1
|
Sen MG, Chooi R, McMullen JR. Heart-derived factors and organ cross-talk in settings of health and disease: new knowledge and clinical opportunities for multimorbidity. J Physiol 2025. [PMID: 39888058 DOI: 10.1113/jp287400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines). To date, there have been fewer studies on proteins released from the heart (cardiokines) implicated with organ cross-talk. Early evidence for the secretion of cardiac-specific factors facilitating organ cross-talk came in the form of natriuretic peptides which are secreted via the classical endoplasmic reticulum-Golgi pathway. More recently, studies in cardiomyocyte-specific genetic mouse models have revealed cardiac-initiated organ cross-talk. Cardiomyocyte-specific modulation of microRNAs (miR-208a and miR-23-27-24 cluster) and proteins such as the mediator complex subunit 13 (MED13), G-protein-coupled receptor kinase 2 (GRK2), mutant α-myosin heavy-chain (αMHC), ubiquitin-like modifier-activating enzyme (ATG7), oestrogen receptor alpha (ERα) and fibroblast growth factor 21 (FGF21) have resulted in metabolic and renal phenotypes. These studies have implicated a variety of factors which can be secreted via the classical pathway or via non-classical mechanisms including the release of extracellular vesicles. Cross-talk between the heart and the brain has also been described (e.g. via miR-1 and an emerging concept, interoception: detection of internal neural signals). Here we summarize these studies taking into consideration that factors may be secreted in both settings of health and in disease.
Collapse
Affiliation(s)
- Melodi G Sen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Heart Research Institute, Newtown, New South Wales, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Karakuş F, Kuzu B. Predicting the molecular mechanisms of cardiovascular toxicity induced by per- and polyfluoroalkyl substances: an In Silico network toxicology perspective. Toxicol Res (Camb) 2024; 13:tfae206. [PMID: 39677493 PMCID: PMC11645662 DOI: 10.1093/toxres/tfae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are human-made chemicals that accumulate in the human body and the environment over time. Humans are primarily exposed to PFAS through drinking water, food, consumer products, and dust. These exposures can have many adverse health effects, including cardiovascular diseases (CVDs) and factors contributing to CVDs. This study identified the molecular mechanisms of CVDs caused by PFAS. METHODS For this purpose, various computational tools, such as the Comparative Toxicogenomic Database, ShinyGO, ChEA3, MIENTURNET, GeneMANIA, STRING, and Cytoscape, were used to conduct in silico analyses. RESULTS The results showed that 10 genes were common between PFAS and CVDs, and among these common genes, the PPAR signaling pathway, fatty acid metabolic processes, and lipid binding were the most significantly associated gene ontology terms. Among the top 10 transcription factors (TFs) related to these common genes, peroxisome proliferator-activated receptor gamma and androgen receptor were the most prominent. Additionally, hsa-miR-130b-3p, hsa-miR-130a-3p, and hsa-miR-129-5p were featured microRNAs involved in PFAS-induced CVDs. Finally, PPARA and PPARG were identified as core genes involved in PFAS-induced CVDs. CONCLUSION These findings may contribute to a better understanding of the molecular mechanisms and reveal new potential targets in PFAS-induced CVDs.
Collapse
Affiliation(s)
- Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, 65080 Tuşba-Van, Türkiye
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, 65080 Tuşba-Van, Türkiye
| |
Collapse
|
3
|
Alonso-Villa E, Mangas A, Bonet F, Campuzano Ó, Quezada-Feijoo M, Ramos M, García-Padilla C, Franco D, Toro R. The Protective Role of miR-130b-3p Against Palmitate-Induced Lipotoxicity in Cardiomyocytes Through PPARγ Pathway. Int J Mol Sci 2024; 25:12161. [PMID: 39596228 PMCID: PMC11594327 DOI: 10.3390/ijms252212161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Excess lipid accumulation in the heart is associated with lipotoxicity and cardiac dysfunction due to excessive fatty acid oxidation. Peroxisome proliferator-activated receptor gamma (PPARγ) modulates the expression of key molecules involved in the FA metabolic pathway. Cardiomyocyte-specific overexpression of PPARγ causes dilated cardiomyopathy associated with lipotoxicity in mice. miR-130b-3p has been shown to be downregulated in the plasma of idiopathic dilated cardiomyopathy patients, but its role in modulating cardiomyocyte lipotoxicity via PPARγ remains unclear. Our objective was to investigate the protective role of miR-130b-3p against palmitate-induced lipotoxicity in cardiomyocytes through the modulation of the PPARγ signaling pathway. Human cardiomyoblasts were treated with palmitate. Intracellular lipid accumulation and expression of PPARγ and its downstream targets (CD36, FABP3, CAV1, VLDLR) were analyzed. Mitochondrial oxidative stress was assessed via MitoTracker Green and Redox Sensor Red staining and expression of CPT1B and SOD2. Endoplasmic reticulum stress and apoptosis were determined by examining GRP78, ATF6, XBP1s, CHOP, and caspase-3 expression. miR-130b-3p overexpression was achieved using transfection methods, and its effect on these parameters was evaluated. Luciferase assays were used to confirm PPARγ as a direct target of miR-130b-3p. Palmitate treatment led to increased lipid accumulation and upregulation of PPARγ and its downstream targets in human cardiomyoblasts. Palmitate also increased mitochondrial oxidative stress, endoplasmic reticulum stress and apoptosis. miR-130b-3p overexpression reduced PPARγ expression and its downstream signaling, alleviated mitochondrial oxidative stress and decreased endoplasmic reticulum stress and apoptosis in palmitate-stimulated cardiomyoblasts. Luciferase assays confirmed PPARγ as a direct target of miR-130b-3p. Our findings suggest that miR-130b-3p plays a protective role against palmitate-induced lipotoxicity in cardiomyocytes by modulating the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital Cardiology Service, 11009 Cádiz, Spain
| | - Fernando Bonet
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Óscar Campuzano
- Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Carlos García-Padilla
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
4
|
Panico C, Felicetta A, Kunderfranco P, Cremonesi M, Salvarani N, Carullo P, Colombo F, Idini A, Passaretti M, Doro R, Rubino M, Villaschi A, Da Rin G, Peano C, Kallikourdis M, Greco CM, Condorelli G. Single-Cell RNA Sequencing Reveals Metabolic Stress-Dependent Activation of Cardiac Macrophages in a Model of Dyslipidemia-Induced Diastolic Dysfunction. Circulation 2024; 150:1517-1532. [PMID: 38126199 DOI: 10.1161/circulationaha.122.062984] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout-Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibition in this model. CONCLUSIONS Using single-cell RNA sequencing in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Arianna Felicetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marco Cremonesi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Nicolò Salvarani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Pierluigi Carullo
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Federico Colombo
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Mauro Passaretti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Riccardo Doro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marcello Rubino
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Giorgio Da Rin
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| |
Collapse
|
5
|
Chen X, Ruiz-Velasco A, Zou Z, Hille SS, Ross C, Fonseka O, Gare SR, Alatawi NHO, Raja R, Zhang J, Kaur N, Zhao X, Morrell-Davies H, Miller JM, Abouleisa RR, Ou Q, Frank D, Rutter MK, Pinali C, Wang T, Mohamed TM, Müller OJ, Liu W. PAK3 Exacerbates Cardiac Lipotoxicity via SREBP1c in Obesity Cardiomyopathy. Diabetes 2024; 73:1805-1820. [PMID: 39137120 PMCID: PMC11493761 DOI: 10.2337/db24-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Obesity-induced lipid overload in cardiomyocytes contributes to profound oxidative stress and cardiomyopathy, culminating in heart failure. In this study, we investigate a novel mechanism whereby lipids accumulate in cardiomyocytes, and seek the relevant treatment strategies. P21-activated kinase 3 (PAK3) was elevated in obese human myocardium, and the murine hearts and cardiomyocytes upon diet- or fatty acid-induced stress, respectively. Mice with cardiac-specific overexpression of PAK3 were more susceptible to the development of cardiac dysfunction upon diet stress, at least partially, because of increased deposition of toxic lipids within the myocardium. Mechanistically, PAK3 promoted the nuclear expression of sterol regulatory element binding protein 1c (SREBP1c) through activation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase β-1 (S6K1) pathway in cardiomyocytes, resulting in abnormal lipid genes profile, accumulation of excessive lipids, and oxidative stress. More importantly, PAK3 knockdown attenuated fatty acid-induced lipotoxicity and cell death in rat and human cardiomyocytes. More importantly, the S6K1 or SREBP1c inhibitor alleviated PAK3-triggered intracellular lipid overload and cardiac dysfunction under obese stress. Collectively, we have demonstrated that PAK3 impairs myocardial lipid homeostasis, while inhibition of cardiac lipotoxicity mitigates cardiac dysfunction. Our study provides a promising therapeutic strategy for ameliorating obesity cardiomyopathy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xinyi Chen
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Andrea Ruiz-Velasco
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Zhiyong Zou
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Susanne S. Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research, Kiel, Germany
| | - Claire Ross
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Oveena Fonseka
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Sanskruti R. Gare
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | | | - Rida Raja
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Jiayan Zhang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Namrita Kaur
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Xiangjun Zhao
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | | | | | | | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY
| | - Derk Frank
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research, Kiel, Germany
| | - Martin K. Rutter
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Diabetes, Endocrinology and Metabolism Centre, National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
| | - Christian Pinali
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Tao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Tamer M.A. Mohamed
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Surgery Department, Baylor College of Medicine, Houston, TX
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY
| | - Oliver J. Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research, Kiel, Germany
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| |
Collapse
|
6
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
7
|
Shil A, Song CW, Kim HR, Sarkar S, Ahn KH. A Nano-Aggregatable Acedan Derivative for Clathrin-Mediated Cellular Uptake and Two-Photon Imaging of Diabetes-Associated Lipid Droplets. ACS NANO 2024; 18:21998-22009. [PMID: 39115238 DOI: 10.1021/acsnano.4c04074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Lipid droplets (LDs), the essential cytosolic fat storage organelles, have emerged as pivotal regulators of cellular metabolism and are implicated in various diseases. The noninvasive monitoring of LDs necessitates fluorescent probes with precise organelle selectivity and biocompatibility. Addressing this need, we have engineered a probe by strategically modifying the structure of a conventional two-photon-absorbing dipolar dye, acedan. This innovative approach induces nanoaggregate formation in aqueous environments, leading to aggregation-induced fluorescence quenching. Upon cellular uptake via clathrin-mediated endocytosis, the probe selectively illuminates within LDs through a disassembly process, effectively distinguishing LDs from the cytosol with exceptional specificity. This breakthrough enables the high-fidelity imaging of LDs in both cellular and tissue environments. In a pioneering investigation, we probed LDs in a diabetes model induced by streptozotocin, unveiling significantly heightened LD accumulation in cardiac tissues compared to other organs, as evidenced by TP imaging. Furthermore, our exploration of a lipopolysaccharide-mediated cardiomyopathy model revealed an LD accumulation during heart injury. Thus, our developed probe holds immense potential for elucidating LD-associated diseases and advancing related research endeavors.
Collapse
Affiliation(s)
- Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chang Wook Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hye Rim Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
8
|
Zheng Y, Xu Y, Ji L, San W, Shen D, Zhou Q, Meng G, Shi J, Chen Y. Roles of distinct nuclear receptors in diabetic cardiomyopathy. Front Pharmacol 2024; 15:1423124. [PMID: 39114353 PMCID: PMC11303215 DOI: 10.3389/fphar.2024.1423124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yongji Xu
- School of Medicine, Nantong University, Nantong, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Danning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qianyou Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
9
|
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular Vesicles in Diabetic Cardiomyopathy-State of the Art and Future Perspectives. Int J Mol Sci 2024; 25:6117. [PMID: 38892303 PMCID: PMC11172920 DOI: 10.3390/ijms25116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular complications are the most deadly and cost-driving effects of diabetes mellitus (DM). One of them, which is steadily attracting attention among scientists, is diabetes-induced heart failure, also known as diabetic cardiomyopathy (DCM). Despite significant progress in the research concerning the disease, a universally accepted definition is still lacking. The pathophysiology of the processes accelerating heart insufficiency in diabetic patients on molecular and cellular levels also remains elusive. However, the recent interest concerning extracellular vesicles (EVs) has brought promise to further clarifying the pathological events that lead to DCM. In this review, we sum up recent investigations on the involvement of EVs in DCM and show their therapeutic and indicatory potential.
Collapse
Affiliation(s)
| | - Katarzyna Stróżna
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Basheer M, Boulos M, Basheer A, Loai A, Nimer A. Olive Oil's Attenuating Effects on Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:869-882. [PMID: 39287875 DOI: 10.1007/978-3-031-63657-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Dietary fatty acids play a role in the pathogenesis of obesity-associated nonalcoholic fatty liver disease. Lipotoxicity in obesity mediates insulin resistance, endothelial dysfunction, atherosclerosis, and gut microbiota dysbiosis. Cardiovascular complications are the main cause of morbidity and mortality in obese, insulin-resistant, and type 2 diabetes mellitus patients.Interventions targeting lipotoxicity are the main issue in preventing its multiple insults. Lifestyle modifications including healthy eating and regular exercise are the primary recommendations. Treatments also include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation, fibrogenesis, and cirrhosis.Diet and nutrition have been linked to insulin resistance, an increased risk of developing type 2 diabetes, and impaired postprandial lipid metabolism. Low-fat diets are associated with higher survival. The Mediterranean diet includes an abundance of olive oil. Extra-virgin olive oil is the main source of monounsaturated fatty acids in Mediterranean diets. An olive oil-rich diet decreases triglyceride accumulation in the liver, improves postprandial triglyceride levels, improves glucose and insulin secretions, and upregulates GLUT-2 expression in the liver. The exact molecular mechanisms of olive oil's effects are unknown, but decreasing NF-kB activation, decreasing LDL oxidation, and improving insulin resistance by reducing the production of inflammatory cytokines (TNF-α and IL-6) and upregulating kinases and JNK-mediated phosphorylation of IRS-1 are possible principal mechanisms. Olive oil phenolic compounds also modulate gut microbiota diversity, which also affects lipotoxicity.In this review, we document lipotoxicity in obesity manifestations and the beneficial health effects of the Mediterranean diet derived from monounsaturated fatty acids, mainly from olive oil.
Collapse
Affiliation(s)
- Maamoun Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Mariana Boulos
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Areej Basheer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
- Nutrition and Diet Services, Hillel Yaffe, Hadera, Israel
| | - Arraf Loai
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel
| | - Assy Nimer
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
- Faculty of Medicine at Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
13
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
14
|
Lam G, Noirez P, Djemai H, Youssef L, Blanc E, Audouze K, Kim MJ, Coumoul X, Li SFY. The effects of pollutant mixture released from grafted adipose tissues on fatty acid and lipid metabolism in the skeletal muscles, kidney, heart, and lungs of male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122387. [PMID: 37591324 DOI: 10.1016/j.envpol.2023.122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Persistent organic pollutants (POPs) accumulated in the adipose tissue can affect the fatty acid and lipid metabolism in the body. Gas chromatography-mass spectrometry (GC-MS) metabolomics analysis was carried out to study the metabolic changes induced by internal exposure to the POPs in mouse skeletal muscle (soleus, plantaris, and gastrocnemius), kidney, heart, and lungs. Male donor mice were injected with a mixture of 10 POPs at concentrations of 0 × and 5 × lowest-observed-adverse-effect level (LOAEL). Their adipose tissue (AT) containing the POP was then grafted onto the host mice and the metabolic change of the host mice was monitored for 3 or 21 days. The metabolites related to fatty acid and lipid metabolism were studied. For the host mice engrafted with POP-containing fat pad, there was dysregulation of the fatty acids and glycerides observed in all the organs studied 3 days after the graft. However, there was no longer a significant change in the metabolites 21 days after the graft. The difference in significant values and metabolite regulation in each of the skeletal muscles showed that the POP mixture affects different types of skeletal muscle in a heterogeneous manner. Fold change analysis showed that certain metabolites in the kidney of host mice exposed to POPs for 3 days were greatly affected. Using multivariate analysis, apart from the plantaris, most treated groups exposed to POPs for 3 days are well distinguished from the control groups. However, for host mice exposed to POPs for 21 days, apart from the kidney and heart, groups are not well-distinguished from the control group. This study helps bring new insight into the effects of the pollutants mixture released from AT on fatty acid and lipid metabolism at different periods and how the dysregulation of metabolites might result in diseases associated with the organs.
Collapse
Affiliation(s)
- Gideon Lam
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Phillipe Noirez
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; PSMS, Performance Santé Métrologie Société, Université de Reims Champagne-Ardenne, Reims, France
| | - Haidar Djemai
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Layale Youssef
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Etienne Blanc
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Karine Audouze
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Min Ji Kim
- UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 117543, Singapore.
| |
Collapse
|
15
|
Monga S, Valkovič L, Myerson SG, Neubauer S, Mahmod M, Rider OJ. Role of Cardiac Energetics in Aortic Stenosis Disease Progression: Identifying the High-risk Metabolic Phenotype. Circ Cardiovasc Imaging 2023; 16:e014863. [PMID: 37847766 PMCID: PMC10581424 DOI: 10.1161/circimaging.122.014863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability. METHODS We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging. RESULTS Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21-1.71] versus Q1, 1.64 [1.53-1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18-1.70]; P=0.02). Myocardial triglyceride content levels were overall higher in all the quartiles with a significant increase seen across the AV pressure gradient quartiles (Q2, 1.36 [0.86-1.98] versus Q1, 1.03 [0.81-1.56]; P=0.034). While all AS groups had evidence of subclinical LV dysfunction with impaired strain parameters, impaired systolic longitudinal strain was related to the degree of energetic impairment (r=0.219; P=0.03). Phosphocreatine/adenosine triphosphate was not only an independent predictor of LV wall thickness (r=-0.20; P=0.04) but also strongly associated with myocardial fibrosis (r=-0.24; P=0.03), suggesting that metabolic changes play a role in disease progression. The metabolic and functional parameters showed comparable results when graded by clinical severity of AS. CONCLUSIONS A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression.
Collapse
Affiliation(s)
- Shveta Monga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
| | - Ladislav Valkovič
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Saul G. Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
| | - Oliver J. Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., L.V., S.G.M., S.N., M.M., O.J.R.)
| |
Collapse
|
16
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
17
|
Janse van Rensburg M, Bester MJ, van Rooy MJ, Oberholzer HM. Adverse effects of copper, manganese and mercury, alone and in mixtures on the aorta and heart of Spraque-Dawley rats. Toxicol Ind Health 2023:7482337231180957. [PMID: 37271738 DOI: 10.1177/07482337231180957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases (CVD) are a common global cause of death and are therefore a major health concern. Inhaled or ingested environmental heavy metals contribute to the development of CVD. The aim of this study was to address the limited information available on the effect of relevant dosages of metals in mixtures. Three metals with reported effects on the cardiovascular system (CVS) were identified, and these metals were copper (Cu), manganese (Mn) and mercury (Hg). In Sprague-Dawley rats, the adverse effects of copper (Cu), manganese (Mn) and mercury (Hg), alone and as part of mixtures, on the blood parameters, the aorta and heart were investigated. Forty-eight male Sprague-Dawley rats were randomly divided into eight groups (n = 6): control, Cu, Mn, Hg, Cu + Mn, Cu + Hg, Mn + Hg and Cu, Mn + Hg. The seven experimental groups received the metal mixtures at 100 times the World Health Organisation (WHO) safety limit for drinking water (2 mg/L for Cu, 0.4 mg/L for Mn and 0.06 mg/L for Hg) via oral gavage for 28 days. After 28 days, compared with the control, red blood cell levels were increased for Cu + Hg. All other measured blood parameters were unchanged. Morphological changes in the tunica media were connective tissue deposition and an abundance of collagen type I in the metal exposed aortic tissues. In the cardiac tissue of metal-exposed rats, changes in the cardiomyocyte and myofibrillar arrangement, with an increase in collagen type I and III was observed. Ultrastructurally, the aortic collagen and elastin band arrangement and the cardiac mitochondrial and myofibrillar arrangement and structures were altered in the experimental groups. These changes indicated that exposure to these metals in rats caused minor changes in the blood parameters, however, the changes in tissue and cellular structure indicated an increased risk for the development of CVD.
Collapse
Affiliation(s)
- M Janse van Rensburg
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| | - M J Bester
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| | - M J van Rooy
- Faculty of Health Sciences, Department of Physiology, University of Pretoria, Arcadia, South Africa
| | - H M Oberholzer
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
18
|
Monga S, Valkovič L, Tyler D, Lygate CA, Rider O, Myerson SG, Neubauer S, Mahmod M. Insights Into the Metabolic Aspects of Aortic Stenosis With the Use of Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2022; 15:2112-2126. [PMID: 36481080 PMCID: PMC9722407 DOI: 10.1016/j.jcmg.2022.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/13/2023]
Abstract
Pressure overload in aortic stenosis (AS) encompasses both structural and metabolic remodeling and increases the risk of decompensation into heart failure. A major component of metabolic derangement in AS is abnormal cardiac substrate use, with down-regulation of fatty acid oxidation, increased reliance on glucose metabolism, and subsequent myocardial lipid accumulation. These changes are associated with energetic and functional cardiac impairment in AS and can be assessed with the use of cardiac magnetic resonance spectroscopy (MRS). Proton MRS allows the assessment of myocardial triglyceride content and creatine concentration. Phosphorous MRS allows noninvasive in vivo quantification of the phosphocreatine-to-adenosine triphosphate ratio, a measure of cardiac energy status that is reduced in patients with severe AS. This review summarizes the changes to cardiac substrate and high-energy phosphorous metabolism and how they affect cardiac function in AS. The authors focus on the role of MRS to assess these metabolic changes, and potentially guide future (cellular) metabolic therapy in AS.
Collapse
Affiliation(s)
- Shveta Monga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ladislav Valkovič
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Damian Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saul G Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Bednarski TK, Duda MK, Dobrzyn P. Alterations of Lipid Metabolism in the Heart in Spontaneously Hypertensive Rats Precedes Left Ventricular Hypertrophy and Cardiac Dysfunction. Cells 2022; 11:cells11193032. [PMID: 36230994 PMCID: PMC9563594 DOI: 10.3390/cells11193032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of β-oxidation. The decreased protein content of α/β-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and β-oxidation in cardiomyocytes.
Collapse
Affiliation(s)
- Tomasz K. Bednarski
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Monika K. Duda
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, 01-813 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
20
|
Wang Q, Sun Z, Cao S, Lin X, Wu M, Li Y, Yin J, Zhou W, Huang S, Zhang A, Zhang Y, Xia W, Jia Z. Reduced Immunity Regulator MAVS Contributes to Non-Hypertrophic Cardiac Dysfunction by Disturbing Energy Metabolism and Mitochondrial Homeostasis. Front Immunol 2022; 13:919038. [PMID: 35844503 PMCID: PMC9283757 DOI: 10.3389/fimmu.2022.919038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiac dysfunction is manifested as decline of cardiac systolic function, and multiple cardiovascular diseases (CVDs) can develop cardiac insufficiency. Mitochondrial antiviral signaling (MAVS) is known as an innate immune regulator involved in viral infectious diseases and autoimmune diseases, whereas its role in the heart remains obscure. The alteration of MAVS was analyzed in animal models with non-hypertrophic and hypertrophic cardiac dysfunction. Then, MAVS-deficient mice were generated to examine the heart function, mitochondrial status and energy metabolism. In vitro, CRISPR/Cas9-based gene editing was used to delete MAVS in H9C2 cell lines and the phenotypes of mitochondria and energy metabolism were evaluated. Here we observed reduced MAVS expression in cardiac tissue from several non-hypertrophic cardiac dysfunction models, contrasting to the enhanced MAVS in hypertrophic heart. Furthermore, we examined the heart function in mice with partial or total MAVS deficiency and found spontaneously developed cardiac pump dysfunction and cardiac dilation as assessed by echocardiography parameters. Metabonomic results suggested MAVS deletion probably promoted cardiac dysfunction by disturbing energy metabolism, especially lipid metabolism. Disordered and mitochondrial homeostasis induced by mitochondrial oxidative stress and mitophagy impairment also advanced the progression of cardiac dysfunction of mice without MAVS. Knockout of MAVS using CRISPR/Cas9 in cardiomyocytes damaged mitochondrial structure and function, as well as increased mitochondrial ROS production. Therefore, reduced MAVS contributed to the pathogenesis of non-hypertrophic cardiac dysfunction, which reveals a link between a key regulator of immunity (MAVS) and heart function.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shihan Cao
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuli Lin
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhanjun Jia, ; Weiwei Xia, ; Yue Zhang,
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhanjun Jia, ; Weiwei Xia, ; Yue Zhang,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhanjun Jia, ; Weiwei Xia, ; Yue Zhang,
| |
Collapse
|
21
|
Piepoli MF, Adamo M, Barison A, Bestetti RB, Biegus J, Böhm M, Butler J, Carapetis J, Ceconi C, Chioncel O, Coats A, Crespo-Leiro MG, de Simone G, Drexel H, Emdin M, Farmakis D, Halle M, Heymans S, Jaarsma T, Jankowska E, Lainscak M, Lam CSP, Løchen ML, Lopatin Y, Maggioni A, Matrone B, Metra M, Noonan K, Pina I, Prescott E, Rosano G, Seferovic PM, Sliwa K, Stewart S, Uijl A, Vaartjes I, Vermeulen R, Verschuren WM, Volterrani M, Von Haehling S, Hoes A. Preventing heart failure: a position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology. Eur J Prev Cardiol 2022; 29:275-300. [PMID: 35083485 DOI: 10.1093/eurjpc/zwab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
The heart failure epidemic is growing and its prevention, in order to reduce associated hospital readmission rates and its clinical and economic burden, is a key issue in modern cardiovascular medicine. The present consensus document aims to provide practical evidence-based information to support the implementation of effective preventive measures. After reviewing the most common risk factors, an overview of the population attributable risks in different continents is presented, to identify potentially effective opportunities for prevention and to inform preventive strategies. Finally, potential interventions that have been proposed and have been shown to be effective in preventing HF are listed.
Collapse
Affiliation(s)
- Massimo F Piepoli
- Cardiac Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marianna Adamo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Barison
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Jan Biegus
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jonathan Carapetis
- Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Australia
| | - Claudio Ceconi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Ovidiu Chioncel
- University of Medicine Carol Davila, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases 'C.C. Iliescu', Bucharest, Romania
| | | | - Maria G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC): CIBERCV, Universidade da Coruña (UDC), Instituto Ciencias Biomedicas A Coruña (INIBIC), A Coruña, Spain
| | - Giovanni de Simone
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Heinz Drexel
- Department of Medicine, Landeskrankenhaus Bregenz, Bregenz, Austria
- VIVIT, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Martin Halle
- Sport and Health Sciences, Policlinic for Preventive and Rehabilitative Sports Medicine, TUM School of Medicine, Munich, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Tiny Jaarsma
- Department of Health, Medicine and Caring Sciences, Linkoping University, Linköping, Sweden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ewa Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yuri Lopatin
- Volgograd State Medical University, Regional Cardiology Centre, Volgograd, Russian Federation
| | | | | | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katharine Noonan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Eva Prescott
- Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Petar M Seferovic
- Belgrade University Faculty of Medicine, Serbian Academy of Science and Arts, Belgrade, Serbia
| | - Karen Sliwa
- University of Cape Town, Cape Town, South Africa
| | - Simon Stewart
- Torrens University Australia, Adelaide, South Australia, Australia
| | - Alicia Uijl
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - W M Verschuren
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Stephan Von Haehling
- Department of Cardiology and Pneumology, Heart Center, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Arno Hoes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
22
|
Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, Dong J, Liu Z. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1032814. [PMID: 36387855 PMCID: PMC9642911 DOI: 10.3389/fendo.2022.1032814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Growing evidence indicates that non-alcoholic fatty liver disease (NAFLD) is related to the occurrence and development of diabetic nephropathy (DN). This bioinformatics study aimed to explore optimal crosstalk genes and related pathways between NAFLD and DN. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus. CIBERSORT algorithm was employed to analyze the similarity of infiltrating immunocytes between the two diseases. Protein-protein interaction (PPI) co-expression network and functional enrichment analysis were conducted based on the identification of common differentially expressed genes (DEGs). Least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm were implemented to initially screen crosstalk genes. Machine learning models, including support vector machine, random forest model, and generalized linear model, were utilized to further identify the optimal crosstalk genes between DN and NAFLD. An integrated network containing crosstalk genes, transcription factors, and associated pathways was developed. RESULTS Four gene expression datasets, including GSE66676 and GSE48452 for NAFLD and GSE30122 and GSE1009 for DN, were involved in this study. There were 80 common DEGs between the two diseases in total. The PPI network built with the 80 common genes included 77 nodes and 83 edges. Ten optimal crosstalk genes were selected by LASSO regression and Boruta algorithm, including CD36, WIPI1, CBX7, FCN1, SLC35D2, CP, ZDHHC3, PTPN3, LPL, and SPP1. Among these genes, LPL and SPP1 were the most significant according to NAFLD-transcription factor network. Five hundred twenty-nine nodes and 1,113 edges comprised the PPI network of activated pathway-gene. In addition, 14 common pathways of these two diseases were recognized using Gene Ontology (GO) analysis; among them, regulation of the lipid metabolic process is closely related to both two diseases. CONCLUSIONS This study offers hints that NAFLD and DN have a common pathogenesis, and LPL and SPP1 are the most relevant crosstalk genes. Based on the common pathways and optimal crosstalk genes, our proposal carried out further research to disclose the etiology and pathology between the two diseases.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jia Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Jiancheng Dong
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| |
Collapse
|
23
|
Piepoli MF, Adamo M, Barison A, Bestetti RB, Biegus J, Böhm M, Butler J, Carapetis J, Ceconi C, Chioncel O, Coats A, Crespo-Leiro MG, de Simone G, Drexel H, Emdin M, Farmakis D, Halle M, Heymans S, Jaarsma T, Jankowska E, Lainscak M, Lam CSP, Løchen ML, Lopatin Y, Maggioni A, Matrone B, Metra M, Noonan K, Pina I, Prescott E, Rosano G, Seferovic PM, Sliwa K, Stewart S, Uijl A, Vaartjes I, Vermeulen R, Monique Verschuren WM, Volterrani M, von Heahling S, Hoes A. Preventing heart failure: a position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology. Eur J Heart Fail 2022; 24:143-168. [PMID: 35083829 DOI: 10.1002/ejhf.2351] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
The heart failure epidemic is growing and its prevention, in order to reduce associated hospital readmission rates and its clinical and economic burden, is a key issue in modern cardiovascular medicine. The present position paper aims to provide practical evidence-based information to support the implementation of effective preventive measures. After reviewing the most common risk factors, an overview of the population attributable risks in different continents is presented, to identify potentially effective opportunities for prevention and to inform preventive strategies. Finally, potential interventions that have been proposed and have been shown to be effective in preventing heart failure are listed.
Collapse
Affiliation(s)
- Massimo F Piepoli
- Cardiac Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marianna Adamo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Barison
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Jan Biegus
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jonathan Carapetis
- Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Australia
| | - Claudio Ceconi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Ovidiu Chioncel
- University of Medicine Carol Davila, Bucharest, Romania
- Emergency Institute for Cardiovascular Diseases 'C.C. Iliescu', Bucharest, Romania
| | | | - Maria G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC): CIBERCV, Universidade da Coruña (UDC), Instituto Ciencias Biomedicas A Coruña (INIBIC), A Coruña, Spain
| | - Giovanni de Simone
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Heinz Drexel
- Department of Medicine, Landeskrankenhaus Bregenz, Bregenz, Austria
- VIVIT, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Martin Halle
- Sport and Health Sciences, Policlinic for Preventive and Rehabilitative Sports Medicine, TUM School of Medicine, Munich, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Tiny Jaarsma
- Department of Health, Medicine and Caring Sciences, Linkoping University, Linköping, Sweden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ewa Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yuri Lopatin
- Volgograd State Medical University, Regional Cardiology Centre, Volgograd, Russian Federation
| | | | | | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katharine Noonan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Eva Prescott
- Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Petar M Seferovic
- Belgrade University Faculty of Medicine, Serbian Academy of Science and Arts, Belgrade, Serbia
| | - Karen Sliwa
- University of Cape Town, Cape Town, South Africa
| | - Simon Stewart
- Torrens University Australia, Adelaide, South Australia, Australia
| | - Alicia Uijl
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - W M Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Stephan von Heahling
- Department of Cardiology and Pneumology, Heart Center, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Arno Hoes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
24
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 507] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
25
|
Yan A, Xie G, Ding X, Wang Y, Guo L. Effects of Lipid Overload on Heart in Metabolic Diseases. Horm Metab Res 2021; 53:771-778. [PMID: 34891207 PMCID: PMC8664556 DOI: 10.1055/a-1693-8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Metabolic diseases are often associated with lipid and glucose metabolism abnormalities, which increase the risk of cardiovascular disease. Diabetic cardiomyopathy (DCM) is an important development of metabolic diseases and a major cause of death. Lipids are the main fuel for energy metabolism in the heart. The increase of circulating lipids affects the uptake and utilization of fatty acids and glucose in the heart, and also affects mitochondrial function. In this paper, the mechanism of lipid overload in metabolic diseases leading to cardiac energy metabolism disorder is discussed.
Collapse
Affiliation(s)
- An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Guinan Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Xinya Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Yi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
- Correspondence Yi Wang Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine300193 TianjinChina+86-22-59596555
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine, Tianjin,
China
- Liping Guo Tianjin Academy of Traditional Chinese Medicine300120 TianjinChina
| |
Collapse
|
26
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
27
|
de Wit-Verheggen VHW, van de Weijer T. Changes in Cardiac Metabolism in Prediabetes. Biomolecules 2021; 11:1680. [PMID: 34827678 PMCID: PMC8615987 DOI: 10.3390/biom11111680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.
Collapse
Affiliation(s)
- Vera H. W. de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
28
|
Xie X, Tie YF, Lai S, Zhang YL, Li HH, Liu Y. Cardiac-specific CGI-58 deficiency activates the ER stress pathway to promote heart failure in mice. Cell Death Dis 2021; 12:1003. [PMID: 34702801 PMCID: PMC8548506 DOI: 10.1038/s41419-021-04282-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Excess myocardial triacylglycerol accumulation (i.e., cardiac steatosis) impairs heart function, suggesting that enzymes promoting triacylglycerol metabolism exert essential regulatory effects on heart function. Comparative gene identification 58 (CGI-58) is a key enzyme that promotes the hydrolysis of triglycerides by activating adipose triglyceride lipase and plays a protective role in maintaining heart function. In this study, the effects of CGI-58 on heart function and the underlying mechanism were investigated using cardiac-specific CGI58-knockout mice (CGI-58cko mice). Echocardiography and pathological staining were performed to detect changes in the structure and function of the heart. Proteomic profiling, immunofluorescent staining, western blotting, and real-time PCR were used to evaluate molecular changes. In CGI-58cko mice, we detected cardiac hypertrophic remodeling and heart failure associated with excessive cardiac lipid accumulation, ROS production, and decreased expression of regulators of fatty acid metabolism. These changes were markedly attenuated in CGI-58cko mice injected with rAAV9-CGI58. A quantitative proteomics analysis revealed significant increases in the expression of ER stress-related proteins and decreases in proteins related to fatty acid and amino acid metabolism in the hearts of CGI-58cko mice. Furthermore, the inhibition of ER stress by the inhibitor 4-PBA improved mitochondrial dysfunction, reduced oxidative stress, and reversed cardiac remodeling and dysfunction in cultured cardiomyocytes or in CGI-58cko mice. Our results suggested that CGI-58 is essential for the maintenance of heart function by reducing lipid accumulation and ER stress in cardiomyocytes, providing a new therapeutic target for cardiac steatosis and dysfunction.
Collapse
Affiliation(s)
- Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Yi-Fan Tie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Song Lai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China.
| | - Ying Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
29
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021; 135:2265-2283. [PMID: 34643676 PMCID: PMC8543140 DOI: 10.1042/cs20210127] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health concern, with rising incidence alongside high morbidity and mortality. However, the pathophysiology of HFpEF is not yet fully understood. The association between HFpEF and the metabolic syndrome (MetS) suggests that dysregulated lipid metabolism could drive diastolic dysfunction and subsequent HFpEF. Herein we summarise recent advances regarding the pathogenesis of HFpEF in the context of MetS, with a focus on impaired lipid handling, myocardial lipid accumulation and subsequent lipotoxicity.
Collapse
|
31
|
Li Y, Xie KF, Chang YH, Wang C, Chen Y, Wang MJ, Zhu YC. S-Propargyl-Cysteine Attenuates Diabetic Cardiomyopathy in db/db Mice Through Activation of Cardiac Insulin Receptor Signaling. Front Cardiovasc Med 2021; 8:737191. [PMID: 34604360 PMCID: PMC8484714 DOI: 10.3389/fcvm.2021.737191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Endogenous hydrogen sulfide (H2S) is emerging as a key signal molecule in the development of diabetic cardiomyopathy. The aim of this study was to explore the effect and underlying mechanism of S-propargyl-cysteine (SPRC), a novel modulator of endogenous H2S, on diabetic cardiomyopathy in db/db diabetic mice. Methods and Results: Vehicle or SPRC were orally administered to 8-month-old male db/db mice and their wild type littermate for 12 weeks. SPRC treatment ameliorated myocardial hypertrophy, fibrosis, and cardiac systolic dysfunction assessed by histopathological examinations and echocardiography. The functional improvement by SPRC was accompanied by a reduction in myocardial lipid accumulation and ameliorated plasma lipid profiles. SPRC treatment improved glucose tolerance in db/db mice, with fasting blood glucose and peripheral insulin resistance remaining unchanged. Furthermore, insulin receptor signaling involving the phosphorylation of protein kinase B (Akt/PKB) and glycogen synthase kinase 3β (GSK3β) were elevated and activated by SPRC treatment. Primary neonatal mice cardiomyocytes were cultured to explore the mechanisms of SPRC on diabetic cardiomyopathy in vitro. Consistent with the results in vivo, SPRC not only up-regulated insulin receptor signaling pathway in cardiomyocytes in dose-dependent manner in the basal state, but also relieved the suppression of insulin receptor signaling induced by high concentrations of glucose and insulin. Furthermore, SPRC also enhanced the expression of glucose transporter 4 (GLUT4) and 3H glucose uptake in cardiomyocytes. Conclusions: In this study, we found a novel beneficial effect of SPRC on diabetic cardiomyopathy, which was associated with activation of insulin receptor signaling. SPRC may be a promising medication for diabetic cardiomyopathy in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Ye Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kui-Fang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ya-Hong Chang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cheng Wang
- Laboratory Animal Technical Platform, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Innovative Research Team of High-Level Local Universities in Shanghai, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Marfella R, Sardu C, Mansueto G, Napoli C, Paolisso G. Evidence for human diabetic cardiomyopathy. Acta Diabetol 2021; 58:983-988. [PMID: 33791873 PMCID: PMC8272696 DOI: 10.1007/s00592-021-01705-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Growing interest has been accumulated in the definition of worsening effects of diabetes in the cardiovascular system. This is associated with epidemiological data regarding the high incidence of heart failure (HF) in diabetic patients. To investigate the detrimental effects both of hyperglycemia and insulin resistance, a lot of preclinical models were developed. However, the evidence of pathogenic and histological alterations of the so-called diabetic cardiomyopathy (DCM) is still poorly understood in humans. Here, we provide a stringent literature analysis to investigate unique data regarding human DCM. This approach established that lipotoxic-related events might play a central role in the initiation and progression of human DCM. The major limitation in the acquisition of human data is due to the fact of heart specimen availability. Postmortem analysis revealed the end stage of the disease; thus, we need to gain knowledge on the pathogenic events from the early stages until cardiac fibrosis underlying the end-stage HF.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy.
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| |
Collapse
|
33
|
Angeloni M, Thievessen I, Engel FB, Magni P, Ferrazzi F. Functional genomics meta-analysis to identify gene set enrichment networks in cardiac hypertrophy. Biol Chem 2021; 402:953-972. [PMID: 33951759 DOI: 10.1515/hsz-2020-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
In order to take advantage of the continuously increasing number of transcriptome studies, it is important to develop strategies that integrate multiple expression datasets addressing the same biological question to allow a robust analysis. Here, we propose a meta-analysis framework that integrates enriched pathways identified through the Gene Set Enrichment Analysis (GSEA) approach and calculates for each meta-pathway an empirical p-value. Validation of our approach on benchmark datasets showed comparable or even better performance than existing methods and an increase in robustness with increasing number of integrated datasets. We then applied the meta-analysis framework to 15 functional genomics datasets of physiological and pathological cardiac hypertrophy. Within these datasets we grouped expression sets measured at time points that represent the same hallmarks of heart tissue remodeling ('aggregated time points') and performed meta-analysis on the expression sets assigned to each aggregated time point. To facilitate biological interpretation, results were visualized as gene set enrichment networks. Here, our meta-analysis framework identified well-known biological mechanisms associated with pathological cardiac hypertrophy (e.g., cardiomyocyte apoptosis, cardiac contractile dysfunction, and alteration in energy metabolism). In addition, results highlighted novel, potentially cardioprotective mechanisms in physiological cardiac hypertrophy involving the down-regulation of immune cell response, which are worth further investigation.
Collapse
Affiliation(s)
- Miriam Angeloni
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
| | - Ingo Thievessen
- Biophysics Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, D-91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, I-27100 Pavia, Italy
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), D-91052 Erlangen, Germany
| |
Collapse
|
34
|
Ding B, Peterzan M, Mózes FE, Rider OJ, Valkovič L, Rodgers CT. Water-suppression cycling 3-T cardiac 1 H-MRS detects altered creatine and choline in patients with aortic or mitral stenosis. NMR IN BIOMEDICINE 2021; 34:e4513. [PMID: 33826181 PMCID: PMC8243349 DOI: 10.1002/nbm.4513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
Cardiac proton spectroscopy (1 H-MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine and choline, we added water-suppression cycling (WSC) to two single-voxel spectroscopy sequences (STEAM and PRESS). WSC introduces controlled residual water signals that alternate between positive and negative phases from transient to transient, enabling robust phase and frequency correction. Moreover, a particular weighted sum of transients eliminates residual water signals without baseline distortion. We compared WSC and the vendor's standard 'WET' water suppression in phantoms. Next, we tested repeatability in 10 volunteers (seven males, three females; age 29.3 ± 4.0 years; body mass index [BMI] 23.7 ± 4.1 kg/m2 ). Fat fraction, creatine concentration and choline concentration when quantified by STEAM-WET were 0.30% ± 0.11%, 29.6 ± 7.0 μmol/g and 7.9 ± 6.7 μmol/g, respectively; and when quantified by PRESS-WSC they were 0.30% ± 0.15%, 31.5 ± 3.1 μmol/g and 8.3 ± 4.4 μmol/g, respectively. Compared with STEAM-WET, PRESS-WSC gave spectra whose fitting quality expressed by Cramér-Rao lower bounds improved by 26% for creatine and 32% for choline. Repeatability of metabolite concentration measurements improved by 72% for creatine and 40% for choline. We also compared STEAM-WET and PRESS-WSC in 13 patients with severe symptomatic aortic or mitral stenosis indicated for valve replacement surgery (10 males, three females; age 75.9 ± 6.3 years; BMI 27.4 ± 4.3 kg/m2 ). Spectra were of analysable quality in eight patients for STEAM-WET, and in nine for PRESS-WSC. We observed comparable lipid concentrations with those in healthy volunteers, significantly reduced creatine concentrations, and a trend towards decreased choline concentrations. We conclude that PRESS-WSC offers improved performance and reproducibility for the quantification of cardiac lipids, creatine and choline concentrations in healthy volunteers at 3 T. It also offers improved performance compared with STEAM-WET for detecting altered creatine and choline concentrations in patients with valve disease.
Collapse
Affiliation(s)
- Belinda Ding
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Mark Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Ferenc E. Mózes
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
- Department of Imaging Methods, Institute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
| | - Christopher T. Rodgers
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| |
Collapse
|
35
|
Wang Q, Zhao B, Zhang J, Sun J, Wang S, Zhang X, Xu Y, Wang R. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J Biochem Mol Toxicol 2021; 35:e22797. [PMID: 33957017 DOI: 10.1002/jbt.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced β-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang people's hospital, Weifang, Shandong, China
| | - Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
36
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Kobos L, Shannahan J. Particulate matter inhalation and the exacerbation of cardiopulmonary toxicity due to metabolic disease. Exp Biol Med (Maywood) 2021; 246:822-834. [PMID: 33467887 DOI: 10.1177/1535370220983275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Particulate matter is a significant public health issue in the United States and globally. Inhalation of particulate matter is associated with a number of systemic and organ-specific adverse health outcomes, with the pulmonary and cardiovascular systems being particularly vulnerable. Certain subpopulations are well-recognized as being more susceptible to inhalation exposures, such as the elderly and those with pre-existing respiratory disease. Metabolic syndrome is becoming increasingly prevalent in our society and has known adverse effects on the heart, lungs, and vascular systems. The limited evaluations of individuals with metabolic syndromehave demonstrated that theymay compose a sensitive subpopulation to particulate exposures. However, the toxicological mechanisms responsible for this increased vulnerability are not fully understood. This review evaluates the currently available literature regarding how the response of an individual's pulmonary and cardiovascular systems is influenced by metabolic syndrome and metabolic syndrome-associated conditions such as hypertension, dyslipidemia, and diabetes. Further, we will discuss potential therapeutic agents and targets for the alleviation and treatment of particulate-matter induced metabolic illness. The information reviewed here may contribute to the understanding of metabolic illness as a risk factor for particulate matter exposure and further the development of therapeutic approaches to treat vulnerable subpopulations, such as those with metabolic diseases.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Govindsamy A, Ghoor S, Cerf ME. Programming With Varying Dietary Fat Content Alters Cardiac Insulin Receptor, Glut4 and FoxO1 Immunoreactivity in Neonatal Rats, Whereas High Fat Programming Alters Cebpa Gene Expression in Neonatal Female Rats. Front Endocrinol (Lausanne) 2021; 12:772095. [PMID: 35069436 PMCID: PMC8766637 DOI: 10.3389/fendo.2021.772095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fetal programming refers to an intrauterine stimulus or insult that shapes growth, development and health outcomes. Dependent on the quality and quantity, dietary fats can be beneficial or detrimental for the growth of the fetus and can alter insulin signaling by regulating the expression of key factors. The effects of varying dietary fat content on the expression profiles of factors in the neonatal female and male rat heart were investigated and analyzed in control (10% fat), 20F (20% fat), 30F (30% fat) and 40F (40% fat which was a high fat diet used to induce high fat programming) neonatal rats. The whole neonatal heart was immunostained for insulin receptor, glucose transporter 4 (Glut4) and forkhead box protein 1 (FoxO1), followed by image analysis. The expression of 84 genes, commonly associated with the insulin signaling pathway, were then examined in 40F female and 40F male offspring. Maintenance on diets, varying in fat content during fetal life, altered the expression of cardiac factors, with changes induced from 20% fat in female neonates, but from 30% fat in male neonates. Further, CCAAT/enhancer-binding protein alpha (Cebpa) was upregulated in 40F female neonates. There was, however, differential expression of several insulin signaling genes in 40F (high fat programmed) offspring, with some tending to significance but most differences were in fold changes (≥1.5 fold). The increased immunoreactivity for insulin receptor, Glut4 and FoxO1 in 20F female and 30F male neonatal rats may reflect a compensatory response to programming to maintain cardiac physiology. Cebpa was upregulated in female offspring maintained on a high fat diet, with fold increases in other insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d, Prkcg, Igfbp, Retn (resistin) and Ucp1. In female offspring maintained on a high fat diet, increased Cebpa gene expression (concomitant with fold increases in other insulin signaling genes) may reflect cardiac stress and an adaptative response to cardiac inflammation, stress and/or injury, after high fat programming. Diet and the sex are determinants of cardiac physiology and pathophysiology, reflecting divergent mechanisms that are sex-specific.
Collapse
Affiliation(s)
- Annelene Govindsamy
- Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Samira Ghoor
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Marlon E. Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Grants, Innovation and Product Development, South African Medical Research Council, Cape Town, South Africa
- *Correspondence: Marlon E. Cerf,
| |
Collapse
|
39
|
Marfella R, Amarelli C, Cacciatore F, Balestrieri ML, Mansueto G, D'Onofrio N, Esposito S, Mattucci I, Salerno G, De Feo M, D'Amico M, Golino P, Maiello C, Paolisso G, Napoli C. Lipid Accumulation in Hearts Transplanted From Nondiabetic Donors to Diabetic Recipients. J Am Coll Cardiol 2020; 75:1249-1262. [PMID: 32192650 DOI: 10.1016/j.jacc.2020.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Early pathogenesis of diabetic cardiomyopathy (DMCM) may involve lipotoxicity of cardiomyocytes in the context of hyperglycemia. There are many preclinical studies of DMCM pathogenesis, but the human evidence is still poorly understood. OBJECTIVES By using a nondiabetic mellitus (non-DM) heart transplanted (HTX) in diabetes mellitus (DM) recipients, this study conducted a serial study of human heart transplant recipients evaluating cardiac effects of diabetic milieu (hyperglycemia and insulin resistance) on lipotoxic-mediated injury. We evaluated cardiomyocyte morpho-pathology by seriated biopsies of healthy implanted hearts in DM recipients during 12-month follow-up from HTX. Because metformin reduces ectopic lipid accumulation, we evaluated the effects of the drug in a nonrandomized subgroup. METHODS The DMCM-AHEAD (Diabetes and Lipid Accumulation and Heart Transplant) prospective ongoing study (NCT03546062) evaluated 158 first HTX recipients (82 non-DM, 76 DM of whom 35 [46%] were receiving metformin). HTX recipients were undergoing clinical standard evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsies). Biopsies evaluated immune response, Oil Red-O staining, ceramide, and triacylglycerol levels. Lipotoxic factors and insulin resistance were evaluated by reverse transcriptase-polymerase chain reaction. RESULTS There was a significant early and progressive cardiomyocyte lipid accumulation in DM but not in non-DM recipients (p = 0.019). In the subgroup receiving metformin, independently from immunosuppressive therapy that was similar among groups, lipid accumulation was reduced in comparison with DM recipients not receiving the drug (hazard ratio: 6.597; 95% confidence interval: 2.516 to 17.296; p < 0.001). Accordingly, lipotoxic factors were increased in DM versus non-DM recipients, and, relevantly, metformin use was associated with fewer lipotoxic factors. CONCLUSIONS Early pathogenesis of human DMCM started with cardiomyocyte lipid accumulation following HTX in DM recipients. Metformin use was associated with reduced lipid accumulation independently of immunosuppressive therapy. This may constitute a novel target for therapy of DMCM.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli," Naples, Italy.
| | - Cristiano Amarelli
- Unit of Cardiac Surgery and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | | | - Gelsomina Mansueto
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Irene Mattucci
- Cardiology Division, University "Luigi Vanvitelli," Monaldi Hospital, Naples, Italy
| | - Gemma Salerno
- Cardiology Division, University "Luigi Vanvitelli," Monaldi Hospital, Naples, Italy
| | - Marisa De Feo
- Department of Cardio-Thoracic Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Paolo Golino
- Cardiology Division, University "Luigi Vanvitelli," Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Unit of Cardiac Surgery and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli," Naples, Italy; IRCCS-SDN, Naples, Italy
| |
Collapse
|
40
|
Nirengi S, Peres Valgas da Silva C, Stanford KI. Disruption of energy utilization in diabetic cardiomyopathy; a mini review. Curr Opin Pharmacol 2020; 54:82-90. [PMID: 32980777 PMCID: PMC7770009 DOI: 10.1016/j.coph.2020.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) substantially elevates the risk for heart failure, a major cause of death. In advanced T2D, energy metabolism in the heart is disrupted; glucose metabolism is decreased, fatty acid (FA) metabolism is enhanced to maintain ATP production, and cardiac function is impaired. This condition is termed diabetic cardiomyopathy (DCM). The exact cause of DCM is still unknown although altered metabolism is an important component. While type 2 diabetes is characterized by insulin resistance, the traditional antidiabetic agents that improve insulin stimulation or sensitivity only partially improve DCM-induced cardiac dysfunction. Recently, sodium-glucose transporter-2 (SGLT2) inhibitors have been identified as potential pharmacological agents to treat DCM. This review highlights the molecular mechanisms underlying cardiac energy metabolism in DCM, and the potential effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, Foo RSY, Eschenhagen T, Stenzig J. An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility. Circulation 2020; 142:1562-1578. [PMID: 32885664 PMCID: PMC7566310 DOI: 10.1161/circulationaha.119.044444] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supplemental Digital Content is available in the text. Background: DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial. Thus, we knocked out the main de novo DNA methyltransferase in cardiomyocytes, DNMT3A, in human induced pluripotent stem cells. Functional consequences of DNA methylation-deficiency under control and stress conditions were then assessed in human engineered heart tissue from knockout human induced pluripotent stem cell–derived cardiomyocytes. Methods: DNMT3A was knocked out in human induced pluripotent stem cells by CRISPR/Cas9gene editing. Fibrin-based engineered heart tissue was generated from knockout and control human induced pluripotent stem cell–derived cardiomyocytes. Development and baseline contractility were analyzed by video-optical recording. Engineered heart tissue was subjected to different stress protocols, including serum starvation, serum variation, and restrictive feeding. Molecular, histological, and ultrastructural analyses were performed afterward. Results: Knockout of DNMT3A in human cardiomyocytes had three main consequences for cardiomyocyte morphology and function: (1) Gene expression changes of contractile proteins such as higher atrial gene expression and lower MYH7/MYH6 ratio correlated with different contraction kinetics in knockout versus wild-type; (2) Aberrant activation of the glucose/lipid metabolism regulator peroxisome proliferator-activated receptor gamma was associated with accumulation of lipid vacuoles within knockout cardiomyocytes; (3) Hypoxia-inducible factor 1α protein instability was associated with impaired glucose metabolism and lower glycolytic enzyme expression, rendering knockout-engineered heart tissue sensitive to metabolic stress such as serum withdrawal and restrictive feeding. Conclusion: The results suggest an important role of DNA methylation in the normal homeostasis of cardiomyocytes and during cardiac stress, which could make it an interesting target for cardiac therapy.
Collapse
Affiliation(s)
- Alexandra Madsen
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Grit Höppner
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Julia Krause
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.).,Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (J.K.)
| | - Marc N Hirt
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology (M.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, United Kingdom (D.M.)
| | - Chukwuemeka George Anene-Nzelu
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.).,Cardiovascular Research Institute, National University of Singapore (C.G.A.-N., I.L., R.S.Y.F.)
| | - Ives Lim
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.)
| | - Roger S Y Foo
- Genome Institute of Singapore (W.L.W.T., C.G.A.-N., I.L., R.S.Y.F.).,Cardiovascular Research Institute, National University of Singapore (C.G.A.-N., I.L., R.S.Y.F.)
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology (A.M., G.H., M.N.H., S.D.L., T.E., J.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (A.M., G.H., J.K., M.N.H., S.D.L., T.E., J.S.)
| |
Collapse
|
42
|
Palmitate-induced toxicity is associated with impaired mitochondrial respiration and accelerated oxidative stress in cultured cardiomyocytes: The critical role of coenzyme Q 9/10. Toxicol In Vitro 2020; 68:104948. [PMID: 32683093 DOI: 10.1016/j.tiv.2020.104948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 02/09/2023]
Abstract
Impaired mitochondrial function concomitant to enhanced oxidative stress-induced damage are well established mechanisms involved in hyperlipidemia-induced cardiotoxicity. Currently, limited information is available on the direct effect of myocardial lipid overload on endogenous coenzyme Q9/10 (CoQ9/10) levels in association with mitochondrial respiration and oxidative stress status. Here, such effects were explored by exposing H9c2 cardiomyocytes to various doses (0.15 to 1 mM) of palmitate for 24 h. The results demonstrated that palmitate doses ≥0.25 mM are enough to impair mitochondrial respiration and cause oxidative stress. Although endogenous CoQ9/10 levels are enhanced by palmitate doses ≤0.5 mM, this is not enough to counteract oxidative stress, but is sufficient to maintain cell viability of cardiomyocytes. Palmitate doses >0.5 mM caused severe mitochondrial toxicity, including reduction of cell viability. Interestingly, enhancement of CoQ9/10 levels with the lowest dose of palmitate (0.15 mM) was accompanied by a significantly reduction of CoQ9 oxidation status, as well as low cytosolic production of reactive oxygen species. From the overall findings, it appears that CoQ9/10 response may be crucial to improve mitochondrial function in conditions linked to hyperlipidemia-induced insult. Confirmation of such findings in relevant in vivo models remains essential to better understand the cardioprotective effects in association with improving endogenous CoQ9/10 content.
Collapse
|
43
|
Gandoy-Fieiras N, Gonzalez-Juanatey JR, Eiras S. Myocardium Metabolism in Physiological and Pathophysiological States: Implications of Epicardial Adipose Tissue and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:2641. [PMID: 32290181 PMCID: PMC7177518 DOI: 10.3390/ijms21072641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
The main energy substrate of adult cardiomyocytes for their contractility are the fatty acids. Its metabolism generates high ATP levels at the expense of high oxygen consumption in the mitochondria. Under low oxygen supply, they can get energy from other substrates, mainly glucose, lactate, ketone bodies, etc., but the mitochondrial dysfunction, in pathological conditions, reduces the oxidative metabolism. In consequence, fatty acids are stored into epicardial fat and its accumulation provokes inflammation, insulin resistance, and oxidative stress, which enhance the myocardium dysfunction. Some therapies focused on improvement the fatty acids entry into mitochondria have failed to demonstrate benefits on cardiovascular disorders. Oppositely, those therapies with effects on epicardial fat volume and inflammation might improve the oxidative metabolism of myocardium and might reduce the cardiovascular disease progression. This review aims at explain (a) the energy substrate adaptation of myocardium in physiological conditions, (b) the reduction of oxidative metabolism in pathological conditions and consequences on epicardial fat accumulation and insulin resistance, and (c) the reduction of cardiovascular outcomes after regulation by some therapies.
Collapse
Affiliation(s)
- Nerea Gandoy-Fieiras
- Translational Cardiology Group, Health Research Institute, 15782 Santiago de Compostela, Spain;
| | - Jose Ramon Gonzalez-Juanatey
- Cardiovascular Department, University Hospital of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Cardiology Group, Health Research Institute, 17582 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Sonia Eiras
- Translational Cardiology Group, Health Research Institute, 15782 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
44
|
Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids. Cells 2020; 9:cells9030537. [PMID: 32110930 PMCID: PMC7140414 DOI: 10.3390/cells9030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.
Collapse
|
45
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
46
|
Banerjee D, Datta Chaudhuri R, Niyogi S, Roy Chowdhuri S, Poddar Sarkar M, Chatterjee R, Chakrabarti P, Sarkar S. Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy. J Mol Cell Cardiol 2020; 139:148-163. [PMID: 31958467 DOI: 10.1016/j.yjmcc.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022]
Abstract
Chronic pressure overload-induced left ventricular hypertrophy in heart is preceded by a metabolic perturbation that prefers glucose over lipid as substrate for energy requirement. Here, we establish C/EBPβ (CCAAT/enhancer-binding protein β) as an early marker of the metabolic derangement that triggers the imbalance in fatty acid (FA) oxidation and glucose uptake with increased lipid accumulation in cardiomyocytes during pathological hypertrophy, leading to contractile dysfunction and endoplasmic reticulum (ER) stress. This is the first study that shows that myocardium-targeted C/EBPβ knockdown prevents the impaired cardiac function during cardiac hypertrophy led by maladaptive metabolic response with persistent hypertrophic stimuli, whereas its targeted overexpression in control increases lipid accumulation significantly compared to control hearts. A new observation from this study was the dual and opposite transcriptional regulation of the alpha and gamma isoforms of Peroxisomal proliferator activated receptors (PPARα and PPARγ) by C/EBPβ in hypertrophied cardiomyocytes. Before the functional and structural remodeling sets in the diseased myocardium, C/EBPβ aggravates lipid accumulation with the aid of the increased FA uptake involving induced PPARγ expression and decreased fatty acid oxidation (FAO) by suppressing PPARα expression. Glucose uptake into cardiomyocytes was greatly increased by C/EBPβ via PPARα suppression. The activation of mammalian target of rapamycin complex-1 (mTORC1) during increased workload in presence of glucose as the only substrate was prevented by C/EBPβ knockdown, thereby abating contractile dysfunction in cardiomyocytes. Our study thus suggests that C/EBPβ may be considered as a novel cellular marker for deranged metabolic milieu before the heart pathologically remodels itself during hypertrophy.
Collapse
Affiliation(s)
- Durba Banerjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sougata Niyogi
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumedha Roy Chowdhuri
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Mousumi Poddar Sarkar
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
47
|
Cai H, Chen S, Liu J, He Y. An attempt to reverse cardiac lipotoxicity by aerobic interval training in a high-fat diet- and streptozotocin-induced type 2 diabetes rat model. Diabetol Metab Syndr 2019; 11:43. [PMID: 31249632 PMCID: PMC6567651 DOI: 10.1186/s13098-019-0436-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is an important risk factor for cardiovascular disease. Aerobic interval training (AIT) has been recommended to patients as a non-pharmacological strategy to manage DM. However, little is known about whether AIT intervention at the onset of DM will reverse the process of diabetic cardiomyopathy (DCM). In this study, we sought to evaluate whether AIT can reverse the process of DCM and explore the underlying mechanisms. METHODS Fifty Wistar rats were randomly divided into a control group (CON), DCM group (DCM) and AIT intervention group (AIT). A high-fat diet and streptozotocin (STZ) were used to induce diabetes in rats in the DCM group and AIT group. Rats in the AIT group were subjected to an 8-week AIT intervention. Fasting blood glucose (FBG), lipid profiles and insulin levels were measured. Haematoxylin and eosin (HE) staining and oil red O staining were used to identify cardiac morphology and lipid accumulation, respectively. Serum BNP levels and cardiac BNP mRNA expression were measured to ensure the safety of the AIT intervention. Free fatty acid (FFA) and diacylglycerol (DAG) concentrations were analysed by enzymatic methods. AMPK, p-AMPK, FOXO1, CD36 and PPARα gene and protein expression were detected by RT-PCR and Western blotting. RESULTS AIT intervention significantly reduced rat serum cardiovascular disease risk factors in DCM rats (P < 0.05). The safety of AIT intervention was illustrated by reduced serum BNP levels and cardiac BNP mRNA expression (P < 0.05) after AIT intervention in DCM rats histological analysis and FFA and DAG concentrations revealed that AIT intervention reduced the accumulation of lipid droplets within cardiomyocytes and alleviated cardiac lipotoxicity (P < 0.05). CD36 and PPARα gene and protein expression were elevated in the DCM group, and these increases were reduced by AIT intervention (P < 0.01). The normalized myocardial lipotoxicity was due to increased expression of phosphorylated AMPK and reduced FOXO1 expression after AIT intervention. CONCLUSION AIT intervention may alleviate cardiac lipotoxicity and reverse the process of DCM through activation of the AMPK-FOXO1 pathway.
Collapse
Affiliation(s)
- Huan Cai
- Institute of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Jingqin Liu
- Department of Endocrinology, NO. 1 Hospital of Baoding, Baoding, China
| | - Yuxiu He
- Institute of Physical Education, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
48
|
Pinto BAS, França LM, Laurindo FRM, Paes AMDA. Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:67-82. [DOI: 10.1007/978-3-030-11488-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Rom O, Volkova N, Jeries H, Grajeda-Iglesias C, Aviram M. Exogenous (Pomegranate Juice) or Endogenous (Paraoxonase1) Antioxidants Decrease Triacylglycerol Accumulation in Mouse Cardiovascular Disease-Related Tissues. Lipids 2018; 53:1031-1041. [PMID: 30560569 DOI: 10.1002/lipd.12112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
Abstract
The polyphenol-rich pomegranate juice (PJ) and the high-density lipoprotein (HDL)-associated paraoxonase1 (PON1) are known as potent atheroprotective antioxidants, but their effects on other tissues related to cardiovascular disease (CVD) remain unknown. The current study aimed to investigate the effects of treating mice with PJ or recombinant PON1 (rePON1) on the oxidation and lipid status of CVD-related tissues: serum, aorta, heart, liver, kidney, visceral, and subcutaneous adipose tissues (VAT and SAT). Both PJ consumption and rePON1 injection decreased the serum levels of thiobarbituric acid-reactive substances (16% and 19%) and triacylglycerols (TAG, 24% and 27%), while only rePON1 increased the levels of thiol groups (35%) and decreased serum cholesterol (15%). Both PJ and rePON1 significantly decreased aortic cholesterol (38% and 32%) and TAG (62% and 58%) contents in association with downregulation of the key TAG biosynthetic enzyme diacylglycerol O-acyltransferase 1 (DGAT1, 71% and 65%), while only PJ decreased aortic lipid peroxides (47%). Substantial TAG-lowering effects of both PJ and rePON1 were observed also in the heart (31% and 42%), liver (34% and 42%), and kidney (42% and 57%). In both VAT and SAT, rePON1 decreased the levels of lipid peroxides (28% and 25%), while PJ decreased the TAG content (22% and 18%). Ex vivo incubation of SAT with serum derived from mice that consumed PJ or injected with rePON1 decreased SAT lipid peroxides (35% or 28%) and TAG mass (12% or 10%). These novel findings highlight potent TAG-lowering properties of exogenous (PJ) and endogenous (PON1) antioxidants in tissues associated with CVD.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Rd. Ann Arbor, MI 48109
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| | - Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096.,Department of Internal Medicine E, Rambam Health Care Campus, 8 HaAliya HaShniya St., Haifa, Israel 35254
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| |
Collapse
|
50
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|