1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Nguyen Tran T, Luong TV, Nguyen NVD, Dang HNN. Complex relationship between childhood obesity and the gut microbiota. World J Clin Pediatr 2025; 14:100975. [DOI: 10.5409/wjcp.v14.i2.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 03/18/2025] Open
Abstract
Recently, the gut microbiota has been identified as a significant risk factor associated with metabolic disorders related to obesity. Advances in high-throughput sequencing technology have clarified the relationship between childhood obesity and changes in the gut microbiota. This commentary focuses on analyzing the study by Li et al, which utilized 16S rRNA molecular markers to compare differences in gut microbiota between obese and normal-weight children. Additionally, the review by Pan et al is referenced to supplement perspectives and evaluate the findings of this study. We also analyze the strengths and limitations of the original study and suggest potential research directions to elucidate the complex relationship between gut microbiota and childhood obesity, thereby providing a scientific basis for developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Trung Nguyen Tran
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh 700000, Viet Nam
| | - Thang Viet Luong
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue 530000, Viet Nam
| | - Nam Van Duc Nguyen
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue 530000, Viet Nam
| | | |
Collapse
|
3
|
Hadiono MA, Kazen AB, Aboulalazm FA, Burnett CML, Reho JJ, Kindel TL, Grobe JL, Kirby JR. Reutericyclin mitigates risperidone-induced suppression of anaerobic energy expenditure. Am J Physiol Regul Integr Comp Physiol 2025; 328:R741-R757. [PMID: 40235074 DOI: 10.1152/ajpregu.00190.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Recent studies from our laboratory demonstrated that the gut microbial community represents a thermogenic biomass, as cecectomy causes an ∼8% decrease in total energy expenditure (EE) via suppression of anaerobic EE. The composition of the microbial community also dictates the EE of the microbial biomass as treatment with the antipsychotic, risperidone, suppresses anaerobic EE in a microbiome-dependent manner. Finally, we have determined that a specialized metabolite produced by Limosilactobacillus reuteri, reutericyclin (RTC), opposes the weight-gain effects of risperidone. In the present study, we performed comprehensive evaluations of energy balance in female C57BL/6J mice treated with risperidone, RTC, or both, to identify mechanisms by which RTC affects energy balance to mitigate risperidone-induced weight gain. We observed that risperidone suppressed anaerobic EE, and that RTC coadministration ameliorated the anaerobic EE suppression and weight gain induced by risperidone. Because anaerobic EE is dependent on the gut microbiota, we performed 16S and whole genome shotgun sequencing on stool and cecal samples following whole animal calorimetry. Risperidone and RTC treatments reciprocally modified the relative abundance of taxa known to participate in fermentation, especially for the production of short-chain fatty acids, which have been correlated with health and leanness in both humans and mice. Together, our data demonstrate that treatment with RTC positively modulates anaerobic EE, possibly by enhancing fermentation of the gut microbial community, and may represent a novel therapeutic in the treatment of obesity.NEW & NOTEWORTHY The gut microbial community represents a thermogenic biomass. The composition of the microbial community dictates energy expenditure of the microbial biomass and is altered by xenobiotics and bacterial metabolites. This study demonstrates that treatment with reutericyclin positively modulates anaerobic energy expenditure and may represent a novel therapeutic in the treatment of obesity.
Collapse
Affiliation(s)
- Matthew A Hadiono
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexis B Kazen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Fatima A Aboulalazm
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John R Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Hosseini FS, Behrouzi A, Shafaie E, Sharifi F, Ejtahed HS. Assessment of gut microbiota in the elderly with sarcopenic obesity: a case-control study. J Diabetes Metab Disord 2025; 24:83. [PMID: 40093788 PMCID: PMC11909374 DOI: 10.1007/s40200-025-01584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Objectives Sarcopenic obesity is a multifactorial disorder commonly found in elderly individuals. One contributing factor is gut microbiota dysbiosis. This study compared the abundance of certain bacteria in elderly individuals with obesity and sarcopenic obesity. Methods The study included 50 elderly individuals over 65 with a body mass index (BMI) of over 30 kg/m², both sexes. Participants were divided into two groups, each with 25 individuals, based on the diagnosis of sarcopenia using the EWGSOP2 criteria. Individuals with underlying diseases, those using antibiotics, and those with a history of gastrointestinal surgery were excluded. Stool samples were stored at -80 °C, and DNA was extracted using standard kits. Bacterial DNA sample quality was assessed using a Nanodrop device. Bacterial frequency was measured using qPCR. The log cfu for each bacteria was calculated and compared in both groups using an independent t-test. Spearman measured the correlation between bacterial genera and physical performance in SPSS 26. Results The case group had a significantly higher average age (70.96) than the control group (68.32). The average BMI was the same in both groups. The frequency of Escherichia (p-value = 0.046) and Bifidobacterium (p-value = 0.017) was significantly higher in the case group. There was no significant difference in the frequency of Lactobacillus and Akkermansia. Conclusion The study uncovered substantial differences in gut microbiota composition between elderly individuals experiencing sarcopenic obesity and those with obesity alone. The findings suggest that dysbiosis, characterized by an excessive presence of Bifidobacterium, Escherichia, and Akkermansia, may be associated with sarcopenic obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-025-01584-x.
Collapse
Affiliation(s)
| | - Ava Behrouzi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ebrahim Shafaie
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Salsinha AS, Araújo-Rodrigues H, Dias C, Cima A, Rodríguez-Alcalá LM, Relvas JB, Pintado M. Omega-3 and conjugated fatty acids impact on human microbiota modulation using an in vitro fecal fermentation model. Clin Nutr 2025; 49:102-117. [PMID: 40262394 DOI: 10.1016/j.clnu.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND & AIMS Gut microbiota has been gaining increasing attention and its important role in the maintenance of a general good health condition is already established. The potential of gut microbiota modulation through diet is an important research focus to be considered. Lipids, as omega-3 fatty acids, are well known for their beneficial role on organs and corresponding diseases. However, their impact on gut microbiota is still poorly defined, and studies on the role of other polyunsaturated fatty acids, such as conjugated linoleic and linolenic acids, are even scarcer. METHODS By using an in vitro human fermentation model, we assessed the effect of omega-3, CLA isomers, and punicic acid on microbiota modulation. RESULTS Fish oil, Omega-3, and CLA samples positively impact Akkermansia spp. and Bifidobacterium spp. growth. Moreover, all the samples supported Roseburia spp. growth after 24 h of fermentation and, importantly, they were able to maintain the Firmicutes: Bacteroidetes ratio near 1. All the bioactive fatty acid samples, except Pomegranate oil, were able to significantly increase butyrate levels compared to those found in the positive control (FOS) sample. Moreover, Fish oil and Omega-3 samples were able to increase the concentration of GABA, alanine, tyrosine, phenylalanine, isoleucine, and leucine between 12 and 24 h of fermentation. CONCLUSIONS The impact of the assessed polyunsaturated fatty acids in gut microbiota has been observed in its impact on key bacteria (Akkermansia, Bifidobacterium, and Roseburia) as well as their metabolic byproducts, including butyrate and amino acids, which could potentially play a role in modulating the gut-brain axis.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cindy Dias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Luís Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
6
|
Anvarbatcha R, Kunnathodi F, Arafat AA, Azmi S, Mustafa M, Ahmad I, Alotaibi HF. Harnessing Probiotics: Exploring the Role of the Gut Microbiome in Combating Obesity. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10605-3. [PMID: 40434504 DOI: 10.1007/s12602-025-10605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Obesity has become a global health crisis driven by genetic, environmental, and lifestyle factors, often linked to gut microbiome imbalances. Probiotics, particularly Lactobacillus and Bifidobacterium strains, have shown promise in clinical trials by promoting weight loss, improving lipid profiles, and addressing gut dysbiosis associated with obesity. This review surveys the literature on the microbiome and obesity, emphasizing the clinical relevance of probiotics in treatment strategies. Our comprehensive PubMed search highlights the mechanisms through which probiotics influence metabolic health, including their effects on inflammation and appetite regulation. We also explore promising future research directions and the potential for integrating probiotics into clinical practice. While results are encouraging, the evidence is limited by strain variability, small sample sizes, short trial durations, and individual differences in microbiota composition. More extensive, long-term studies with standardized methods are crucial to confirm the effectiveness of probiotics as viable anti-obesity treatments.
Collapse
Affiliation(s)
- Riyasdeen Anvarbatcha
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
| | - Faisal Kunnathodi
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
| | - Amr A Arafat
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
- Departments of Adult Cardiac Surgery Department, Kingdom of Saudi Arabia, Prince Sultan Cardiac Center, Riyadh, Kingdom of Saudi Arabia
| | - Sarfuddin Azmi
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Mustafa
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
| | - Ishtiaque Ahmad
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia
| | - Haifa F Alotaibi
- Health Research Center, Kingdom of Saudi Arabia, Ministry of Defense Health Services, Riyadh, Kingdom of Saudi Arabia.
- Department of Family Medicine, Kingdom of Saudi Arabia, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Mezhibovsky E, Wu G, Wu Y, Ning Z, Bacalia K, Sadangi S, Patel R, Poulev A, Duran RM, Macor M, Coyle S, Lam YY, Raskin I, Figeys D, Zhao L, Roopchand DE. Grape polyphenols reduce fasting glucose and increase hyocholic acid in healthy humans: a meta-omics study. NPJ Sci Food 2025; 9:87. [PMID: 40425565 PMCID: PMC12116990 DOI: 10.1038/s41538-025-00443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Grape polyphenols (GPs) are rich in B-type proanthocyanidins, which promote metabolic resilience. Longitudinal metabolomic, metagenomic, and metaproteomic changes were measured in 27 healthy subjects supplemented with soy protein isolate (SPI, 40 g per day) for 5 days followed by GPs complexed to SPI (GP-SPI standardized to 5% GPs, 40 g per day) for 10 days. Fecal, urine, and/or fasting blood samples were collected before supplementation (day -5), after 5 days of SPI (day 0), and after 2, 4 and 10 days of GP-SPI. Most multi-omic changes observed after 2 and/or 4 days of GP-SPI intake were temporary, returning to pre-supplementation profiles by day 10. Shotgun metagenomics sequencing provided insights that could not be captured with 16S rRNA amplicon sequencing. Notably, 10 days of GP-SPI decreased fasting blood glucose and increased serum hyocholic acid (HCA), a glucoregulatory bile acid, which negatively correlated with one gut bacterial guild. In conclusion, GP-induced suppression of a bacterial guild may lead to higher HCA and lower fasting blood glucose.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yue Wu
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karen Bacalia
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Sriya Sadangi
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Riddhi Patel
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Alexander Poulev
- Department of Plant Biology, School of Environmental and Biological Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Rocio M Duran
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Marie Macor
- Department of Surgery, Rutgers Robert Wood Johnson Medical School (RWJMS), New Brunswick, 08903, NJ, USA
| | - Susette Coyle
- Department of Surgery, Rutgers Robert Wood Johnson Medical School (RWJMS), New Brunswick, 08903, NJ, USA
| | - Yan Y Lam
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Diana E Roopchand
- Department of Food Science and New Jersey Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research), School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Liu L, Jia R, Chen W, Chen W, Wang X, Guo Z. The lotus seed starch-EGCG complex modulates obesity in C57BL/6J mice through the regulation of the gut microbiota. Int J Biol Macromol 2025; 310:143256. [PMID: 40250649 DOI: 10.1016/j.ijbiomac.2025.143256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The starch-polyphenol complex, identified as RS5-resistant starch, has been shown to regulate the gut environment and inhibit metabolic diseases, including obesity. In a study with C57BL/6 obese mice fed LSE, potential anti-obesity effects were demonstrated through physiological and biochemical assessments, gut microbiota analysis, and mechanistic insights. The study showed that LSE reduced mice body weight, serum total cholesterol, and triglycerides (P < 0.05). Serum inflammatory markers (TNF-α, IL-6, IL-1β) and LPS levels were significantly decreased, while glucose tolerance (AUC reduced by 29.29 %) and insulin sensitivity (AUC reduced by 31.79 %) were improved. Histological analysis indicated reduction in adipocyte size and attenuation of hepatic steatosis. Gut microbiota profiling demonstrated LSE increased beneficial bacteria genera Faecalibacterium, Bifidobacterium, and Akkermansia. This correlated with enhanced SCFA production (acetate 41.53 %, propionate 45.52 %, butyrate 57.49 % increase). These findings demonstrate that LSE exerts anti-obesity effects through modulation of the gut microbiota-SCFA-metabolic axis, supporting starch-polyphenol complexes as functional food candidates.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Liu T, Zhang M, Xie Q, Gu J, Zeng S, Huang D. Unveiling the Antiobesity Mechanism of Sweet Potato Extract by Microbiome, Transcriptome, and Metabolome Analyses in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7807-7821. [PMID: 39989409 DOI: 10.1021/acs.jafc.4c13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study aimed to elucidate the antiobesity mechanisms of sweet potato extract (SPE) through biochemical, gut microbiome, liver transcriptome, and metabolome analyses. Administration of SPE to high-fat-diet-fed mice significantly reduced body weight gain, serum low-density lipoprotein cholesterol, hepatic lipid accumulation, and adipocyte hypertrophy, which were closely linked to gut microbiome composition. SPE notably increased the abundance of Eubacterium_coprostanoligenes_group_unclassified and decreased that of Kineothrix, both of which were strongly associated with short-chain fatty acid (SCFA) production. LC-QTOF-MS analysis identified resin glycoside compounds from SPE with reduced levels in mouse feces, suggesting their utilization in vivo. SPE also promoted dietary fat excretion. Liver transcriptomic and metabolomic profiling revealed that SPE may exert antiobesity effects by modulating the bile-sphingolipid metabolism, which was closely correlated with the reshaped gut microbiomes and SCFAs. These findings provide new insights into the antiobesity effects and mechanisms of SPE.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Min Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Jia Gu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
10
|
Jiang GH, Li HY, Xie LJ, Fan JY, Li SY, Yu WQ, Xu YT, He ML, Jiang Y, Bai X, Zhou J, Wang X. Intestinal flora was associated with occurrence risk of chronic non-communicable diseases. World J Gastroenterol 2025; 31:103507. [PMID: 40124279 PMCID: PMC11924013 DOI: 10.3748/wjg.v31.i11.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 02/24/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The intestinal flora (IF) has been linked to risks of non-communicable diseases, especially various cancers, stroke, and Alzheimer's disease. However, many uncertainties of these associations during different stages of growth, development, and aging still exist. Therefore, further in-depth explorations are warranted. AIM To explore the associations of the human IF with disease risks during different stages of growth, development, and aging to achieve more accurate and convincing conclusions. METHODS Cohort, cross-sectional, case-control, and Mendelian randomization studies published in the PubMed and Web of Science databases until December 31, 2023 were systematically reviewed to clarify the associations of the IF at the genus level with the risks of various non-communicable diseases, which were grouped in accordance with the 10th revision of the International Classification of Diseases. RESULTS In total, 57 studies were included to quantitatively examine the influence of the IF on the risks of 30 non-communicable diseases during different stages of growth, development, and aging. Population studies and Mendelian randomization studies confirmed positive associations of the abundances of Bifidobacterium and Ruminococcus with multiple sclerosis. CONCLUSION These findings contribute to a deeper understanding of the roles of the IF and provide novel evidence for effective strategies for the prevention and treatment of non-communicable diseases. In the future, it will be necessary to explore a greater variety of research techniques to uncover the specific mechanisms by which gut microbiota trigger diseases and conduct in-depth studies on the temporal relationship between microbiota alterations and diseases, so as to clarify the causal relationship more accurately.
Collapse
Affiliation(s)
- Guo-Heng Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Yu Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin-Jun Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yuan Fan
- China Tobacco Sichuan Industry Co. Ltd., Technology Center, Chengdu 610101, Sichuan Province, China
| | - Shi-Yi Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Qian Yu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi-Ting Xu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng-Lin He
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xuan Bai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin Zhou
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Noori P, Sotoodehnejadnematalahi F, Rahimi P, Siadat SD. Akkermansia muciniphila and Its Extracellular Vesicles Affect Endocannabinoid System in in vitro Model. Digestion 2025:1-11. [PMID: 40081347 DOI: 10.1159/000543446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/04/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Recent studies indicate that the gut microbiota controls the host's immune system. Probiotics use different signaling pathways to regulate intestinal permeability, barrier integrity, and energy balance. METHODS This research examined how Akkermansia muciniphila and its extracellular vesicles (EVs) impact inflammation and genes related to the endocannabinoid system in the STC-1 cell line through RT-PCR and ELISA assays. RESULTS The study's results indicated that EVs had a significant impact on GLP-1 expression compared to the multiplicity of infections (MOI) ratio. Notably, there was a substantial increase in the expression of PYY and GLP-1 genes across all treatments (p < 0.05). Conversely, the expression of CB-1, CB-2, and FAAH genes notably decreased in the STC-1 cell line when treated with MOI 50 of A. muciniphila and an EV concentration of 100 μg/mL (p < 0.05). Both MOI 50 of A. muciniphila and an EV concentration of 100 μg/mL significantly enhanced the expression of the TLR-2 gene. In contrast, EVs at a concentration of 100 μg/mL substantially reduced TLR-4 gene expression. A. muciniphila-derived EVs notably decreased the levels of inflammatory cytokines (TNF-α and IL-6), while increasing IL-10 expression at MOI 100 and an EV concentration of 100 μg/mL. These findings suggest that A. muciniphila and its EVs could regulate the expression of specific genes, serving as targets for maintaining host energy balance. CONCLUSIONS In summary, this study illustrates that A. muciniphila-derived EVs exhibit anti-inflammatory properties and have the potential to modulate gene expression in cases of obesity and gastrointestinal tract inflammation.
Collapse
Affiliation(s)
- Pegah Noori
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Li X, Lin D, Hu X, Shi X, Huang W, Ouyang Y, Chen X, Xiong Y, Wu X, Hong D, Chen H. Akkermansia muciniphila Modulates Central Nervous System Autoimmune Response and Cognitive Impairment by Inhibiting Hippocampal NLRP3-Mediated Neuroinflammation. CNS Neurosci Ther 2025; 31:e70320. [PMID: 40050112 PMCID: PMC11884925 DOI: 10.1111/cns.70320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significant role of Akkermansia muciniphila (A. muciniphila) in enhancing host immune responses and metabolic functions. However, its increased presence in multiple sclerosis (MS) patients has led to a focus on the relationships between A. muciniphila and diseases, with the underlying mechanisms remaining unknown. METHOD Solochrome cyanin, hematoxylin-eosin staining (H&E) and immunofluorescence staining were used to assess demyelination and inflammation. Gut microbiota changes were examined by 16S rRNA sequencing. Intracellular cytokine levels were assessed by flow cytometry. Cognitive impairment was evaluated using four behavioral tests. Intestinal barrier function and pyrin domain-containing protein 3 (NLRP3)-mediated neuroinflammation were evaluated by immunoblotting. RESULTS We found that treatment with an appropriate dose of A. muciniphila (5.0 × 107 CFU/mL) reduced neuropathology and disease severity in experimental autoimmune encephalomyelitis (EAE) mice. In addition, A. muciniphila supplementation increased the diversity and abundance of intestinal microbiota while decreasing the Firmicutes/Bacteroidetes ratio. Moreover, it improved intestinal barrier function and attenuated Th17 responses in the gut, central nervous system (CNS), and lymphoid tissues, without affecting Treg response in the lymphoid tissue. Furthermore, A. muciniphila administration partly regulated cognitive impairment and hippocampal NLRP3-mediated neuroinflammation. CONCLUSION Our results suggest that A. muciniphila holds promise as a probiotic for treating NLRP3-associated inflammatory disorders and cognitive impairment, including MS.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Mice
- Mice, Inbred C57BL
- Hippocampus/metabolism
- Hippocampus/immunology
- Hippocampus/pathology
- Cognitive Dysfunction/immunology
- Cognitive Dysfunction/microbiology
- Cognitive Dysfunction/metabolism
- Gastrointestinal Microbiome/physiology
- Neuroinflammatory Diseases/immunology
- Female
- Akkermansia
- Probiotics
Collapse
Affiliation(s)
- Xiaobing Li
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Dengna Lin
- Department of GastroenterologyThe Sixth Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical DisciplineGuangzhouChina
| | - Xin Hu
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiongwei Shi
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Wenxuan Huang
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Yi Ouyang
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaohong Chen
- Department of Neurology and Multiple Sclerosis Research CenterThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yingqiong Xiong
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaomu Wu
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Daojun Hong
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Hao Chen
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| |
Collapse
|
13
|
Romaní‐Pérez M, Líebana‐García R, Flor‐Duro A, Bonillo‐Jiménez D, Bullich‐Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní‐Pérez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Rebeca Líebana‐García
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Alejandra Flor‐Duro
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Daniel Bonillo‐Jiménez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Clara Bullich‐Vilarrubias
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Marta Olivares
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| |
Collapse
|
14
|
Wu L, Xue L, Ding X, Jiang H, Zhang R, Zheng A, Zu Y, Tan S, Wang X, Liu Z. Integrated microbiome and metabolomics analysis reveals the alleviating effect of Pediococcus acidilactici on colitis. Front Vet Sci 2025; 12:1520678. [PMID: 40078208 PMCID: PMC11897304 DOI: 10.3389/fvets.2025.1520678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Colitis is a complicated disease caused by multiple factors, seriously threatening the host health and the development of animal husbandry. Probiotics have been demonstrate to participate in the active regulation of multiple gastrointestinal disease, gut microbiota and metabolism, but research on the efficacy of Pediococcus acidilactici isolated from dogs in alleviating colitis remains scarce. Here, we aimed to investigate the ameliorative effects of Pediococcus acidilactici isolated from dogs on colitis induced by LPS and its underlying molecular mechanisms. For this purpose, we collected colon contents from 15 mice for amplicon sequencing and metabolic analysis. Results showed that Pediococcus acidilactici could relieve the colon damage and cytokine disorder caused by colitis. Microbiome analysis showed that colitis could cause a significant decrease in the gut microbial diversity and abundance, but Pediococcus acidilactici administration could restore the microbial index to the control level. Metabolomics analysis showed that 8 metabolic pathways and 5 (spermine, L-Arginine, 15-Deoxy-Delta12,14-PGJ2, prostaglandin J2, and 15(S)-HETE) metabolites may be involved in the alleviation of colitis by Pediococcus acidilactici. In summary, these findings demonstrated that the positive regulation effect of Pediococcus acidilactici on gut microbiota and metabolism may be one of its underlying mechanisms to alleviate colitis. Additionally, this study also conveyed a vital message that Pediococcus acidilactici isolated from dogs may serve as a promising candidate to ameliorate Pediococcus acidilactici.
Collapse
Affiliation(s)
- Lulu Wu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Lixun Xue
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Ding
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huyan Jiang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, China
| | - Ranran Zhang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Aifang Zheng
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yuan Zu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shuaishuai Tan
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Wang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Zhigang Liu
- School of Life Sciences, Anqing Normal University, Anqing, China
- Engineering Technology Research Center for Aquatic Organism Conservation and Water Ecosystem Restoration in University of Anhui Province, Anqing, China
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
| |
Collapse
|
15
|
Zhao L, Zhao Q, Sharafeldin S, Sang L, Wang C, Xue Y, Shen Q. Moderate Highland Barley Intake Affects Anti-Fatigue Capacity in Mice via Metabolism, Anti-Oxidative Effects and Gut Microbiota. Nutrients 2025; 17:733. [PMID: 40005062 PMCID: PMC11858136 DOI: 10.3390/nu17040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES this study aimed to explore the effects of different intake levels (20-80%) of highland barley on the anti-fatigue capacity of ICR mice, focusing on energy metabolism, metabolite accumulation, oxidative stress, and changes in the gut microbiota. METHODS male ICR mice were assigned to five groups: control (normal diet) and four experimental groups with highland barley supplementation at 20%, 40%, 60%, and 80% of total dietary energy. Anti-fatigue performance was assessed by behavioral experiments (rotarod, running, and exhaustive swimming tests), biochemical markers, and gut microbiota analysis. RESULTS the results showed that moderate supplementation (20%) significantly enhanced exercise endurance and anti-fatigue capacity, as evidenced by increased liver glycogen (134.48%), muscle glycogen (87.75%), ATP content (92.07%), Na+-K+-ATPase activity (48.39%), and antioxidant enzyme activities (superoxide dismutase (103.31%), catalase (87.75%), glutathione peroxidase (81.14%). Post-exercise accumulation of blood lactate, quadriceps muscle lactate, serum urea nitrogen, and the oxidative stress marker malondialdehyde was significantly reduced, with differences of 31.52%, 21.83%, 21.72%, and 33.76%, respectively. Additionally, 20% supplementation promoted the growth of beneficial gut microbiota associated with anti-fatigue effects, including unclassified_f_Lachnospiraceae, g_norank_f_Peptococcaceae, Lachnospiraceae NK4A136, Colidextribacter, and Turicibacter. However, when intake reached 60% or more, anti-fatigue effects diminished, with decreased antioxidant enzyme activity, increased accumulation of metabolic waste, and a rise in potentially harmful microbiota (Allobaculum, Desulfovibrio, and norank_f_norank_o_RF39). CONCLUSIONS moderate highland barley supplementation (20% of total dietary energy) enhances anti-fatigue capacity, while excessive intake (≥60%) may have adverse effects.
Collapse
Affiliation(s)
- Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Sameh Sharafeldin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
- Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| |
Collapse
|
16
|
Salberg S, Macowan M, Doshen A, Yamakawa GR, Sgro M, Marsland B, Henderson LA, Mychasiuk R. A high fat, high sugar diet exacerbates persistent post-surgical pain and modifies the brain-microbiota-gut axis in adolescent rats. Neuroimage 2025; 307:121057. [PMID: 39870258 DOI: 10.1016/j.neuroimage.2025.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions. Therefore, we investigated how daily consumption of a HFHS diet modified the development of PPSP, brain structure and function, and the microbiome. In addition, we identified significant correlations between the microbiome and brain in animals with PPSP. Male and female rats were maintained on a control or HFHS diet. Animals were further allocated to a sham or surgery on postnatal day (p) p35. The von Frey task measured mechanical nociceptive sensitivity at a chronic timepoint (p65-67). Between p68-72 rats underwent in-vivo MRI to examine brain volume and diffusivity. At p73 fecal samples were used for downstream 16 s rRNA sequencing. Spearman correlation analyses were performed between individual microbial abundance and MRI diffusivity to determine if specific bacterial species were associated with PPSP-induced brain changes. We found that consumption of a HFHS diet exacerbated PPSP in adolescents. The HFHS diet reduced overall brain volume and increased white and grey matter density. The HFHS diet interacted with the surgical intervention to modify diffusivity in numerous brain regions which were associated with specific changes to the microbiome. These findings demonstrate that premorbid characteristics can influence the development of PPSP and advance our understanding of the contribution that the microbiome has on function of the brain-microbiota-gut axis.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Matthew Macowan
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Angela Doshen
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Benjamin Marsland
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia.
| |
Collapse
|
17
|
Profir M, Enache RM, Roşu OA, Pavelescu LA, Creţoiu SM, Gaspar BS. Malnutrition and Its Influence on Gut sIgA-Microbiota Dynamics. Biomedicines 2025; 13:179. [PMID: 39857762 PMCID: PMC11762760 DOI: 10.3390/biomedicines13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the current era, malnutrition is seen as both undernutrition and overweight and obesity; both conditions are caused by nutrient deficiency or excess and improper use or imbalance in the intake of macro and micronutrients. Recent evidence suggests that malnutrition alters the intestinal microbiota, known as dysbiosis. Secretory immunoglobulin A (sIgA) plays an important role in maintaining and increasing beneficial intestinal microbiota populations and protecting against pathogenic species. Depletion of beneficial bacterial populations throughout life is also conditioned by malnutrition. This review aims to synthesize the evidence that establishes an interrelationship between diet, malnutrition, changes in the intestinal flora, and sIgA levels. Targeted nutritional therapies combined with prebiotic, probiotic, and postbiotic administration can restore the immune response in the intestine and the host's homeostasis.
Collapse
Affiliation(s)
- Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
18
|
Ramírez-Maldonado LM, Guerrero-Castro J, Rodríguez-Mejía JL, Cárdenas-Conejo Y, Bonales-Alatorre EO, Valencia-Cruz G, Anguiano-García PT, Vega-Juárez II, Dagnino-Acosta A, Ruvalcaba-Galindo J, Valdez-Morales EE, Ochoa-Cortes F, Barajas-Espinosa A, Guerrero-Alba R, Liñán-Rico A. Obesogenic cafeteria diet induces dynamic changes in gut microbiota, reduces myenteric neuron excitability, and impairs gut contraction in mice. Am J Physiol Gastrointest Liver Physiol 2025; 328:G32-G48. [PMID: 39499253 DOI: 10.1152/ajpgi.00198.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
The cafeteria diet (CAF) is a superior diet model in animal experiments compared with the conventional high-fat diet (HFD), effectively inducing obesity, metabolic disturbances, and multi-organ damage. Nevertheless, its impact on gut microbiota composition during the progression of obesity, along with its repercussions on the enteric nervous system (ENS) and gastrointestinal motility has not been completely elucidated. To gain more insight into the effects of CAF diet in the gut, C57BL/6 mice were fed with CAF or a standard diet for 2 or 8 wk. CAF-fed mice experienced weight gain, disturbed glucose metabolism, dysregulated expression of colonic IL-6, IL-22, TNFα, and TPH1, and altered colon morphology, starting at week 2. Fecal DNA was isolated and gut microbiota composition was monitored by sequencing the V3-V4 16S rRNA region. Sequence analysis revealed that Clostridia and Proteobacteria were specific biomarkers associated with CAF-feeding at week 2, while Bacteroides and Actinobacteria were prominent at week 8. In addition, the impact of CAF diet on ENS was investigated (week 8), where HuC/D+ neurons were measured and counted, and their biophysical properties were evaluated by patch clamp. Gut contractility was tested in whole-mount preparations. Myenteric neurons in CAF-fed mice exhibited reduced body size, incremented cell density, and decreased excitability. The amplitude and frequency of the rhythmic spontaneous contractions in the colon and ileum were affected by the CAF diet. Our findings demonstrate, for the first time, that CAF diet gradually changes the gut microbiota and promotes low-grade inflammation, impacting the functional properties of myenteric neurons and gut contractility in mice.NEW & NOTEWORTHY The gut microbiota changes gradually following the consumption of CAF diet. An increase in Clostridia and Proteobacteria is a hallmark of dysbiosis at the early onset of gut inflammation and obesity. The CAF diet was effective in inducing intestinal low-grade inflammation and alterations in myenteric neuronal excitability in mice. CAF diet is a reliable strategy to study the interplay between gut dysbiosis and low-grade inflammation, in addition to the mechanisms underlying gastrointestinal dysmotility associated with obesity.
Collapse
Affiliation(s)
- Luis M Ramírez-Maldonado
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | - Julio Guerrero-Castro
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | - José L Rodríguez-Mejía
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | - Yair Cárdenas-Conejo
- Laboratorio de Biología Sintética Estructural y Molecular, Universidad de Colima-Consejo Nacional de Humanidades, Ciencias y Tecnologías, Colima, México
| | - Edgar O Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | | | - Irving I Vega-Juárez
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
| | - Adán Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima-Consejo Nacional de Humanidades, Ciencias y Tecnologías, Colima, México
| | | | - Eduardo E Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes-Consejo Nacional de Humanidades, Ciencias y Tecnologías, Aguascalientes, México
| | - Fernando Ochoa-Cortes
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Andrómeda Liñán-Rico
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, México
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima-Consejo Nacional de Humanidades, Ciencias y Tecnologías, Colima, México
| |
Collapse
|
19
|
Łoniewski I, Banasiewicz T, Sieńko J, Skonieczna-Zydecka K, Stachowska E. Microbiota modifications in prehabilitation - the next step towards comprehensive preparation for surgery. The scoping review. PRZEGLAD GASTROENTEROLOGICZNY 2024; 16:347-361. [PMID: 39810873 PMCID: PMC11726224 DOI: 10.5114/pg.2024.145833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
This scoping review highlights the role of microbiota modifications in prehabilitation for surgical patients. It emphasises the importance of optimising gut microbiota through probiotics, synbiotics, and postbiotics to reduce surgical complications, such as surgical site infections (SSIs). The review highlights that gut dysbiosis, worsened by surgery, stress, antibiotics, and poor diet, can lead to increased infection risk and slower recovery. Evidence from systematic reviews, meta-analyses, and randomised controlled trials suggests that microbiota-targeted interventions can reduce SSIs, enhance immune responses, and promote quicker recovery. The review advocates for an individualised approach to prehabilitation, incorporating microbiota modifications based on patient-specific factors and surgery type. However, it also notes the need for further research to standardise therapeutic regimens and confirm the safety and efficacy of these interventions in clinical practice.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Banasiewicz
- Department of General Surgery, Endo- and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Sieńko
- Institute of Physical and Cultural Sciences, University of Szczecin, Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
20
|
Song H, Lu J, Chu Q. Polyphenols from Prunus salicina L. alleviate weight gain, obesity-related hyperlipidemia, hepatic steatosis, hyperglycemia, and modulate gut microbiota in mice fed a high-fat diet. Nutr Res 2024; 132:152-163. [PMID: 39580918 DOI: 10.1016/j.nutres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hyperlipidemia, hepatic steatosis, and hyperglycemia are prevalent metabolic disorders closely linked to obesity. The objective of this research was to examine the potential advantageous impacts of polyphenols extracted from Prunus salicina L. fruit (PSFP) on hyperlipidemia, hepatic steatosis, and hyperglycemia induced by a high-fat diet (HFD), as well as to elucidate the underlying mechanisms involved. Male C57BL/6J mice, free from specific pathogens, were assigned randomly into three groups. These groups were then subjected to a 14-week dietary intervention, including a low-fat diet, an HFD, or an HFD plus with PSFP via intragastric administration. The obesity-related biochemical indexes were evaluated. To assess alterations in gut microbiota resulting from PSFP treatment, 16S rRNA sequencing was performed. UPLC-ESI-MS/MS assay identified 162 distinct polyphenolic compounds in PSFP. The administration of PSFP significantly reduced both body weight gain and hyperlipidemia induced by HFD. In addition, PSFP ameliorated hepatic steatosis induced by HFD and enhanced liver function in mice. PSFP treatment also ameliorated HFD-induced insulin resistance and hyperglycemia, evidenced by the observed decrease in fasting serum concentrations of glucose and insulin, improved insulin sensitivity, and restored glucose tolerance. Moreover, PSFP modulated the composition and abundance of specific microbial genus, including Lachnospiraceae NK4A136 group, Akkermansia, Parabacteroides, Enterococcus, Adlercreutzia, and Roseburia. Correlation analysis indicated significant associations between gut microbiota and physiological indices associated with obesity. These findings suggested that PSFP supplementation ameliorated HFD-induced hyperlipidemia, hepatic steatosis, and hyperglycemia, potentially through modulating the gut microbiota composition and abundance of specific taxa.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China.
| | - Jing Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| | - Qiang Chu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
21
|
Enache RM, Profir M, Roşu OA, Creţoiu SM, Gaspar BS. The Role of Gut Microbiota in the Onset and Progression of Obesity and Associated Comorbidities. Int J Mol Sci 2024; 25:12321. [PMID: 39596385 PMCID: PMC11595101 DOI: 10.3390/ijms252212321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity, a global public health problem, is constantly increasing, so the concerns in preventing and combating it are increasingly focused on the intestinal microbiota. It was found that the microbiota is different in lean people compared to obese individuals, but the exact mechanisms by which energy homeostasis is influenced are still incompletely known. Numerous studies show the involvement of certain bacterial species in promoting obesity and associated diseases such as diabetes, hypertension, cancer, etc. Our aim is to summarize the main findings regarding the influence of several factors such as lifestyle changes, including diet and bariatric surgery, on the diversity of the gut microbiota in obese individuals. The second purpose of this paper is to investigate the potential effect of various microbiota modulation techniques on ameliorating obesity and its comorbidities. A literature search was conducted using the PubMed database, identifying articles published between 2019 and 2024. Most studies identified suggest that obesity is generally associated with alterations of the gut microbiome such as decreased microbial diversity, an increased Firmicutes-to-Bacteroidetes ratio, and increased SCFAs levels. Our findings also indicate that gut microbiota modulation techniques could represent a novel strategy in treating obesity and related metabolic diseases. Although some mechanisms (e.g., inflammation or hormonal regulation) are already considered a powerful connection between gut microbiota and obesity development, further research is needed to enhance the knowledge on this particular topic.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
22
|
Fujii T, Karasawa K, Takahashi H, Shirai I, Funasaka K, Ohno E, Hirooka Y, Tochio T. Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001510. [PMID: 39570663 PMCID: PMC11581127 DOI: 10.1099/mic.0.001510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
Recent studies have linked Ruminococcus gnavus to inflammatory bowel disease and Fusobacterium nucleatum to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of R. gnavus and F. nucleatum at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (fab genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of R. gnavus cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with R. gnavus and Bifidobacterium longum in 0.2% AOS resulted in B. longum dominating the population, constituting over 96% post-incubation. In vivo studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which R. gnavus belongs, following AOS administration. Quantitative PCR also showed lower levels of the nan gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.
Collapse
Affiliation(s)
- Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Koji Karasawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Hideaki Takahashi
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Ikuya Shirai
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| |
Collapse
|
23
|
Gurung M, Mulakala BK, Schlegel BT, Rajasundaram D, Shankar K, Bode L, Ruebel ML, Sims C, Martinez A, Andres A, Yeruva L. Maternal immune cell gene expression associates with maternal gut microbiome, milk composition and infant gut microbiome. Clin Nutr ESPEN 2024; 63:903-918. [PMID: 39209027 DOI: 10.1016/j.clnesp.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pre-pregnancy overweight and obesity promote deleterious health impacts on both mothers during pregnancy and the offspring. Significant changes in the maternal peripheral blood mononuclear cells (PBMCs) gene expression due to obesity are well-known. However, the impact of pre-pregnancy overweight on immune cell gene expression during pregnancy and its association with maternal and infant outcomes is not well explored. METHODS Blood samples were collected from healthy normal weight (NW, pre-pregnancy BMI 18.5-24.9) or overweight (OW, pre-pregnancy BMI 25-29.9) 2nd parity pregnant women at 12, 24 and 36 weeks of pregnancy. PBMCs were isolated from the blood and subjected to mRNA sequencing. Maternal and infant microbiota were analyzed by 16S rRNA gene sequencing. Integrative multi-omics data analysis was performed to evaluate the association of gene expression with maternal diet, gut microbiota, milk composition, and infant gut microbiota. RESULTS Gene expression analysis revealed that 453 genes were differentially expressed in the OW women compared to NW women at 12 weeks of pregnancy, out of which 354 were upregulated and 99 were downregulated. Several up-regulated genes in the OW group were enriched in inflammatory, chemokine-mediated signaling and regulation of interleukin-8 production-related pathways. At 36 weeks of pregnancy healthy eating index score was positively associated with several genes that include, DTD1, ELOC, GALNT8, ITGA6-AS1, KRT17P2, NPW, POT1-AS1 and RPL26. In addition, at 36 weeks of pregnancy, genes involved in adipocyte functions, such as NG2 and SMTNL1, were negatively correlated to human milk 2'FL and total fucosylated oligosaccharides content collected at 1 month postnatally. Furthermore, infant Akkermansia was positively associated with maternal PBMC anti-inflammatory genes that include CPS1 and RAB7B, at 12 and 36 weeks of pregnancy. CONCLUSIONS These findings suggest that prepregnancy overweight impacts the immune cell gene expression profile, particularly at 12 weeks of pregnancy. Furthermore, deciphering the complex association of PBMC's gene expression levels with maternal gut microbiome and milk composition and infant gut microbiome may aid in developing strategies to mitigate obesity-mediated effects.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Bharath Kumar Mulakala
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA; Texas A & M, IHA, College Station, TX, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children's Hospital of Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children's Hospital of Pittsburgh, PA, USA
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Meghan L Ruebel
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Clark Sims
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Audrey Martinez
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| |
Collapse
|
24
|
Singh V, Mahra K, Jung D, Shin JH. Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics. Probiotics Antimicrob Proteins 2024; 16:1744-1761. [PMID: 38647957 DOI: 10.1007/s12602-024-10262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme β-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Kanika Mahra
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - DaRyung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
25
|
Rumyantsev KA, Polyakova VV, Sorokina IV, Feoktistova PS, Khatkov IE, Bodunova NA, Zhukova LG. The Gut Microbiota Impacts Gastrointestinal Cancers through Obesity, Diabetes, and Chronic Inflammation. Life (Basel) 2024; 14:1219. [PMID: 39459519 PMCID: PMC11509742 DOI: 10.3390/life14101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota's pivotal role in human health is increasingly evident, particularly in chronic conditions like obesity, diabetes, and inflammatory diseases. This intricate symbiotic relationship influences metabolic balance and immune responses. Notably, gut microbial dysbiosis is linked to obesity's metabolic disruption and chronic low-grade inflammation. Similarly, in diabetes, the microbiota's impact on insulin resistance and glucose metabolism is becoming evident. Chronic inflammation, a common denominator in these conditions, is also a recognized precursor to carcinogenesis. This intersection prompts a compelling question: does the gut microbiota's influence extend to gastrointestinal cancers like colorectal and pancreatic cancer? These malignancies are closely intertwined with inflammation and metabolic dysregulation. Exploring whether the microbial signatures associated with chronic conditions overlap with precancerous or cancerous states offers new perspectives. This article reviews emerging evidence on the interplay between the gut microbiota, chronic conditions, and gastrointestinal cancers. By elucidating these connections, we aim to uncover potential avenues for innovative diagnostic, preventative, and therapeutic strategies in colorectal and pancreatic cancer management.
Collapse
|
26
|
Byndloss M, Devkota S, Duca F, Hendrik Niess J, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 2024; 47:1491-1508. [PMID: 38996003 PMCID: PMC11362125 DOI: 10.2337/dci24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
27
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes 2024; 73:1391-1410. [PMID: 38912690 PMCID: PMC11333376 DOI: 10.2337/dbi24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
29
|
Popov IV, Belkassem N, Schrijver R, Chebotareva IP, Chikindas ML, Ermakov AM, Venema K. Modulation of Poultry Cecal Microbiota by a Phytogenic Blend and High Concentrations of Casein in a Validated In Vitro Cecal Chicken Alimentary Tract Model. Vet Sci 2024; 11:377. [PMID: 39195831 PMCID: PMC11358970 DOI: 10.3390/vetsci11080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Phytogenic blends (PBs) consist of various bioactive plant-derived compounds that are used as growth promoters for farm animals. Feed additives based on PBs have beneficial effects on farm animals' production performance, health, and overall well-being, as well as positive modulating effects on gut microbiota. In this study, we used a validated in vitro cecal chicken alimentary tract model (CALIMERO-2) to evaluate the effects of a PB (a mix of components found in rosemary, cinnamon, curcuma, oregano oil, and red pepper), alone or in combination with casein (control), on poultry cecal microbiota. Supplementation with the PB significantly increased the abundance of bacteria associated with energy metabolism (Monoglobus) and growth performance in poultry (Lachnospiraceae UCG-010). The PB also decreased the abundance of opportunistic pathogens (Escherichia-Shigella) and, most importantly, did not promote other opportunistic pathogens, which indicates the safety of this blend for poultry. In conclusion, the results of this study show promising perspectives on using PBs as feed additives for poultry, although further in vivo studies need to prove these data.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Nouhaila Belkassem
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| | - Ruud Schrijver
- Animal Health Concepts BV, 8141 GN Heino, The Netherlands
| | - Iuliia P. Chebotareva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| |
Collapse
|
30
|
Kwon HS, Kim SJ, Shin KJ, Kim S, Yun J, Bae J, Tak HJ, Lee NR, Kim HJ. The Effect of the Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 Combination (BN-202M) on Body Fat Percentage Loss in Overweight Individuals: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024; 16:1993. [PMID: 38999741 PMCID: PMC11243028 DOI: 10.3390/nu16131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
BN-202M is derived from humans and consists of two strains, Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53. Body fat reduction effect and safety of BN-202M were assessed in overweight participants. A total of 150 participants were randomly assigned to the BN-202M and placebo groups at a 1:1 ratio. Dual-energy X-ray absorptiometry was used to objectively measure body fat. After 12 weeks of oral administration, the body fat percentage (-0.10 ± 1.32% vs. 0.48 ± 1.10%; p = 0.009) and body fat mass (-0.24 ± 1.19 kg vs. 0.23 ± 1.05 kg; p = 0.023) of the BN-202M group decreased significantly compared to those of the placebo group. The body weight (-0.58 kg, p = 0.004) and body mass index (BMI; -0.23, p = 0.003) was found to decrease significantly at 12 weeks in the BN-202M group, but not in the placebo group. Metabolome analysis revealed that β-alanine, 3-aminoisobutyric acid, glutamic acid, and octopamine decreased in the weight-decreased BN-202M post-intake group. In the gut microbiota analysis, Akkermansia showed a statistically significant increase in the BN-202M group post-intake compared to the placebo group. No serious adverse events were observed in either group. These results suggest that BN-202M is safe and effective for reducing body fat and weight.
Collapse
Affiliation(s)
- Han-Seul Kwon
- Department of Korean Obstetrics and Gynecology, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea;
| | - Seok-Jin Kim
- R&D Center, Hecto Healthcare Co., Ltd., Seoul 06142, Republic of Korea (J.Y.)
| | - Kum-Joo Shin
- R&D Center, Hecto Healthcare Co., Ltd., Seoul 06142, Republic of Korea (J.Y.)
| | - Sanghoon Kim
- R&D Center, Hecto Healthcare Co., Ltd., Seoul 06142, Republic of Korea (J.Y.)
| | - Jongbok Yun
- R&D Center, Hecto Healthcare Co., Ltd., Seoul 06142, Republic of Korea (J.Y.)
| | - Jaewoong Bae
- R&D Center, Hecto Healthcare Co., Ltd., Seoul 06142, Republic of Korea (J.Y.)
| | - Hyun-Ji Tak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyeong-Jun Kim
- Department of Korean Obstetrics and Gynecology, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea;
| |
Collapse
|
31
|
Ayala-García JC, Bahena-Román M, Díaz-Benítez CE, Bermúdez-Morales VH, Cruz M, Lagunas-Martínez A, Burguete-García AI. Association between Gut Microbiota and Inflammation: Mediation Analysis Using Waist Circumference. J Interferon Cytokine Res 2024; 44:281-289. [PMID: 38516906 DOI: 10.1089/jir.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Chronic low-grade inflammation (CLI) is implicated in the development of multiple metabolic diseases. The gut microbiota (GM) activates different signaling pathways and induces phenotypic changes, offering an exciting opportunity to treat CLI. We evaluated the mediation of waist circumference on the association of GM with serum cytokines. In this cross-sectional study of 331 children, we measured 5 gut bacterial species, namely, Lactobacillus (L.) casei, L. paracasei, L. reuteri, Staphylococcus (S.) aureus, and Akkermansia (A.) muciniphila, as well as anthropometry, serum cytokines, and other covariates. We evaluated adjusted regression models, path analysis, and structural equation modeling to obtain path coefficients (PCs) for direct, indirect (waist circumference-mediated), and total effects. We found that L. paracasei was directly associated with lower interleukin-10 (IL-10) levels (PC = -173.5 pg/mL). We also observed indirect associations between S. aureus with lower adiponectin levels (PC = -0.1 µg/mL and -0.09 µg/mL). Finally, A. muciniphila was indirectly associated with higher adiponectin levels (PC = 0.1 µg/mL). Our findings suggest the importance of considering the GM composition and waist circumference when evaluating inflammatory-related factors, providing a basis for future research to identify potential strategies to intervene in inflammatory processes and prevent metabolic diseases in childhood. [Figure: see text].
Collapse
Affiliation(s)
- Juan Carlos Ayala-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Margarita Bahena-Román
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | | | | | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Alfredo Lagunas-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Ana Isabel Burguete-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
32
|
Hu Q, Luo J, Cheng F, Wang P, Gong P, Lv X, Wang X, Yang M, Wei P. Spatial profiles of the bacterial microbiota throughout the gastrointestinal tract of dairy goats. Appl Microbiol Biotechnol 2024; 108:356. [PMID: 38822843 PMCID: PMC11144141 DOI: 10.1007/s00253-024-13200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while β-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest β-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.
Collapse
Affiliation(s)
- Qingyong Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jun Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Fei Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xinpei Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Min Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Pengbo Wei
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
33
|
Choi SI, Kim N, Choi Y, Nam RH, Jang JY, Cho SY. The Effect of Clostridium butyricum on Gut Microbial Changes and Functional Profiles of Metabolism in High-fat Diet-fed Rats Depending on Age and Sex. J Neurogastroenterol Motil 2024; 30:236-250. [PMID: 38576373 PMCID: PMC10999835 DOI: 10.5056/jnm23096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2024] Open
Abstract
Background/Aims A high-fat diet (HFD) causes dysbiosis and promotes inflammatory responses in the colon. This study aims to evaluate the effects of Clostridium butyricum on HFD-induced gut microbial changes in rats. Methods Six-week-old Fischer-344 rats with both sexes were given a control or HFD during 8 weeks, and 1-to-100-fold diluted Clostridium butyricum were administered by gavage. Fecal microbiota analyses were conducted using 16S ribosomal RNA metagenomic sequencing and predictive functional profiling of microbial communities in metabolism. Results A significant increase in Ruminococcaceae and Lachnospiraceae, which are butyric acid-producing bacterial families, was observed in the probiotics groups depending on sex. In contrast, Akkermansia muciniphila, which increased through a HFD regardless of sex, and decreased in the probiotics groups. A. muciniphila positively correlated with Claudin-1 expression in males (P < 0.001) and negatively correlated with the expression of Claudin-2 (P = 0.042), IL-1β (P = 0.037), and IL-6 (P = 0.044) in females. In terms of functional analyses, a HFD decreased the relative abundances of M00131 (carbohydrate metabolism module), M00579, and M00608 (energy metabolism), and increased those of M00307 (carbohydrate metabolism), regardless of sex. However, these changes recovered especially in male C. butyricum groups. Furthermore, M00131, M00579, and M00608 showed a positive correlation and M00307 showed a negative correlation with the relative abundance of A. muciniphila (P < 0.001). Conclusion The beneficial effects of C. butyricum on HFD-induced gut dysbiosis in young male rats originate from the functional profiles of carbohydrate and energy metabolism.
Collapse
Affiliation(s)
- Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Meléndez-Vázquez NM, Nguyen TT, Fan X, López-Rivas AR, Fueyo J, Gomez-Manzano C, Godoy-Vitorino F. Gut microbiota composition is associated with the efficacy of Delta-24-RGDOX in malignant gliomas. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200787. [PMID: 38596290 PMCID: PMC10951704 DOI: 10.1016/j.omton.2024.200787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Glioblastoma, the most common primary brain tumor, has a 6.8% survival rate 5 years post diagnosis. Our team developed an oncolytic adenovirus with an OX-40L expression cassette named Delta-24-RGDOX. While studies have revealed the interaction between the gut microbiota and immunotherapy agents, there are no studies linking the gut microbiota with viroimmunotherapy efficacy. We hypothesize that gut bacterial signatures will be associated with oncolytic viral therapy efficacy. To test this hypothesis, we evaluated the changes in gut microbiota in two mouse cohorts: (1) GSC-005 glioblastoma-bearing mice treated orally with indoximod, an immunotherapeutic agent, or with Delta-24-RGDOX by intratumoral injection and (2) a mouse cohort harboring GL261-5 tumors used to mechanistically evaluate the importance of CD4+ T cells in relation to viroimmunotherapy efficacy. Microbiota assessment indicated significant differences in the structure of the gut bacterial communities in viroimmunotherapy-treated animals with higher survival compared with control or indoximod-treated animals. Moreover, viroimmunotherapy-treated mice with prolonged survival had a higher abundance of Bifidobacterium. The CD4+ T cell depletion was associated with gut dysbiosis, lower mouse survival, and lower antitumor efficacy of the therapy. These findings suggest that microbiota modulation along the gut-glioma axis contributes to the clinical efficacy and patient survival of viroimmunotherapy treated animals.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan 00918 PR, USA
| | - Teresa T. Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrés R. López-Rivas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan 00918 PR, USA
| |
Collapse
|
35
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
36
|
Moens de Hase E, Neyrinck AM, Rodriguez J, Cnop M, Paquot N, Thissen JP, Xu Y, Beloqui A, Bindels LB, Delzenne NM, Van Hul M, Cani PD. Impact of metformin and Dysosmobacter welbionis on diet-induced obesity and diabetes: from clinical observation to preclinical intervention. Diabetologia 2024; 67:333-345. [PMID: 37897566 PMCID: PMC10789671 DOI: 10.1007/s00125-023-06032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL NCT03852069.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Yining Xu
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Ana Beloqui
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
| |
Collapse
|
37
|
Chanda D, De D. Meta-analysis reveals obesity associated gut microbial alteration patterns and reproducible contributors of functional shift. Gut Microbes 2024; 16:2304900. [PMID: 38265338 PMCID: PMC10810176 DOI: 10.1080/19490976.2024.2304900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
The majority of cohort-specific studies associating gut microbiota with obesity are often contradictory; thus, the replicability of the signature remains questionable. Moreover, the species that drive obesity-associated functional shifts and their replicability remain unexplored. Thus, we aimed to address these questions by analyzing gut microbial metagenome sequencing data to develop an in-depth understanding of obese host-gut microbiota interactions using 3329 samples (Obese, n = 1494; Control, n = 1835) from 17 different countries, including both 16S rRNA gene and metagenomic sequence data. Fecal metagenomic data from diverse geographical locations were curated, profiled, and pooled using a machine learning-based approach to identify robust global signatures of obesity. Furthermore, gut microbial species and pathways were systematically integrated through the genomic content of the species to identify contributors to obesity-associated functional shifts. The community structure of the obese gut microbiome was evaluated, and a reproducible depletion of diversity was observed in the obese compared to the lean gut. From this, we infer that the loss of diversity in the obese gut is responsible for perturbations in the healthy microbial functional repertoire. We identified 25 highly predictive species and 37 pathway associations as signatures of obesity, which were validated with remarkably high accuracy (AUC, Species: 0.85, and pathway: 0.80) with an independent validation dataset. We observed a reduction in short-chain fatty acid (SCFA) producers (several Alistipes species, Odoribacter splanchnicus, etc.) and depletion of promoters of gut barrier integrity (Akkermansia muciniphila and Bifidobacterium longum) in obese guts. Our analysis underlines SCFAs and purine/pyrimidine biosynthesis, carbohydrate metabolism pathways in control individuals, and amino acid, enzyme cofactor, and peptidoglycan biosynthesis pathway enrichment in obese individuals. We also mapped the contributors to important obesity-associated functional shifts and observed that these are both dataset-specific and shared across the datasets. In summary, a comprehensive analysis of diverse datasets unveils species specifically contributing to functional shifts and consistent gut microbial patterns associated to obesity.
Collapse
Affiliation(s)
- Deep Chanda
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Debojyoti De
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
38
|
Chalifour BN, Trifonova DI, Holzhausen EA, Bailey MJ, Schmidt KA, Babaei M, Mokhtari P, Goran MI, Alderete TL. Characterizing alterations in the gut microbiota following postpartum weight change. mSystems 2023; 8:e0080823. [PMID: 37905810 PMCID: PMC10734492 DOI: 10.1128/msystems.00808-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Previous research has reported differences in the gut microbiome associated with varying body compositions. More specifically, within populations of mothers, the focus has been on the impact of gestational weight gain. This is the first study to examine postpartum weight change and its association with changes in the gut microbiome, similarly, it is the first to use a Latina cohort to do so. The results support the idea that weight gain may be an important factor in reducing gut microbiome network connectivity, diversity, and changing abundances of specific microbial taxa, all measures thought to impact host health. These results suggest that weight gain dynamically alters mothers' gut microbial communities in the first 6 months postpartum, with comparatively little change in mothers who lost weight; further research is needed to examine the health consequences of such changes.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Diana I. Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Maximilian J. Bailey
- Stanford University School of Medicine, Leland Stanford Junior University, Stanford, California, USA
| | - Kelsey A. Schmidt
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Mahsa Babaei
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Pari Mokhtari
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Michael I. Goran
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
39
|
Lee E, Kim D, Seo H, Hahm J, Seo J, Lee S, Kim D, Ahn J, Jung CH. Akkermansia muciniphila promotes testosterone-mediated hair growth inhibition in mice. FASEB Bioadv 2023; 5:521-527. [PMID: 38094156 PMCID: PMC10714060 DOI: 10.1096/fba.2023-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2024] Open
Abstract
The beneficial effects of Akkermansia muciniphila (Akk) on gut health and inflammation reduction have been demonstrated; however, scientific evidence of hair growth enhancement by Akk has not been reported. Therefore, this study was undertaken to investigate the effect of Akk on improving testosterone-mediated hair growth inhibition. Hair growth inhibition was induced through subcutaneous injection of testosterone into the shaved dorsal skin of C57BL/6 male mice. Live and pasteurized Akk were orally administered at a concentration of 1 × 108 colony-forming unit. After 5 weeks, hair length and skin tissues were analyzed. The live and pasteurized Akk significantly stimulated hair growth, countering the inhibitory effect of testosterone compared to the testosterone-alone group. Hematoxylin and eosin staining revealed a significant increase in hair follicle size in the Akk-treated group. An increase in β-catenin levels, which are associated with hair growth and cell cycle progression, was also observed. Moreover, the Akk-treated group exhibited increased levels of fibroblast growth factors, including Fgf7, Igf1, Fgf7, Fgf10, and Fgf21. However, no significant difference was observed between the live and pasteurized Akk groups. These results underscore the potential of live and pasteurized Akk in improving testosterone-mediated hair growth inhibition.
Collapse
Affiliation(s)
- Eunyoung Lee
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Daedong Kim
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Hyo‐Deok Seo
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Jeong‐Hoon Hahm
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Jae‐Gu Seo
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Sang‐Nam Lee
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Do‐Hak Kim
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| |
Collapse
|
40
|
Ayala-García JC, García-Vera AM, Lagunas-Martínez A, Orbe-Orihuela YC, Castañeda-Márquez AC, Díaz-Benítez CE, Bermúdez-Morales VH, Cruz M, Bahena-Román M, Burguete-García AI. Interaction between Akkermansia muciniphila and Diet Is Associated with Proinflammatory Index in School-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1799. [PMID: 38002890 PMCID: PMC10670599 DOI: 10.3390/children10111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Imbalance in the intestinal microbiota can lead to chronic low-grade inflammation. Diet may influence this association. In this study, we aimed to evaluate the interaction between Akkermansia muciniphila (A. muciniphila) and dietary patterns using a proinflammatory index. METHODS We conducted a cross-sectional study with school-aged children. We quantified the relative abundance (RA) of A. muciniphila in feces using a polymerase chain reaction. We collected dietary information through employing a food frequency questionnaire and generated dietary patterns using principal component analysis. We generated a proinflammatory index from serum levels of interleukin-6, interleukin-10, tumor necrosis factor alpha, and adiponectin validated by receptor operating characteristic curves. We evaluated the association between A. muciniphila and the proinflammatory index using logistic regression, including an interaction term with dietary patterns. RESULTS We found that children with a low RA of A. muciniphila and a high intake of simple carbohydrates and saturated fats had increased odds of being high on the proinflammatory index. However, when the consumption of this dietary pattern is low, children with a low RA of A. muciniphila had decreased odds of being high on the proinflammatory index. CONCLUSIONS Our results suggest that the simultaneous presence of A. muciniphila and diet have a more significant impact on the presence of being high on the proinflammatory index compared to both factors separately.
Collapse
Affiliation(s)
- Juan Carlos Ayala-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Alba Mariel García-Vera
- Escuela de Salud Pública de México, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Alfredo Lagunas-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Yaneth Citlalli Orbe-Orihuela
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | | | - Cinthya Estefhany Díaz-Benítez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Víctor Hugo Bermúdez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico;
| | - Margarita Bahena-Román
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| | - Ana Isabel Burguete-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (J.C.A.-G.); (A.L.-M.); (Y.C.O.-O.); (C.E.D.-B.); (V.H.B.-M.); (M.B.-R.)
| |
Collapse
|
41
|
Schellekens H, Ribeiro G, Cuesta-Marti C, Cryan JF. The microbiome-gut-brain axis in nutritional neuroscience. Nutr Neurosci 2023; 26:1159-1171. [PMID: 36222323 DOI: 10.1080/1028415x.2022.2128007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Emerging evidence is highlighting the microbiome as a key regulator of the effect of nutrition on gut-brain axis signaling. Nevertheless, it is not yet clear whether the impact of nutrition is moderating the microbiota-gut-brain interaction or if diet has a mediating role on microbiota composition and function to influence central nervous system function, brain phenotypes and behavior. Mechanistic evidence from cell-based in vitro studies, animal models and preclinical intervention studies are linking the gut microbiota to the effects of diet on brain function, but they have had limited translation to human intervention studies. While increasing evidence demonstrates the triangulating relationship between diet, microbiota, and brain function across the lifespan, future mechanistic and translational studies in the field of microbiota and nutritional neuroscience are warranted to inform potential strategies for prevention and management of several neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders. This brief primer provides an overview of the most recent advances in the nutritional neuroscience - microbiome field, highlighting significant opportunities for future research.
Collapse
Affiliation(s)
- Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
43
|
Alsulaiman RM, Al-Quorain AA, Al-Muhanna FA, Piotrowski S, Kurdi EA, Vatte C, Alquorain AA, Alfaraj NH, Alrezuk AM, Robinson F, Dowdell AK, Alamri TA, Hamilton L, Lad H, Gao H, Gandla D, Keating BJ, Meng R, Piening B, Al-Ali AK. Gut microbiota analyses of inflammatory bowel diseases from a representative Saudi population. BMC Gastroenterol 2023; 23:258. [PMID: 37507685 PMCID: PMC10375692 DOI: 10.1186/s12876-023-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Crohn's diseases and ulcerative colitis, both of which are chronic immune-mediated disorders of the gastrointestinal tract are major contributors to the overarching Inflammatory bowel diseases. It has become increasingly evident that the pathological processes of IBDs results from interactions between genetic and environmental factors, which can skew immune responses against normal intestinal flora. METHODS The aim of this study is to assess and analyze the taxa diversity and relative abundances in CD and UC in the Saudi population. We utilized a sequencing strategy that targets all variable regions in the 16 S rRNA gene using the Swift Amplicon 16 S rRNA Panel on Illumina NovaSeq 6000. RESULTS The composition of stool 16 S rRNA was analyzed from 219 patients with inflammatory bowel disease and from 124 healthy controls. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples. At the genus level, two genera in particular, Veillonella and Lachnoclostridium showed significant association with CD versus controls. There were significant differences between subjects with CD versus UC, with the top differential genera spanning Akkermansia, Harryflintia, Maegamonas and Phascolarctobacterium. Furthermore, statistically significant taxa diversity in microbiome composition was observed within the UC and CD groups. CONCLUSIONS In conclusion we have shown that there are significant differences in gut microbiota between UC, CD and controls in a Saudi Arabian inflammatory bowel disease cohort. This reinforces the need for further studies in large populations that are ethnically and geographically diverse. In addition, our results show the potential to develop classifiers that may have add additional richness of context to clinical diagnosis of UC and CD with larger inflammatory bowel disease cohorts.
Collapse
Affiliation(s)
- Raed M Alsulaiman
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulaziz A Al-Quorain
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Fahad A Al-Muhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Stanley Piotrowski
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | | | - Chittibabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed A Alquorain
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | | | - Abdulaziz M Alrezuk
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Fred Robinson
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Turki A Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Alkhobar, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Lauren Hamilton
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Hetal Lad
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Hui Gao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Divya Gandla
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Ryan Meng
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Brian Piening
- Earle A Chiles Research Institute, Robert W. Franz Cancer Center, Portland, Oregon, OR, 97213, USA
| | - Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
44
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
45
|
Hazime H, Ducasa GM, Santander AM, Brito N, González EE, Ban Y, Kaunitz J, Akiba Y, Fernández I, Burgueño JF, Abreu MT. Intestinal Epithelial Inactivity of Dual Oxidase 2 Results in Microbiome-Mediated Metabolic Syndrome. Cell Mol Gastroenterol Hepatol 2023; 16:557-572. [PMID: 37369278 PMCID: PMC10468370 DOI: 10.1016/j.jcmgh.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND & AIMS Metabolic syndrome (MetS) is characterized by obesity, glucose intolerance, and hepatic steatosis. Alterations in the gut microbiome play important roles in the development of MetS. However, the mechanisms by which this occurs are poorly understood. Dual oxidase 2 (DUOX2) is an antimicrobial reduced nicotinamide adenine dinucleotide phosphate oxidase expressed in the gut epithelium. Here, we posit that epithelial DUOX2 activity provides a mechanistic link between the gut microbiome and the development of MetS. METHODS Mice carrying an intestinal epithelial-specific deletion of dual oxidase maturation factor 1/2 (DA IEC-KO), and wild-type littermates were fed a standard diet and killed at 24 weeks. Metabolic alterations were determined by glucose tolerance, lipid tests, and body and organ weight measurements. DUOX2 activity was determined by Amplex Red. Intestinal permeability was determined by fluorescein isothiocyanate-dextran, microbial translocation assessments, and portal vein lipopolysaccharide measurements. Metagenomic analysis of the stool microbiome was performed. The role of the microbiome was assessed in antibiotic-treated mice. RESULTS DA IEC-KO males showed increased body and organ weights accompanied by glucose intolerance and increased plasma lipid and liver enzyme levels, and increased adiposity in the liver and adipose tissue. Expression of F4/80, CD68, uncoupling protein 1, carbohydrate response element binding protein, leptin, and adiponectin was altered in the liver and adipose tissue of DA IEC-KO males. DA IEC-KO males produced less epithelial H2O2, had altered relative abundance of Akkermansiaceae and Lachnospiraceae in stool, and showed increased portal vein lipopolysaccharides and intestinal permeability. Females were protected from barrier defects and MetS, despite producing less H2O2. Antibiotic depletion abrogated all MetS phenotypes observed. CONCLUSIONS Intestinal epithelial inactivity of DUOX2 promotes MetS in a microbiome-dependent manner.
Collapse
Affiliation(s)
- Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida
| | - G Michelle Ducasa
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Eddy E González
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jonathan Kaunitz
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yasutada Akiba
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida.
| |
Collapse
|
46
|
Ma J, Wei Q, Cheng X, Zhang J, Zhang Z, Su J. Potential role of gut microbes in the efficacy and toxicity of immune checkpoints inhibitors. Front Pharmacol 2023; 14:1170591. [PMID: 37416062 PMCID: PMC10320001 DOI: 10.3389/fphar.2023.1170591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
In recent years, Immune checkpoint inhibitors have been extensively used in the treatment of a variety of cancers. However, the response rates ranging from 13% to 69% depending on the tumor type and the emergence of immune-related adverse events have posed significant challenges for clinical treatment. As a key environmental factor, gut microbes have a variety of important physiological functions such as regulating intestinal nutrient metabolism, promoting intestinal mucosal renewal, and maintaining intestinal mucosal immune activity. A growing number of studies have revealed that gut microbes further influence the anticancer effects of tumor patients through modulation of the efficacy and toxicity of immune checkpoint inhibitors. Currently, faecal microbiota transplantation (FMT) have been developed relatively mature and suggested as an important regulator in order to enhance the efficacy of treatment. This review is dedicated to exploring the impact of differences in flora composition on the efficacy and toxicity of immune checkpoint inhibitors as well as to summarizing the current progress of FMT.
Collapse
Affiliation(s)
- Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xin Cheng
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Del Chierico F, Marzano V, Scanu M, Reddel S, Dentici ML, Capolino R, Di Donato M, Spasari I, Fiscarelli EV, Digilio MC, Abreu MT, Dallapiccola B, Putignani L. Analysis of gut microbiota in patients with Williams-Beuren Syndrome reveals dysbiosis linked to clinical manifestations. Sci Rep 2023; 13:9797. [PMID: 37328513 PMCID: PMC10275996 DOI: 10.1038/s41598-023-36704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
48
|
Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Frias-Toral E, Ruiz-Pozo VA, Paz-Cruz E, Tamayo-Trujillo R, Chapela S, Montalván M, Sarno G, Guerra CV, Simancas-Racines D. The Impact of a Very-Low-Calorie Ketogenic Diet in the Gut Microbiota Composition in Obesity. Nutrients 2023; 15:2728. [PMID: 37375632 DOI: 10.3390/nu15122728] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight (44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson's, and obesity, among others. The gut microbiota has been associated with the metabolic conditions of a person and is regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the role of metabolites, and how microbiota modulation could be beneficial remain unclear, and more research is needed. The objective of the present article is to contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition of individuals with obesity through a literature review describing the latest research regarding the topic and highlighting which bacteria phyla are associated with obesity and VLCKD.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Gerardo Sarno
- "San Giovanni di Dio e Ruggi D'Aragona" University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| | - Claudia V Guerra
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
49
|
Beckers KF, Schulz CJ, Liu CC, Barras ED, Childers GW, Stout RW, Sones JL. Effects of fenbendazole on fecal microbiome in BPH/5 mice, a model of hypertension and obesity, a brief report. PLoS One 2023; 18:e0287145. [PMID: 37294797 PMCID: PMC10256194 DOI: 10.1371/journal.pone.0287145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023] Open
Abstract
Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christopher J. Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Elise D. Barras
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gary W. Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Rhett W. Stout
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
50
|
Baek GH, Yoo KM, Kim SY, Lee DH, Chung H, Jung SC, Park SK, Kim JS. Collagen Peptide Exerts an Anti-Obesity Effect by Influencing the Firmicutes/Bacteroidetes Ratio in the Gut. Nutrients 2023; 15:nu15112610. [PMID: 37299573 DOI: 10.3390/nu15112610] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Alterations in the intestinal microbial flora are known to cause various diseases, and many people routinely consume probiotics or prebiotics to balance intestinal microorganisms and the growth of beneficial bacteria. In this study, we selected a peptide from fish (tilapia) skin that induces significant changes in the intestinal microflora of mice and reduces the Firmicutes/Bacteroidetes ratio, which is linked to obesity. We attempted to verify the anti-obesity effect of selected fish collagen peptides in a high-fat-diet-based obese mouse model. As anticipated, the collagen peptide co-administered with a high-fat diet significantly inhibited the increase in the Firmicutes/Bacteroidetes ratio. It increased specific bacterial taxa, including Clostridium_sensu_stricto_1, Faecalibaculum, Bacteroides, and Streptococcus, known for their anti-obesity effects. Consequently, alterations in the gut microbiota resulted in the activation of metabolic pathways, such as polysaccharide degradation and essential amino acid synthesis, which are associated with obesity inhibition. In addition, collagen peptide also effectively reduced all obesity signs caused by a high-fat diet, such as abdominal fat accumulation, high blood glucose levels, and weight gain. Ingestion of collagen peptides derived from fish skin induced significant changes in the intestinal microflora and is a potential auxiliary therapeutic agent to suppress the onset of obesity.
Collapse
Affiliation(s)
- Ga Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ki Myeong Yoo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seon-Yeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Da Hee Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayoung Chung
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Suk-Chae Jung
- Sempio Fermentation Research Center, Sempio Foods Company, Cheongju 28156, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|