1
|
Lundsgaard AM, Del Giudice R, Kanta JM, Larance M, Armour SL, London A, Richter MM, Andersen NR, Nicolaisen TS, Carl CS, Sjøberg KA, Bojsen-Møller KN, Knudsen JG, Lagerstedt JO, Fritzen AM, Kiens B. Apolipoprotein A-IV is induced by high-fat diets and mediates positive effects on glucose and lipid metabolism. Mol Metab 2025; 95:102119. [PMID: 40032158 PMCID: PMC11938269 DOI: 10.1016/j.molmet.2025.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE Low-carbohydrate, high-fat diets under eucaloric conditions are associated with several health-beneficial metabolic effects in humans, particularly in the liver. We recently observed that apolipoprotein A-IV (apoA-IV), a highly abundant apolipoprotein, was among the most upregulated proteins in circulation after six weeks of consuming a high-fat diet in humans. However, the impact of dietary changes in regulating apoA-IV, and the potential effects of apoA-IV on regulation of glucose- and lipid metabolism remain to be fully established. METHODS We investigated the regulation of circulating fasting concentrations of apoA-IV in humans in response to diets enriched in either fat or carbohydrates. Moreover, to study the whole-body and tissue-specific glucose and lipid metabolic effects of apoA-IV, we administrered apoA-IV recombinant protein to mice and isolated pancreatic islets. RESULTS We demonstrate that in healthy human individuals high-fat intake increased fasting plasma apoA-IV concentrations by up to 54%, while high-carbohydrate intake suppressed plasma apoA-IV concentrations. In mice, administration of apoA-IV acutely lowered blood glucose levels both in lean and obese mice. Interestingly, this was related to a dual mechanism, involving both inhibition of hepatic glucose production and increased glucose uptake into white and brown adipose tissues. In addition to an effect on hepatic glucose production, the apoA-IV-induced liver proteome revealed increased capacity for lipoprotein clearance. The effects of apoA-IV in the liver and adipose tissues were concomitant with increased whole-body fatty acid oxidation. Upon glucose stimulation, an improvement in glucose tolerance by apoA-IV administration was related to potentiation of glucose-induced insulin secretion, while apoA-IV inhibited glucagon secretion ex vivo in islets. CONCLUSIONS We find that apoA-IV is potently increased by intake of fat in humans, and that several beneficial metabolic effects, previously associated with high fat intake in humans, are mimicked by administration of apoA-IV protein to mice.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, Søborg, Denmark
| | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Josephine M Kanta
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Sarah L Armour
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Amalie London
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Michael M Richter
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Nicoline R Andersen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine S Nicolaisen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Nyvold Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Andreas M Fritzen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Liu Z, Cheng S, Zhang X, Yang M, Wei J, Ye F, Ma Z, Kang H, Zhang Z, Li H, Xiang H. Characterization of the regulatory network and pathways in duodenum affecting chicken abdominal fat deposition. Poult Sci 2024; 103:104463. [PMID: 39504821 PMCID: PMC11570720 DOI: 10.1016/j.psj.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The excessive accumulation of abdominal fat in chickens has resulted in a reduction in both the feed conversion efficiency and the slaughter yield. To elucidate the regulatory mechanisms and metabolic pathways affecting abdominal fat deposition in the context of broiler breeding, a cohort of 400 Qingyuan partridge chickens with varying abdominal fat deposition was established. Whole transcriptome sequencing analyses were conducted on the duodenum of 20 representative chickens to ascertain the regulatory networks at this vital digestive and absorptive organ. Consequently, 116 differentially expressed genes were identified, exhibiting a trend of increasing or decreasing expression in correlation with the accumulation of abdominal fat. A total of 36 DEmRNAs, 170 DElncRNAs, 92 DEcircRNAs and 88 DEmiRNAs were identified as differentially expressed between chickens with extremely high and low abdominal fat deposition. The functional enrichment analyses demonstrated that the differentially expressed RNA in the duodenum were involved in the regulation of chicken abdominal fat deposition by mediating a series of metabolic pathways, including the Wnt signaling pathway, the PPAR signaling pathway, the Hippo signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway and other signaling pathways that are involved in fatty acid metabolism and degradation. The construction of putative interaction pairs led to the suggestion of two lncRNA-miRNA-mRNA ceRNA networks comprising two mRNAs, two miRNAs, and 29 lncRNAs, as well as two circRNA-lncRNA-miRNA-mRNA ceRNA networks comprising 26 mRNAs, 12 miRNAs, 17 lncRNAs, and nine circRNAs, as core regulatory networks in the duodenum affecting chicken abdominal fat deposition. The aforementioned genes including TMEM150C, REXO1, PIK3C2G, ppp1cb, PARP12, SERPINE2, LRAT, CYP1A1, INSR and APOA4, were proposed as candidate genes, while the miRNAs, including miR-107-y, miR-22-y, miR-25-y, miR-2404-x and miR-16-x, as well as lncRNAs such as ENSGALT00000100291, TCONS_00063508, TCONS_00061201 and TCONS_00079402 were the candidate regulators associated with chicken abdominal fat deposition. The findings of this study provide a theoretical foundation for the molecular mechanisms of mRNAs and non-coding RNAs in duodenal tissues on abdominal fat deposition in chickens.
Collapse
Affiliation(s)
- Zhijie Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Sibei Cheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Miaomiao Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Jixiang Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| |
Collapse
|
3
|
Burr SD, Chen Y, Hartley CP, Zhao X, Liu J. Replacement of saturated fatty acids with linoleic acid in western diet attenuates atherosclerosis in a mouse model with inducible ablation of hepatic LDL receptor. Sci Rep 2023; 13:16832. [PMID: 37803087 PMCID: PMC10558454 DOI: 10.1038/s41598-023-44030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Xianda Zhao
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Dai W, Zhang H, Lund H, Zhang Z, Castleberry M, Rodriguez M, Kuriakose G, Gupta S, Lewandowska M, Powers HR, Valmiki S, Zhu J, Shapiro AD, Hussain MM, López JA, Sorci-Thomas MG, Silverstein RL, Ginsberg HN, Sahoo D, Tabas I, Zheng Z. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes. Science 2023; 381:eadh5207. [PMID: 37651538 PMCID: PMC10697821 DOI: 10.1126/science.adh5207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | | | - Hayley R. Powers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Swati Valmiki
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - M. Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - José A. López
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary G. Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Petrenko V, Sinturel F, Riezman H, Dibner C. Lipid metabolism around the body clocks. Prog Lipid Res 2023; 91:101235. [PMID: 37187314 DOI: 10.1016/j.plipres.2023.101235] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Lipids play important roles in energy metabolism along with diverse aspects of biological membrane structure, signaling and other functions. Perturbations of lipid metabolism are responsible for the development of various pathologies comprising metabolic syndrome, obesity, and type 2 diabetes. Accumulating evidence suggests that circadian oscillators, operative in most cells of our body, coordinate temporal aspects of lipid homeostasis. In this review we summarize current knowledge on the circadian regulation of lipid digestion, absorption, transportation, biosynthesis, catabolism, and storage. Specifically, we focus on the molecular interactions between functional clockwork and biosynthetic pathways of major lipid classes comprising cholesterol, fatty acids, triacylglycerols, glycerophospholipids, glycosphingolipids, and sphingomyelins. A growing body of epidemiological studies associate a socially imposed circadian misalignment common in modern society with growing incidence of metabolic disorders, however the disruption of lipid metabolism rhythms in this connection has only been recently revealed. Here, we highlight recent studies that unravel the mechanistic link between intracellular molecular clocks, lipid homeostasis and development of metabolic diseases based on animal models of clock disruption and on innovative translational studies in humans. We also discuss the perspectives of manipulating circadian oscillators as a potentially powerful approach for preventing and managing metabolic disorders in human patients.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland
| | - Flore Sinturel
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Charna Dibner
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland.
| |
Collapse
|
6
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
7
|
Integrated Network Pharmacology and Proteomic Analyses of Targets and Mechanisms of Jianpi Tianjing Decoction in Treating Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9021546. [PMID: 36714532 PMCID: PMC9876684 DOI: 10.1155/2023/9021546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Background Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment. Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods Systematic network pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment. Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results By screening active chemical compositions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112 differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome c oxidase subunit 7C, metabotropic glutamate receptor 2, Slc30a1 zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion homeostasis, and lipoprotein metabolism. Conclusions JTD may suppress VD development via multiple components, targets, and pathways. It may thus serve as a complementary treatment option for patients with VD.
Collapse
|
8
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
9
|
Pan X, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology 2022; 76:78-93. [PMID: 34626126 PMCID: PMC8993942 DOI: 10.1002/hep.32196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High plasma lipid/lipoprotein levels are risk factors for various metabolic diseases. We previously showed that circadian rhythms regulate plasma lipids and deregulation of these rhythms causes hyperlipidemia and atherosclerosis in mice. Here, we show that global and liver-specific brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1)-deficient mice maintained on a chow or Western diet developed hyperlipidemia, denoted by the presence of higher amounts of triglyceride-rich and apolipoprotein AIV (ApoAIV)-rich larger chylomicron and VLDL due to overproduction. APPROACH AND RESULTS Bmal1 deficiency decreased small heterodimer partner (Shp) and increased microsomal triglyceride transfer protein (MTP), a key protein that facilitates primordial lipoprotein assembly and secretion. Moreover, we show that Bmal1 regulates cAMP-responsive element-binding protein H (Crebh) to modulate ApoAIV expression and the assembly of larger lipoproteins. This is supported by the observation that Crebh-deficient and ApoAIV-deficient mice, along with Bmal1-deficient mice with knockdown of Crebh, had smaller lipoproteins. Further, overexpression of Bmal1 in Crebh-deficient mice had no effect on ApoAIV expression and lipoprotein size. CONCLUSIONS These studies indicate that regulation of ApoAIV and assembly of larger lipoproteins by Bmal1 requires Crebh. Mechanistic studies showed that Bmal1 regulates Crebh expression by two mechanisms. First, Bmal1 interacts with the Crebh promoter to control circadian regulation. Second, Bmal1 increases Rev-erbα expression, and nuclear receptor subfamily 1 group D member 1 (Nr1D1, Rev-erbα) interacts with the Crebh promoter to repress expression. In short, Bmal1 modulates both the synthesis of primordial lipoproteins and their subsequent expansion into larger lipoproteins by regulating two different proteins, MTP and ApoAIV, through two different transcription factors, Shp and Crebh. It is likely that disruptions in circadian mechanisms contribute to hyperlipidemia and that avoiding disruptions in circadian rhythms may limit/prevent hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
| |
Collapse
|
10
|
Effect of L-Glutamine on Chylomicron Formation and Fat-Induced Activation of Intestinal Mucosal Mast Cells in Sprague-Dawley Rats. Nutrients 2022; 14:nu14091777. [PMID: 35565745 PMCID: PMC9104139 DOI: 10.3390/nu14091777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glutamine (Gln) is required for intestinal mucosal homeostasis, and it can promote triglyceride absorption. The intestinal mucosal mast cells (MMCs) are activated during fat absorption. This study investigated the potential role of Gln on fat absorption-induced activation of MMCs in rats. Lymph fistula rats (n = 24) were studied after an overnight recovery with the infusion of saline only, saline plus 85 mM L-glutamine (L-Gln) or 85 mM D-glutamine (D-Gln), respectively. On the test day, rats (n = 8/group) were given an intraduodenal bolus of 20% Intralipid contained either saline only (vehicle group), 85 mM L-Gln (L-Gln group), or 85 mM D-Gln (D-Gln group). Lymph was collected hourly for up to 6 h for analyses. The results showed that intestinal lymph from rats given L-Gln had increased levels of apolipoprotein B (ApoB) and A-I (ApoA-I), concomitant with an increased spectrum of smaller chylomicron particles. Unexpectedly, L-Gln also increased levels of rat mucosal mast cell protease II (RMCPII), as well as histamine and prostaglandin D2 (PGD2) in response to dietary lipid. However, these effects were not observed in rats treated with 85 mM of the stereoisomer D-Gln. Our results showed that L-glutamine could specifically activate MMCs to degranulate and release MMC mediators to the lymph during fat absorption. This observation is potentially important clinically since L-glutamine is often used to promote gut health and repair leaky gut.
Collapse
|
11
|
CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients 2021; 13:nu13093204. [PMID: 34579081 PMCID: PMC8472586 DOI: 10.3390/nu13093204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.
Collapse
|
12
|
Taavela J, Viiri K, Välimäki A, Sarin J, Salonoja K, Mäki M, Isola J. Apolipoprotein A4 Defines the Villus-Crypt Border in Duodenal Specimens for Celiac Disease Morphometry. Front Immunol 2021; 12:713854. [PMID: 34394117 PMCID: PMC8358775 DOI: 10.3389/fimmu.2021.713854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Histological evaluation of the small intestinal mucosa is the cornerstone of celiac disease diagnostics and an important outcome in scientific studies. Gluten-dependent injury can be evaluated either with quantitative morphometry or grouped classifications. A drawback of mucosal readings is the subjective assessment of the border where the crypt epithelium changes to the differentiated villus epithelium. We studied potential immunohistochemical markers for the detection of the villus-crypt border: apolipoprotein A4 (APOA4), Ki-67, glucose transporter 2, keratin 20, cytochrome P450 3A4 and intestinal fatty-acid binding protein. Among these, villus-specific APOA4 was chosen as the best candidate for further studies. Hematoxylin-eosin (H&E)- and APOA4 stained duodenal biopsy specimens from 74 adult patients were evaluated by five observers to determine the villus-to-crypt ratio (VH : CrD). APOA4 delineated the villus to crypt epithelium transition clearly, and the correlation coefficient of VH : CrD values between APOA4 and H&E was excellent (r=0.962). The VH : CrD values were lower in APOA4 staining (p<0.001) and a conversion factor of 0.2 in VH : CrD measurements was observed to make the two methods comparable to each other. In the intraobserver analysis, the doubled standard deviations, representing the error ranges, were 0.528 for H&E and 0.388 for APOA4 staining, and the ICCs were 0.980 and 0.971, respectively. In the interobserver analysis, the average error ranges were 1.017 for H&E and 0.847 for APOA4 staining, and the ICCs were better for APOA4 than for H&E staining in all analyses. In conclusion, the reliability and reproducibility of morphometrical VH : CrD readings are improved with the use of APOA4 staining.
Collapse
Affiliation(s)
- Juha Taavela
- Central Finland Central Hospital, Jyväskylä, Finland.,Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Välimäki
- Fimlab Laboratories Inc, Tampere, Finland.,Jilab Inc, Tampere, Finland
| | | | | | - Markku Mäki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- Jilab Inc, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
13
|
Qu J, Fourman S, Fitzgerald M, Liu M, Nair S, Oses-Prieto J, Burlingame A, Morris JH, Davidson WS, Tso P, Bhargava A. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep 2021; 11:13289. [PMID: 34168225 PMCID: PMC8225859 DOI: 10.1038/s41598-021-92711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Sarah Fourman
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Maureen Fitzgerald
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Supna Nair
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Juan Oses-Prieto
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - John H Morris
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue, Rm HSE1636, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
14
|
Trujillo‐Viera J, El‐Merahbi R, Schmidt V, Karwen T, Loza‐Valdes A, Strohmeyer A, Reuter S, Noh M, Wit M, Hawro I, Mocek S, Fey C, Mayer AE, Löffler MC, Wilhelmi I, Metzger M, Ishikawa E, Yamasaki S, Rau M, Geier A, Hankir M, Seyfried F, Klingenspor M, Sumara G. Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity. EMBO Mol Med 2021; 13:e13548. [PMID: 33949105 PMCID: PMC8103097 DOI: 10.15252/emmm.202013548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Jonathan Trujillo‐Viera
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Vanessa Schmidt
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Till Karwen
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Akim Strohmeyer
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Saskia Reuter
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Minhee Noh
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Izabela Hawro
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Sabine Mocek
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Alexander E Mayer
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Ilka Wilhelmi
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Eri Ishikawa
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Sho Yamasaki
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Monika Rau
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Andreas Geier
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Martin Klingenspor
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Grzegorz Sumara
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
15
|
Motoi S, Uesugi M, Obara T, Moriya K, Arita Y, Ogasawara H, Soejima M, Imai T, Kawano T. Serum APOA4 Pharmacodynamically Represents Administered Recombinant Human Hepatocyte Growth Factor (E3112). Int J Mol Sci 2021; 22:4578. [PMID: 33925510 PMCID: PMC8123842 DOI: 10.3390/ijms22094578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is an endogenously induced bioactive molecule that has strong anti-apoptotic and tissue repair activities. In this research, we identified APOA4 as a novel pharmacodynamic (PD) marker of the recombinant human HGF (rh-HGF), E3112. METHODS rh-HGF was administered to mice, and their livers were investigated for the PD marker. Candidates were identified from soluble proteins and validated by using human hepatocytes in vitro and an animal disease model in vivo, in which its c-Met dependency was also ensured. RESULTS Among the genes induced or highly enhanced after rh-HGF exposure in vivo, a soluble apolipoprotein, Apoa4, was found to be induced by rh-HGF in the murine liver. By using primary cultured human hepatocytes, the significant induction of human APOA4 was observed at the mRNA and protein levels, and it was inhibited in the presence of a c-Met inhibitor. Although mice constitutively expressed Apoa4 mRNA in the small intestine and the liver, the liver was the primary organ affected by administered rh-HGF to strongly induce APOA4 in a dose- and c-Met-dependent manner. Serum APOA4 levels were increased after rh-HGF administration, not only in normal mice but also in anti-Fas-induced murine acute liver failure (ALF), which confirmed the pharmacodynamic nature of APOA4. CONCLUSIONS APOA4 was identified as a soluble PD marker of rh-HGF with c-Met dependency. It should be worthwhile to clinically validate its utility through clinical trials with healthy subjects and ALF patients.
Collapse
Affiliation(s)
- Sotaro Motoi
- Eisai Product Creation Systems, KAN Product Creation Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (S.M.); (M.S.)
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Mai Uesugi
- Medicine Creation, Neurology Business Group, Translational Medicine Department, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (M.U.); (T.O.)
| | - Takashi Obara
- Medicine Creation, Neurology Business Group, Translational Medicine Department, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (M.U.); (T.O.)
| | - Katsuhiro Moriya
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Yoshihisa Arita
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Hideaki Ogasawara
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Motohiro Soejima
- Eisai Product Creation Systems, KAN Product Creation Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 3002635, Japan; (S.M.); (M.S.)
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Toshio Imai
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| | - Tetsu Kawano
- KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 6500047, Japan; (K.M.); (Y.A.); (H.O.); (T.I.)
| |
Collapse
|
16
|
Wathes DC, Cheng Z, Salavati M, Buggiotti L, Takeda H, Tang L, Becker F, Ingvartsen KI, Ferris C, Hostens M, Crowe MA. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation. J Dairy Sci 2021; 104:3596-3616. [PMID: 33455774 DOI: 10.3168/jds.2020-19165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Homeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, β-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.
Collapse
Affiliation(s)
- D C Wathes
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom.
| | - Z Cheng
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - M Salavati
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - L Buggiotti
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - L Tang
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - F Becker
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - K I Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, B-9820 Merelbeke, Belgium
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
17
|
Lo CC, Coschigano KT. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol 2020; 11:796. [PMID: 32733283 PMCID: PMC7360825 DOI: 10.3389/fphys.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fatty meals induce intestinal secretion of chylomicrons (CMs) containing apolipoprotein (Apo) B48. These CMs travel via the lymphatic system before entering the circulation. ApoB48 is produced after post-transcriptional RNA modification by Apobec-1 editing enzyme, exclusively in the small intestine of humans and most other mammals. In contrast, in the liver where Apobec-1 editing enzyme is not expressed (except in rats and mice), the unedited transcript encodes a larger protein, ApoB100, which is used in the formation of very low-density lipoproteins (VLDL) to transport liver-synthesized fat to peripheral tissues. Apobec-1 knockout (KO) mice lack the ability to perform ApoB RNA editing, and thus, express ApoB100 in the intestine. These mice, maintained on either a chow diet or high fat diet, have body weight gain and food intake comparable to their wildtype (WT) counterparts on the respective diet; however, they secrete larger triglyceride (TG)-rich lipoprotein particles and at a slower rate than the WT mice. Using a lymph fistula model, we demonstrated that Apobec-1 KO mice also produced fewer CMs and exhibited reduced lymphatic transport of TG in response to duodenal infusion of TG at a moderate dose; in contrast, the Apobec-1 KO and WT mice had similar lymphatic transport of TG when they received a high dose of TG. Thus, the smaller, energy-saving ApoB48 appears to play a superior role in comparison with ApoB100 in the control of intestinal lipid transport in response to dietary lipid intake, at least at low to moderate lipid levels.
Collapse
Affiliation(s)
- Chunmin C Lo
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Karen T Coschigano
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
18
|
Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 2020; 503:128-135. [PMID: 31981585 DOI: 10.1016/j.cca.2020.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Dyslipidemia, characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and reduced plasma levels of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of obesity and cardiovascular diseases (CVD), posing serious risks to the future health of humans. Thus, it is important to understand the molecular metabolism of dyslipidemia, which could help reduce the morbidity and mortality of obesity and CVD. Currently, several exchangeable apolipoproteins, such as apolipoprotein A1 (ApoA1), apolipoprotein A5 (ApoA5), apolipoprotein E (ApoE), and apolipoprotein C3 (ApoC3), have been verified to exert vital effects on modulating lipid metabolism and homeostasis both in plasma and in cells, which consequently affect dyslipidemia. In the present review, we summarize the findings of the effect of exchangeable apolipoproteins on affecting lipid metabolism in adipocytes and hepatocytes. Furthermore, we also provide new insights into the mechanisms by which the exchangeable apolipoproteins influence the pathogenesis of dyslipidemia and its related cardio-metabolic disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
20
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
21
|
Peng J, Li XP. Apolipoprotein A-IV: A potential therapeutic target for atherosclerosis. Prostaglandins Other Lipid Mediat 2018; 139:87-92. [PMID: 30352313 DOI: 10.1016/j.prostaglandins.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-IV is lipid-binding protein, which is synthesized by the intestine and secreted into mesenteric lymph. ApoA-IV is correlated with chylomicrons and high density lipoprotein, but a large portion is free-lipoprotein, in circulation. Studies showed that apoA-IV has anti-inflammatory and anti-oxidative properties, and is able to mediate reverse cholesterol transport, which suggest that it may has anti-atherosclerotic effects and be related to protection from atherosclerotic cardiovascular disease. This article focus on current studies and the possible anti-atherogenic mechanism related to apoA-IV, in order to provide a new therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiang-Ping Li
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
22
|
Sæle Ø, Rød KEL, Quinlivan VH, Li S, Farber SA. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:948-957. [PMID: 29778665 PMCID: PMC6054555 DOI: 10.1016/j.bbalip.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.
Collapse
Affiliation(s)
- Øystein Sæle
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway.
| | - Kari Elin L Rød
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Shengrong Li
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
24
|
Zannis VI, Su S, Fotakis P. Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins. J Biomed Res 2017; 31:471. [PMID: 29109329 PMCID: PMC6307667 DOI: 10.7555/jbr.31.20160082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/30/2016] [Indexed: 12/28/2022] Open
Abstract
In this review, we focus on the pathway of biogenesis of HDL, the essential role of apoA-I, ATP binding cassette transporter A1 (ABCA1), and lecithin: cholesterol acyltransferase (LCAT) in the formation of plasma HDL; the generation of aberrant forms of HDL containing mutant apoA-I forms and the role of apoA-IV and apoE in the formation of distinct HDL subpopulations. The biogenesis of HDL requires functional interactions of the ABCA1 with apoA-I (and to a lesser extent with apoE and apoA-IV) and subsequent interactions of the nascent HDL species thus formed with LCAT. Mutations in apoA-I, ABCA1 and LCAT either prevent or impair the formation of HDL and may also affect the functionality of the HDL species formed. Emphasis is placed on three categories of apoA-I mutations. The first category describes a unique bio-engineered apoA-I mutation that disrupts interactions between apoA-I and ABCA1 and generates aberrant preβ HDL subpopulations that cannot be converted efficiently to α subpopulations by LCAT. The second category describes natural and bio-engineered apoA-I mutations that generate preβ and small size α4 HDL subpopulations, and are associated with low plasma HDL levels. These phenotypes can be corrected by excess LCAT. The third category describes bio-engineered apoA-I mutations that induce hypertriglyceridemia that can be corrected by excess lipoprotein lipase and also have defective maturation of HDL. The HDL phenotypes described here may serve in the future for diagnosis, prognoses and potential treatment of abnormalities that affect the biogenesis and functionality of HDL.
Collapse
Affiliation(s)
- Vassilis I. Zannis
- . Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
- . Department University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Shi Su
- . Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Panagiotis Fotakis
- . Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
- . Department University of Crete, School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
25
|
Sato H, Zhang LS, Martinez K, Chang EB, Yang Q, Wang F, Howles PN, Hokari R, Miura S, Tso P. Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats. Gastroenterology 2016; 151:923-932. [PMID: 27436071 PMCID: PMC5391873 DOI: 10.1053/j.gastro.2016.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. METHODS Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. RESULTS Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. CONCLUSIONS The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons.
Collapse
Affiliation(s)
- Hirokazu Sato
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Linda S Zhang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristina Martinez
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Soichiro Miura
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
26
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
27
|
Zeituni EM, Wilson MH, Zheng X, Iglesias PA, Sepanski MA, Siddiqi MA, Anderson JL, Zheng Y, Farber SA. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses. J Biol Chem 2016; 291:23804-23816. [PMID: 27655916 DOI: 10.1074/jbc.m116.749358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid.
Collapse
Affiliation(s)
- Erin M Zeituni
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Meredith H Wilson
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Xiaobin Zheng
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Pablo A Iglesias
- the Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Michael A Sepanski
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Mahmud A Siddiqi
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Jennifer L Anderson
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Yixian Zheng
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Steven A Farber
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| |
Collapse
|
28
|
Cheng D, Xu X, Simon T, Boudyguina E, Deng Z, VerHague M, Lee AH, Shelness GS, Weinberg RB, Parks JS. Very Low Density Lipoprotein Assembly Is Required for cAMP-responsive Element-binding Protein H Processing and Hepatic Apolipoprotein A-IV Expression. J Biol Chem 2016; 291:23793-23803. [PMID: 27655915 DOI: 10.1074/jbc.m116.749283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
Collapse
Affiliation(s)
- Dongmei Cheng
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Xu Xu
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Trang Simon
- Internal Medicine-Section on Gastroenterology
| | - Elena Boudyguina
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | | | - Melissa VerHague
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Ann-Hwee Lee
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | | | | | - John S Parks
- From the Departments of Internal Medicine-Section on Molecular Medicine, .,Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
29
|
Yamanishi K, Maeda S, Kuwahara-Otani S, Watanabe Y, Yoshida M, Ikubo K, Okuzaki D, El-Darawish Y, Li W, Nakasho K, Nojima H, Yamanishi H, Hayakawa T, Okamura H, Matsunaga H. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl Res 2016; 173:101-114.e7. [PMID: 27063959 DOI: 10.1016/j.trsl.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 12/11/2022]
Abstract
We investigated potential pathophysiological relationships between interleukin 18 (IL-18) and dyslipidemia, nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH). Compared with Il18(+/+) mice, IL-18 knockout (Il18(-/-)) mice developed hypercholesterolemia and hyper-high-density-lipoprotein-cholesterolemia as well as hypertriglyceridemia as they aged, and these disorders occurred before the manifestation of obesity and might cause secondary NASH. The analyses of molecular mechanisms involved in the onset of dyslipidemia, NAFLD, and NASH in Il18(-/-) mice identified a number of genes associated with these metabolic diseases. In addition, molecules related to circadian rhythm might affect these extracted genes. The intravenous administration of recombinant IL-18 significantly improved dyslipidemia, inhibited the body weight gain of Il18(+/+) mice, and prevented the onset of NASH. The expression of genes related to these dysfunctions was also affected by recombinant IL-18 administration. In conclusion, this study demonstrated the critical function of IL-18 in lipid metabolism and these findings might contribute to the progress of novel treatments for NAFLD or NASH.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan; Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Momoko Yoshida
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan; Department of Genome Informatics, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Kaoru Ikubo
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Nojima
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
30
|
Cheng D, Weckerle A, Yu Y, Ma L, Zhu X, Murea M, Freedman BI, Parks JS, Shelness GS. Biogenesis and cytotoxicity of APOL1 renal risk variant proteins in hepatocytes and hepatoma cells. J Lipid Res 2015; 56:1583-93. [PMID: 26089538 DOI: 10.1194/jlr.m059733] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Two APOL1 gene variants, which likely evolved to protect individuals from African sleeping sickness, are strongly associated with nondiabetic kidney disease in individuals with recent African ancestry. Consistent with its role in trypanosome killing, the pro-death APOL1 protein is toxic to most cells, but its mechanism of cell death is poorly understood and little is known regarding its intracellular trafficking and secretion. Because the liver appears to be the main source of circulating APOL1, we examined its secretory behavior and mechanism of toxicity in hepatoma cells and primary human hepatocytes. APOL1 is poorly secreted in vitro, even in the presence of chemical chaper-ones; however, it is efficiently secreted in wild-type transgenic mice, suggesting that APOL1 secretion has specialized requirements that cultured cells fail to support. In hepatoma cells, inducible expression of APOL1 and its risk variants promoted cell death, with the G1 variant displaying the highest degree of toxicity. To explore the basis for APOL1-mediated cell toxicity, endoplasmic reticulum stress, pyroptosis, autophagy, and apoptosis were examined. Our results suggest that autophagy represents the predominant mechanism of APOL1-mediated cell death. Overall, these results increase our understanding of the basic biology and trafficking behavior of circulating APOL1 from the liver.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison Weckerle
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Yi Yu
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Lijun Ma
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Xuewei Zhu
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Mariana Murea
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - John S Parks
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory S Shelness
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
31
|
D’Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN, Greenberg AS, Kuhn RJ, Buhman KK. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS One 2015; 10:e0126823. [PMID: 25992653 PMCID: PMC4436333 DOI: 10.1371/journal.pone.0126823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 01/23/2023] Open
Abstract
Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.
Collapse
Affiliation(s)
- Theresa D’Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Devika Sirohi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeffrey M. Grabowski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Victoria E. Hedrick
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Lake N. Paul
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhang LS, Xu M, Yang Q, Ryan RO, Howles P, Tso P. Apolipoprotein A-V deficiency enhances chylomicron production in lymph fistula mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G634-42. [PMID: 25617349 PMCID: PMC4385892 DOI: 10.1152/ajpgi.00339.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-V (apoA-V), a liver-synthesized apolipoprotein discovered in 2001, strongly modulates fasting plasma triglycerides (TG). Little is reported on the effect of apoA-V on postprandial plasma TG, an independent predictor for atherosclerosis. Overexpressing apoA-V in mice suppresses postprandial TG, but mechanisms focus on increased lipolysis or clearance of remnant particles. Unknown is whether apoA-V suppresses the absorption of dietary lipids by the gut. This study examines how apoA-V deficiency affects the steady-state absorption and lymphatic transport of dietary lipids in chow-fed mice. Using apoA-V knockout (KO, n = 8) and wild-type (WT, n = 8) lymph fistula mice, we analyzed the uptake and lymphatic transport of lipids during a continuous infusion of an emulsion containing [(3)H]triolein and [(14)C]cholesterol. ApoA-V KO mice showed a twofold increase in (3)H (P < 0.001) and a threefold increase in (14)C (P < 0.001) transport into the lymph compared with WT. The increased lymphatic transport was accompanied by a twofold reduction (P < 0.05) in mucosal (3)H, suggesting that apoA-V KO mice more rapidly secreted [(3)H]TG out of the mucosa into the lymph. ApoA-V KO mice also produced chylomicrons more rapidly than WT (P < 0.05), as measured by the transit time of [(14)C]oleic acid from the intestinal lumen to lymph. Interestingly, apoA-V KO mice produced a steadily increasing number of chylomicron particles over time, as measured by lymphatic apoB output. The data suggest that apoA-V suppresses the production of chylomicrons, playing a previously unknown role in lipid metabolism that may contribute to the postprandial hypertriglyceridemia associated with apoA-V deficiency.
Collapse
Affiliation(s)
- Linda S. Zhang
- 1Children's Hospital Oakland Research Institute, Oakland, California
| | - Min Xu
- 1Children's Hospital Oakland Research Institute, Oakland, California
| | - Qing Yang
- 1Children's Hospital Oakland Research Institute, Oakland, California
| | - Robert O. Ryan
- 2Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Philip Howles
- 1Children's Hospital Oakland Research Institute, Oakland, California
| | - Patrick Tso
- 1Children's Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
33
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
34
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
35
|
Liu M, Allegood J, Zhu X, Seo J, Gebre AK, Boudyguina E, Cheng D, Chuang CC, Shelness GS, Spiegel S, Parks JS. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. J Biol Chem 2015; 290:7861-70. [PMID: 25627684 DOI: 10.1074/jbc.m114.631101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.
Collapse
Affiliation(s)
- Mingxia Liu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeremy Allegood
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Xuewei Zhu
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Jeongmin Seo
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Abraham K Gebre
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Elena Boudyguina
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Dongmei Cheng
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Chia-Chi Chuang
- From the Department of Internal Medicine, Section on Molecular Medicine, and
| | - Gregory S Shelness
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Sarah Spiegel
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - John S Parks
- From the Department of Internal Medicine, Section on Molecular Medicine, and the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
36
|
Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African-American adults. Br J Nutr 2014; 112:992-1003. [PMID: 25201307 DOI: 10.1017/s0007114514001706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gene polymorphisms provide a means to obtain unconfounded associations between carotenoids and various health outcomes. In the present study, we tested whether gene polymorphisms and gene scores linked to low serum carotenoid status are related to metabolic disturbance and depressive symptoms in African-American adults residing in Baltimore city, MD, using cross-sectional data from the Healthy Aging in Neighborhoods of Diversity across the Life Span study (age range 30-64 years, n 873-994). We examined twenty-four SNP of various gene loci that were previously shown to be associated with low serum carotenoid status (SNPlcar). Gene risk scores were created: five low specific-carotenoid risk scores (LSCRS: α-carotene, β-carotene, lutein+zeaxanthin, β-cryptoxanthin and lycopene) and one low total-carotenoid risk score (LTCRS: total carotenoids). SNPlcar, LSCRS and LTCRS were entered as predictors for a number of health outcomes. These included obesity, National Cholesterol Education Program Adult Treatment Panel III metabolic syndrome and its components, elevated homeostatic model assessment of insulin resistance, C-reactive protein, hyperuricaemia and elevated depressive symptoms (EDS, Center for Epidemiologic Studies-Depression score ≥ 16). Among the key findings, SNPlcar were not associated with the main outcomes after correction for multiple testing. However, an inverse association was found between the LTCRS and HDL-cholesterol (HDL-C) dyslipidaemia. Specifically, the α-carotene and β-cryptoxanthin LSCRS were associated with a lower odds of HDL-C dyslipidaemia. However, the β-cryptoxanthin LSCRS was linked to a higher odds of EDS, with a linear dose-response relationship. In summary, gene risk scores linked to low serum carotenoids had mixed effects on HDL-C dyslipidaemia and EDS. Further studies using larger African-American population samples are needed.
Collapse
|
37
|
Abstract
Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circadian clock genes and these genes might control circadian expression of different proteins involved in intestinal lipid absorption. Intestinal circadian clock genes are synchronized by signals emanating from the suprachiasmatic nuclei that constitute a master clock and from signals coming from other environmental factors, such as food availability. Disruptions in central clock, as happens due to disruptions in the sleep/wake cycle, affect intestinal function. Similarly, irregularities in temporal food intake affect intestinal function. These changes predispose individuals to various metabolic disorders, such as metabolic syndrome, obesity, diabetes, and atherosclerosis. Here, we summarize how circadian rhythms regulate microsomal triglyceride transfer protein, apoAIV, and nocturnin to affect diurnal regulation of lipid absorption.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203; and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209
| | - Xiaoyue Pan
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203; and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209
| |
Collapse
|
38
|
Wu CL, Zhao SP, Yu BL. Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease. Biol Rev Camb Philos Soc 2014; 90:367-76. [PMID: 24834836 DOI: 10.1111/brv.12116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Chen-Lu Wu
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| | - Bi-Lian Yu
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha Hunan 410011 China
| |
Collapse
|
39
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
40
|
Beyond the Standard Lipid Profile: What is Known about Apolipoproteins, Lp(a), and Lipoprotein Particle Distributions in Children. CURRENT CARDIOVASCULAR RISK REPORTS 2014. [DOI: 10.1007/s12170-014-0381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
VerHague MA, Cheng D, Weinberg RB, Shelness GS. Apolipoprotein A-IV Expression in Mouse Liver Enhances Triglyceride Secretion and Reduces Hepatic Lipid Content by Promoting Very Low Density Lipoprotein Particle Expansion. Arterioscler Thromb Vasc Biol 2013; 33:2501-8. [DOI: 10.1161/atvbaha.113.301948] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Melissa A. VerHague
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Dongmei Cheng
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard B. Weinberg
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory S. Shelness
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
42
|
Buttet M, Traynard V, Tran TTT, Besnard P, Poirier H, Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie 2013; 96:37-47. [PMID: 23958439 DOI: 10.1016/j.biochi.2013.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity.
Collapse
Affiliation(s)
- Marjorie Buttet
- Physiologie de la Nutrition et Toxicologie Team (NUTox), UMR U866 INSERM, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
43
|
Kohan AB, Wang F, Li X, Vandersall AE, Huesman S, Xu M, Yang Q, Lou D, Tso P. Is apolipoprotein A-IV rate limiting in the intestinal transport and absorption of triglyceride? Am J Physiol Gastrointest Liver Physiol 2013; 304:G1128-35. [PMID: 23599044 PMCID: PMC3680714 DOI: 10.1152/ajpgi.00409.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/16/2013] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is synthesized by the intestine and secreted when dietary fat is absorbed and transported into lymph associated with chylomicrons. We have recently demonstrated that loss of apoA-IV increases chylomicron size and delays its clearance from the blood. There is still uncertainty, however, about the precise role of apoA-IV on the transport of dietary fat from the intestine into the lymph. ApoA-IV knockout (KO) mice do not have a gross defect in dietary lipid absorption, as measured by oral fat tolerance and fecal fat measurements. Here, using the in vivo lymph fistula mouse model, we show that the cumulative secretion of triglyceride (TG) into lymph in apoA-IV KO mice is very similar to that of wild-type (WT) mice. However, the apoA-IV KO mice do have subtle changes in TG accumulation in the intestinal mucosa during a 6-h continuous, but not bolus, infusion of lipid. There are no changes in the ratio of esterified to free fatty acids in the intestinal mucosa of the apoA-IV KO, however. When we extended these findings, by giving a higher dose of lipid (6 μmol/h) and for a longer infusion period (8 h), we found no effect of apoA-IV KO on intestinal TG absorption. This higher lipid infusion most certainly stresses the intestine, as we see a drastically lower absorption of TG (in both WT and KO mice); however, the loss of A-IV does not exacerbate this effect. This supports our hypothesis that apoA-IV is not required for TG absorption in the intestine. Our data suggest that the mechanisms by which the apoA-IV KO intestine responds to intestinal lipid may not be different from their WT counterparts. We conclude that apoA-IV is not required for normal lymphatic transport of TG.
Collapse
Affiliation(s)
- Alison B Kohan
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Deng X, Morris J, Chaton C, Schröder GF, Davidson WS, Thompson TB. Small-angle X-ray scattering of apolipoprotein A-IV reveals the importance of its termini for structural stability. J Biol Chem 2013; 288:4854-66. [PMID: 23288849 PMCID: PMC3576090 DOI: 10.1074/jbc.m112.436709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Indexed: 12/25/2022] Open
Abstract
ApoA-IV is an amphipathic protein that can emulsify lipids and has been linked to protective roles against cardiovascular disease and obesity. We previously reported an x-ray crystal structure of apoA-IV that was truncated at its N and C termini. Here, we have extended this work by demonstrating that self-associated states of apoA-IV are stable and can be structurally studied using small-angle x-ray scattering. Both the full-length monomeric and dimeric forms of apoA-IV were examined, with the dimer showing an elongated rod core with two nodes at opposing ends. The monomer is roughly half the length of the dimer with a single node. Small-angle x-ray scattering visualization of several deletion mutants revealed that removal of both termini can have substantial conformational effects throughout the molecule. Additionally, the F334A point mutation, which we previously showed increases apoA-IV lipid binding, also exhibited large conformational effects on the entire dimer. Merging this study's low-resolution structural information with the crystal structure provides insight on the conformation of apoA-IV as a monomer and as a dimer and further defines that a clasp mechanism may control lipid binding and, ultimately, protein function.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jamie Morris
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Catherine Chaton
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Gunnar F. Schröder
- the Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - W. Sean Davidson
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Thomas B. Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
45
|
Sundaram M, Yao Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion. Arterioscler Thromb Vasc Biol 2012; 32:1073-8. [PMID: 22517365 DOI: 10.1161/atvbaha.111.241455] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exchangeable apolipoproteins, composed mainly of amphipathic α-helices, are associated with various plasma lipoproteins and play an important role in the metabolism of those lipoproteins to which they bind. Accumulating experimental evidence suggests that exchangeable apolipoproteins, such as apoE, apoA-IV, and apoC-III, also play a role intracellularly in facilitating lipid recruitment at different stages of very low-density lipoprotein assembly and trafficking through the endoplasmic reticulum-Golgi secretory compartments. Experimental evidence also suggests that apoA-I may become lipidated intracellularly through mechanisms dependent on or independent of ATP-binding cassette transporter A1. Thus, expression of these secretory proteins may exert an impact on hepatic triglyceride and cholesterol homeostasis during their transit from the endoplasmic reticulum through the Golgi apparatus. This review summarizes findings related to the modulation of intracellular assembly of very low-density lipoprotein and high-density lipoprotein by exchangeable apolipoproteins.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|