1
|
Li C, Lu Y, Zhang Z, Huang L, Wang Z. Online PGC-LC-MS analysis of colonic mucin O-glycans in ovalbumin-induced food allergy in Balb/c mice by treatment with sea cucumber chondroitin sulfate polysaccharide. Int J Biol Macromol 2025; 307:141808. [PMID: 40054794 DOI: 10.1016/j.ijbiomac.2025.141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The highly sulfated polysaccharide sea cucumber chondroitin sulfate (SCCS) can alleviate intestinal damage and display strong anti-food-allergic activity. The O-glycopattern levels in colonic mucin are closely related to the its protective effect on function of the intestinal barrier. However, the effect of the SCCS on colonic mucin O-glycan has not been investigated. In this study, ovalbumin (OVA)-sensitized allergic mice and SCCS treatment were used. Mouse colonic mucin O-glycome was released and analyzed through reductive β-elimination combined with PGC-LC-MS. A total of presumptive 20 neutral and 28 acidic O-glycan structures were identified, in which the core 2 type acidic O-glycan structure is predominant in Balb/c female mice. Treatment with OVA and SCCS did not change the numbers of colon mucin O-glycan type, but the expression level of total O-glycosylation was more abundant in the SCCS group mice than in the OVA group (1.8-fold), especially for acidic O-glycans (co-modified by fucose and sulfate groups). Furthermore, supplementation with SCCS reversed most of the O-glycan decreasing trend, which may be associated with a return to healthy levels of gut microbiota. In conclusion, our results demonstrate that SCCS could restore colonic mucin O-glycosylation levels and intestinal homeostasis and contribute to enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Cheng Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Jiang Z, Li P, Qiu K, Liao Y, Chen X, Xuan J, Wang F, Ma H, Wang Y, Zhu M. Proteus mirabilis exacerbates ulcerative colitis by inhibiting mucin production. Front Microbiol 2025; 16:1556953. [PMID: 40201443 PMCID: PMC11975560 DOI: 10.3389/fmicb.2025.1556953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration in colonic mucosa, accompanied by a defective epithelial barrier. Proteus mirabilis (P. mirabilis) bacterium is a putative intestinal pathogen with invasive ability, yet its role in UC inflammation and gut barrier disruption is unclear. This study aims to investigate its epidemiological presence, pathogenic roles and preventive strategy during UC inflammation. Method P. mirabilis culture and PCR amplification of the P. mirabilis-specific ureR gene were used to detect fecal P. mirabilis and determine its prevalence in UC and control stool specimens. P. mirabilis isolated from UC stool specimens was gavaged into dextran sulfate sodium (DSS)-treated mice. Inflammation and the mucus layer of colons were assessed through histological examination and cytokine quantification. Bacteriophages were screened and used to eliminate P. mirabilis in colitis animals. Results and discussion The fecal P. mirabilis bacteria were detected by PCR amplification of P. mirabilis-specific ureR gene. Of 41 UC patients, 65.9% patients were P. mirabilis positive, which was significantly higher than the controls. Administration of P. mirabilis aggravated DSS-induced colitis symptom and mucosal inflammation in mice. Interestingly, the colonic mucus layer, an essential component of the epithelial barrier, of the animals was dramatically disrupted, which was consistent with the alteration of human UC colon. The disrupted mucus layer was mediated by the down-regulation of IL-18 in intestinal epithelium. Importantly, a bacteriophage cocktail targeting P. mirabilis could restore the mucus barrier and alleviate the enteric inflammation. Thus, our results suggest that P. mirabilis is a UC pathobiont bacterium, which exacerbates the severity of UC inflammation owing to down-regulation of mucin production and IL-18 expression. Bacteriophage-mediated elimination of P. mirabilis may be effective in limiting UC inflammation.
Collapse
Affiliation(s)
- Zhihui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Pengpeng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Kehui Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Yang Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, The Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, The Medical School of Nanjing University, Nanjing, China
| | - Hongfeng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
- Department of Rehabilitation Medicine, Huzhou Rehabilitation Hospital, Huzhou, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Minsheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Tao S, Fan J, Li J, Wu Z, Yao Y, Wang Z, Wu Y, Liu X, Xiao Y, Wei H. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res 2025; 69:545-563. [PMID: 38508446 PMCID: PMC11954842 DOI: 10.1016/j.jare.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Shen C, Luo Z, Yu C, Wei Y, Zhang Z, Han Y, Zhang H, Zhang J, Xu W, Xu J. Effect of microbe-derived antioxidants on intestinal oxidative stress, NLRP3 inflammasome, morphologic structure, and growth performance in weanling piglets. J Food Sci 2025; 90:e70064. [PMID: 40052524 DOI: 10.1111/1750-3841.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 05/13/2025]
Abstract
Weaning stress induces pigs oxidative stress, which decreases growth performance, causes intestinal damage, and increases diarrhea and death in piglets. Microbe-derived antioxidants (MA) have an antioxidant and immune-modulatory role, but the impacts of MA on growth performance, intestinal oxidative stress, structure and function, and inflammatory response of weaned piglets are unclear. To elucidate whether MA can modulate intestinal oxidative stress, inflammatory response, and barrier function impairment and the possible mechanisms of its modulation, a total of 60 DLY (a crossbreed of Duroc, Landrance, and Yorkshire) piglets were randomly selected from 6 litters, with 10 piglets from each litter. Piglets from the same litter with similar body weight (6.44 ± 0.08 kg) were assigned to two groups: MA group (MA) and control group (Con). Results indicated that MA treatment markedly increased (p < 0.01) the average daily gain and average feed intake while decreasing the F/G (feed conversion ratio) (p < 0.01) at days 21-41. The addition of MA noticeably inhibited the ROS-NLRP3-IL-1β pathway (p < 0.05) and decreased inflammatory factors such as IL-1β and IL-18 in the intestine (p < 0.01). Moreover, MA supplementation significantly reduced the jejunal myosin light-chain kinase content (p < 0.01) while increasing the jejunal ZO-1 and Occludin content (p < 0.05). MA supplementation resulted in a noticeable rise in the colonic CD206+ positive cells (p < 0.01) and mRNA expression of iNOS (p < 0.01), COX2 (p < 0.05), TLR4 (p < 0.01), MyD88 (p < 0.01), and NF-κB (p < 0.01). MA treatment also activated the Nrf2-HO-1 pathway (p < 0.01). These discoveries imply that MA can improve the antioxidant capacity by activating the Nrf2 pathway, alleviate intestinal inflammation by inhibiting the activation of the ROS-NLRP3-IL-1β pathway and regulating the polarization of intestinal macrophages, and ultimately improve the growth performance of weaned piglets.
Collapse
Affiliation(s)
- Cheng Shen
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Luo
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Chengbing Yu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Yanzheng Wei
- Shanghai Guangming Senyuan Biotechnology Co., Ltd, Shanghai, China
| | - Zhitong Zhang
- Shanghai Guangming Senyuan Biotechnology Co., Ltd, Shanghai, China
| | - Yin Han
- Shanghai Guangming Senyuan Biotechnology Co., Ltd, Shanghai, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
- USJ-Kong Hon Academy for Cellular Nutrition, University of Saint Joseph, Macao, China
| |
Collapse
|
5
|
Ruampatana J, Settachaimongkon S, Kaewsirikool J, Iamraksa P, Choompoo S, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Feyera T, Nuntapaitoon M. Alterations in Milk Biomolecular Profiles and Piglet Performances Due to Dietary Probiotic Bacillus licheniformis DSMZ 28710 Supplementation. J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39940111 DOI: 10.1111/jpn.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/14/2025]
Abstract
The present study aimed to investigate the effects of probiotic Bacillus licheniformis DSMZ 28710 supplementation on sow performance, Preweaning piglet performance, and the biochemical profiles of colostrum and milk. Sixty-eight crossbred sows (Landrace× $\times $ Yorkshire) were allocated to either a standard lactation diet (Control; n = 35) or the Control diet supplemented with 10 g/sow/day of B. licheniformis DSMZ 28710 (Treatment; n = 33), from day 109 of gestation until day 21 of lactation. Sow and piglet performance, as well as the incidence of piglet diarrhea, were recorded. Moreover, the study investigated the changes in major chemical compositions, immunoglobulins, fatty acids, and non-volatile polar metabolites in colostrum, transient milk, and mature milk of sows. Supplementation of B. licheniformis increased piglet body weight on day 21 of lactation in old parity sows (p = 0.037). Moreover, the incidence of diarrhea was reduced in piglets suckled by sows supplemented with B. licheniformis DSMZ 28710, regardless of sow's parity or lactation stage (p < 0.05). Probiotic supplementation decreased fat content in transient milk (p = 0.026) and increased lactose content in mature milk (p = 0.011). Chemometric analysis revealed clear distinctions between the Control and Treatment group in the fatty acid profiles of colostrum, transient milk, and mature milk, while notable differences in non-volatile polar metabolite profiles were observed specifically in mature milk. In conclusion, supplementation with B. licheniformis DSMZ 28710 reduced the incidence of diarrhea in piglets, increased body weight of the piglets in old parity sows and altered the biomolecular profiles in colostrum, transit milk, and mature milk of the sows.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jedsadakorn Kaewsirikool
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pornpavit Iamraksa
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirawit Choompoo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakornpathum, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, Tjele, Denmark
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Dang G, Li J, Yin C, Wang W, Zhang K, Zhong R, Chen L, Zhang H, Schroyen M. Deciphering Pectin: A Comprehensive Overview of Its Origins, Processing, and Promising Utility. ACS OMEGA 2025; 10:1-15. [PMID: 39829568 PMCID: PMC11740133 DOI: 10.1021/acsomega.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.
Collapse
Affiliation(s)
- Guoqi Dang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Jiaheng Li
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chang Yin
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxing Wang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Ruqing Zhong
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| |
Collapse
|
7
|
Zhang L, Bai J, Guo Q, Li L, Jia Y, Qiu X, Zhou D, Zhang Z, Niu H. Gut Microbial Composition and Antibiotic Resistance Profiles in Dairy Calves with Diarrhea. Life (Basel) 2024; 15:10. [PMID: 39859950 PMCID: PMC11766533 DOI: 10.3390/life15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Calf diarrhea is a prevalent and significant health issue in dairy farming, severely impacting feed intake, weight gain, and survival rates in young calves. This study aimed to investigate the microbial composition and antibiotic resistance profiles of diarrheic calves to provide insights into the epidemiology and management of the condition. The prevalence of diarrhea in 1685 calves was analyzed. Rectal fecal samples were collected from five healthy and five diarrheic Holstein calves on a large dairy farm in Shaanxi Province, China. High-throughput 16S-rRNA sequencing and PCR were utilized for microbial and resistance gene analysis. In 2023, the overall diarrhea rate among 1685 calves was 9.08%, with a significantly higher diarrhea rate during the suckling period (8.13%) compared to the post-weaning period (0.95%) (p < 0.001). No differences in species diversity and richness were detected among the different groups. However, LEfSe analysis identified six genera (Eubacterium, Eubacteriaceae, Prevotella, Comamonadaceae, Comamonas, and Firmicutes) significantly enriched in diarrheic calves compared to healthy ones (LDA scores > 2, p < 0.05). Additionally, antibiotic resistance genes for quinolones, β-lactams, chloramphenicol, tetracyclines, and aminoglycosides were detected, with significantly higher prevalence in diarrheic calves. These findings demonstrate distinct microbial and antibiotic resistance profiles between healthy and diarrheic calves, emphasizing the importance of microbial management in controlling calf diarrhea.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational & Technical College, Yangling 712100, China
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling 712100, China
| | - Jun Bai
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational & Technical College, Yangling 712100, China
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
| | - Qian Guo
- ShaanXi Province Management Station of Animal Health and Slaughter, Xi’an 710000, China;
| | - Long Li
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling 712100, China
| | - Yanqing Jia
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational & Technical College, Yangling 712100, China
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling 712100, China
| | - Xinxin Qiu
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational & Technical College, Yangling 712100, China
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Zhencang Zhang
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational & Technical College, Yangling 712100, China
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
| | - Huafeng Niu
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China; (L.Z.); (J.B.); (L.L.); (Y.J.); (X.Q.)
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shanxi Province, Yangling Vocational and Technical College, Yangling 712100, China
| |
Collapse
|
8
|
Xu L, Li X, Han S, Mu C, Zhu W. Galacto-oligosaccharides regulate intestinal mucosal sialylation to counteract antibiotic-induced mucin dysbiosis. Food Funct 2024; 15:12016-12032. [PMID: 39563647 DOI: 10.1039/d4fo04626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Intestinal mucin offers a physical barrier to maintain host-commensal homeostasis. Glycosylation is essential for the appropriate functioning of mucin. Galacto-oligosaccharides (GOS) have been used as a prebiotic with proven intestinal benefits, while their regulatory mechanism on mucin remains unclear. This study employed an antibiotic-treated rat model to mimic gut dysbiosis and attempted to restore gut dysbiosis using GOS. The gut microbiome and intestinal mucus O-glycosylations (O-glycans) in the small intestine were profiled by high-throughput sequencing and glycomics. The sialic acid phenotype at the end of O-glycans was further validated with lectin staining. Expressions of key enzymes in sialic acid metabolism and epithelial morphology were determined as well. Antibiotics significantly increased the relative abundance of Escherichia/Shigella and decreased the relative abundance of Lactobacillus. This was accompanied by decreased microbial sialidase activity and increased sialic acid in the digesta, as well as an increase in epithelial sialidase activity. Analysis of key sialylation enzymes showed the upregulation of α 2,6 sialylation (e.g. ST6GALNACs) and downregulation of α 2,3 sialylation (e.g. ST3GALs) after antibiotic treatment. The glycomics results revealed that antibiotics increased core 4 and α 2,6 sialylated O-glycans and decreased core 1, core 3 and α 2,3 sialylated O-glycans in the intestinal mucus of rats, which was further confirmed by lectin staining. Intestinal histology results demonstrated that antibiotic treatment led to the dysbiosis of intestinal mucus homeostasis. To further test the role of microbiota in regulating intestinal mucus sialylation, we supplemented GOS with antibiotics. The results showed that GOS reversed the effects of antibiotics on the gut microbiota and intestinal mucus O-glycans (especially sialylated O-glycans), characterized by an increase of Lactobacillus and α 2,3 sialylated O-glycans and a decrease of Escherichia/Shigella and α 2,6 sialylated O-glycans. What's more, GOS reduced the stimulation of the intestinal mucosa by lipopolysaccharide (LPS) by increasing α 2,3 sialylated intestinal alkaline phosphatase (IAP) to enhance IAP activity, thereby restoring intestinal mucus homeostasis. Overall, GOS counteracts antibiotic-induced mucin deficiency by remedying the gut ecology and changing the mucin sialylation pattern, as reflected by the increase of α 2,3 sialylated O-glycans and the decrease of α 2,6 sialylated O-glycans.
Collapse
Affiliation(s)
- Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB., Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Liu Z, Wang H, Han H, Li N, Zheng Z, Liang S, Zhong R, Chen L, Yan J, Mu S. The protective effect of dulcitol on lipopolysaccharide-induced intestinal injury in piglets: mechanistic insights. J Nutr Biochem 2024; 133:109719. [PMID: 39103108 DOI: 10.1016/j.jnutbio.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 μg/kg BW of LPS. At 4 h postchallenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of zonula occludens-1, claudin-1, and occludin in the colonic mucosa (P <0.05). Metabolomics showed DUL supplementation mainly increased (P <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (P <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (Lactobacillus, Blautia, and Faecalibacterium) at the genus level, but decreased the relative abundance of Proteobacteria at the phylum level and Pseudomonas and Delftia at the genus level in piglets (P<.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.
Collapse
Affiliation(s)
- Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan, China
| | - Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Shuqin Mu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology; Tianjin Engineering Research Center of Animal Healthy Farming; Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| |
Collapse
|
10
|
Cao J, Bao Q, Hao H. Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation. Antioxidants (Basel) 2024; 13:1107. [PMID: 39334766 PMCID: PMC11429283 DOI: 10.3390/antiox13091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Indole-3-carboxaldehyde (IAld) is a tryptophan (Trp) metabolite derived from gut microbiota, which has a potential protective effect on intestinal inflammatory diseases. Abnormal activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important cause of intestinal inflammation. However, the effect and mechanism of IAld on NLRP3 inflammasome activation remain unclear. Here, we found that IAld inhibited the activation of the NLRP3 inflammasome in intestinal epithelial cells, and effectively prevented intestinal epithelial barrier injury caused by lipopolysaccharide (LPS) stimulation. Mechanistically, we demonstrated that IAld activated the aryl hydrocarbon receptor (AhR), subsequently prevented reactive oxygen species (ROS) production, maintained mitochondrial membrane potential, and blocked the NF-κB/NLRP3 inflammatory pathway in intestinal epithelial cells. Also, the AhR-specific inhibitor CH-223191 effectively blocked the IAld-induced NLRP3 inhibition and intestinal epithelial barrier repairment. In addition, in vivo results showed that IAld prevented pro-inflammatory mediator production and intestinal inflammatory damage in LPS-induced mice, which is related to AhR activation and NLRP3 inflammasome inhibition. Collectively, our study unveiled that IAld is an effective endogenous antioxidant and suggested the AhR as a potential treatment target for NLRP3-induced intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ji Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Song HJ, Kim JE, Roh YJ, Seol A, Kim TR, Park KH, Park ES, Hong JT, Choi SI, Hwang DY. Novel Role of the ALPI Gene Associated with Constipation Caused by Complement Component 3 Deficiency. Int J Mol Sci 2024; 25:9530. [PMID: 39273477 PMCID: PMC11395586 DOI: 10.3390/ijms25179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/15/2024] Open
Abstract
Complement component 3 (C3) deficiency has recently been reported as one of the novel causes of constipation. To identify a unique gene specific to constipation caused by C3 deficiency, the total RNA extracted from the mid colon of C3 knockout (C3 KO) mice was hybridized to oligonucleotide microarrays, and the function of the candidate gene was verified in in vitro and in vivo models. C3 KO mice used for microarrays showed definite phenotypes of constipation. Overall, compared to the wild type (WT), 1237 genes were upregulated, and 1292 genes were downregulated in the C3 KO mice. Of these, the major genes included were lysine (K)-specific demethylase 5D (KDM5D), olfactory receptor 870 (Olfr870), pancreatic lipase (PNLIP), and alkaline phosphatase intestinal (ALPI). Specifically, the ALPI gene was selected as a novel gene candidate based on alterations during loperamide (Lop)-induced constipation and intestinal bowel disease (IBD). The upregulation of ALPI expression treated with acetate recovered the expression level of mucin-related genes in primary epithelial cells of C3 KO mice as well as most phenotypes of constipation in C3 KO mice. These results indicate that ALPI plays an important role as the novel gene associated with C3 deficiency-induced constipation.
Collapse
Affiliation(s)
- Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea;
| | - Sun Il Choi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| |
Collapse
|
12
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
13
|
Li J, Wei Z, Lou F, Zhang X, Duan J, Luo C, Hu X, Tu P, Liu L, Zhong R, Chen L, Du X, Zhang H. Disrupted Microbiota of Colon Results in Worse Immunity and Metabolism in Low-Birth-Weight Jinhua Newborn Piglets. Microorganisms 2024; 12:1371. [PMID: 39065139 PMCID: PMC11278573 DOI: 10.3390/microorganisms12071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.
Collapse
Affiliation(s)
- Jiaheng Li
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- School of Agriculture and Food Science, University College Dublin, Belfeld, D04 V1W8 Dublin, Ireland
| | - Fangfang Lou
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xujin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Pingguang Tu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| |
Collapse
|
14
|
Tawfik MM, Lorgen-Ritchie M, Król E, McMillan S, Norambuena F, Bolnick DI, Douglas A, Tocher DR, Betancor MB, Martin SAM. Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages. Anim Microbiome 2024; 6:38. [PMID: 38951941 PMCID: PMC11218362 DOI: 10.1186/s42523-024-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Marlene Lorgen-Ritchie
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Elżbieta Król
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Stuart McMillan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Mónica B Betancor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
15
|
Nie X, Lu Q, Yin Y, He Z, Bai Y, Zhu C. Microbiome and metabolome analyses reveal significant alterations of gut microbiota and bile acid metabolism in ETEC-challenged weaned piglets by dietary berberine supplementation. Front Microbiol 2024; 15:1428287. [PMID: 38983627 PMCID: PMC11231202 DOI: 10.3389/fmicb.2024.1428287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
This study mainly investigated the effects of berberine (BBR) on the bile acid metabolism in gut-liver axis and the microbial community in large intestine of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) by microbiome and metabolome analyses. Sixty-four piglets were randomly assigned to four groups including Control group, BBR group, ETEC group, and BBR + ETEC group. Dietary BBR supplementation upregulated the colonic mRNA expression of Occludin, Claudin-5, trefoil factor 3 (TFF3), and interleukin (IL)-10, and downregulated colonic IL-1β and IL-8 mRNA expression in piglets challenged with ETEC K88 (p < 0.05). The hepatic non-targeted metabolome results showed that dietary BBR supplementation enriched the metabolic pathways of primary bile acid biosynthesis, tricarboxylic acid cycle, and taurine metabolism. The hepatic targeted metabolome analyses showed that BBR treatment increased the hepatic concentrations of taurocholic acid (TCA) and taurochenodeoxycholic acid (TDCA), but decreased the hepatic cholic acid (CA) concentration (p < 0.05). Further intestinal targeted metabolome analyses indicated that the deoxycholic acid (DCA), hyocholic acid (HCA), 7-ketodeoxycholic acid (7-KDCA), and the unconjugated bile acid concentrations in ileal mucosa was decreased by dietary BBR treatment (p < 0.05). Additionally, BBR treatment significantly upregulated the hepatic holesterol 7 α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) mRNA expression, and upregulated the ileal mRNA expression of farnesoid X receptor (FXR) and apical sodium-dependent bile acid transporter (ASBT) as well as the colonic mRNA expression of FXR, fibroblast growth factor19 (FGF19), takeda G protein-coupled receptor 5 (TGR5) and organic solute transporters beta (OST-β) in piglets (p < 0.05). Moreover, the microbiome analysis showed that BBR significantly altered the composition and diversity of colonic and cecal microbiota community, with the abundances of Firmicutes (phylum), and Lactobacillus and Megasphaera (genus) significantly increased in the large intestine of piglets (p < 0.05). Spearman correlation analysis showed that the relative abundances of Megasphaera (genus) were positively correlated with Claudin-5, Occludin, TFF3, and hepatic TCDCA concentration, but negatively correlated with hepatic CA and glycocholic acid (GCA) concentration (p < 0.05). Moreover, the relative abundances of Firmicute (phylum) and Lactobacillus (genus) were positively correlated with hepatic TCDCA concentration (p < 0.05). Collectively, dietary BBR supplementation could regulate the gut microbiota and bile acid metabolism through modulation of gut-liver axis, and attenuate the decreased intestinal tight junction expression caused by ETEC, which might help maintain intestinal homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yucheng Yin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhentao He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Province Doctoral Workstation, Shanwei Xinsheng Leisure Agriculture Co., Ltd, Shanwei, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
16
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Chao M, Wang M, Han H, Liu Y, Sun X, Tian T, Pang W, Cai R. Profiling of m 6A methylation in porcine intramuscular adipocytes and unravelling PHKG1 represses porcine intramuscular lipid deposition in an m 6A-dependent manner. Int J Biol Macromol 2024; 272:132728. [PMID: 38825295 DOI: 10.1016/j.ijbiomac.2024.132728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.
Collapse
Affiliation(s)
- Mingkun Chao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haozhe Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yichen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Zhao M, Liu H, Liu M, Yue Z, Li C, Liu L, Li F. Metagenomics and metabolomics reveal that gut microbiome adapts to the diet transition in Hyla rabbits. Microbiol Res 2024; 283:127705. [PMID: 38554650 DOI: 10.1016/j.micres.2024.127705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
There is still a lack of longitudinal dynamic studies on the taxonomic features, functional reserves, and metabolites of the rabbit gut microbiome. An experiment was conducted to characterize the bacterial community of rabbits. By combining metagenomics and metabolomics, we have comprehensively analyzed the longitudinal dynamics of the rabbit gut microbiota and its effect on host adaptability. Our data reveal an overall increasing trend in microbial community and functional gene diversity and richness during the pre-harvest lifespan of rabbits. The introduction of solid feed is an important driving factor affecting rabbit gut microbiological compositions. Clostridium and Ruminococcus had significantly higher relative abundances in the solid feed stage. Further, the starch and fiber in solid feed promote the secretion of carbohydrate-degrading enzymes, which helps the host adapt to dietary changes. The rabbit gut microbiota can synthesize lysine, and the synthase is gradually enriched during the diet transformation. The gut microbiota of newborn rabbits has a higher abundance of lipid metabolism, which helps the host obtain more energy from breast milk lipids. The rabbit gut microbiota can also synthesize a variety of secondary bile acids after the introduction of solid feed. These findings provide a novel understanding of how the gut microbiota mediates adaptability to environment and diet in rabbits and provide multiple potential strategies for regulating intestinal health and promoting higher feed efficiency.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongli Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
19
|
Zhou X, Xu Q, Zhang X, Wang H, Bai Y, Wu Y, Liu X, Wang Z, Hu J, Huang M, Pi Y, Zhao J, Wang J, Han D. Mucin alleviates colonic barrier dysfunction by promoting spermine accumulation through enhanced arginine metabolism in Limosilactobacillus mucosae. mSystems 2024; 9:e0024624. [PMID: 38564708 PMCID: PMC11097634 DOI: 10.1128/msystems.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.
Collapse
Affiliation(s)
- Xingjian Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Xu X, Mo K, Cui C, Lan Y, Ling L, Xu J, Li L, Huang X. Microencapsulated essential oils alleviate diarrhea in weaned piglets by modulating the intestinal microbial barrier as well as not inducing antibiotic resistance: a field research. Front Vet Sci 2024; 11:1396051. [PMID: 38799727 PMCID: PMC11117338 DOI: 10.3389/fvets.2024.1396051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Microencapsulated essential oils (MEO)have been used as antibiotic alternatives that can be applied to alleviate diarrhea in weaning piglet. We examined a large group of weaned piglets and incorporated essential oil containing thymol (2%), carvacrol (5%) and cinnamaldehyde (3%) in the feed of weaned piglets on an intensive production farm. The piglets were divided into four groups; Control (no additions) and chlortetracycline (Chl), essential oil (EO) and microencapsulated essential oil (MEO) were fed ad libitum over a 28-day trial period. We found MEO significantly reduced the incidence of diarrhea in the piglets that was also accompanied by increased average daily weight gains from days 14-28 (p < 0.05). MEO enhanced the antioxidant capacity in the piglets and serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-px) levels were significantly increased (p < 0.05). MEO also significantly reduced expression of genes related to ileal inflammation (IL-6, TNF-α and TGF-β1) (p < 0.05) and significantly (p < 0.05) increased in sIgA antibody levels. MEO influenced the composition of the intestinal microbiome and reduced Bacteroidota (p < 0.05) and thus altered the Firmicutes/Bacteroidota ratio. However, none of the treatments produced significant changes in the most common tetracycline resistance genes (p > 0.05). Metagenomic analysis indicated that MEO impacted DNA expression, virulence factors, antioxidant activity and antimicrobial activity. Metabolomic analysis of the intestinal content also indicated that MEO impacted tyrosine metabolism and primary bile acid biosynthesis suggesting improved intestinal health and nutrient absorption. This study paves the way for further research into the development and optimization of MEO-based interventions aimed at improving piglet health and performance while also providing a reference for reducing reliance on antibiotics in animal agriculture.
Collapse
Affiliation(s)
- Xianbin Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaibin Mo
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Cui
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanhua Lan
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lifang Ling
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinxia Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Ding F, Zhou N, Luo Y, Wang T, Li W, Qiao F, Du Z, Zhang M. Probiotic Pediococcus pentosaceus restored gossypol-induced intestinal barrier injury by increasing propionate content in Nile tilapia. J Anim Sci Biotechnol 2024; 15:54. [PMID: 38582865 PMCID: PMC10999087 DOI: 10.1186/s40104-024-01011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. RESULTS A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. CONCLUSIONS The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
Collapse
Affiliation(s)
- Feifei Ding
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nannan Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weijie Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
22
|
Bai D, Zhao J, Wang R, Du J, Zhou C, Gu C, Wang Y, Zhang L, Zhao Y, Lu N. Eubacterium coprostanoligenes alleviates chemotherapy-induced intestinal mucositis by enhancing intestinal mucus barrier. Acta Pharm Sin B 2024; 14:1677-1692. [PMID: 38572095 PMCID: PMC10985029 DOI: 10.1016/j.apsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 04/05/2024] Open
Abstract
Chemotherapy-induced mucositis represents a severe adverse outcome of cancer treatment, significantly curtailing the efficacy of these treatments and, in some cases, resulting in fatal consequences. Despite identifying intestinal epithelial cell damage as a key factor in chemotherapy-induced mucositis, the paucity of effective treatments for such damage is evident. In our study, we discovered that Eubacterium coprostanoligenes promotes mucin secretion by goblet cells, thereby fortifying the integrity of the intestinal mucus barrier. This enhanced barrier function serves to resist microbial invasion and subsequently reduces the inflammatory response. Importantly, this effect remains unobtrusive to the anti-tumor efficacy of chemotherapy drugs. Mechanistically, E. copr up-regulates the expression of AUF1, leading to the stabilization of Muc2 mRNA and an increase in mucin synthesis in goblet cells. An especially significant finding is that E. copr activates the AhR pathway, thereby promoting the expression of AUF1. In summary, our results strongly indicate that E. copr enhances the intestinal mucus barrier, effectively alleviating chemotherapy-induced intestinal mucositis by activating the AhR/AUF1 pathway, consequently enhancing Muc2 mRNA stability.
Collapse
Affiliation(s)
- Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiawei Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Runde Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaying Du
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chunyang Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxiang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lulu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Chen PC, Tsai TP, Liao YC, Liao YC, Cheng HW, Weng YH, Lin CM, Kao CY, Tai CC, Ruan JW. Intestinal dual-specificity phosphatase 6 regulates the cold-induced gut microbiota remodeling to promote white adipose browning. NPJ Biofilms Microbiomes 2024; 10:22. [PMID: 38480743 PMCID: PMC10937957 DOI: 10.1038/s41522-024-00495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.
Collapse
Affiliation(s)
- Pei-Chen Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Pei Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chu Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hung-Wei Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Yi-Hsiu Weng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | | | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
24
|
Ding S, Cheng Y, Azad MAK, Zhu Q, Huang P, Kong X. Development of small intestinal barrier function and underlying mechanism in Chinese indigenous and Duroc piglets during suckling and weaning periods. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:429-442. [PMID: 38406666 PMCID: PMC10885791 DOI: 10.1016/j.aninu.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 02/27/2024]
Abstract
This study explored the developmental changes in small intestinal barrier function and the potential regulatory roles of intestinal microbiota and metabolites in different breeds of piglets during suckling and weaning periods. Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) piglets (10 litters per breed; half male and half female) were selected for sampling to evaluate the intestinal barrier-related indexes and intestinal microbiota and metabolites at 1, 10, 21 (weaned), and 24 (3 d after weaning) d old. The results showed that weaning led to severe shedding of small intestinal microvilli and sparse microvilli arrangement. D-lactate level in the ileum of TB and XB piglets during suckling and weaning periods was lower (P < 0.01) than that of DR piglets, as well as the ileal diamine oxidase level at 1 d old. The expression level of mucin 1 was higher (P < 0.05) in the ileum of TB and XB piglets than that of DR piglets, and it was the highest in the ileum of TB piglets at 21 d old. The expression levels of mucin 2 and mucin 13 were higher (P < 0.10) in TB and XB piglets than those of DR piglets at 21 d old, whereas mucin 2 and mucin 13 in the ileum of TB and XB piglets were higher (P < 0.05) than those of DR piglets at 24 d old. TB and XB piglets had a lower relative abundance of Escherichia_Shigella at 21 and 24 d old, but they had higher Streptococcus at 1 and 24 d old than DR piglets (P < 0.01). Differential metabolites between the three breeds of piglets were mainly related to oxidative phosphorylation, steroid biosynthesis, and bile acid synthesis. Collectively, these findings suggest that different pig breeds present differences in the development of the small intestinal barrier function. Compared with DR piglets, TB and XB piglets had higher intestinal permeability during the suckling period and a stronger intestinal mechanical barrier after weaning. Moreover, intestinal microbiota and metabolites are the key factors for developing small intestinal barrier functions in different breeds of piglets.
Collapse
Affiliation(s)
- Sujuan Ding
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Huang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Yang Y, Yang GW, Lu JJ, Chen HR, Guo YQ, Yang N, Zhu YZ, Liu XQ, Su TT, Liu YY, Yu L, Li YS, Hu LF, Li JB. Fabrication of levofloxacin-loaded porcine acellular dermal matrix hydrogel and functional assessment in urinary tract infection. J Nanobiotechnology 2024; 22:52. [PMID: 38321555 PMCID: PMC10848372 DOI: 10.1186/s12951-024-02322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Bacterial cystitis, a commonly occurring urinary tract infection (UTI), is renowned for its extensive prevalence and tendency to recur. Despite the extensive utilization of levofloxacin as a conventional therapeutic approach for bacterial cystitis, its effectiveness is impeded by adverse toxic effects, drug resistance concerns, and its influence on the gut microbiota. This study introduces Lev@PADM, a hydrogel with antibacterial properties that demonstrates efficacy in the treatment of bacterial cystitis. Lev@PADM is produced by combining levofloxacin with decellularized porcine acellular dermal matrix hydrogel and exhibits remarkable biocompatibility. Lev@PADM demonstrates excellent stability as a hydrogel at body temperature, enabling direct administration to the site of infection through intravesical injection. This localized delivery route circumvents the systemic circulation of levofloxacin, resulting in a swift and substantial elevation of the antimicrobial agent's concentration specifically at the site of infection. The in vivo experimental findings provide evidence that Lev@PADM effectively prolongs the duration of levofloxacin's action, impedes the retention and invasion of E.coli in the urinary tract, diminishes the infiltration of innate immune cells into infected tissues, and simultaneously preserves the composition of the intestinal microbiota. These results indicate that, in comparison to the exclusive administration of levofloxacin, Lev@PADM offers notable benefits in terms of preserving the integrity of the bladder epithelial barrier and suppressing the recurrence of urinary tract infections.
Collapse
Affiliation(s)
- Yi Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Guang-Wei Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jian-Juan Lu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Hao-Ran Chen
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ya-Qin Guo
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ning Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yun-Zhu Zhu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xiao-Qiang Liu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ting-Ting Su
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yan-Yan Liu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Yu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ya-Sheng Li
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Li-Fen Hu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jia-Bin Li
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
26
|
Yin C, Wen X, Dang G, Zhong R, Meng Q, Feng X, Liu L, Wu S, He J, Chen L, Zhang H. Modulation of pectin on intestinal barrier function via changes in microbial functional potential and bile acid metabolism. J Nutr Biochem 2024; 124:109491. [PMID: 37865382 DOI: 10.1016/j.jnutbio.2023.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Chang Yin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shusong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
27
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
28
|
Clark A, Mach N. The gut mucin-microbiota interactions: a missing key to optimizing endurance performance. Front Physiol 2023; 14:1284423. [PMID: 38074323 PMCID: PMC10703311 DOI: 10.3389/fphys.2023.1284423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2025] Open
Abstract
Endurance athletes offer unique physiology and metabolism compared to sedentary individuals. Athletes training at high intensities for prolonged periods are at risk for gastrointestinal disturbances. An important factor in endurance performance is the integrity and function of the gut barrier, which primarily depends on heavily O-glycosylated mucins. Emerging evidence shows a complex bidirectional dialogue between glycans on mucins and gut microorganisms. This review emphasizes the importance of the crosstalk between the gut microbiome and host mucus mucins and some of the mechanisms underlying this symbiosis. The contribution of mucin glycans to the composition and functionality of the gut microbiome is discussed, as well as the persuasive impact of the gut microbiome on mucin composition, thickness, and immune and metabolic functions. Lastly, we propose natural and synthetic glycans supplements to improve intestinal mucus production and barrier function, offering new opportunities to enhance endurance athletes' performance and gut health.
Collapse
Affiliation(s)
- Allison Clark
- Universitat Oberta de Catalunya, Universitat de Catalunya, Barcelona, Spain
| | - Núria Mach
- Interactions hôtes-agents pathogènes, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, École nationale vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
29
|
Zhou X, He Y, Chen J, Xiong X, Yin J, Liang J, Peng C, Huang C, Guan G, Yin Y. Colonic phosphocholine is correlated with Candida tropicalis and promotes diarrhea and pathogen clearance. NPJ Biofilms Microbiomes 2023; 9:62. [PMID: 37666845 PMCID: PMC10477305 DOI: 10.1038/s41522-023-00433-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Diarrhea is characterized by alterations in the gut microbiota, metabolites, and host response to these changes. Studies have focused on the role of commensal bacteria in diarrhea; however, the effect of fungi on its pathogenesis remains unexplored. Here, using post-weaned piglets with or without diarrhea, we found an unexpected decrease in the abundance of Candida tropicalis in diarrheal piglets. We also observed increased accumulation of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps (NETs) in the colonic tissues of diarrheal piglets. Using dectin-1-knockout mice, we found that the over-accumulation of ROS killed C. tropicalis by promoting NET formation, which was dependent on dectin-1. The decreased abundance of C. tropicalis resulted in reduced phosphocholine consumption. Then, colonic phosphocholine accumulation drives water efflux by increasing cAMP levels by activating adenylyl cyclase, which promotes the clearance of pathogenic bacteria. Collectively, we demonstrated that phosphocholine is correlated with colonic C. tropicalis and promotes diarrhea and pathogen clearance. Our results suggest that mycobiota colonizing the colon might be involved in maintaining intestinal metabolic homeostasis through the consumption of certain metabolites.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Stomatology, Changsha Medical University, Changsha, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Peng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Guiping Guan
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
30
|
Li ZH, Li ZR, Zhu P, Zhang ZX, Song JL. First Identification and Pathogenicity Evaluation of an EV-G17 Strain Carrying a Torovirus Papain-like Cysteine Protease (PLCP) Gene in China. Viruses 2023; 15:1747. [PMID: 37632087 PMCID: PMC10459844 DOI: 10.3390/v15081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Enterovirus G (EV-G) is prevalent in pig populations worldwide, and a total of 20 genotypes (G1 to G20) have been confirmed. Recently, recombinant EV-Gs carrying the papain-like cysteine protease (PLCP) gene of porcine torovirus have been isolated or detected, while their pathogenicity is poorly understood. In this study, an EV-G17-PLCP strain, 'EV-G/YN23/2022', was isolated from the feces of pigs with diarrhea, and the virus replicated robustly in numerous cell lines. The isolate showed the highest complete genome nucleotide (87.5%) and polyprotein amino acid (96.6%) identity in relation to the G17 strain 'IShi-Ya4' (LC549655), and a possible recombination event was detected at the 708 and 3383 positions in the EV-G/YN23/2022 genome. EV-G/YN23/2022 was nonlethal to piglets, but mild diarrhea, transient fever, typical skin lesions, and weight gain deceleration were observed. The virus replicated efficiently in multiple organs, and the pathological lesions were mainly located in the small intestine. All the challenged piglets showed seroconversion for EV-G/YN23/2022 at 6 to 9 days post-inoculation (dpi), and the neutralization antibody peaked at 15 dpi. The mRNA expression levels of IL-6, IL-18, IFN-α, IFN-β, and ISG-15 in the peripheral blood mononuclear cells (PBMCs) were significantly up-regulated during viral infection. This is the first documentation of the isolation and pathogenicity evaluation of the EV-G17-PLCP strain in China. The results may advance our understanding of the evolution characteristics and pathogenesis of EV-G-PLCP.
Collapse
Affiliation(s)
- Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Zhen-Xing Zhang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Jian-Ling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
31
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
32
|
Ji Y, Xi H, Zhao Z, Jiang Q, Chen C, Wang X, Li F, Li N, Sun C, Feng X, Lei L, Han W, Gu J. Metagenomics analysis reveals potential pathways and drivers of piglet gut phage-mediated transfer of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160304. [PMID: 36427721 DOI: 10.1016/j.scitotenv.2022.160304] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.
Collapse
Affiliation(s)
- Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zhen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun 130062, People's Republic of China
| | - Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Na Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
33
|
Wang M, Yu B, He J, Yu J, Luo Y, Luo J, Mao X, Chen D. Effects of dietary supplementation with saccharicterpenin alleviates diarrhea of piglets. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
34
|
Long-term chemically protected sodium butyrate supplementation in broilers as an antibiotic alternative to dynamically modulate gut microbiota. Poult Sci 2022; 101:102221. [PMCID: PMC9630789 DOI: 10.1016/j.psj.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Chemically protected sodium butyrate (CSB) is a new kind of sodium butyrate. Our previous study found that 1,000 mg/kg of CSB had the potential capacity of improving growth performance and promoting early development of small intestine in broilers. This study aimed to investigate the effect of long-term antibiotics or CSB supplementation for intestinal microflora dynamical regulation in broilers. One hundred ninety-two 1-day-old Arbor Acres male broilers were randomly allocated into 3 dietary treatment (8 replicates per treatment) and fed with a basal diet (CON), a diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg) (ANT), or a diet supplemented with 1,000 mg/kg of CSB, respectively. Results showed that dietary supplementation of CSB or ANT treatment elevated the weight gain and feed conversion ratio (FCR; P < 0.05), as compared with control (CON) group. Additionally, CON, CSB, or ANT administration dynamically altered the gut microbiota composition as time goes on. The increased presence of potential pathogens, such as Romboutsia and Shuttleworthia, and decreased beneficial bacteria such as Alistipes, Akkermansia, and Bacteroides were verified in new gut homeostasis reshaped by long-term antibiotics treatment, which has adverse effects on intestinal development and health of broilers. Conversely, CSB supplementation could dynamically enhance the relative abundance of Bacteroides, and decrease Romboutsia and Shuttleworthia in new microflora, which has positive effects on intestinal bacteria of broilers compared with CON group. Meanwhile, CSB supplementation was significantly increased the concentration of propionic acid and total short chain fatty acids (total SCFA; P < 0.05) in comparison with CON and ANT groups. Moreover, CSB treatment significantly increased anti-inflammatory and antioxidative capacities (P < 0.05) of broilers compared with ANT group. Taken together, we revealed characteristic structural changes of gut microbiota throughout long-term CSB or ANT supplementation in broilers, which provided a basic data for evaluating the mechanism of action affecting intestinal health by CSB or ANT administration and CSB as an alternative to antibiotics in the broilers industry.
Collapse
|