1
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025; 32:535-549. [PMID: 39828369 PMCID: PMC12055512 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Sahoo PK, Ravi A, Liu B, Yu J, Natarajan SK. Palmitoleate protects against lipopolysaccharide-induced inflammation and inflammasome activity. J Lipid Res 2024; 65:100672. [PMID: 39396700 PMCID: PMC11585775 DOI: 10.1016/j.jlr.2024.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases, including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases (MASLD). Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized proresolving lipid mediators, which take part in resolution of inflammation. Similarly here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone marrow-derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of proinflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of proinflammatory cytokines. We also observed that palmitoleate was able to block LPS + ATP-induced inflammasome activation mediated cleavage of procaspase 1 and prointerleukin-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1-derived macrophages and trophoblasts. Coexposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen-activated protein kinases and pretreatment of palmitoleate inhibited the activation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS + palmitate/ATP-induced inflammasome activity and cell death.
Collapse
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aiswariya Ravi
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Baolong Liu
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yang ling, Shaanxi, China
| | - Jiujiu Yu
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
L'homme L, Sermikli BP, Haas JT, Fleury S, Quemener S, Guinot V, Barreby E, Esser N, Caiazzo R, Verkindt H, Legendre B, Raverdy V, Cheval L, Paquot N, Piette J, Legrand-Poels S, Aouadi M, Pattou F, Staels B, Dombrowicz D. Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH. Nat Commun 2024; 15:7173. [PMID: 39169003 PMCID: PMC11339436 DOI: 10.1038/s41467-024-51078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Benan Pelin Sermikli
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sébastien Fleury
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Valentine Guinot
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nathalie Esser
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Robert Caiazzo
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Hélène Verkindt
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Benjamin Legendre
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Violeta Raverdy
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - François Pattou
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
4
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
5
|
Valencia R, Kranrod JW, Fang L, Soliman AM, Azer B, Clemente-Casares X, Seubert JM. Linoleic acid-derived diol 12,13-DiHOME enhances NLRP3 inflammasome activation in macrophages. FASEB J 2024; 38:e23748. [PMID: 38940767 DOI: 10.1096/fj.202301640rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua W Kranrod
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amro M Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brandon Azer
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Meneguelli TS, Kravchychyn ACP, Wendling AL, Dionísio AP, Bressan J, Martino HSD, Tako E, Hermsdorff HHM. Cashew nut ( Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study). Front Nutr 2024; 11:1407028. [PMID: 38988854 PMCID: PMC11234893 DOI: 10.3389/fnut.2024.1407028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (-500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results After 8-wk, all groups reduced significantly body fat (CT: -3.1 ± 2.8 kg; CN: -3.3 ± 2.7 kg; OL: -1.8 ± 2.6 kg), body weight (CT: -4.2 ± 3.8 kg; CN: -3.9 ± 3.1 kg; OL: -3.4 ± 2.4 kg), waist (CT: -5.1 ± 4.6 cm; CN: -3.9 ± 3.9 cm; OL: -3.7 ± 5.3 cm) and hip circumferences (CT: -2.9 ± 3.0 cm; CN: -2.7 ± 3.1 cm; OL: -2.9 ± 2.3 cm). CN-group reduced liver enzymes (AST: -3.1 ± 5.3 U/L; ALT: -6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (-11.5 ± 21.8 mg/dL) and atherogenic index (-0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: -1.0 ± 1.2 cm; OL: -0.5 ± 1.2 cm) and apo B (CN: -6.6 ± 10.7 mg/dL; OL: -7.0 ± 15.3 mg/dL). Conclusion After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively.Clinical trial registration:https://ensaiosclinicos.gov.br/rg/RBR-8xzkyp2, identifier 8xzkyp2.
Collapse
Affiliation(s)
- Talitha Silva Meneguelli
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline Lage Wendling
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Paula Dionísio
- Brazilian Agricultural Research Corporation (Embrapa) Agroindústria Tropical-CNPAT, Brasília, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Hercia Stampini Duarte Martino
- Laboratory of Experimental Nutrition, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Elad Tako
- Trace Minerals and Nutrition Lab, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
7
|
Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy 2024; 20:469-488. [PMID: 37768124 PMCID: PMC10936693 DOI: 10.1080/15548627.2023.2259732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
ABBREVIATIONS ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids; MOMP: mitochondrial outer membrane permeabilization; MLKL, mixed lineage kinase domain like pseudokinase; oxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; OxPCs: oxidized phosphatidylcholines; PUFAs: polyunsaturated fatty acids; POR: cytochrome p450 oxidoreductase; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; RIPK1: receptor interacting serine/threonine kinase 1; SPHK1: sphingosine kinase 1; SOAT1: sterol O-acyltransferase 1; SCP2: sterol carrier protein 2; SFAs: saturated fatty acids; SLC47A1: solute carrier family 47 member 1; SCD: stearoyl-CoA desaturase; VLCFA: very long chain fatty acids.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
10
|
Plonsky-Toder M, Magen D, Pollack S. Innate Immunity and CKD: Is There a Significant Association? Cells 2023; 12:2714. [PMID: 38067142 PMCID: PMC10705738 DOI: 10.3390/cells12232714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic kidney disease (CKD) constitutes a worldwide epidemic, affecting approximately 10% of the global population, and imposes significant medical, psychological, and financial burdens on society. Individuals with CKD often face elevated morbidity and mortality rates, mainly due to premature cardiovascular events. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications, including atherosclerosis, cardiovascular disease (CVD), protein-energy wasting, and the aging process. Over the past two decades, a substantial body of evidence has emerged, identifying chronic inflammation as a central element of the uremic phenotype. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications in dialysis patients, including atherosclerosis, CVD, protein-energy wasting, and the aging process. Remarkably, chronic inflammation also impacts patients with CKD who have not yet required renal replacement therapy. While extensive research has been conducted on the involvement of both the adaptive and innate immune systems in the pathogenesis of CKD-related complications, this wealth of data has not yet yielded well-established, effective treatments to counteract this ongoing pathological process. In the following review, we will examine the established components of the innate immune system known to be activated in CKD and provide an overview of the current therapeutic approaches designed to mitigate CKD-related chronic inflammation.
Collapse
Affiliation(s)
- Moran Plonsky-Toder
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Daniella Magen
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Shirley Pollack
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
11
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
12
|
Liu X, Luo P, Zhang W, Zhang S, Yang S, Hong F. Roles of pyroptosis in atherosclerosis pathogenesis. Biomed Pharmacother 2023; 166:115369. [PMID: 37643484 DOI: 10.1016/j.biopha.2023.115369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin protein-mediated membrane pore formation, cell swelling, and rapid lysis. Recent studies have suggested that pyroptosis is closely related to atherosclerosis (AS). Previous studies reported that pyroptosis involving endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs) plays an important role in the formation and development of AS. Pyroptosis not only causes local inflammation but also amplifies the inflammatory response and it aggravates plaque instability, leading to plaque rupture and thrombosis, eventually resulting in acute cardiovascular events. In this review, we clarified some novel pathways and mechanics and presented some potential drugs.
Collapse
Affiliation(s)
- Xiaohan Liu
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China
| | - Peiyi Luo
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Weiyun Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuxian Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shulong Yang
- School of basic medical sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China; Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China.
| | - Fenfang Hong
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China.
| |
Collapse
|
13
|
Gelbach PE, Finley SD. Genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. iScience 2023; 26:107569. [PMID: 37664588 PMCID: PMC10474475 DOI: 10.1016/j.isci.2023.107569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment (TME), which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the TME. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
15
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
16
|
Minne X, Mbuya Malaïka Mutombo J, Chandad F, Fanganiello RD, Houde VP. Porphyromonas gingivalis under palmitate-induced obesogenic microenvironment modulates the inflammatory transcriptional signature of macrophage-like cells. PLoS One 2023; 18:e0288009. [PMID: 37384642 PMCID: PMC10309636 DOI: 10.1371/journal.pone.0288009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Metabolic diseases and low-grade chronic inflammation are interconnected: obese persons are at higher risk of developing periodontitis. However, the molecular mechanisms involved in the development and progression of periodontitis in an obesogenic microenvironment in response to periodontopathogens are still lacking. This study aims to investigate the combined effects of palmitate and Porphyromonas gingivalis on the secretion of pro-inflammatory cytokines and on transcriptional landscape modifications in macrophage-like cells. U937 macrophage-like cells were treated with palmitate and stimulated with P. gingivalis for 24h. Cytokines IL-1β, TNF-α and IL-6 were measured by ELISA in the culture medium and cell extracted RNA was submitted to a microarray analysis followed by Gene Ontology analyses. P. gingivalis, in presence of palmitate, potentiated IL-1β and TNF-α secretion in comparison to palmitate alone. Gene Ontology analyses also revealed that the combination palmitate-P. gingivalis potentiated the number of gene molecular functions implicated in the regulation of immune and inflammatory pathways compared to macrophages treated with palmitate alone. Our results provide the first comprehensive mapping of gene interconnections between palmitate and P. gingivalis during inflammatory responses in macrophage-like cells. These data highlight the importance of considering systemic conditions, specifically obesogenic microenvironment, in the management of periodontal disease in obese patients.
Collapse
Affiliation(s)
- Xavier Minne
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | | | - Fatiha Chandad
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | - Roberto D. Fanganiello
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | - Vanessa P. Houde
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Abstract
The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1β (interleukin 1β) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1β in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1β might be best employed in clinical settings involving increased inflammasome activation.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York (A.R.T.)
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
18
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
19
|
Gelbach PE, Finley SD. Ensemble-based genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.532000. [PMID: 36993493 PMCID: PMC10052244 DOI: 10.1101/2023.03.09.532000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
1Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment, which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the tumor microenvironment. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Crosstalk between fatty acid metabolism and tumour-associated macrophages in cancer progression. Biomedicine (Taipei) 2023; 12:9-19. [PMID: 36816174 PMCID: PMC9910230 DOI: 10.37796/2211-8039.1381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Over the last few decades, cancer has been regarded as an independent and self sustaining progression. The earliest hallmarks of cancer comprise of sustaining proliferative signalling, avoiding growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Nonetheless, two emerging hallmarks are being described: aberrant metabolic pathways and evasion of immune destruction. Changes in tumour cell metabolism are not restricted to tumour cells alone; the products of the altered metabolism have a direct impact on the activity of immune cells inside the tumour microenvironment, particularly tumour-associated macrophages (TAMs). The complicated process of cancer growth is orchestrated by metabolic changes dictating the tight mutual connection between these cells. Here, we discuss approaches to exploit the interaction of cancer cells' abnormal metabolic activity and TAMs. We also describe ways to exploit it by reprogramming fatty acid metabolism via TAMs.
Collapse
|
21
|
Lu ZY, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Kuang SY, Li SW, Tang L, Zhang L, Mi HF, Zhou XQ, Feng L. Cellular antioxidant mechanism of mannan-oligosaccharides involving in enhancing flesh quality in grass carp (Ctenopharyngodon idella). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1172-1182. [PMID: 36085562 DOI: 10.1002/jsfa.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Lu Zhang
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
22
|
Huang S, Li H, Xu J, Zhou H, Seeram NP, Ma H, Gu Q. Chemical constituents of industrial hemp roots and their anti-inflammatory activities. J Cannabis Res 2023; 5:1. [PMID: 36642726 PMCID: PMC9841654 DOI: 10.1186/s42238-022-00168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Although the chemical constituents of the aerial parts of Cannabis have been extensively studied, phytochemicals of Cannabis roots are not well characterized. Herein, we investigated the chemical constituents of industrial hemp (Cannabis sativa L.) roots and evaluated the anti-inflammatory activities of phytochemicals isolated from the hemp roots extract. METHODS An ethyl acetate extract of hemp roots was subjected to a combination of chromatographic columns to isolate phytochemicals. The chemical structures of the isolates were elucidated based on spectroscopic analyses (by nuclear magnetic resonance and mass spectrometry). The anti-inflammatory effects of phytochemicals from hemp roots were evaluated in an anti-inflammasome assay using human monocyte THP-1 cells. RESULTS Phytochemical investigation of hemp roots extract led to the identification of 32 structurally diverse compounds including six cannabinoids (1-6), three phytosterols (26-28), four triterpenoids (22-25), five lignans (17-21), and 10 hydroxyl contained compounds (7-16), three fatty acids (29-31), and an unsaturated chain hydrocarbon (32). Compounds 14-21, 23, 27, and 32 were identified from the Cannabis species for the first time. Cannabinoids (1-5) reduced the level of cytokine tumor necrosis-alpha (by 38.2, 58.4, 47.7, 52.2, and 56.1%, respectively) and 2 and 5 also decreased the interleukin-1β production (by 42.2 and 92.4%, respectively) in a cell-based inflammasome model. In addition, non-cannabinoids including 11, 13, 20, 25, 29, and 32 also showed selective inhibition of interleukin-1β production (by 23.7, 22.5, 25.6, 78.0, 24.1, 46.6, and 25.4%, respectively) in THP-1 cells. CONCLUSION The phytochemical constituent of a hemp roots extract was characterized and compounds from hemp roots exerted promising anti-inflammatory effects.
Collapse
Affiliation(s)
- Shijie Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huifang Li
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Jun Xu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huihao Zhou
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Navindra P. Seeram
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Hang Ma
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Qiong Gu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| |
Collapse
|
23
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
24
|
Herrera-Martínez AD, Herrero-Aguayo V, Pérez-Gómez JM, Gahete MD, Luque RM. Inflammasomes: Cause or consequence of obesity-associated comorbidities in humans. Obesity (Silver Spring) 2022; 30:2351-2362. [PMID: 36415999 DOI: 10.1002/oby.23581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Inflammasomes are multiprotein intracellular complexes composed of innate immune system receptors and sensors; they activate the inflammatory cascade in response to infectious microbes and/or molecules derived from host proteins. Because of cytokine secretion, inflammasomes can induce amplified systemic responses, its dysregulation can exacerbate symptoms in infectious diseases, and it has been related to the development of autoimmune diseases, inflammatory disorders, and even cancer. Obesity is associated with a chronic low-grade inflammation, in which circulating proinflammatory cytokines are elevated. Some publications describe changes in inflammation markers as a consequence of obesity, but others suggest that chronic inflammation might cause obesity (e.g., C-reactive protein): these assumptions reflect the difficulty of identifying the appropriate role of inflammation as cause or consequence of obesity and its related complications. Obesity is recognized as a clinical risk factor for developing cardiovascular diseases including atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. Changes in the expression of inflammasomes are described in some of these obesity-related complications, and moreover, its modulation might exert a beneficial effect in some cases. Despite some contradictory results, most publications suggest a promising clinical effect based on in vitro and in vivo experiments. In this review, we summarized recent publications about inflammasome dysregulation in humans and its relationship with obesity-related comorbidities.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| |
Collapse
|
25
|
Olona A, Leishman S, Anand PK. The NLRP3 inflammasome: regulation by metabolic signals. Trends Immunol 2022; 43:978-989. [PMID: 36371361 DOI: 10.1016/j.it.2022.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.
Collapse
Affiliation(s)
- Antoni Olona
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK; Program in Cardiovascular and Metabolic Disorders, and Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Stuart Leishman
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
26
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
27
|
Li H, Guan Y, Liang B, Ding P, Hou X, Wei W, Ma Y. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol 2022; 928:175091. [PMID: 35714692 DOI: 10.1016/j.ejphar.2022.175091] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
NOD-like receptor protein 3 (NLRP3), an important intracellular pattern recognition receptor, is a component of the NLRP3 inflammasome along with apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and pro-caspase-1. Previous studies have shown that dysregulation of NLRP3 inflammasome may be associated with several human diseases, and therefore blocking NLRP3 inflammasome activation may represent a therapeutic strategy for various diseases. MCC950 is a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. In recent years, research on MCC950 has expanded; its targets are gradually being elucidated, and its metabolism and toxicity have been a focus of study. Preclinical research of MCC950 has yielded promising findings, and MCC950 has shown good efficacy in the treatment of autoimmune diseases, cardiovascular diseases, metabolic diseases and other diseases. Furthermore, clinical trials of MCC950 and other inhibitors of NLRP3 inflammasome have also been conducted. In this review, we discuss the drug targets, metabolism, toxicity and preclinical and clinical research advances of MCC950. We further discuss the clinical therapeutic potential of MCC950 to provide insights for the further study and application of MCC950.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui, 230032, China
| | - Peng Ding
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, Anhui, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
28
|
Gencturk E, Kasim M, Morova B, Kiraz A, Ulgen KO. Understanding the Link between Inflammasome and Apoptosis through the Response of THP-1 Cells against Drugs Using Droplet-Based Microfluidics. ACS OMEGA 2022; 7:16323-16332. [PMID: 35601322 PMCID: PMC9118214 DOI: 10.1021/acsomega.1c06569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/20/2022] [Indexed: 05/09/2023]
Abstract
Droplet-based microfluidic devices are used to investigate monocytic THP-1 cells in response to drug administration. Consistent and reproducible droplets are created, each of which acts as a bioreactor to carry out single cell experiments with minimized contamination and live cell tracking under an inverted fluorescence microscope for more than 2 days. Here, the effects of three different drugs (temsirolimus, rifabutin, and BAY 11-7082) on THP-1 are examined and the results are analyzed in the context of the inflammasome and apoptosis relationship. The ASC adaptor gene tagged with GFP is monitored as the inflammasome reporter. Thus, a systematic way is presented for deciphering cell-to-cell heterogeneity, which is an important issue in cancer treatment. The drug temsirolimus, which has effects of disrupting the mTOR pathway and triggering apoptosis in tumor cells, causes THP-1 cells to express ASC and to be involved in apoptosis. Treatment with rifabutin, which inhibits proliferation and initiates apoptosis in cells, affects ASC expression by first increasing and then decreasing it. CASP-3, which has a role in apoptosis and is directly related to ASC, has an increasing level in inflammasome conditioning. Thus, the cell under the effect of rifabutin might be faced with programmed cell death faster. The drug BAY 11-7082, which is responsible for NFκB inhibition, shows similar results to temsirolimus with more than 60% of cells having high fluorescence intensity (ASC expression). The microfluidic platform presented here offers strong potential for studying newly developed small-molecule inhibitors for personalized/precision medicine.
Collapse
Affiliation(s)
- Elif Gencturk
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Muge Kasim
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Berna Morova
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| |
Collapse
|
29
|
Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. J Inflamm Res 2022; 14:7143-7172. [PMID: 34992411 PMCID: PMC8711145 DOI: 10.2147/jir.s344730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an intricate biological response of body tissues to detrimental stimuli. Cardiovascular disease (CVD) is the leading cause of death worldwide, and inflammation is well documented to play a role in the development of CVD, especially atherosclerosis (AS). Emerging evidence suggests that activation of the NOD-like receptor (NLR) family and the pyridine-containing domain 3 (NLRP3) inflammasome is instrumental in inflammation and may result in AS. The NLRP3 inflammasome acts as a molecular platform that triggers the activation of caspase-1 and the cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D (GSDMD). The cleaved GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and the discharge of intracellular pro-inflammatory factors. Hence, the NLRP3 inflammasome is a promising target for anti-inflammatory therapy against AS. In this review, we systematically summarized the current understanding of the activation mechanism of NLRP3 inflammasome, and the pathological changes in AS involving NLRP3. We also discussed potential therapeutic strategies targeting NLRP3 inflammasome to combat AS.
Collapse
Affiliation(s)
- Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Santuan Xie
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
30
|
Macrophage-Mediated Immune Responses: From Fatty Acids to Oxylipins. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010152. [PMID: 35011385 PMCID: PMC8746402 DOI: 10.3390/molecules27010152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023]
Abstract
Macrophages have diverse functions in the pathogenesis, resolution, and repair of inflammatory processes. Elegant studies have elucidated the metabolomic and transcriptomic profiles of activated macrophages. However, the versatility of macrophage responses in inflammation is likely due, at least in part, to their ability to rearrange their repertoire of bioactive lipids, including fatty acids and oxylipins. This review will describe the fatty acids and oxylipins generated by macrophages and their role in type 1 and type 2 immune responses. We will highlight lipidomic studies that have shaped the current understanding of the role of lipids in macrophage polarization.
Collapse
|
31
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
32
|
Nurmi K, Niemi K, Kareinen I, Silventoinen K, Lorey MB, Chen Y, Kouri VP, Parantainen J, Juutilainen T, Öörni K, Kovanen PT, Nordström D, Matikainen S, Eklund KK. Native and oxidised lipoproteins negatively regulate the serum amyloid A-induced NLRP3 inflammasome activation in human macrophages. Clin Transl Immunology 2021; 10:e1323. [PMID: 34377468 PMCID: PMC8329955 DOI: 10.1002/cti2.1323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023] Open
Abstract
Objectives The NLRP3 inflammasome plays a key role in arterial wall inflammation. In this study, we elucidated the role of serum lipoproteins in the regulation of NLRP3 inflammasome activation by serum amyloid A (SAA) and other inflammasome activators. Methods The effect of lipoproteins on the NLRP3 inflammasome activation was studied in primary human macrophages and THP‐1 macrophages. The effect of oxidised low‐density lipoprotein (LDL) was examined in an in vivo mouse model of SAA‐induced peritoneal inflammation. Results Native and oxidised high‐density lipoproteins (HDL3) and LDLs inhibited the interaction of SAA with TLR4. HDL3 and LDL inhibited the secretion of interleukin (IL)‐1β and tumor necrosis factor by reducing their transcription. Oxidised forms of these lipoproteins reduced the secretion of mature IL‐1β also by inhibiting the activation of NLRP3 inflammasome induced by SAA, ATP, nigericin and monosodium urate crystals. Specifically, oxidised LDL was found to inhibit the inflammasome complex formation. No cellular uptake of lipoproteins was required, nor intact lipoprotein particles for the inhibitory effect, as the lipid fraction of oxidised LDL was sufficient. The inhibition of NLRP3 inflammasome activation by oxidised LDL was partially dependent on autophagy. Finally, oxidised LDL inhibited the SAA‐induced peritoneal inflammation and IL‐1β secretion in vivo. Conclusions These findings reveal that both HDL3 and LDL inhibit the proinflammatory activity of SAA and this inhibition is further enhanced by lipoprotein oxidation. Thus, lipoproteins possess major anti‐inflammatory functions that hinder the NLRP3 inflammasome‐activating signals, particularly those exerted by SAA, which has important implications in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Katariina Nurmi
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | | | | | - Kristiina Silventoinen
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | - Martina B Lorey
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland.,Wihuri Research Institute Helsinki Finland
| | - Yan Chen
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | - Vesa-Petteri Kouri
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | - Jukka Parantainen
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | - Timo Juutilainen
- Division of Orthopedics Department of Surgery Helsinki University Central Hospital Vantaa Finland
| | | | | | - Dan Nordström
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland.,Internal Medicine and Rehabilitation University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Sampsa Matikainen
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland
| | - Kari K Eklund
- Helsinki Rheumatic Diseases and Inflammation Research Group Translational Immunology Research Program University of Helsinki Helsinki University Clinicum Helsinki Finland.,Division of Rheumatology Department of Medicine Helsinki University Hospital Helsinki Finland.,Orton Orthopaedic Hospital Helsinki Finland
| |
Collapse
|
33
|
Liang JJ, Fraser IDC, Bryant CE. Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends Immunol 2021; 42:807-823. [PMID: 34334306 DOI: 10.1016/j.it.2021.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
Inflammation driven by the NLRP3 inflammasome in macrophages is an important contributor to chronic metabolic diseases that affect growing numbers of individuals. Many of these diseases involve the pathologic accumulation of endogenous lipids or their oxidation products, which can activate NLRP3. Other endogenous lipids, however, can inhibit the activation of NLRP3. The intracellular mechanisms by which these lipids modulate NLRP3 activity are now being identified. This review discusses emerging evidence suggesting that organelle stress, particularly involving mitochondria, lysosomes, and the endoplasmic reticulum, may be key in lipid-induced modification of NLRP3 inflammasome activity.
Collapse
Affiliation(s)
- Jonathan J Liang
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med (Berl) 2021; 99:1497-1509. [PMID: 34312684 DOI: 10.1007/s00109-021-02117-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis is important for maintaining a healthy lifespan. Lipid metabolism is particularly necessary for the maintenance of metabolic energy sources and their storage, and the structure and function of cell membranes, as well as for the regulation of nutrition through lipogenesis, lipolysis, and lipophagy. Dysfunctional lipid metabolism leads to the development of metabolic disorders, such as atherosclerosis, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Furthermore, dyslipidaemia causes inflammatory responses and foam cell formation. Mechanistic target of rapamycin (mTOR) signalling is a key regulator of diverse cellular processes, including cell metabolism and cell fate. mTOR complex 1 (mTORC1) is involved in lipid metabolism and immune responses in the body. Therefore, the mTORC1 signalling pathway has been suggested as a potential therapeutic target for the treatment of metabolic disorders. In this review, we focus on the roles of mTORC1 in lipid metabolism and inflammation, and present current evidence on its involvement in the development and progression of metabolic disorders.
Collapse
|
35
|
Arena R, Myers J, Kaminsky LA, Williams M, Sabbahi A, Popovic D, Axtell R, Faghy MA, Hills AP, Olivares Olivares SL, Lopez M, Pronk NP, Laddu D, Babu AS, Josephson R, Whitsel LP, Severin R, Christle JW, Dourado VZ, Niebauer J, Savage P, Austford LD, Lavie CJ. Current Activities Centered on Healthy Living and Recommendations for the Future: A Position Statement from the HL-PIVOT Network. Curr Probl Cardiol 2021; 46:100823. [PMID: 33789171 PMCID: PMC9587486 DOI: 10.1016/j.cpcardiol.2021.100823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
We continue to increase our cognizance and recognition of the importance of healthy living (HL) behaviors and HL medicine (HLM) to prevent and treat chronic disease. The continually unfolding events precipitated by the coronavirus disease 2019 (COVID-19) pandemic have further highlighted the importance of HL behaviors, as indicated by the characteristics of those who have been hospitalized and died from this viral infection. There has already been recognition that leading a healthy lifestyle, prior to the COVID-19 pandemic, may have a substantial protective effect in those who become infected with the virus. Now more than ever, HL behaviors and HLM are essential and must be promoted with a renewed vigor across the globe. In response to the rapidly evolving world since the beginning of the COVID-19 pandemic, and the clear need to change lifestyle behaviors to promote human resilience and quality of life, the HL for Pandemic Event Protection (HL-PIVOT) network was established. The 4 major areas of focus for the network are: (1) knowledge discovery and dissemination; (2) education; (3) policy; (4) implementation. This HL-PIVOT network position statement provides a current synopsis of the major focus areas of the network, including leading research in the field of HL behaviors and HLM, examples of best practices in education, policy, and implementation, and recommendations for the future.
Collapse
Key Words
- aca, affordable care act
- bmi, body mass index
- copd, chronic obstructive pulmonary disease
- covid-19, coronavirus disease 2019
- crf, cardiorespiratory fitness
- hcps, healthcare professionals
- hl, healthy living
- hlm, healthy living medicine
- hl-pivot, healthy living for pandemic event protection
- mets, metabolic equivalents
- pa, physical activity
- pafit, physical activity and fitness
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- us, united states
- vo2, oxygen consumption
- who, world health organization
Collapse
Affiliation(s)
- Ross Arena
- Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL; Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL.
| | - Jonathan Myers
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; VA Palo Alto Health Care System and Stanford University, Palo Alto, CA
| | - Leonard A Kaminsky
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Ball State University, Muncie, IN
| | - Mark Williams
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Creighton University, Omaha, NE
| | - Ahmad Sabbahi
- Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL; Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL
| | - Dejana Popovic
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Clinic for Cardiology, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Robert Axtell
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Southern Connecticut State University, New Haven, CT
| | - Mark A Faghy
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Human Research Centre, University of Derby, Derby, United Kingdom
| | - Andrew P Hills
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; School of Health Sciences, University of Tasmania, Tasmania, Australia
| | - Silvia Lizett Olivares Olivares
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Mildred Lopez
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Nicolaas P Pronk
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; HealthPartners Institute, Bloomington, Minnesota, and Harvard TH Chan School of Public Health, Boston, MA
| | - Deepika Laddu
- Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL; Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL
| | - Abraham Samuel Babu
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Richard Josephson
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH
| | - Laurie P Whitsel
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL
| | - Rich Severin
- Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL; Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL
| | - Jeffrey W Christle
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Stanford University, Stanford, CA
| | - Victor Zuniga Dourado
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Josef Niebauer
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University and Ludwig Boltzmann Institute for Digital Health and Prevention, Salzburg, Austria
| | - Patrick Savage
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; University of Vermont Medical Center, Cardiac Rehabilitation Program, South Burlington, VT
| | - Leslie D Austford
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; TotalCardiology Research Network, and TotalCardiologyTM, Calgary, Alberta, Canada
| | - Carl J Lavie
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL; Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-University of Queensland School of Medicine, New Orleans, LA
| |
Collapse
|
36
|
NLRP3 as a sensor of metabolism gone awry. Curr Opin Biotechnol 2021; 68:300-309. [PMID: 33862489 DOI: 10.1016/j.copbio.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The NLRP3 inflammasome is an important player in innate immunity and pathogenic inflammation. Numerous studies have implicated it in sensing endogenous danger signals, yet the precise mechanisms remain unknown. Here, we review the current knowledge on the organismal and cellular metabolic triggers engaging NLRP3, and the mechanisms involved in integrating the diverse signals.
Collapse
|
37
|
Pahwa R, Singh A, Adams-Huet B, Devaraj S, Jialal I. Increased inflammasome activity in subcutaneous adipose tissue of patients with metabolic syndrome. Diabetes Metab Res Rev 2021; 37:e3383. [PMID: 32652811 DOI: 10.1002/dmrr.3383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
AIMS The metabolic syndrome (MetS) is an inflammatory disorder associated with an increased risk for diabetes and atherosclerotic cardiovascular disease (ASCVD). Studies in patients and animal models of obesity and diabetes have shown increased NOD-like receptor family pyrin domain containing 3 (NLPR3) inflammasome activity. However, there is scanty data on the activity of the NLRP3 inflammasome in patients with nascent MetS. The aim of this study was to determine the status of the inflammasome in subcutaneous adipose tissue (SAT) of patients with nascent MetS without concomitant diabetes, ASCVD and smoking. MATERIALS AND METHODS Patients with nascent MetS and controls were recruited from Sacramento County. Fasting blood samples were collected for biomediators of inflammation and SAT was obtained by biopsy for immunohistochemical (IHC) staining for caspase 1, IL-1β and IL-18. RESULTS Caspase1, a marker of inflammasome activity and its downstream mediators IL-1β and IL-18 were significantly increased in SAT of patients with MetS compared to controls. Significant positive correlations of caspase 1 were obtained with certain cardio-metabolic features, biomediators of inflammation and markers of angiogenesis and fibrosis in SAT. Both mast cell and eosinophil abundance but not macrophage density correlated with caspase1. CONCLUSIONS We make the novel observation that the SAT of patients with nascent MetS displays increased NLRP3 inflammasome activity manifest by increased caspase 1 in SAT and this may contribute to increased insulin resistance, inflammation and SAT fibrosis in these patients.
Collapse
Affiliation(s)
- Roma Pahwa
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anand Singh
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Beverley Adams-Huet
- Centers for Biostatistics and Clinical Science, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sridevi Devaraj
- Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
38
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021; 10:314. [PMID: 33546399 PMCID: PMC7913585 DOI: 10.3390/cells10020314] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for 90-95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dysfunction, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed. The more that is known about inflammasomes, the higher the chances to create new, effective therapies for patients suffering from inflammatory diseases. This may offer potential novel therapeutic perspectives in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Ilona M. Gora
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (A.C.); (P.L.)
| | | | | |
Collapse
|
40
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Regulation of the NLRP3 Inflammasome by Post-Translational Modifications and Small Molecules. Front Immunol 2021; 11:618231. [PMID: 33603747 PMCID: PMC7884467 DOI: 10.3389/fimmu.2020.618231] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a host protection mechanism that eliminates invasive pathogens from the body. However, chronic inflammation, which occurs repeatedly and continuously over a long period, can directly damage tissues and cause various inflammatory and autoimmune diseases. Pattern recognition receptors (PRRs) respond to exogenous infectious agents called pathogen-associated molecular patterns and endogenous danger signals called danger-associated molecular patterns. Among PRRs, recent advancements in studies of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome have established its significant contribution to the pathology of various inflammatory diseases, including metabolic disorders, immune diseases, cardiovascular diseases, and cancer. The regulation of NLRP3 activation is now considered to be important for the development of potential therapeutic strategies. To this end, there is a need to elucidate the regulatory mechanism of NLRP3 inflammasome activation by multiple signaling pathways, post-translational modifications, and cellular organelles. In this review, we discuss the intracellular signaling events, post-translational modifications, small molecules, and phytochemicals participating in the regulation of NLRP3 inflammasome activation. Understanding how intracellular events and small molecule inhibitors regulate NLRP3 inflammasome activation will provide crucial information for elucidating the associated host defense mechanism and the development of efficient therapeutic strategies for chronic diseases.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
41
|
Davanso MR, Crisma AR, Braga TT, Masi LN, do Amaral CL, Leal VNC, de Lima DS, Patente TA, Barbuto JA, Corrêa-Giannella ML, Lauterbach M, Kolbe CC, Latz E, Camara NOS, Pontillo A, Curi R. Macrophage inflammatory state in Type 1 diabetes: triggered by NLRP3/iNOS pathway and attenuated by docosahexaenoic acid. Clin Sci (Lond) 2021; 135:19-34. [PMID: 33399849 DOI: 10.1042/cs20201348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic β-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1β protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1β secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.
Collapse
MESH Headings
- Adult
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Docosahexaenoic Acids/pharmacology
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/enzymology
- Inflammation/immunology
- Inflammation Mediators/metabolism
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Middle Aged
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Pregnancy
- Signal Transduction
- Streptozocin
- Mice
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Physiology and Cell Signalling, Department of Clinical Analyses, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Tárcio Teodoro Braga
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
- Department of Basic Pathology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Laureane Nunes Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
| | - Cátia Lira do Amaral
- Campus of Exact Sciences and Technology, State University of Goias, Anapolis, Goias, Brazil
| | - Vinícius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Thiago Andrade Patente
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - José Alexandre Barbuto
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Maria L Corrêa-Giannella
- Laboratory of Carbohydrates and Radioimmunoassay, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Post-graduation Program of Medicine, UNINOVE, Sao Paulo, Brazil
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Carl Christian Kolbe
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Niels Olsen Saraiva Camara
- Laboratory of Immunology of Transplantation, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
- Butantan Institute, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
42
|
Saturated Fatty Acids Promote GDF15 Expression in Human Macrophages through the PERK/eIF2/CHOP Signaling Pathway. Nutrients 2020; 12:nu12123771. [PMID: 33302552 PMCID: PMC7764024 DOI: 10.3390/nu12123771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Abstract
Growth differentiation factor-15 (GDF-15) and its receptor GFRAL are both involved in the development of obesity and insulin resistance. Plasmatic GDF-15 level increases with obesity and is positively associated with disease progression. Despite macrophages have been recently suggested as a key source of GDF-15 in obesity, little is known about the regulation of GDF-15 in these cells. In the present work, we sought for potential pathophysiological activators of GDF15 expression in human macrophages and identified saturated fatty acids (SFAs) as strong inducers of GDF15 expression and secretion. SFAs increase GDF15 expression through the induction of an ER stress and the activation of the PERK/eIF2/CHOP signaling pathway in both PMA-differentiated THP-1 cells and in primary monocyte-derived macrophages. The transcription factor CHOP directly binds to the GDF15 promoter region and regulates GDF15 expression. Unlike SFAs, unsaturated fatty acids do not promote GDF15 expression and rather inhibit both SFA-induced GDF15 expression and ER stress. These results suggest that free fatty acids may be involved in the control of GDF-15 and provide new molecular insights about how diet and lipid metabolism may regulate the development of obesity and T2D.
Collapse
|
43
|
Zhou F, Li C, Zhang SY. NLRP3 inflammasome: a new therapeutic target for high-risk reproductive disorders? Chin Med J (Engl) 2020; 134:20-27. [PMID: 33395071 PMCID: PMC7862815 DOI: 10.1097/cm9.0000000000001214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT The NOD-like receptor protein 3 (NLRP3) inflammasome is a key regulator of the host's immune response, and many immune and metabolic disorders are linked to its activation. This review aimed to investigate and clarify the relationship between this inflammasome and high-risk reproductive disorders. Papers cited here were retrieved from PubMed up to August 2020 using the keywords "NLRP3" or "NALP3", "caspase-1", "endometriosis", "gestational diabetes", "interleukin (IL)-18", "IL-1β", "pre-eclampsia (PE)", "preterm birth", "polycystic ovarian syndrome (PCOS)", "recurrent spontaneous abortion (RSA)", and combinations of these terms. The results show that NLRP3 inflammasome is associated with various high-risk reproductive disorders and many inflammatory factors are secreted during its activation, such as IL-1β induced during the development of endometriosis. PCOS is also associated with activation of the NLRP3 inflammasome, especially in overweight patients. It also participates in the pathogenesis of RSA and is activated in fetal membranes before preterm birth. The placentas of pregnant women with PE show higher expression of the NLRP3 inflammasome, and gestational diabetes mellitus occurs simultaneously with its activation. Current evidence suggest that the NLRP3 inflammasome plays an important role in female reproductive disorders. New treatment and management methods targeting it might help reduce the incidence of such disorders and improve neonatal outcomes.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | | | | |
Collapse
|
44
|
Kumar SS, Manasa V, Tumaney AW, B K B, Chaudhari SR, Giridhar P. Chemical composition, nutraceuticals characterization, NMR confirmation of squalene and antioxidant activities of Basella rubra L. seed oil. RSC Adv 2020; 10:31863-31873. [PMID: 35518177 PMCID: PMC9056543 DOI: 10.1039/d0ra06048h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
Basella rubra (Malabar spinach) is a commonly consumed green leafy vegetable in southern parts of India. The chemical composition, nutraceuticals characterization, squalene Nuclear Magnetic Resonance (NMR), in vitro antioxidant activities and cytotoxicity of B. rubra seed oil (33.08%) was investigated. Gas chromatography-mass spectrometry (GC/MS) analysis revealed the presence of palmitic (27.21 μmol%), oleic (33.83 μmol%) and linoleic acid (26.02 μmol%) with a total of 64.38 μmol% unsaturated fatty acids respectively. HPLC nutraceutical characterization showed a major constituent of gallic acid (11.23 mg%), γ-tocopherols (17.74 mg%), cycloartenylferulate (1.7 mg%), and squalene (1 g%). Squalene was further recovered (98%), purified (99.9%), and confirmed through 1H and 13C NMR. The in vitro antioxidant activities recorded by using 2,2-diphenyl-1-picrylhydrazyl (EC50 = 6 mg mL-1), ferric reducing antioxidant power (361.85 mM of Trolox Eq./100 g) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (EC50 = 56.19 mg mL-1) scavenging activity. In vitro cytotoxicity assessed on 3T3-L1 showed good cell survival without any toxicity (upto 400 μg mL-1). B. rubra seed oil has proven nutraceuticals and antioxidant potentials with least toxicity which can be recommended for functional foods applications.
Collapse
Affiliation(s)
- Sandopu Sravan Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute Mysore-570020 India
| | - Vallamkondu Manasa
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute Mysore-570020 India
| | - Ajay W Tumaney
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute Mysore-570020 India
| | - Bettadaiah B K
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Spice and Flavour Sciences, CSIR - Central Food Technological Research Institute Mysore-570020 India
| | - Sachin Rama Chaudhari
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Spice and Flavour Sciences, CSIR - Central Food Technological Research Institute Mysore-570020 India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute Mysore-570020 India
| |
Collapse
|
45
|
Curley S, Gall J, Byrne R, Yvan‐Charvet L, McGillicuddy FC. Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Mol Nutr Food Res 2020; 65:e1900482. [DOI: 10.1002/mnfr.201900482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Curley
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Julie Gall
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Rachel Byrne
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Laurent Yvan‐Charvet
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Fiona C. McGillicuddy
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
46
|
Claycombe-Larson KJ, Alvine T, Wu D, Kalupahana NS, Moustaid-Moussa N, Roemmich JN. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr 2020; 150:1693-1704. [PMID: 32271912 DOI: 10.1093/jn/nxaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type-specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.
Collapse
Affiliation(s)
- Kate J Claycombe-Larson
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Travis Alvine
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Dayong Wu
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Naima Moustaid-Moussa
- Nutritional Science Department and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - James N Roemmich
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| |
Collapse
|
47
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies. Adv Nutr 2020; 11:864-877. [PMID: 32135008 PMCID: PMC7360458 DOI: 10.1093/advances/nmaa013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with an increased risk of several major noncommunicable diseases, and is an important public health concern globally. Dietary fat content is a major contributor to the increase in global obesity rates. Changes in dietary habits, such as the quality of fatty acids in the diet, are proposed to prevent obesity and its metabolic complications. In recent years, a number of studies have found that oleic acid (OA), the most common MUFA in daily nutrition, has protective effects against human disease. Importantly, there is emerging evidence indicating the beneficial effects of OA in regulating body weight. Accordingly, the objective of this systematic review was to investigate the effects of diets enriched in monounsaturated OA on the management and prevention of obesity, emphasizing possible mechanisms of action of OA in energy homeostasis. Searches were performed in PubMed/MEDLINE, ScienceDirect, Scopus, ProQuest, and Google Scholar databases for clinical trials that examined the effects of diets rich in OA on obesity. Of 821 full-text articles assessed, 28 clinical trials were included in the present study. According to the studies examined in this review, diets enriched in OA can influence fat balance, body weight, and possibly energy expenditure. Importantly, abdominal fat and central obesity can be reduced following consumption of high-OA-containing meals. Mechanistically, OA-rich diets can be involved in the regulation of food intake, body mass, and energy expenditure by stimulating AMP-activated protein kinase signaling. Other proposed mechanisms include the prevention of the nucleotide-binding oligomerization domain-like receptor 3/caspase-1 inflammasome pathway, the induction of oleoylethanolamide synthesis, and possibly the downregulation of stearoyl-CoA desaturase 1 activity. In summary, current findings lend support to advice not restricting consumption of OA-rich meals so as to maintain a healthy body weight.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
48
|
Gioia C, Lucchino B, Tarsitano MG, Iannuccelli C, Di Franco M. Dietary Habits and Nutrition in Rheumatoid Arthritis: Can Diet Influence Disease Development and Clinical Manifestations? Nutrients 2020; 12:nu12051456. [PMID: 32443535 PMCID: PMC7284442 DOI: 10.3390/nu12051456] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic, autoimmune disease characterized by joint involvement, with progressive cartilage and bone destruction. Genetic and environmental factors determine RA susceptibility. In recent years, an increasing number of studies suggested that diet has a central role in disease risk and progression. Several nutrients, such as polyunsaturated fatty acids, present anti-inflammatory and antioxidant properties, featuring a protective role for RA development, while others such as red meat and salt have a harmful effect. Gut microbiota alteration and body composition modifications are indirect mechanisms of how diet influences RA onset and progression. Possible protective effects of some dietary patterns and supplements, such as the Mediterranean Diet (MD), vitamin D and probiotics, could be a possible future adjunctive therapy to standard RA treatment. Therefore, a healthy lifestyle and nutrition have to be encouraged in patients with RA.
Collapse
Affiliation(s)
- Chiara Gioia
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| | - Bruno Lucchino
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
- Correspondence: ; Tel.: +39-06-4997-4635
| | | | - Cristina Iannuccelli
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| | - Manuela Di Franco
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| |
Collapse
|
49
|
Sano M, Shimazaki S, Kaneko Y, Karasawa T, Takahashi M, Ohkuchi A, Takahashi H, Kurosawa A, Torii Y, Iwata H, Kuwayama T, Shirasuna K. Palmitic acid activates NLRP3 inflammasome and induces placental inflammation during pregnancy in mice. J Reprod Dev 2020; 66:241-248. [PMID: 32101829 PMCID: PMC7297640 DOI: 10.1262/jrd.2020-007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity is one of the major risk factors for pregnancy complications and is associated with low-grade chronic systemic inflammation due to higher levels of pro-inflammatory cytokines such as interleukin (IL)-1β. Pregnant women with obesity have abnormal lipid profiles, characterized by higher levels of free fatty acids, especially palmitic acid (PA). Previously, we reported that PA stimulated IL-1β secretion via activation of NLRP3 inflammasome in human placental cells. These observations led us to hypothesize that higher levels of PA induce NLRP3 inflammasome activation and placental inflammation, resulting in pregnancy complications. However, the effects of PA on NLRP3 inflammasome during pregnancy in vivo remain unclear. Therefore, PA solutions were administered intravenously into pregnant mice on day 12 of gestation. Maternal body weight was significantly decreased and absorption rates were significantly higher in PA-injected mice. The administration of PA significantly increased IL-1β protein and the mRNA expression of NLRP3 inflammasome components (NLRP3, ASC, and caspase-1) within the placenta. In murine placental cell culture, PA significantly stimulated IL-1β secretion, and this secretion was suppressed by a specific NLRP3 inhibitor (MCC950). Simultaneously, the number of macrophages/monocytes and neutrophils, together with the mRNA expression of these chemokines increased significantly in the placentas of PA-treated mice. Treatment with PA induced ASC assembling and IL-1β secretion in macrophages, and this PA-induced IL-1β secretion was significantly suppressed in NLRP3-knockdown macrophages. These results indicate that transient higher levels of PA exposure in pregnant mice activates NLRP3 inflammasome and induces placental inflammation, resulting in the incidence of absorption.
Collapse
Affiliation(s)
- Michiya Sano
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Sayaka Shimazaki
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasuaki Kaneko
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Kurosawa
- Laboratory of Animal Nutrition, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
50
|
Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D. Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant? Front Neurosci 2020; 14:13. [PMID: 32116490 PMCID: PMC7010854 DOI: 10.3389/fnins.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|