV and MARV, the MLAV-GP requires proteolytic processing but like MARV it does not depend on cathepsin B activity for viral entry. Furthermore, previously discovered small molecule inhibitors and antibodies are MLAV inhibitors and show the possibility of developing these inhibitors as broad-spectrum filovirus antivirals. Overall, the findings in the study confirmed that MLAV viral entry is biologically distinct but has similarities to MARV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Djomsi DM, Mba Djonzo FA, Ndong Bass I, Champagne M, Lacroix A, Thaurignac G, Esteban A, De Nys H, Bourgarel M, Akoachere JF, Delaporte E, Ayouba A, Cappelle J, Mpoudi Ngole E, Peeters M. Dynamics of Antibodies to Ebolaviruses in an Eidolon helvum Bat Colony in Cameroon. Viruses 2022; 14:560. [PMID: 35336967 PMCID: PMC8951055 DOI: 10.3390/v14030560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The ecology of ebolaviruses is still poorly understood and the role of bats in outbreaks needs to be further clarified. Straw-colored fruit bats (Eidolon helvum) are the most common fruit bats in Africa and antibodies to ebolaviruses have been documented in this species. Between December 2018 and November 2019, samples were collected at approximately monthly intervals in roosting and feeding sites from 820 bats from an Eidolon helvum colony. Dried blood spots (DBS) were tested for antibodies to Zaire, Sudan, and Bundibugyo ebolaviruses. The proportion of samples reactive with GP antigens increased significantly with age from 0-9/220 (0-4.1%) in juveniles to 26-158/225 (11.6-70.2%) in immature adults and 10-225/372 (2.7-60.5%) in adult bats. Antibody responses were lower in lactating females. Viral RNA was not detected in 456 swab samples collected from 152 juvenile and 214 immature adult bats. Overall, our study shows that antibody levels increase in young bats suggesting that seroconversion to Ebola or related viruses occurs in older juvenile and immature adult bats. Multiple year monitoring would be needed to confirm this trend. Knowledge of the periods of the year with the highest risk of Ebolavirus circulation can guide the implementation of strategies to mitigate spill-over events.
Collapse
Affiliation(s)
- Dowbiss Meta Djomsi
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Flaubert Auguste Mba Djonzo
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Innocent Ndong Bass
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Maëliss Champagne
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Audrey Lacroix
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Guillaume Thaurignac
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Amandine Esteban
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Helene De Nys
- ASTRE, CIRAD, Harare, Zimbabwe; (H.D.N.); (M.B.)
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France
| | - Mathieu Bourgarel
- ASTRE, CIRAD, Harare, Zimbabwe; (H.D.N.); (M.B.)
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France
| | - Jane-Francis Akoachere
- Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (J.-F.A.); (J.C.)
| | - Eric Delaporte
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Ahidjo Ayouba
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Julien Cappelle
- Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (J.-F.A.); (J.C.)
| | - Eitel Mpoudi Ngole
- Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales (IMPM), Yaoundé P.O. Box 13033, Cameroon; (D.M.D.); (F.A.M.D.); (I.N.B.)
| | - Martine Peeters
- Transvihmi, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm, 34394 Montpellier, France; (M.C.); (A.L.); (G.T.); (A.E.); (E.D.); (A.A.)
| |
Collapse
|
12
|
Sherwood LJ, Hayhurst A. Generating Uniformly Cross-Reactive Ebolavirus spp. Anti-nucleoprotein Nanobodies to Facilitate Forward Capable Detection Strategies. ACS Infect Dis 2022; 8:343-359. [PMID: 34994194 DOI: 10.1021/acsinfecdis.1c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is often challenging for a single monoclonal antibody to cross-react equally with all species of a particular viral genus that are separated by time and geographies to ensure broad long-term global immunodiagnostic use. Here, we set out to isolate nanobodies or single-domain antibodies (sdAbs) with uniform cross-reactivity to the genus Ebolavirus by immunizing a llama with recombinant nucleoprotein (NP) representing the 5 cultivated species to assemble a phage display repertoire for mining. Screening sdAbs for reactivity against the C-terminal domain of NP guided the isolation of clones that could perform as both captor and tracer for polyvalent antigen in sandwich assays. Two promising sdAbs had equivalent reactivities across all 5 species and greatly enhanced the equilibrium concentration at 50% (EC50) for recombinant NP when compared with a differentially cross-reactive nonimmune sdAb isolated previously. Uniform reactivity and enhanced sensitivity were relayed to live virus titrations, resulting in lower limits of detection of 2-5 pfu for the best sdAbs, representing 10-, 20-, and 100-fold improvements for Zaire, Sudan/Reston, and Taï Forest viruses, respectively. Fusions of the sdAbs with ascorbate peroxidase (APEX2) and mNeonGreen generated one-step immunoreagents useful for colorimetric and fluorescent visualization of cellular NP. Both sdAbs were also able to recognize recombinant NPs from the recently discovered Bombali virus, a putative sixth Ebolavirus species unknown at the start of these experiments, validating the forward capabilities of the sdAbs. The simplicity and modularity of these sdAbs should enable advances in antigen-based diagnostic technologies to be retuned toward filoviral detection relatively easily, thereby proactively safeguarding human health.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| |
Collapse
|
13
|
Bokelmann M, Vogel U, Debeljak F, Düx A, Riesle-Sbarbaro S, Lander A, Wahlbrink A, Kromarek N, Neil S, Couacy-Hymann E, Prescott J, Kurth A. Tolerance and Persistence of Ebola Virus in Primary Cells from Mops condylurus, a Potential Ebola Virus Reservoir. Viruses 2021; 13:v13112186. [PMID: 34834992 PMCID: PMC8622823 DOI: 10.3390/v13112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Franka Debeljak
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany;
| | - Silke Riesle-Sbarbaro
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Annette Wahlbrink
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Nicole Kromarek
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Stuart Neil
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Emmanuel Couacy-Hymann
- Laboratoire National d’Appui au Développement Agricole, Bingerville BP 206, Côte d’Ivoire;
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
- Correspondence:
| |
Collapse
|
14
|
Kuzmin IV, Ramanathan P, Basler CF, Bukreyev A. Effects of Overexpression of the Egyptian Fruit Bat Innate Immune Genes on Filovirus Infections in the Host Cells. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:759655. [PMID: 36237518 PMCID: PMC9555311 DOI: 10.3389/fviro.2021.759655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bats constitute a large and diverse group of mammals with unique characteristics. One of these is the ability of bats to maintain various pathogens, particularly viruses, without evidence of disease. The innate immune system has been implicated as one of the important components involved in this process. However, in contrast to the human innate immune system, little data is available for bats. In the present study we generated 23 fusion constructs of innate immune genes of Egyptian fruit bat (Rousettus aegyptiacus) with mCherry as a fluorescent reporter. We evaluated the effects of overexpressing these genes on the replication of Marburg and Ebola viruses in the Egyptian fruit bat cell line R06EJ. Both viruses were substantially inhibited by overexpression of type I, II and III interferons, as well as by DDX58 (RIG-I), IFIH1, and IRF1. Our observations suggest that the broad antiviral activity of these genes reported previously in human cells is conserved in Egyptian fruit bats and these possess anti-filovirus activities that may contribute to the efficient virus clearance.
Collapse
Affiliation(s)
- Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Galveston National Laboratory, Galveston, TX, United States
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Galveston National Laboratory, Galveston, TX, United States
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Galveston National Laboratory, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Giles JR, Peel AJ, Wells K, Plowright RK, McCallum H, Restif O. Optimizing noninvasive sampling of a zoonotic bat virus. Ecol Evol 2021; 11:12307-12321. [PMID: 34594501 PMCID: PMC8462156 DOI: 10.1002/ece3.7830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have brought much attention to bat-borne zoonoses, which has motivated increased ecological and epidemiological studies on bat populations. Field sampling methods often collect pooled samples of bat excreta from plastic sheets placed under-roosts. However, positive bias is introduced because multiple individuals may contribute to pooled samples, making studies of viral dynamics difficult. Here, we explore the general issue of bias in spatial sample pooling using Hendra virus in Australian bats as a case study. We assessed the accuracy of different under-roost sampling designs using generalized additive models and field data from individually captured bats and pooled urine samples. We then used theoretical simulation models of bat density and under-roost sampling to understand the mechanistic drivers of bias. The most commonly used sampling design estimated viral prevalence 3.2 times higher than individual-level data, with positive bias 5-7 times higher than other designs due to spatial autocorrelation among sampling sheets and clustering of bats in roosts. Simulation results indicate using a stratified random design to collect 30-40 pooled urine samples from 80 to 100 sheets, each with an area of 0.75-1 m2, and would allow estimation of true prevalence with minimum sampling bias and false negatives. These results show that widely used under-roost sampling techniques are highly sensitive to viral presence, but lack specificity, providing limited information regarding viral dynamics. Improved estimation of true prevalence can be attained with minor changes to existing designs such as reducing sheet size, increasing sheet number, and spreading sheets out within the roost area. Our findings provide insight into how spatial sample pooling is vulnerable to bias for a wide range of systems in disease ecology, where optimal sampling design is influenced by pathogen prevalence, host population density, and patterns of aggregation.
Collapse
Affiliation(s)
- John R. Giles
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Alison J. Peel
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Hamish McCallum
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Olivier Restif
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
18
|
Lacroix A, Mbala Kingebeni P, Ndimbo Kumugo SP, Lempu G, Butel C, Serrano L, Vidal N, Thaurignac G, Esteban A, Mukadi Bamuleka D, Likofata J, Delaporte E, Muyembe Tamfum JJ, Ayouba A, Peeters M, Ahuka Mundeke S. Investigating the Circulation of Ebola Viruses in Bats during the Ebola Virus Disease Outbreaks in the Equateur and North Kivu Provinces of the Democratic Republic of Congo from 2018. Pathogens 2021; 10:pathogens10050557. [PMID: 34064424 PMCID: PMC8147758 DOI: 10.3390/pathogens10050557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
With 12 of the 31 outbreaks, the Democratic Republic of Congo (DRC) is highly affected by Ebolavirus disease (EVD). To better understand the role of bats in the ecology of Ebola viruses, we conducted surveys in bats during two recent EVD outbreaks and in two areas with previous outbreaks. Dried blood spots were tested for antibodies to ebolaviruses and oral and rectal swabs were screened for the presence of filovirus using a broadly reactive semi-nested RT-PCR. Between 2018 and 2020, 892 (88.6%) frugivorous and 115 (11.4%) insectivorous bats were collected. Overall, 11/925 (1.2%) to 100/925 (10.8%) bats showed antibodies to at least one Ebolavirus antigen depending on the positivity criteria. Antibodies were detected in fruit bats from the four sites and from species previously documented to harbor Ebola antibodies or RNA. We tested for the first time a large number of bats during ongoing EVD outbreaks in DRC, but no viral RNA was detected in the 676 sampled bats. Our study illustrates the difficulty to document the role of bats as a source of Ebolaviruses as they might clear quickly the virus. Given the increasing frequency of EVD outbreaks, more studies on the animal reservoir are urgently needed.
Collapse
Affiliation(s)
- Audrey Lacroix
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Placide Mbala Kingebeni
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Simon Pierre Ndimbo Kumugo
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Guy Lempu
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Christelle Butel
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Laetitia Serrano
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Nicole Vidal
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Guillaume Thaurignac
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Amandine Esteban
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Daniel Mukadi Bamuleka
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Institut National de Recherche Biomédicale (INRB), Goma, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Eric Delaporte
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Jean-Jacques Muyembe Tamfum
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Ahidjo Ayouba
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Martine Peeters
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
- Correspondence: (M.P.); (S.A.M.)
| | - Steve Ahuka Mundeke
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Correspondence: (M.P.); (S.A.M.)
| |
Collapse
|
19
|
Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, Gelang M, Khan FAA, Paul DL, Reeder DM, Simmons NB, Vanhove MPM, Webala PW, Weksler M, Kilpatrick CW. Preserve a Voucher Specimen! The Critical Need for Integrating Natural History Collections in Infectious Disease Studies. mBio 2021; 12:e02698-20. [PMID: 33436435 PMCID: PMC7844540 DOI: 10.1128/mbio.02698-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
Collapse
Affiliation(s)
- Cody W Thompson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marc W Allard
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adam W Ferguson
- Gantz Family Collections Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Magnus Gelang
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Deborah L Paul
- Florida State University, Tallahassee, Florida, USA
- Species File Group, University of Illinois, Urbana-Champaign, Illinois, USA
| | | | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Marcelo Weksler
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Reston virus causes severe respiratory disease in young domestic pigs. Proc Natl Acad Sci U S A 2020; 118:2015657118. [PMID: 33443221 DOI: 10.1073/pnas.2015657118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reston virus (RESTV), an ebolavirus, causes clinical disease in macaques but has yet only been associated with rare asymptomatic infections in humans. Its 2008 emergence in pigs in the Philippines raised concerns about food safety, pathogenicity, and zoonotic potential, questions that are still unanswered. Until today, the virulence of RESTV for pigs has remained elusive, with unclear pathogenicity in naturally infected animals and only one experimental study demonstrating susceptibility and evidence for shedding but no disease. Here we show that combined oropharyngeal and nasal infection of young (3- to 7-wk-old) Yorkshire cross pigs with RESTV resulted in severe respiratory disease, with most animals reaching humane endpoint within a week. RESTV-infected pigs developed severe cyanosis, tachypnea, and acute interstitial pneumonia, with RESTV shedding from oronasal mucosal membranes. Our studies indicate that RESTV should be considered a livestock pathogen with zoonotic potential.
Collapse
|
21
|
Di Paola N, Sanchez-Lockhart M, Zeng X, Kuhn JH, Palacios G. Viral genomics in Ebola virus research. Nat Rev Microbiol 2020; 18:365-378. [PMID: 32367066 PMCID: PMC7223634 DOI: 10.1038/s41579-020-0354-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. Advances in the sequencing and functional characterization of both pathogen and host genomes have provided a wealth of knowledge to clinicians, epidemiologists and public health responders during outbreaks of high-consequence viral disease. Here, we describe how genomics has been historically used to investigate Ebola virus disease outbreaks and how new technologies allow for rapid, large-scale data generation at the point of care. We highlight how genomics extends beyond consensus-level sequencing of the virus to include intra-host viral transcriptomics and the characterization of host responses in acute and persistently infected patients. Similar genomics techniques can also be applied to the characterization of non-human primate animal models and to known natural reservoirs of filoviruses, and metagenomic sequencing can be the key to the discovery of novel filoviruses. Finally, we outline the importance of reverse genetics systems that can swiftly characterize filoviruses as soon as their genome sequences are available.
Collapse
Affiliation(s)
- Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
22
|
Seroreactive Profiling of Filoviruses in Chinese Bats Reveals Extensive Infection of Diverse Viruses. J Virol 2020; 94:JVI.02042-19. [PMID: 31941778 DOI: 10.1128/jvi.02042-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Southern China is a hot spot of emerging infectious diseases, in which diverse species of bats dwell, a large group of flying mammals considered natural reservoirs for zoonotic viruses. Recently, divergent filoviruses (FiVs) have been identified in bats within this region, which pose a potential risk to public health, but the true infection situation in bats remains largely unclear. Here, 689 archived bat serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA), Western blotting, and neutralization assay to investigate the seroprevalence and cross-reactivity of four divergent FiVs and two other viruses (rabies virus and Tuhoko pararubulavirus 1) of different families within the order Mononegavirales Results showed no cross-antigenicity between FiVs and other mononegaviruses but different cross-reactivity among the FiVs themselves. The total FiV seroreactive rate was 36.3% (250/689), with infection by the indigenous Chinese FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Further viral metagenomic analysis of fruit bat tissues also identified the gene sequence of a novel FiV. These results indicate the likely prevalence of other so far unidentified FiVs within the Chinese bat population, with frugivorous Rousettus leschenaultii and Eonycteris spelaea bats and insectivorous Myotis horsfieldii and Miniopterus schreibersii bats being their major reservoirs.IMPORTANCE Bats are natural hosts of many FiVs, from which diverse FiVs were serologically or virologically detected in Africa, Europe, and East Asia. Recently, very divergent FiVs were identified in the Chinese bat population, but their antigenic relationship with other known FiVs remains unknown. Here, we conducted serological characterization and investigation of Chinese indigenous FiVs and prototypes of other viruses in bats. Results indicated that Chinese indigenous FiVs are antigenically distant to other FiVs, and infection of novel or multiple FiVs occurred in Chinese bats, with FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Additionally, besides Rousettus leschenaultii and Eonycteris spelaea bats, the insectivorous Myotis horsfieldii and M. schreibersii bats are highly preferential hosts of FiVs. Seroreactive and viral metagenomic results indicated that more as yet unknown bat-borne FiVs circulate in Southern China, and to uncover them further, investigation and timely surveillance is needed.
Collapse
|
23
|
Bokelmann M, Edenborough K, Hetzelt N, Kreher P, Lander A, Nitsche A, Vogel U, Feldmann H, Couacy-Hymann E, Kurth A. Utility of primary cells to examine NPC1 receptor expression in Mops condylurus, a potential Ebola virus reservoir. PLoS Negl Trop Dis 2020; 14:e0007952. [PMID: 31961874 PMCID: PMC6994141 DOI: 10.1371/journal.pntd.0007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/31/2020] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
The significance of the integral membrane protein Niemann-Pick C1 (NPC1) in the ebolavirus entry process has been determined using various cell lines derived from humans, non-human primates and fruit bats. Fruit bats have long been purported as the potential reservoir host for ebolaviruses, however several studies provide evidence that Mops condylurus, an insectivorous microbat, is also an ebolavirus reservoir. NPC1 receptor expression in the context of ebolavirus replication in microbat cells remains unstudied. In order to study Ebola virus (EBOV) cellular entry and replication in M. condylurus, we derived primary and immortalized cell cultures from 12 different organs. The NPC1 receptor expression was characterized by confocal microscopy and flow cytometry comparing the expression levels of M. condylurus primary and immortalized cells, HeLa cells, human embryonic kidney cells and cells from a European microbat species. EBOV replication kinetics was studied for four representative cell cultures using qRT-PCR. The aim was to elucidate the suitability of primary and immortalized cells from different tissues for studying NPC1 receptor expression levels and their potential influence on EBOV replication. The NPC1 receptor expression level in M. condylurus primary cells differed depending on the organ they were derived from and was for most cell types significantly lower than in human cell lines. Immortalized cells showed for most cell types higher expression levels than their corresponding primary cells. Concluding from our infection experiments with EBOV we suggest a potential correlation between NPC1 receptor expression level and virus replication rate in vitro. Although there have been Ebola virus (EBOV) outbreaks for more than 40 years, the animal natural reservoir that maintains this virus in nature has not been identified. Viruses and their respective reservoirs coevolve over millions of years, often without causing diseases in the reservoir itself. Upon entering a new host, infection can have devastating consequences, as in the case of EBOV. To gain entry into cells prior to replication, all ebolaviruses utilize the cellular receptor Niemann-Pick C1 (NPC1). In this study the authors focus their work on the Angolan free-tailed bat (Mops condylurus) as a potential reservoir for EBOV. Cells from various organs of this bat were isolated in culture and tested for the presence of NPC1. Most bat cell types had a lower amount of NPC1 compared to the tested human cells. These bat cells were also less efficiently infected by EBOV, indicating adaptation to EBOV. These results suggest low levels of virus replication in the respective tissues of M. condylurus and might be indicative of a virus-natural reservoir relationship.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kathryn Edenborough
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nicole Hetzelt
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Petra Kreher
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | | | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Takadate Y, Kondoh T, Igarashi M, Maruyama J, Manzoor R, Ogawa H, Kajihara M, Furuyama W, Sato M, Miyamoto H, Yoshida R, Hill TE, Freiberg AN, Feldmann H, Marzi A, Takada A. Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Rep 2020; 30:308-319.e5. [PMID: 31940478 PMCID: PMC11075117 DOI: 10.1016/j.celrep.2019.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Fruit bats are suspected to be natural hosts of filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV). Interestingly, however, previous studies suggest that these viruses have different tropisms depending on the bat species. Here, we show a molecular basis underlying the host-range restriction of filoviruses. We find that bat-derived cell lines FBKT1 and ZFBK13-76E show preferential susceptibility to EBOV and MARV, respectively, whereas the other bat cell lines tested are similarly infected with both viruses. In FBKT1 and ZFBK13-76E, unique amino acid (aa) sequences are found in the Niemann-Pick C1 (NPC1) protein, one of the cellular receptors interacting with the filovirus glycoprotein (GP). These aa residues, as well as a few aa differences between EBOV and MARV GPs, are crucial for the differential susceptibility to filoviruses. Taken together, our findings indicate that the heterogeneity of bat NPC1 orthologs is an important factor controlling filovirus species-specific host tropism.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Masahiro Sato
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Terence E Hill
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia.
| |
Collapse
|
25
|
Fischer K, Camara A, Troupin C, Fehling SK, Strecker T, Groschup MH, Tordo N, Diederich S. Serological evidence of exposure to ebolaviruses in domestic pigs from Guinea. Transbound Emerg Dis 2019; 67:724-732. [PMID: 31627257 DOI: 10.1111/tbed.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
The genus Ebolavirus comprises several virus species with zoonotic potential and varying pathogenicity for humans. Ebolaviruses are considered to circulate in wildlife with occasional spillover events into the human population which then often leads to severe disease outbreaks. Several studies indicate a significant role of bats as reservoir hosts in the ebolavirus ecology. However, pigs from the Philippines have been found to be naturally infected with Reston virus (RESTV), an ebolavirus that is thought to only cause asymptomatic infections in humans. The recent report of ebolavirus-specific antibodies in pigs from Sierra Leone further supports natural infection of pigs with ebolaviruses. However, susceptibility of pigs to highly pathogenic Ebola virus (EBOV) was only shown under experimental settings and evidence for natural infection of pigs with EBOV is currently lacking. Between October and December 2017, we collected 308 serum samples from pigs in Guinea, West Africa, and tested for the presence of ebolavirus-specific antibodies with different serological assays. Besides reactivity to EBOV nucleoproteins in ELISA and Western blot for 19 (6.2%) and 13 (4.2%) samples, respectively, four sera recognized Sudan virus (SUDV) NP in Western blot. Furthermore, four samples specifically detected EBOV or SUDV glycoprotein (GP) in an indirect immunofluorescence assay under native conditions. Virus neutralization assay based on EBOV (Mayinga isolate) revealed five weakly neutralizing sera. The finding of (cross-) reactive and weakly neutralizing antibodies suggests the exposure of pigs from Guinea to ebolaviruses or ebola-like viruses with their pathogenicity as well as their zoonotic potential remaining unknown. Future studies should investigate whether pigs can act as an amplifying host for ebolaviruses and whether there is a risk for spillover events.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | | | | | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Noel Tordo
- Institut Pasteur de Guineé, Conakry, Guinea
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
26
|
Hayman DTS. African Primates: Likely Victims, Not Reservoirs, of Ebolaviruses. J Infect Dis 2019; 220:1547-1550. [PMID: 30657949 PMCID: PMC7107455 DOI: 10.1093/infdis/jiz007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- David T S Hayman
- EpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Fischer K, Jabaty J, Suluku R, Strecker T, Groseth A, Fehling SK, Balkema-Buschmann A, Koroma B, Schmidt KM, Atherstone C, Weingartl HM, Mettenleiter TC, Groschup MH, Hoenen T, Diederich S. Serological Evidence for the Circulation of Ebolaviruses in Pigs From Sierra Leone. J Infect Dis 2019; 218:S305-S311. [PMID: 29982580 DOI: 10.1093/infdis/jiy330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many human ebolavirus outbreaks have been linked to contact with wildlife including nonhuman primates and bats, which are assumed to serve as host species. However, it is largely unknown to what extent other animal species, particularly livestock, are involved in the transmission cycle or act as additional hosts for filoviruses. Pigs were identified as a susceptible host for Reston virus with subsequent transmission to humans reported in the Philippines. To date, there is no evidence of natural Ebola virus (EBOV) infection in pigs, although pigs were shown to be susceptible to EBOV infection under experimental settings. To investigate the potential role of pigs in the ecology of EBOV, we analyzed 400 porcine serum samples from Sierra Leone for the presence of ebolavirus-specific antibodies. Three samples reacted with ebolavirus nucleoproteins but had no neutralizing antibodies. Our results (1) suggest the circulation of ebolaviruses in swine in Sierra Leone that are antigenically related but not identical to EBOV and (2) could represent undiscovered ebolaviruses with unknown pathogenic and/or zoonotic potential.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Juliet Jabaty
- Sierra Leone Agricultural Research Institute, Teko Livestock Research Centre, Sierra Leone
| | - Roland Suluku
- Njala University, Animal Science, Serology and Molecular Laboratory, Sierra Leone
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Germany
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Greifswald - Insel Riems, Germany
| | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Bashiru Koroma
- Njala University, Animal Science, Serology and Molecular Laboratory, Sierra Leone
| | - Kristina M Schmidt
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Christine Atherstone
- Sydney School of Veterinary Science, University of Sydney, Australia.,International Livestock Research Institute, Kampala, Uganda
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Greifswald - Insel Riems, Germany
| | - Sandra Diederich
- Friedrich-Loeffler-Institut Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
28
|
Abstract
Objective There have been five documented outbreaks of Ebola Reston virus (RESTV) in animals epidemiologically linked to the Philippines. This assessment was conducted to determine the risk of RESTV occurring in humans in the Philippines and its potential pathogenicity in humans. Methods The World Health Organization Rapid Risk Assessment of Acute Public Health Events Manual was used for the assessment. A literature review was done and a risk assessment matrix was used for the risk characterization of the outbreaks in the Philippines. The risk assessment was conducted by the Philippines Field Epidemiology Training Program. Results The risk of RESTV occurring in humans in the Philippines and its potential pathogenicity in humans were both assessed as moderate. Animals involved in RESTV outbreaks in the Philippines were non-human primates and domestic pigs. The presence of RESTV in pigs poses a possibility of genetic evolution of the virus. Although RESTV has been identified in humans, there was no death or illness attributed to the infection. The Philippines Inter-agency Committee on Zoonoses oversees collaboration between the animal and human health sectors for the prevention and control of zoonoses. However, there is no surveillance of risk animals or previously affected farms to monitor and facilitate early identification of cases. Discussion The moderate risk of RESTV recurring among humans in the Philippines and its potential pathogenicity in humans reinforces the need for early detection, surveillance and continued studies of RESTV pathogenesis and its health consequences. The One Health approach, with the involvement and coordination of public health, veterinary services and the community, is essential in the detection, control and management of zoonosis.
Collapse
|
29
|
Schuh AJ, Amman BR, Sealy TS, Flietstra TD, Guito JC, Nichol ST, Towner JS. Comparative analysis of serologic cross-reactivity using convalescent sera from filovirus-experimentally infected fruit bats. Sci Rep 2019; 9:6707. [PMID: 31040343 PMCID: PMC6491471 DOI: 10.1038/s41598-019-43156-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 12/02/2022] Open
Abstract
With the exception of Reston and Bombali viruses, the marburgviruses and ebolaviruses (family Filoviridae) cause outbreaks of viral hemorrhagic fever in sub-Saharan Africa. The Egyptian rousette bat (ERB) is a natural reservoir host for the marburgviruses and evidence suggests that bats are also natural reservoirs for the ebolaviruses. Although the search for the natural reservoirs of the ebolaviruses has largely involved serosurveillance of the bat population, there are no validated serological assays to screen bat sera for ebolavirus-specific IgG antibodies. Here, we generate filovirus-specific antisera by prime-boost immunization of groups of captive ERBs with all seven known culturable filoviruses. After validating a system of filovirus-specific indirect ELISAs utilizing infectious-based virus antigens for detection of virus-specific IgG antibodies from bat sera, we assess the level of serological cross-reactivity between the virus-specific antisera and heterologous filovirus antigens. This data is then used to generate a filovirus antibody fingerprint that can predict which of the filovirus species in the system is most antigenically similar to the species responsible for past infection. Our filovirus IgG indirect ELISA system will be a critical tool for identifying bat species with high ebolavirus seroprevalence rates to target for longitudinal studies aimed at establishing natural reservoir host-ebolavirus relationships.
Collapse
Affiliation(s)
- Amy J Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.,Commissioned Corps, United States Public Health Service, Rockville, MD, 20852, USA
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Tara S Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Timothy D Flietstra
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jonathan C Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA. .,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
30
|
Demetria C, Smith I, Tan T, Villarico D, Simon EM, Centeno R, Tachedjian M, Taniguchi S, Shimojima M, Miranda NLJ, Miranda ME, Rondina MMR, Capistrano R, Tandoc A, Marsh G, Eagles D, Cruz R, Fukushi S. Reemergence of Reston ebolavirus in Cynomolgus Monkeys, the Philippines, 2015. Emerg Infect Dis 2019; 24:1285-1291. [PMID: 29912712 PMCID: PMC6038738 DOI: 10.3201/eid2407.171234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In August 2015, a nonhuman primate facility south of Manila, the Philippines, noted unusual deaths of 6 cynomolgus monkeys (Macaca fascicularis), characterized by generalized rashes, inappetence, or sudden death. We identified Restonebolavirus (RESTV) infection in monkeys by using serologic and molecular assays. We isolated viruses in tissues from infected monkeys and determined viral genome sequences. RESTV found in the 2015 outbreak is genetically closer to 1 of the 4 RESTVs that caused the 2008 outbreak among swine. Eight macaques, including 2 also infected with RESTV, tested positive for measles. Concurrently, the measles virus was circulating throughout the Philippines, indicating that the infection of the macaques may be a reverse zoonosis. Improved biosecurity measures will minimize the public health risk, as well as limit the introduction of disease and vectors.
Collapse
|
31
|
Yan F, He S, Banadyga L, Zhu W, Zhang H, Rahim MN, Collignon B, Senthilkumaran C, Embury-Hyatt C, Qiu X. Characterization of Reston virus infection in ferrets. Antiviral Res 2019; 165:1-10. [PMID: 30836107 DOI: 10.1016/j.antiviral.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
Among the five currently recognized type viruses within the genus Ebolavirus, Reston virus (RESTV) is not known to cause disease in humans, although asymptomatic infections have been confirmed in the past. Intriguingly, despite the absence of pathogenicity in humans, RESTV is highly lethal to nonhuman primates and has been isolated from domestic pigs co-infected with other viruses in the Philippines and China. Whether infection in these animals can support the eventual emergence of a human-pathogenic RESTV remains unclear and requires further investigation. Unfortunately, there is currently no lethal small animal model available to investigate RESTV pathogenicity or pan-ebolavirus therapeutics. Here we show that wild type RESTV is uniformly lethal in ferrets. In this study, ferrets were challenged with 1260 TCID50 of wild type RESTV either intramuscularly or intranasally and monitored for clinical signs, survival, virus replication, alteration in serum biochemistry and blood cell counts. Irrespective of the route of challenge, viremia occurred in all ferrets on day 5 post-infection, and all animals succumbed to infection between days 9 and 11. Additionally, several similarities were observed between this model and the other ferret models of filovirus infection, including substantial decreases in lymphocyte and platelet counts and abnormalities in serum biochemistry indicating hepatic injury. The ferret model represents the first uniformly lethal model for RESTV infection, and it will undoubtedly prove useful for evaluating virus pathogenicity as well as pan-ebolavirus countermeasures.
Collapse
Affiliation(s)
- Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control in Key Lab, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Huajun Zhang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Md Niaz Rahim
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brad Collignon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Chandrika Senthilkumaran
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Garry RF. Ebola Mysteries and Conundrums. J Infect Dis 2019; 219:511-513. [PMID: 30085161 PMCID: PMC6350945 DOI: 10.1093/infdis/jiy476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
33
|
Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, Zhu Y, Lim XF, Zhou P, Liu XL, Guan W, Zhang L, Li SY, Zhang YZ, Wang LF, Shi ZL. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nat Microbiol 2019; 4:390-395. [PMID: 30617348 DOI: 10.1038/s41564-018-0328-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Filoviruses, especially Ebola virus (EBOV) and Marburg virus (MARV), are notoriously pathogenic and capable of causing severe haemorrhagic fever diseases in humans with high lethality1,2. The risk of future outbreaks is exacerbated by the discovery of other bat-borne filoviruses of wide genetic diversity globally3-5. Here we report the characterization of a phylogenetically distinct bat filovirus, named Měnglà virus (MLAV). The coding-complete genome of MLAV shares 32-54% nucleotide sequence identity with known filoviruses. Phylogenetic analysis places this new virus between EBOV and MARV, suggesting the need for a new genus taxon. Importantly, despite the low amino acid sequence identity (22-39%) of the glycoprotein with other filoviruses, MLAV is capable of using the Niemann-Pick C1 (NPC1) as entry receptor. MLAV is also replication-competent with chimeric MLAV mini-genomes containing EBOV or MARV leader and trailer sequences, indicating that these viruses are evolutionally and functionally closely related. Finally, MLAV glycoprotein-typed pseudo-types transduced cell lines derived from humans, monkeys, dogs, hamsters and bats, implying a broad species cell tropism with a high risk of interspecies spillover transmission.
Collapse
Affiliation(s)
- Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiang-Ling Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Libiao Zhang
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | | | - Yun-Zhi Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.,Dali University, Dali, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
34
|
Peel AJ, Field HE, Aravena MR, Edson D, McCallum H, Plowright RK, Prada D. Coronaviruses and Australian bats: a review in the midst of a pandemic. AUST J ZOOL 2019. [DOI: 10.1071/zo20046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health.
Collapse
|
35
|
|
36
|
Goldstein T, Anthony SJ, Gbakima A, Bird BH, Bangura J, Tremeau-Bravard A, Belaganahalli MN, Wells HL, Dhanota JK, Liang E, Grodus M, Jangra RK, DeJesus VA, Lasso G, Smith BR, Jambai A, Kamara BO, Kamara S, Bangura W, Monagin C, Shapira S, Johnson CK, Saylors K, Rubin EM, Chandran K, Lipkin WI, Mazet JAK. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 2018; 3:1084-1089. [PMID: 30150734 PMCID: PMC6557442 DOI: 10.1038/s41564-018-0227-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
Abstract
Here we describe the complete genome of a new ebolavirus, Bombali virus (BOMV) detected in free-tailed bats in Sierra Leone (little free-tailed (Chaerephon pumilus) and Angolan free-tailed (Mops condylurus)). The bats were found roosting inside houses, indicating the potential for human transmission. We show that the viral glycoprotein can mediate entry into human cells. However, further studies are required to investigate whether exposure has actually occurred or if BOMV is pathogenic in humans.
Collapse
Affiliation(s)
- Tracey Goldstein
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- EcoHealth Alliance, New York, NY, USA.
| | - Aiah Gbakima
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Brian H Bird
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - James Bangura
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Alexandre Tremeau-Bravard
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Manjunatha N Belaganahalli
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Heather L Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jasjeet K Dhanota
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- EcoHealth Alliance, New York, NY, USA
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Veronica A DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gorka Lasso
- Department of Systems Biology, Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - Brett R Smith
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | | | - Sorie Kamara
- Livestock and Veterinary Services Division, Ministry of Agriculture, Forestry and Food Security, Freetown, Sierra Leone
| | - William Bangura
- Forestry and Wildlife Division, Ministry of Agriculture, Forestry and Food Security, Freetown, Sierra Leone
| | - Corina Monagin
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
- Metabiota, Inc., San Francisco, CA, USA
| | - Sagi Shapira
- Department of Systems Biology, Irving Cancer Research Center, Columbia University, New York, NY, USA
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Christine K Johnson
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jonna A K Mazet
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Laing ED, Mendenhall IH, Linster M, Low DHW, Chen Y, Yan L, Sterling SL, Borthwick S, Neves ES, Lim JSL, Skiles M, Lee BPYH, Wang LF, Broder CC, Smith GJD. Serologic Evidence of Fruit Bat Exposure to Filoviruses, Singapore, 2011-2016. Emerg Infect Dis 2018; 24:114-117. [PMID: 29260678 PMCID: PMC5749470 DOI: 10.3201/eid2401.170401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.
Collapse
|
38
|
Bats of the Philippine Islands—A review of research directions and relevance to national-level priorities and targets. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Montoya-Ruiz C, Rodas JD. Epidemiological Surveillance of Viral Hemorrhagic Fevers With Emphasis on Clinical Virology. Methods Mol Biol 2018; 1604:55-78. [PMID: 28986825 DOI: 10.1007/978-1-4939-6981-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
This article will outline surveillance approaches for viral hemorrhagic fevers. Specific methods for surveillance of clinical samples will be emphasized. Separate articles will describe methods for surveillance of rodent-borne viruses (roboviruses) and arthropod-borne viruses (arboviruses). Since the appearance of hantaviruses and arenaviruses in the Americas, more than 30 different species in each group have been established, and therefore they have become the most frequently emerging viruses. Flaviviruses such as yellow fever and dengue viruses, although easier to recognize, are also more widely spread and therefore considered a very important public health issue, particularly for under-developed countries. On the other hand, marburgviruses and ebolaviruses, previously thought to be restricted to the African continent, have recently been shown to be more global. For many of these agents virus isolation has been a challenging task: trapping the specific vectors (mosquitoes and ticks), and reservoirs (rodents and bats), or obtaining the samples from suspected clinical human cases demands special protective gear, uncommon devices (respirators), special facilities (BSL-3 and 4), and particular skills to recognize the slow and inapparent cytopathic effects in cell culture. Alternatively, serological and molecular approaches have been very helpful in discovering and describing newly emerging viruses in many areas where the previous resources are unavailable. Unfortunately, in many cases, detailed studies have been performed only after outbreaks occur, and then active surveillance is needed to prevent viral dissemination in human populations.
Collapse
Affiliation(s)
- Carolina Montoya-Ruiz
- Linea de Zoonosis Emergentes y Re-emergentes, Grupo Centauro, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan David Rodas
- Linea de Zoonosis Emergentes y Re-emergentes, Grupo Centauro, Facultad de Ciencias Agrarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
40
|
Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses. PLoS One 2018; 13:e0197625. [PMID: 29795610 PMCID: PMC5967723 DOI: 10.1371/journal.pone.0197625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/05/2018] [Indexed: 01/03/2023] Open
Abstract
While bats are often viewed as carriers of infectious disease agents, little research has been conducted on the effects these potential pathogens may have on the bat populations themselves. The southern bent-winged bat (Miniopterus orianae bassanii) is a critically endangered subspecies endemic to south-eastern Australia. Population numbers of this bat have been declining for the past 50 years, but the reasons for this are unclear. As part of a larger study to determine if disease could be a contributing factor to this decline, 351 southern bent-winged bats from four locations were captured, and oral swabs were collected and tested for the presence of potentially pathogenic viruses. Results were compared with those obtained from 116 eastern bent-winged bats (Miniopterus orianae oceanensis) from three different locations. The eastern bent-winged bat is a related but more common and widespread subspecies whose geographical range overlaps partly with southern bent-winged bats. Herpesviruses were detected in bent-winged bats from all seven locations. At least six novel herpesviruses (five betaherpesviruses and one gammaherpesvirus) were identified. The prevalence of herpesvirus infection was higher in eastern bent-winged bats (44%, 51/116), compared to southern bent-winged bats (27%, 95/351), although this varied across the locations and sampling periods. Adenoviruses and a range of different RNA viruses (lyssaviruses, filoviruses, coronaviruses and henipaviruses) were also tested for but not detected. The detected herpesviruses did not appear to be associated with obvious ill health, and may thus not be playing a role in the population decline of the southern bent-winged bat. The detection of multiple novel herpesviruses at a high prevalence of infection is consistent with our understanding of bats as hosts to a rich diversity of viruses.
Collapse
|
41
|
Clark DJ, Tyson J, Sails AD, Krishna S, Staines HM. The current landscape of nucleic acid tests for filovirus detection. J Clin Virol 2018; 103:27-36. [PMID: 29625392 PMCID: PMC5958242 DOI: 10.1016/j.jcv.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 11/03/2022]
Abstract
Filoviruses can cause severe hemorrhagic fever in humans and non-human primates. There is an urgent need for rapid diagnosis of filoviruses during outbreaks. Filovirus diagnostics have advanced since the 2014–2016 Ebolavirus outbreak. NATs are the gold standard for filovirus detection. NAT-based diagnostic speed, portability and multiplexing have all improved.
Nucleic acid testing (NAT) for pathogenic filoviruses plays a key role in surveillance and to control the spread of infection. As they share clinical features with other pathogens, the initial spread of these viruses can be misdiagnosed. Tests that can identify a pathogen in the initial stages of infection are essential to control outbreaks. Since the Ebola virus disease (EVD) outbreak in 2014–2016 several tests have been developed that are faster than previous tests and more suited for field use. Furthermore, the ability to test for a range of pathogens simultaneously has been expanded to improve clinical pathway management of febrile syndromes. This review provides an overview of these novel diagnostic tests.
Collapse
Affiliation(s)
- David J Clark
- Centre for Diagnostics & Antimicrobial Resistance, Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK; Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - John Tyson
- QuantuMDx, Lugano Building, 57 Melbourne Street, Newcastle-upon-Tyne, NE1 2JQ, UK
| | - Andrew D Sails
- QuantuMDx, Lugano Building, 57 Melbourne Street, Newcastle-upon-Tyne, NE1 2JQ, UK
| | - Sanjeev Krishna
- Centre for Diagnostics & Antimicrobial Resistance, Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK; Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK; St. George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London SW17 0QT, UK
| | - Henry M Staines
- Centre for Diagnostics & Antimicrobial Resistance, Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK; Institute for Infection & Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
42
|
Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, Wang N, Wang L, Waruhiu C, Zhou JH, Li SY, Daszak P, Wang LF, Shi ZL. Genetically Diverse Filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerg Infect Dis 2018; 23:482-486. [PMID: 28221123 PMCID: PMC5382765 DOI: 10.3201/eid2303.161119] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetically divergent filoviruses detected in Rousettus and Eonycteris spp. bats in China exhibited 61%–99% nt identity with reported filoviruses, based on partial replicase sequences, and they demonstrated lung tropism. Co-infection with 4 different filoviruses was found in 1 bat. These results demonstrate that fruit bats are key reservoirs of filoviruses.
Collapse
|
43
|
Abstract
The Filoviridae are a family of negative-strand RNA viruses that include several important human pathogens. Ebola virus (EBOV) and Marburg virus are well-known filoviruses which cause life-threatening viral hemorrhagic fever in human and nonhuman primates. In addition to severe pathogenesis, filoviruses also exhibit a propensity for human-to-human transmission by close contact, posing challenges to containment and crisis management. Past outbreaks, in particular the recent West African EBOV epidemic, have been responsible for thousands of deaths and vaulted the filoviruses into public consciousness. Both national and international health agencies continue to regard potential filovirus outbreaks as critical threats to global public health. To develop effective countermeasures, a basic understanding of filovirus biology is needed. This review encompasses the epidemiology, ecology, molecular biology, and evolution of the filoviruses.
Collapse
Affiliation(s)
- Jackson Emanuel
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
44
|
Berto A, Anh PH, Carrique‐Mas JJ, Simmonds P, Van Cuong N, Tue NT, Van Dung N, Woolhouse ME, Smith I, Marsh GA, Bryant JE, Thwaites GE, Baker S, Rabaa MA, the VIZIONS consortium. Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam. Zoonoses Public Health 2018; 65:30-42. [PMID: 28418192 PMCID: PMC5811810 DOI: 10.1111/zph.12362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 11/30/2022]
Abstract
Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health.
Collapse
Affiliation(s)
- A. Berto
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - P. H. Anh
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - J. J. Carrique‐Mas
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical MedicineNuffield Department of Clinical MedicineOxford UniversityOxfordUK
| | - P. Simmonds
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - N. Van Cuong
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - N. T. Tue
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - N. Van Dung
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - M. E. Woolhouse
- Centre for Immunity, Infection & EvolutionThe University of EdinburghEdinburghUK
| | - I. Smith
- Health and BiosecurityCSIRO, Australian Animal Health LaboratoryGeelongVic.Australia
| | - G. A. Marsh
- Health and BiosecurityCSIRO, Australian Animal Health LaboratoryGeelongVic.Australia
| | - J. E. Bryant
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical MedicineNuffield Department of Clinical MedicineOxford UniversityOxfordUK
| | - G. E. Thwaites
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical MedicineNuffield Department of Clinical MedicineOxford UniversityOxfordUK
| | - S. Baker
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical MedicineNuffield Department of Clinical MedicineOxford UniversityOxfordUK
- The London School of Hygiene and Tropical MedicineLondonUK
| | - M. A. Rabaa
- Wellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical MedicineNuffield Department of Clinical MedicineOxford UniversityOxfordUK
| | | |
Collapse
|
45
|
Kurosaki Y, Ueda MT, Nakano Y, Yasuda J, Koyanagi Y, Sato K, Nakagawa S. Different effects of two mutations on the infectivity of Ebola virus glycoprotein in nine mammalian species. J Gen Virol 2018; 99:181-186. [PMID: 29300152 PMCID: PMC5882082 DOI: 10.1099/jgv.0.000999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ebola virus (EBOV), which belongs to the genus Ebolavirus, causes a severe and often fatal infection in primates, including humans, whereas Reston virus (RESTV) only causes lethal disease in non-human primates. Two amino acids (aa) at positions 82 and 544 of the EBOV glycoprotein (GP) are involved in determining viral infectivity. However, it remains unclear how these two aa residues affect the infectivity of Ebolavirus species in various hosts. Here we performed viral pseudotyping experiments with EBOV and RESTV GP derivatives in 10 cell lines from 9 mammalian species. We demonstrated that isoleucine at position 544/545 increases viral infectivity in all host species, whereas valine at position 82/83 modulates viral infectivity, depending on the viral and host species. Structural modelling suggested that the former residue affects viral fusion, whereas the latter residue influences the interaction with the viral entry receptor, Niemann–Pick C1.
Collapse
Affiliation(s)
- Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Mahoko Takahashi Ueda
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yusuke Nakano
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,CREST, Japan Science and Technology Agency, Saitama 322-0012, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
46
|
Singh RK, Dhama K, Malik YS, Ramakrishnan MA, Karthik K, Khandia R, Tiwari R, Munjal A, Saminathan M, Sachan S, Desingu PA, Kattoor JJ, Iqbal HMN, Joshi SK. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Vet Q 2017; 37:98-135. [PMID: 28317453 DOI: 10.1080/01652176.2017.1309474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Yashpal Singh Malik
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Kumaragurubaran Karthik
- e Divison of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ruchi Tiwari
- g Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Mani Saminathan
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Swati Sachan
- h Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Jobin Jose Kattoor
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Hafiz M N Iqbal
- i School of Engineering and Science, Tecnologico de Monterrey , Monterrey , Mexico
| | - Sunil Kumar Joshi
- j Cellular Immunology Lab , Frank Reidy Research Center for Bioelectrics , School of Medical Diagnostics & Translational Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
47
|
Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats. mSphere 2017; 2:mSphere00245-17. [PMID: 28959737 PMCID: PMC5615131 DOI: 10.1128/msphere.00245-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022] Open
Abstract
As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection.
Collapse
|
48
|
Hengjan Y, Iida K, Doysabas KCC, Phichitrasilp T, Ohmori Y, Hondo E. Diurnal behavior and activity budget of the golden-crowned flying fox (Acerodon jubatus) in the Subic bay forest reserve area, the Philippines. J Vet Med Sci 2017; 79:1667-1674. [PMID: 28804092 PMCID: PMC5658557 DOI: 10.1292/jvms.17-0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species
in the Philippines, which was suspected to be a host of the Reston strain of the Ebola
virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which
they use for self-maintenance and reproduction. To understand the variation in diurnal
behavior and time allocation for various activities in the Golden-Crowned flying fox, we
investigated their daytime behavior and activity budget using instantaneous scan sampling
and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr
during January 8–17, 2017. The most frequent activity was sleeping (76.3%). The remaining
activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%),
wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging
alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing
flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement
behaviors changed with the time of the day. Females allocated more time for resting than
males, while males spent more time on the activities that helped enhance their mating
opportunities, for example, movement, sexual activity and territorial behavior.
Collapse
Affiliation(s)
- Yupadee Hengjan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Karla Cristine C Doysabas
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Thanmaporn Phichitrasilp
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Yasushige Ohmori
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
49
|
Albariño CG, Wiggleton Guerrero L, Jenks HM, Chakrabarti AK, Ksiazek TG, Rollin PE, Nichol ST. Insights into Reston virus spillovers and adaption from virus whole genome sequences. PLoS One 2017; 12:e0178224. [PMID: 28542463 PMCID: PMC5444788 DOI: 10.1371/journal.pone.0178224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Reston virus (family Filoviridae) is unique among the viruses of the Ebolavirus genus in that it is considered non-pathogenic in humans, in contrast to the other members which are highly virulent. The virus has however, been associated with several outbreaks of highly lethal hemorrhagic fever in non-human primates (NHPs), specifically cynomolgus monkeys (Macaca fascicularis) originating in the Philippines. In addition, Reston virus has been isolated from domestic pigs in the Philippines. To better understand virus spillover events and potential adaption to new hosts, the whole genome sequences of representative Reston virus isolates were obtained using a next generation sequencing (NGS) approach and comparative genomic analysis and virus fitness analyses were performed. Nine virus genome sequences were completed for novel and previously described isolates obtained from a variety of hosts including a human case, non-human primates and pigs. Results of phylogenetic analysis of the sequence differences are consistent with multiple independent introductions of RESTV from a still unknown natural reservoir into non-human primates and swine farming operations. No consistent virus genetic markers were found specific for viruses associated with primate or pig infections, but similar to what had been seen with some Ebola viruses detected in the large Western Africa outbreak in 2014–2016, a truncated version of VP30 was identified in a subgroup of Reston viruses obtained from an outbreak in pigs 2008–2009. Finally, the genetic comparison of two closely related viruses, one isolated from a human case and one from an NHP, showed amino acid differences in the viral polymerase and detectable differences were found in competitive growth assays on human and NHP cell lines.
Collapse
Affiliation(s)
- César G. Albariño
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | | | - Harley M. Jenks
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ayan K. Chakrabarti
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Thomas G. Ksiazek
- University of Texas Medical Branch, Galveston, TX, United States of America
| | - Pierre E. Rollin
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stuart T. Nichol
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
50
|
Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, Wang N, Wang L, Waruhiu C, Zhou JH, Li SY, Daszak P, Wang LF, Shi ZL. Genetically Diverse Filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerg Infect Dis 2017. [DOI: 10.3201/eid2302.161119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|