1
|
Юкина МЮ, Трошина ЕА, Урусова ЛС, Нуралиева НФ, Никанкина ЛВ, Иоутси ВА, Реброва ОЮ, Мокрышева НГ. [Search for new immunohistochemical and circulating markers of insulinoma]. PROBLEMY ENDOKRINOLOGII 2024; 70:15-26. [PMID: 39868444 PMCID: PMC11775719 DOI: 10.14341/probl13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Insulinoma is a neuroendocrine tumor, the main manifestation of which is hypoglycemia. However, the symptoms of hypoglycemia can be non-specific for a long time, especially outside provocative conditions, and quite often the tumor manifests from a life-threatening condition - hypoglycemic coma. In this regard, timely laboratory diagnosis of insulinoma and determination of its aggressive course is one of the priorities in modern researches. AIM Search for new immunohistochemical (IHC) and circulating markers (CM) of insulinoma, including its aggressive course. MATERIALS AND METHODS The patients examined at the Endocrinology Research Centre in the period 2017-2022 and operated on for an insulin-producing tumor were included. Before surgery and 2-12 months after it, blood sampling was performed with the determination of targeted marker proteins. Some patients underwent an extended IHC examination of the tumor, surrounding tissue and islets of Langerhans with primary antibodies to target marker proteins with an assessment of the degree of their expression. To determine the aggressive course of the tumor, the degree of malignancy (Grade), the number of tumors and signs of recurrence were characterized. RESULTS Based on the analysis of literature and pathogenetic characteristics of insulinoma, the following candidates for targeted marker proteins were selected: cocaine and amphetamine-regulated transcript (CART), chromogranin B (CrB), neuroendocrine secretory protein 55 (NESP55), glucagon-like peptide 1 (GLP1), arylalkylamine-N-acetyltransferase (AA-NAT), melatonin, and, exclusively for IHC research, protein D52 (TPD52), as well as receptors for glucagon-like peptide-1 (rGLP1) and melatonin (MTNR1b). 41 patients were included in the study, of which 10 patients underwent an extended IHC study. In patients with both aggressive and non-aggressive insulinoma after surgical treatment, CM levels did not change significantly and in individual patients they could both increase and decrease, including those patients with the expression of the corresponding marker in tumor tissue. It was shown that CART was expressed only in the tumor (in 4/10 of cases), while MTNR1b and rGLP1 were expressed in the tumor (in 6/10 and 10/10, respectively) and the islets of Langerhans (in 5/9 and 9/9, respectively). The association of marker expression with the aggressiveness of the course of insulinoma has not been revealed. CONCLUSION The markers CART, MTNR1b and rGLP1 are of primary interest for further study in a larger sample of patients with insulinoma. Other markers (TPD52, XgB, NESP55, melatonin, AA-NAT) have not been shown to be associated with an insulin-producing tumor, therefore they are not promising for future researches. At the same time, it is necessary to continue research aimed at finding new both circulating and IHC markers in order to early diagnose the manifestation of the disease and its recurrence, and more accurately determine the malignant and proliferative potential of the tumor.
Collapse
Affiliation(s)
- М. Ю. Юкина
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Трошина
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. С. Урусова
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Ф. Нуралиева
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. В. Никанкина
- Национальный медицинский исследовательский центр эндокринологии
| | - В. А. Иоутси
- Национальный медицинский исследовательский центр эндокринологии
| | - О. Ю. Реброва
- Национальный медицинский исследовательский центр эндокринологии;
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
2
|
Sun Y, Li G, Hong H, Zhu L, Kung HF, Zhang Y, Zhu J. Serotonin transporter imaging agent as a probe for β-cells of pancreas. Nucl Med Biol 2024; 130-131:108894. [PMID: 38422917 DOI: 10.1016/j.nucmedbio.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Diabetes mellitus (DM) is one of the major diseases in the world. Nuclear medicine imaging may be able to detect functional status of pancreatic β cells in vivo, which might elucidate the pathological mechanisms of diabetes and develop individualized treatment plans. In this study, we evaluated the ability of [125I]ADAM, a serotonin transporter (SERT) imaging agent, as a probe for detecting pancreatic β-cell mass (BCM). METHODS In vitro cell studies were evaluated in INS-1 cells (rat islet β cell line). Biodistribution studies were performed in male normal Sprague-Dawley rats and alloxan-induced type 1 diabetes mellitus (T1DM) rats. Distribution and expression of SERT protein in pancreas of rats were also measured by immunofluorescence staining and Western blot. RESULTS In vitro cell studies showed that the concentration of [125I]ADAM associated with the INS-1 cells was increased gradually with incubation time, and the SERT specific inhibitor, escitalopram, exhibited the inhibitory effect on this interaction. Biodistribution studies also showed that the uptake of [125I]ADAM in the pancreas of normal rats was decreased in the presence of escitalopram. However, in the T1DM rat model with a significant β cells reduction, the uptake of pancreas was increased when compared with the control. Through immunofluorescence staining and Western blot, it was found that both the endocrine and exocrine cells of the normal pancreas expressed SERT protein, and the level of SERT protein in the exocrine cells was higher than islets. In the diabetic state, the expression of SERT in the exocrine cells was further increased. CONCLUSIONS The SERT imaging agent, [125I]ADAM, at the present form will not be suitable for imaging β cells, specifically because there were extraordinarily high non-specific signals contributing from the exocrine cells of pancreas. In addition, we noticed that the level of SERT expression was abnormally elevated in the diabetic state, which might provide an unexpected target for studying the pathological mechanisms of diabetes.
Collapse
Affiliation(s)
- Yuli Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
4
|
Bini J, Carson RE, Cline GW. Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. Methods Mol Biol 2023; 2592:61-74. [PMID: 36507985 DOI: 10.1007/978-1-0716-2807-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive quantitative imaging of beta-cells can provide information on changes in cellular transporters, receptors, and signaling proteins that may affect function and/or loss of mass, both of which contribute to the loss of insulin secretion and glucose regulation of patients with type 1 or type 2 diabetes (T1D/T2D). We have developed and optimized the use of two positron emission tomography (PET) radioligands, [18F]FP-(+)-DTBZ and [11C](+)-PHNO, targeting beta-cell VMAT2 and dopamine (D2/D3) receptors, respectively. Here we describe our optimized methodology for the clinical use of these two tracers for quantitative PET imaging of beta-cell biomarkers in vivo. We also briefly discuss our previous results and their implications and value towards extending the use of PET radioligand beyond the original goal of quantitative imaging of beta-cell mass to the potential to provide insight into the biology of beta-cell loss of mass and/or function and to evaluate the efficacy of therapeutics to prevent or restore functional beta-cell mass.
Collapse
Affiliation(s)
- Jason Bini
- PET Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Richard E Carson
- PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Liu C, Fang Y, Tang J, Chen Z. Derivatization of dihydrotetrabenazine for technetium-99m labelling towards a radiotracer targeting vesicular monoamine transporter 2. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Ogawa Y, Kimura H, Fujimoto H, Kawashima H, Toyoda K, Mukai E, Yagi Y, Ono M, Inagaki N, Saji H. Development of novel radioiodinated exendin-4 derivatives targeting GLP-1 receptor for detection of β-cell mass. Bioorg Med Chem 2021; 52:116496. [PMID: 34808404 DOI: 10.1016/j.bmc.2021.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In subjects with type 2 diabetes mellitus (T2DM), pancreatic β-cell mass decreases; however, it is unknown to what extent this decrease contributes to the pathophysiology of T2DM. Therefore, the development of a method for noninvasive detection of β-cell mass is underway. We previously reported that glucagon-like peptide-1 receptor (GLP-1R) is a promising target molecule for β-cell imaging. In this study, we attempted to develop a probe targeting GLP-1R for β-cell imaging using single-photon emission computed tomography (SPECT). For this purpose, we selected exendin-4 as the lead compound and radiolabeled lysine at residue 12 in exendin-4 or additional lysine at the C-terminus using [123I]iodobenzoylation. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Biodistribution study was performed in normal ddY mice. Ex vivo autoradiography was performed in transgenic mice expressing green fluorescent protein under control of the mouse insulin I gene promoter. Additionally, SPECT imaging was performed in normal ddY mice. The affinity of novel synthesized derivatives toward pancreatic β-cells was not affected by iodobenzoylation. The derivatives accumulated in the pancreas after intravenous administration specifically via GLP-1R expressed on the pancreatic β-cells. Extremely high signal-to-noise ratio was observed during evaluation of biodistribution of [123I]IB12-Ex4. SPECT images using normal mice showed that [123I]IB12-Ex4 accumulated in the pancreas with high contrast between the pancreas and background. These results indicate that [123I]IB12-Ex4 for SPECT is useful for clinical applications because of its preferable kinetics in vivo.
Collapse
Affiliation(s)
- Yu Ogawa
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hiroyuki Fujimoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidekazu Kawashima
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Misasagi-shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eri Mukai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Yagi
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Eriksson M, Litwak SA, Yun Y, Stanley WJ, Thorn P, Ahlgren U, Gurzov EN. Insulin-Binding Peptide Probes Provide a Novel Strategy for Pancreatic β-Cell Imaging. Mol Pharm 2021; 18:4428-4436. [PMID: 34649437 DOI: 10.1021/acs.molpharmaceut.1c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes develops in childhood and adolescence, with peak incidence in the early teenage years. There is an urgent need for an accurate method to detect insulin-producing β-cells in patients that is not affected by alterations in β-cell function. As part of our research program to design specific probes to measure β-cell mass, we recently developed a novel insulin-binding peptide probe (IBPP) for the detection of β-cells in vivo. Here, we applied our innovative method to show specific labeling of this IBPP to human and mouse fixed β-cells in pancreatic islets. Importantly, we showed staining of human and mouse islets in culture without any negative functional or cell viability impact. Moreover, the IBPP-stained mouse islets after tail vein injection in vivo, albeit with batch differences in staining efficiency. In conclusion, we provide evidence showing that the IBPP can be used for future accurate detection of β-cell mass in a variety of preclinical models of diabetes.
Collapse
Affiliation(s)
- Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Johan Bures väg 12, Umeå 901 87, Sweden
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, 9 Princes Street, Melbourne 3065, Australia
| | - Yan Yun
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Johns Hopkins Dr, Sydney 2006, Australia
| | - William J Stanley
- St Vincent's Institute of Medical Research, 9 Princes Street, Melbourne 3065, Australia.,Department of Medicine, The University of Melbourne, Parkville, Melbourne 3065, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Johns Hopkins Dr, Sydney 2006, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Johan Bures väg 12, Umeå 901 87, Sweden
| | - Esteban N Gurzov
- Department of Medicine, The University of Melbourne, Parkville, Melbourne 3065, Australia.,Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium
| |
Collapse
|
8
|
Joosten L, Boss M, Jansen T, Brom M, Buitinga M, Aarntzen E, Eriksson O, Johansson L, de Galan B, Gotthardt M. Molecular Imaging of Diabetes. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Neo CWY, Ciaramicoli LM, Soetedjo AAP, Teo AKK, Kang NY. A new perspective of probe development for imaging pancreatic beta cell in vivo. Semin Cell Dev Biol 2020; 103:3-13. [PMID: 32057664 DOI: 10.1016/j.semcdb.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Beta cells assume a fundamental role in maintaining blood glucose homeostasis through the secretion of insulin, which is contingent on both beta cell mass and function, in response to elevated blood glucose levels or secretagogues. For this reason, evaluating beta cell mass and function, as well as scrutinizing how they change over time in a diabetic state, are essential prerequisites in elucidating diabetes pathophysiology. Current clinical methods to measure human beta cell mass and/or function are largely lacking, indirect and sub-optimal, highlighting the continued need for noninvasive in vivo beta cell imaging technologies such as optical imaging techniques. While numerous probes have been developed and evaluated for their specificity to beta cells, most of them are more suited to visualize beta cell mass rather than function. In this review, we highlight the distinction between beta cell mass and function, and the importance of developing more probes to measure beta cell function. Additionally, we also explore various existing probes that can be employed to measure beta cell mass and function in vivo, as well as the caveats in probe development for in vivo beta cell imaging.
Collapse
Affiliation(s)
- Claire Wen Ying Neo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Larissa Miasiro Ciaramicoli
- Department of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Andreas Alvin Purnomo Soetedjo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| | - Nam-Young Kang
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, C5 Building, Room 203, Pohang, Kyungbuk, 37673, Republic of Korea.
| |
Collapse
|
10
|
Naganawa M, Lim K, Nabulsi NB, Lin SF, Labaree D, Ropchan J, Herold KC, Huang Y, Harris P, Ichise M, Cline GW, Carson RE. Evaluation of Pancreatic VMAT2 Binding with Active and Inactive Enantiomers of [ 18F]FP-DTBZ in Healthy Subjects and Patients with Type 1 Diabetes. Mol Imaging Biol 2019; 20:835-845. [PMID: 29468404 DOI: 10.1007/s11307-018-1170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Previous studies demonstrated the utility of [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) as a positron emission tomography (PET) radiotracer for the vesicular monoamine transporter type 2 (VMAT2) to quantify beta cell mass in healthy control (HC) and type 1 diabetes mellitus (T1DM) groups. Quantification of specific binding requires measurement of non-displaceable uptake. Our goal was to identify a reference tissue (renal cortex or spleen) to quantify pancreatic non-specific binding of [18F]FP-(+)-DTBZ with the inactive enantiomer, [18F]FP-(-)-DTBZ. This was the first human study of [18F]FP-(-)-DTBZ. PROCEDURES Six HCs and four T1DM patients were scanned on separate days after injection of [18F]FP-(+)-DTBZ or [18F]FP-(-)-DTBZ. Distribution volumes (VT) and standardized uptake values (SUVs) were compared between groups. Three methods for calculation of non-displaceable uptake (VND) or reference SUV were applied: (1) use of [18F]FP-(+)-DTBZ reference VT as VND, assuming VND is uniform across organs; (2) use of [18F]FP-(-)-DTBZ pancreatic VT as VND, assuming that VND is uniform between enantiomers in the pancreas; and (3) use of a scaled [18F]FP-(+)-DTBZ reference VT as VND, assuming that a ratio of non-displaceable uptake between organs is uniform between enantiomers. Group differences in VT (or SUV), binding potential (BPND), or SUV ratio (SUVR) were estimated using these three methods. RESULTS [18F]FP-(-)-DTBZ VT values were different among organs, and VT(+) and VT(-) were also different in the renal cortex and spleen. Method 3 with the spleen to estimate VND (or reference SUV) gave the highest non-displaceable uptake and the largest HC vs. T1DM group differences. Significant group differences were also observed in VT (or SUV) with method 1 using spleen. SUV was affected by differences in the input function between groups and between enantiomers. CONCLUSIONS Non-displaceable uptake was different among organs and between enantiomers. Use of scaled spleen VT values for VND is a suitable method for quantification of VMAT2 in the pancreas.
Collapse
Affiliation(s)
- Mika Naganawa
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA.
| | - Keunpoong Lim
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel B Nabulsi
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Shu-Fei Lin
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - David Labaree
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Kevan C Herold
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | | | | | - Gary W Cline
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard E Carson
- Yale University, P.O. Box 208048, New Haven, CT, 06520-8048, USA
| |
Collapse
|
11
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
12
|
Kozaczek M, Bottje W, Greene E, Lassiter K, Kong B, Dridi S, Korourian S, Hakkak R. Comparison of liver gene expression by RNAseq and PCR analysis after 8 weeks of feeding soy protein isolate- or casein-based diets in an obese liver steatosis rat model. Food Funct 2019; 10:8218-8229. [DOI: 10.1039/c9fo01387c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differential expression of genes provides insight into fundamental mechanisms associated with the ability of soy protein isolate to attenuate liver steatosis in genetically obese rats.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Elizabeth Greene
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Soheila Korourian
- Department of Pathology
- University of Arkansas for Medical Sciences
- Little Rock
- USA
| | - Reza Hakkak
- Department of Dietetics and Nutrition
- University of Arkansas for Medical Sciences
- Little Rock
- USA
- Department of Pediatrics
| |
Collapse
|
13
|
Hart NJ, Weber C, Papas KK, Limesand SW, Vagner J, Lynch RM. Multivalent activation of GLP-1 and sulfonylurea receptors modulates β-cell second-messenger signaling and insulin secretion. Am J Physiol Cell Physiol 2018; 316:C48-C56. [PMID: 30404557 DOI: 10.1152/ajpcell.00209.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Linking two pharmacophores that bind different cell surface receptors into a single molecule can enhance cell-targeting specificity to cells that express the complementary receptor pair. In this report, we developed and tested a synthetic multivalent ligand consisting of glucagon-like peptide-1 (GLP-1) linked to glibenclamide (Glb) (GLP-1/Glb) for signaling efficacy in β-cells. Expression of receptors for these ligands, as a combination, is relatively specific to the β-cell in the pancreas. The multivalent GLP-1/Glb increased both intracellular cAMP and Ca2+, although Ca2+ responses were significantly depressed compared with the monomeric Glb. Moreover, GLP-1/Glb increased glucose-stimulated insulin secretion in a dose-dependent manner. However, unlike the combined monomers, GLP-1/Glb did not augment insulin secretion at nonstimulatory glucose concentrations in INS 832/13 β-cells or human islets of Langerhans. These data suggest that linking two binding elements, such as GLP-1 and Glb, into a single bivalent ligand can provide a unique functional agent targeted to β-cells.
Collapse
Affiliation(s)
| | - Craig Weber
- Department of Physiology, University of Arizona , Tucson, Arizona
| | | | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Josef Vagner
- BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Ronald M Lynch
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Pharmacology, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| |
Collapse
|
14
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Li J, Karunananthan J, Pelham B, Kandeel F. Imaging pancreatic islet cells by positron emission tomography. World J Radiol 2016; 8:764-774. [PMID: 27721939 PMCID: PMC5039672 DOI: 10.4329/wjr.v8.i9.764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/15/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells.
Collapse
|
16
|
Naganawa M, Lin SF, Lim K, Labaree D, Ropchan J, Harris P, Huang Y, Ichise M, Carson RE, Cline GW. Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of 18F-FP-DTBZ in baboons. Nucl Med Biol 2016; 43:743-751. [PMID: 27673755 DOI: 10.1016/j.nucmedbio.2016.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/04/2016] [Accepted: 08/28/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION 18F-Fluoropropyl-(+)-dihydrotetrabenazine (18F-FP-(+)-DTBZ) is a vesicular monoamine transporter type 2 (VMAT2) radiotracer for positron emission tomography (PET) imaging to quantify human β-cell mass. Renal cortex and spleen have been suggested as reference regions, however, little is known about 18F-FP-(+)-DTBZ binding in these regions including the fraction of radiometabolite. We compared the kinetics of 18F-FP-(+)-DTBZ and its inactive enantiomer 18F-FP-(-)-DTBZ in baboons, estimated the non-displaceable binding (VND) of the tracers, and used ex vivo studies to measure radiometabolite fractions. METHODS PET scans were conducted for up to 4h with (+) and (-) enantiomers. Displacement experiments using unlabeled (+) and (-) enantiomers of FP-DTBZ and fluvoxamine (to evaluate sigma-1 receptor binding) were performed. SUV curves were used to calculate displacement values in the pancreas, renal cortex, and spleen. Distribution volumes (VT) were computed, and three approaches for calculation of VND were compared: (1) 18F-FP-(+)-DTBZ reference VT, (2) 18F-FP-(-)-DTBZ pancreatic VT, and (3) a scaled 18F-FP-(+)-DTBZ reference VT values. Ex vivo study was conducted to measure radiometabolite fraction in homogenized tissue samples from baboons at 90min post-injection. RESULTS Spleen uptake was lowest for both tracers. Highest uptake was in the pancreas with 18F-FP-(+)-DTBZ and renal cortex with 18F-FP-(-)-DTBZ. Substantial displacement effect was observed only with unlabeled FP-(+)-DTBZ in the 18F-FP-(+)-DTBZ studies. Radiometabolite fraction was higher in the renal cortex than the spleen. Approaches (1) and (3) with spleen to estimate VND provided lowest inter-subject variability of BPND. CONCLUSIONS VT differences among organs and between enantiomers indicated that scaling of reference region values is needed for quantification of VMAT2 binding in the pancreas with 18F-FP-(+)-DTBZ. Since the kidney PET signal has greater partial volume averaging and more radiometabolites, the spleen was considered a more practical candidate for use as a scaled-reference region in the quantification of 18F-FP-(+)-DTBZ in the pancreas.
Collapse
Affiliation(s)
- Mika Naganawa
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - Shu-Fei Lin
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - Keunpoong Lim
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - David Labaree
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - Jim Ropchan
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - Paul Harris
- Columbia University, New York, NY, United States
| | - Yiyun Huang
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | | | - Richard E Carson
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| | - Gary W Cline
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, United States, 06520
| |
Collapse
|
17
|
Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 2016; 59:1340-1349. [PMID: 27094935 DOI: 10.1007/s00125-016-3959-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022]
Abstract
Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medical Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
- Turku PET Centre, University of Turku, Turku, Finland.
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Albert Hwa
- JDRF, Discovery Research, New York, NY, USA
| | - Riccardo Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma and AOU of Parma, Parma, Italy
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Life and death of β cells in Type 1 diabetes: A comprehensive review. J Autoimmun 2016; 71:51-8. [PMID: 27017348 DOI: 10.1016/j.jaut.2016.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cells. Immune modulators have achieved some success in modifying the course of disease progression in T1D. However, there are parallel declines in C-peptide levels in treated and control groups after initial responses. In this review, we discuss mechanisms of β cell death in T1D that involve necrosis and apoptosis. New technologies are being developed to enable visualization of insulitis and β cell mass involving positron emission transmission that identifies β cell ligands and magnetic resonance imaging that can identify vascular leakage. Molecular signatures that identify β cell derived insulin DNA that is released from dying cells have been described and applied to clinical settings. We also consider changes in β cells that occur during disease progression including the induction of DNA methyltransferases that may affect the function and differentiation of β cells. Our findings from newer data suggest that the model of chronic long standing β cell killing should be reconsidered. These studies indicate that the pathophysiology is accelerated in the peridiagnosis period and manifest by increased rates of β cell killing and insulin secretory impairments over a shorter period than previously thought. Finally, we consider cellular explanations to account for the ongoing loss of insulin production despite continued immune therapy that may identify potential targets for treatment. The progressive decline in β cell function raises the question as to whether β cell failure that is independent of immune attack may be involved.
Collapse
|
19
|
Freeby MJ, Kringas P, Goland RS, Leibel RL, Maffei A, Divgi C, Ichise M, Harris PE. Cross-sectional and Test-Retest Characterization of PET with [(18)F]FP-(+)-DTBZ for β Cell Mass Estimates in Diabetes. Mol Imaging Biol 2015; 18:292-301. [PMID: 26370678 PMCID: PMC4783444 DOI: 10.1007/s11307-015-0888-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022]
Abstract
Purpose The vesicular monoamine transporter, type 2 (VMAT2) is expressed by insulin producing β cells and was evaluated as a biomarker of β cell mass (BCM) by positron emission tomography (PET) with [18F]fluoropropyl-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). Procedures We evaluated the feasibility of longitudinal pancreatic PET VMAT2 quantification in the pancreas in two studies of healthy controls and patients with type 1 or 2 diabetes. VMAT2 binding potential (BPND) was estimated voxelwise using a reference tissue method in a cross-sectional study, followed by assessment of reproducibility using a test-retest paradigm. Metabolic function was evaluated by stimulated c-peptide measurements. Results Pancreatic BPND was significantly decreased in patients with type 1 diabetes relative to controls and the test-retest variability was 9.4 %. Conclusions Pancreatic VMAT2 content is significantly reduced in long-term diabetes patients relative to controls and repeat scans are sufficiently reproducible to suggest the feasibility clinically VMAT2 measurements in longitudinal studies of new onset diabetes. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0888-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew J Freeby
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90404, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Patricia Kringas
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy.,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chaitan Divgi
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Masanori Ichise
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Paul E Harris
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Derivatization of (±) dihydrotetrabenazine for copper-64 labeling towards long-lived radiotracers for PET imaging of the vesicular monoamine transporter 2. Bioorg Med Chem Lett 2014; 24:5663-5665. [PMID: 25467156 DOI: 10.1016/j.bmcl.2014.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/13/2023]
Abstract
Dihydrotetrabenazine (DTBZ) derivatized from (+) Tetrabenazine (TBZ) has been used for imaging the expression of VMAT2 when labeled with (11)C (t1/2=20.3 min) or (18)F (t1/2=110 min) in neurodegenerative diseases or pancreatic beta-cell. Because (11)C or (18)F radiolabels are only available in the proximity of a biomedical cyclotron facility, here we report our work of derivatizing (+) and (-) DTBZ using a (64)Cu-specific bifunctional chelator scaffold ((64)Cu: t1/2=12.7 h) for the preparation of long-lived VMAT2 targeted radiotracers, (64)Cu-CB-TE2A-(+)-DTBZ and (64)Cu-CB-TE2A-(-)-DTBZ. The specific VMAT2 binding affinity of (64)Cu-CB-TE2A-(+)-DTBZ measured using rat brain homogenate or porcine islets was not compromised by our chemical modifications while that of its (-) counterpart remained low as in (11)C or (18)F labeled (±) DTBZ.
Collapse
|
21
|
Eriksson O, Espes D, Selvaraju RK, Jansson E, Antoni G, Sörensen J, Lubberink M, Biglarnia AR, Eriksson JW, Sundin A, Ahlström H, Eriksson B, Johansson L, Carlsson PO, Korsgren O. Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 2014; 63:3428-37. [PMID: 24848067 DOI: 10.2337/db13-1877] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, a well-developed serotonin system is localized to the pancreatic islets while being absent in exocrine pancreas. Assessment of pancreatic serotonin biosynthesis could therefore be used to estimate the human endocrine pancreas. Proof of concept was tested in a prospective clinical trial by comparisons of type 1 diabetic (T1D) patients, with extensive reduction of β-cells, with healthy volunteers (HVs). C-peptide-negative (i.e., insulin-deficient) T1D subjects (n = 10) and HVs (n = 9) underwent dynamic positron emission tomography with the radiolabeled serotonin precursor [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP). A significant accumulation of [(11)C]5-HTP was obtained in the pancreas of the HVs, with large interindividual variation. A substantial and highly significant reduction (66%) in the pancreatic uptake of [(11)C]5-HTP in T1D subjects was observed, and this was most evident in the corpus and caudal regions of the pancreas where β-cells normally are the major constituent of the islets. [(11)C]5-HTP retention in the pancreas was reduced in T1D compared with nondiabetic subjects. Accumulation of [(11)C]5-HTP in the pancreas of both HVs and subjects with T1D was in agreement with previously reported morphological observations on the β-cell volume, implying that [(11)C]5-HTP retention is a useful noninvasive surrogate marker for the human endocrine pancreas.
Collapse
Affiliation(s)
- Olof Eriksson
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ram K Selvaraju
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Emma Jansson
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- AstraZeneca R&D, Mölndal, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden AstraZeneca R&D, Mölndal, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 2014; 111:13924-9. [PMID: 25201977 DOI: 10.1073/pnas.1402665111] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.
Collapse
|
23
|
Eriksson O, Selvaraju RK, Johansson L, Eriksson JW, Sundin A, Antoni G, Sörensen J, Eriksson B, Korsgren O. Quantitative imaging of serotonergic biosynthesis and degradation in the endocrine pancreas. J Nucl Med 2014; 55:460-5. [PMID: 24525204 DOI: 10.2967/jnumed.113.125187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Serotonergic biosynthesis in the endocrine pancreas, of which the islets of Langerhans is the major constituent, has been implicated in insulin release and β cell proliferation. In this study, we investigated the feasibility of quantitative noninvasive imaging of the serotonergic metabolism in the pancreas using the PET tracer (11)C-5-hydroxy-l-tryptophan ((11)C-5-HTP). METHODS Uptake of (11)C-5-HTP, and its specificity for key enzymes in the serotonergic metabolic pathway, was assessed in vitro (INS-1 and PANC1 cells and human islet and exocrine preparations) and in vivo (nonhuman primates and healthy and diabetic rats). RESULTS In vitro tracer uptake in endocrine cells (INS-1 and human islets), but not PANC1 and exocrine cells, was mediated specifically by intracellular conversion into serotonin. Pancreatic uptake of (11)C-5-HTP in nonhuman primates was markedly decreased by inhibition of the enzyme dopa decarboxylase, which converts (11)C-5-HTP to (11)C-serotonin and increased after inhibition of monoamine oxidase-A, the main enzyme responsible for serotonin degradation. Uptake in the rat pancreas was similarly modulated by inhibition of monoamine oxidase-A and was reduced in animals with induced diabetes. CONCLUSION The PET tracer (11)C-5-HTP can be used for quantitative imaging of the serotonergic system in the endocrine pancreas.
Collapse
Affiliation(s)
- Olof Eriksson
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hart NJ, Chung WJ, Weber C, Ananthakrishnan K, Anderson M, Patek R, Zhang Z, Limesand SW, Vagner J, Lynch RM. Hetero-bivalent GLP-1/glibenclamide for targeting pancreatic β-cells. Chembiochem 2013; 15:135-45. [PMID: 24259278 DOI: 10.1002/cbic.201300375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 01/15/2023]
Abstract
G protein-coupled receptor (GPCR) cell signalling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are selected based on analysis of cell-specific expression of a receptor combination, then the linked binding elements might provide enhanced specificity of targeting the cell type of interest, that is, only to cells that express the complementary receptors. Two receptors whose expression is relatively specific (in combination) to insulin-secreting pancreatic β-cells are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled from the active fragment of GLP-1 (7-36 GLP-1) and glibenclamide, a small organic ligand for SUR1. The synthetic construct was labelled with Cy5 or europium chelated in DTPA to evaluate binding to β-cells, by using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to β-cells, it is rapidly capped and presumably removed from the cell surface by endocytosis. The bivalent ligand had an affinity approximately fivefold higher than monomeric europium-labelled GLP-1, likely a result of cooperative binding to the complementary receptors on the βTC3 cells. The high-affinity binding was lost in the presence of either unlabelled monomer, thus demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, thus indicating that this approach might be applicable for β-cell targeting in vivo.
Collapse
Affiliation(s)
- Nathaniel J Hart
- Department of Physiological Sciences, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85721 (USA)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kavishwar A, Moore A. Sphingomyelin patches on pancreatic beta-cells are indicative of insulin secretory capacity. J Histochem Cytochem 2013; 61:910-9. [PMID: 23920110 DOI: 10.1369/0022155413502792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The establishment and validation of specific markers on the surfaces of pancreatic beta-cells would have a significant impact on the development of agents that specifically target these cells for imaging and/or image-guided therapy in diabetes patient samples. We have recently described unique, cholesterol-stabilized sphingomyelin (SM) patches on the surfaces of beta-cells using the IC2 antibody. To further investigate the utility of SM patches as a unique beta-cell biomarker, we embarked on the current study to correlate the expression of this antigen with the insulin secretory capacity of beta-cells in tissue samples from patients and animals with type 1 and type 2 diabetes and compared this with samples from normal subjects. We found that the locations of SM patches were consistent with the insulin status of islets in all tissues studied. Using immunohistochemistry and staining with an IC2 antibody, we demonstrated a direct correlation between the reduced expression of SM patches and insulin production in diabetic individuals, indicating that the former could potentially serve as a functional biomarker of beta-cells. We believe that our results have significant implications for the further development of ligands with SM specificity for the non-invasive functional assessment of beta-cells and/or for targeted therapeutic delivery in diabetic patients.
Collapse
Affiliation(s)
- Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Charlestown, MA (AK, AM)
| | | |
Collapse
|
26
|
Yang L, Ji W, Xue Y, Chen L. Imaging beta-cell mass and function in situ and in vivo. J Mol Med (Berl) 2013; 91:929-38. [PMID: 23700217 DOI: 10.1007/s00109-013-1056-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 01/16/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells is critical to the maintenance of blood glucose homeostasis in animals. Both decrease in pancreatic beta-cell mass and defects in beta-cell function contribute to the onset of diabetes, although the underlying mechanisms remain largely unknown. Molecular imaging techniques can help beta-cell study in a number of ways. High-resolution fluorescence imaging techniques provide novel insights into the fundamental mechanisms underlying GSIS in isolated beta-cells or in situ in pancreatic islets, and dynamic changes of beta-cell mass and function can be noninvasively monitored in vivo by imaging techniques such as positron emission tomography and single-photon emission computed tomography. All these techniques will contribute to the better understanding of the progression of diabetes and the search for the optimized therapeutic measures that reverse deficits in beta-cell mass and function.
Collapse
Affiliation(s)
- Lu Yang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University and National Center for Nanoscience and Technology, Beijing, China.
| | | | | | | |
Collapse
|
27
|
Schäfer MKH, Hartwig NR, Kalmbach N, Klietz M, Anlauf M, Eiden LE, Weihe E. Species-specific vesicular monoamine transporter 2 (VMAT2) expression in mammalian pancreatic beta cells: implications for optimising radioligand-based human beta cell mass (BCM) imaging in animal models. Diabetologia 2013; 56:1047-56. [PMID: 23404442 PMCID: PMC3955760 DOI: 10.1007/s00125-013-2847-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/11/2013] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Imaging of beta cell mass (BCM) is a major challenge in diabetes research. The vesicular monoamine transporter 2 (VMAT2) is abundantly expressed in human beta cells. Radiolabelled analogues of tetrabenazine (TBZ; a low-molecular-weight, cell-permeant VMAT2-selective ligand) have been employed for pancreatic islet imaging in humans. Since reports on TBZ-based VMAT2 imaging in rodent pancreas have been fraught with confusion, we compared VMAT2 gene expression patterns in the mouse, rat, pig and human pancreas, to identify appropriate animal models with which to further validate and optimise TBZ imaging in humans. METHODS We used a panel of highly sensitive VMAT2 antibodies developed against equivalently antigenic regions of the transporter from each species in combination with immunostaining for insulin and species-specific in situ hybridisation probes. Individual pancreatic islets were obtained by laser-capture microdissection and subjected to analysis of mRNA expression of VMAT2. RESULTS The VMAT2 protein was not expressed in beta cells in the adult pancreas of common mouse or rat laboratory strains, in contrast to its expression in beta cells (but not other pancreatic endocrine cell types) in the pancreas of pigs and humans. VMAT2- and tyrosine hydroxylase co-positive (catecholaminergic) innervation was less abundant in humans than in rodents. VMAT2-positive mast cells were identified in the pancreas of all species. CONCLUSIONS/INTERPRETATION Primates and pigs are suitable models for TBZ imaging of beta cells. Rodents, because of a complete lack of VMAT2 expression in the endocrine pancreas, are a 'null' model for assessing interference with BCM measurements by VMAT2-positive mast cells and sympathetic innervation in the pancreas.
Collapse
Affiliation(s)
- M K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Robert-Koch-Straße 8, 35037 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Freeby M, Ichise M, Harris PE. Vesicular monoamine transporter, type 2 (VMAT2) expression as it compares to insulin and pancreatic polypeptide in the head, body and tail of the human pancreas. Islets 2012; 4:393-7. [PMID: 23221614 PMCID: PMC3605167 DOI: 10.4161/isl.22995] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The vesicular monoamine transporter, type 2 (VMAT2) is responsible for sequestering monoamine neurotransmitters into exocytic vesicles in neurons, enterochromaffin-like cells of the stomach and cells arising from the common myeloid progenitor. VMAT2 is also present in the pancreas and is expressed by insulin producing β cells, but not by glucagon or somatostatin expressing islet cells. Positron emission tomography (PET) targeting of VMAT2 is currently being evaluated as a non-invasive tool to measure β cell mass (BCM) in living humans. In recent trials, PET measurements of VMAT2 in the pancreas overestimated BCM in type 1 diabetes (T1D) patients predicted to have little to no BCM by metabolic measures. Recently, tissue immunohistochemistry studies suggested that VMAT2 staining may also co-localize with pancreatic polypeptide (PP) staining cells in pancreas tissue, but these studies were not quantitative. In this report, we evaluated VMAT2 specificity for β cells in sub-regions of the human pancreas using antibodies targeting VMAT2, insulin and PP by double-label immunofluorescence. Immunostaining for VMAT2 and insulin demonstrated 89 ± 8% overlap in the body and tail of the pancreas. However, 44 ± 12% and 53 ± 15% of VMAT2 cells co-stained with PP- and insulin-staining cells, respectively in the pancreatic head. Significant co-staining for VMAT2 and PP cells in the head of the pancreas may partly explain the apparent overestimation of BCM in T1D by PET. Specific targeting of the pancreatic body and tail using VMAT2 PET scanning may reflect BCM more accurately.
Collapse
Affiliation(s)
- Matthew Freeby
- Division of Endocrinology and the Naomi Berrie Diabetes Center; Columbia University; New York, NY USA
| | - Masanori Ichise
- Department of Radiology; Columbia University; New York, NY USA
| | - Paul E. Harris
- Division of Endocrinology and the Naomi Berrie Diabetes Center; Columbia University; New York, NY USA
- * Correspondence to: Paul Harris;
| |
Collapse
|
29
|
Neutzsky-Wulff AV, Andreassen KV, Hjuler ST, Feigh M, Bay-Jensen AC, Zheng Q, Henriksen K, Karsdal MA. Future detection and monitoring of diabetes may entail analysis of both β-cell function and volume: how markers of β-cell loss may assist. J Transl Med 2012; 10:214. [PMID: 23110768 PMCID: PMC3499140 DOI: 10.1186/1479-5876-10-214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Disease heterogeneity is as major issue in Type II Diabetes Mellitus (T2DM), and this patient inter-variability might not be sufficiently reflected by measurements of glycated haemoglobin (HbA1c).Β-cell dysfunction and β-cell death are initiating factors in development of T2DM. In fact, β-cells are known vanish prior to the development of T2DM, and autopsy of overt T2DM patients have shown a 60% reduction in β-cell mass.As the decline in β-cell function and mass have been proven to be pathological traits in T2DM, methods for evaluating β-cell loss is becoming of more interest. However, evaluation of β-cell death or loss is currently invasive and unattainable for the vast majority of diabetes patients. Serological markers, reflecting β-cell loss would be advantageous to detect and monitor progression of T2DM. Biomarkers with such capacities could be neo-epitopes of proteins with high β-cell specificity containing post translational modifications. Such tools may segregate T2DM patients into more appropriate treatment groups, based on their β-cell status, which is currently not possible. Presently individuals presenting with adequately elevated levels of both insulin and glucose are classified as T2DM patients, while an important subdivision of those is pending, namely those patients with sufficient β-cell capacity and those without. This may warrant two very different treatment options and patient care paths.Serological biomarkers reflecting β-cell health status may also assist development of new drugs for T2DM and aid physicians in better characterization of individual patients and tailor individual treatments and patient care protocols.
Collapse
Affiliation(s)
| | - Kim V Andreassen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Sara T Hjuler
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Michael Feigh
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | | | - Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| |
Collapse
|
30
|
Abstract
Here, we outline how islet cells use autocrine and paracrine 'circuits' of classical neurotransmitters and their corresponding receptors and transporters to communicate with vicinal β-cells to regulate glucose-stimulated insulin secretion. Many of these same circuits operate in the central nervous system and can be visualized by molecular imaging. We discuss how these techniques might be applied to measuring the dynamics of β-cell function in real time.
Collapse
Affiliation(s)
- P E Harris
- Division of Endocrinology, Department of Medicine, The Naomi Berrie Diabetes Center and Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
31
|
Abstract
β-Cell dysfunction is a critical component in the development of type 2 diabetes. Whilst both genetic and environmental factors contribute to the development of the disease, relatively little is known about the molecular network that is responsible for diet-induced functional changes in pancreatic β-cells. Recent genome-wide association studies for diabetes-related traits have generated a large number of candidate genes that constitute possible links between dietary factors and the genetic susceptibility for β-cell failure. Here, we summarize recent approaches for identifying nutritionally regulated transcripts in islets on a genome-wide scale. Polygenic mouse models for type 2 diabetes have been instrumental for investigating the mechanism of diet-induced β-cell dysfunction. Enhanced oxidative metabolism, triggered by a combination of dietary carbohydrates and fat, appears to play a critical role in the pathophysiology of diet-induced impairment of islets. More systematic studies of gene-diet interactions in β-cells of rodent models in combination with genetic profiling might reveal the regulatory circuits fundamental for the understanding of diet-induced impairments of β-cell function in humans.
Collapse
Affiliation(s)
- A Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
32
|
Watanabe A, Nishijima KI, Zhao S, Zhao Y, Tanaka Y, Takemoto H, Strauss HW, Blankenberg FG, Tamaki N, Kuge Y. Quantitative determination of apoptosis of pancreatic β-cells in a murine model of type 1 diabetes mellitus. J Nucl Med 2012; 53:1585-91. [PMID: 22930815 DOI: 10.2967/jnumed.111.102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Type 1 diabetes mellitus is characterized by a significant deficit in pancreatic β-cell mass, presumably caused by β-cell apoptosis. We investigated the incidence of β-cell apoptosis in streptozotocin-treated mice and nonobese diabetic (NOD) mice with (99m)Tc-annexin A5. METHODS Vehicle-treated mice, streptozotocin-treated mice, and NOD mice at the ages of 5, 9, 16, and 20 wk (5-8 mice per group) were injected with (99m)Tc-annexin A5 and sacrificed 6 h later for autoradiography, and the regional (99m)Tc-annexin A5 level in the pancreas was evaluated. Pancreatic islets were identified by insulin immunohistochemical staining, and apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. The (99m)Tc-annexin A5 level in pancreatic islets was expressed as the percentage injected dose per area of pancreatic islets and normalized by animal body weight (%ID × 10(6)/mm(2)/kg). The level of apoptotic cells in pancreatic islets was expressed as the number of TUNEL-positive cells per area of pancreatic islets (cells/mm(2)). RESULTS The (99m)Tc-annexin A5 accumulation level was significantly higher (2.5 ± 0.7 vs. 0.7 ± 0.1 %ID × 10(6)/mm(2)/kg, P < 0.05) and the number of TUNEL-positive cells was significantly higher (1,170 ± 535 vs. 5 ± 6 cells/mm(2), P < 0.05) in the pancreatic islets of the streptozotocin-treated mice than in those of the vehicle-treated mice. The (99m)Tc-annexin A5 accumulation level was significantly higher (1.1 ± 0.4 vs. 0.5 ± 0.1 %ID × 10(6)/mm(2)/kg, P < 0.05) and the number of TUNEL-positive cells was significantly higher (152 ± 82 vs. 4 ± 9 cells/mm(2), P < 0.05) in the pancreatic islets of 16-wk-old NOD mice than in those of 5-wk-old NOD mice. In addition, the level of (99m)Tc-annexin A5 correlated with the number of TUNEL-positive cells in the pancreatic islets of the streptozotocin-treated mice (r = 0.821, P < 0.001) and NOD mice (r = 0.721, P < 0.001). CONCLUSION There is significant islet cell apoptosis with (99m)Tc-annexin A5 accumulation in the pancreas of both streptozotocin and NOD mice.
Collapse
Affiliation(s)
- Ayahisa Watanabe
- Department of Radiobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol 2012; 26:1757-72. [PMID: 22915827 DOI: 10.1210/me.2012-1101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity.
Collapse
Affiliation(s)
- Norman Simpson
- Division of Endocrinology, Department of Medicine, Columbia University Medical College, 650 West 168th Street, BB 2006, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The pancreatic beta cell is responsible for maintaining normoglycaemia by secreting an appropriate amount of insulin according to blood glucose levels. The accurate sensing of the beta cell extracellular environment is therefore crucial to this endocrine function and is transmitted via its cell surface proteome. Various surface proteins that mediate or affect beta cell endocrine function have been identified, including growth factor and cytokine receptors, transporters, ion channels and proteases, attributing important roles to surface proteins in the adaptive behaviour of beta cells in response to acute and chronic environmental changes. However, the largely unknown composition of the beta cell surface proteome is likely to harbour yet more information about these mechanisms and provide novel points of therapeutic intervention and diagnostic tools. This article will provide an overview of the functional complexity of the beta cell surface proteome and selected surface proteins, outline the mechanisms by which their activity may be modulated, discuss the methods and challenges of comprehensively mapping and studying the beta cell surface proteome, and address the potential of this interesting subproteome for diagnostic and therapeutic applications in human disease.
Collapse
Affiliation(s)
- I. Stützer
- Institute of Molecular Systems Biology, HPT E73, ETH Zurich, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - D. Esterházy
- Institute of Molecular Systems Biology, HPT E73, ETH Zurich, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - M. Stoffel
- Institute of Molecular Systems Biology, HPT E73, ETH Zurich, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Lebastchi J, Herold KC. Immunologic and metabolic biomarkers of β-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2:a007708. [PMID: 22675665 PMCID: PMC3367537 DOI: 10.1101/cshperspect.a007708] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D), also known as insulin-dependent diabetes mellitus, is a chronic disorder that results from autoimmune destruction of insulin-producing β cells in the islets of Langerhans within the pancreas ( Atkinson and Maclaren 1994). This disease becomes clinically apparent only after significant destruction of the β-cell mass, which reduces the ability to maintain glycemic control and metabolic function. In addition, it continues for years after clinical onset until, generally, there is complete destruction of insulin secretory capacity. Because prevention and therapy strategies are targeted to this pathologic process, it becomes imperative to have methods with which it can be monitored. This work discusses current research-based approaches to monitor the autoimmunity and metabolic function in T1D patients and their potential for widespread clinical application.
Collapse
Affiliation(s)
- Jasmin Lebastchi
- Department of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
36
|
Normandin MD, Petersen KF, Ding YS, Lin SF, Naik S, Fowles K, Skovronsky DM, Herold KC, McCarthy TJ, Calle RA, Carson RE, Treadway JL, Cline GW. In vivo imaging of endogenous pancreatic β-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 2012; 53:908-16. [PMID: 22573821 DOI: 10.2967/jnumed.111.100545] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The ability to noninvasively measure endogenous pancreatic β-cell mass (BCM) would accelerate research on the pathophysiology of diabetes and revolutionize the preclinical development of new treatments, the clinical assessment of therapeutic efficacy, and the early diagnosis and subsequent monitoring of disease progression. The vesicular monoamine transporter type 2 (VMAT2) is coexpressed with insulin in β-cells and represents a promising target for BCM imaging. METHODS We evaluated the VMAT2 radiotracer (18)F-fluoropropyl-dihydrotetrabenazine ((18)F-FP-(+)-DTBZ, also known as (18)F-AV-133) for quantitative PET of BCM in healthy control subjects and patients with type 1 diabetes mellitus. Standardized uptake value was calculated as the net tracer uptake in the pancreas normalized by injected dose and body weight. Total volume of distribution, the equilibrium ratio of tracer concentration in tissue relative to plasma, was estimated by kinetic modeling with arterial input functions. Binding potential, the steady-state ratio of specific binding to nondisplaceable uptake, was calculated using the renal cortex as a reference tissue devoid of specific VMAT2 binding. RESULTS Mean pancreatic standardized uptake value, total volume of distribution, and binding potential were reduced by 38%, 20%, and 40%, respectively, in type 1 diabetes mellitus. The radiotracer binding parameters correlated with insulin secretion capacity as determined by arginine-stimulus tests. Group differences and correlations with β-cell function were enhanced for total pancreas binding parameters that accounted for tracer binding density and organ volume. CONCLUSION These findings demonstrate that quantitative evaluation of islet β-cell density and aggregate BCM can be performed clinically with (18)F-FP-(+)-DTBZ PET.
Collapse
Affiliation(s)
- Marc D Normandin
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Andralojc K, Srinivas M, Brom M, Joosten L, de Vries IJM, Eizirik DL, Boerman OC, Meda P, Gotthardt M. Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 2012; 55:1247-57. [PMID: 22358499 PMCID: PMC3328679 DOI: 10.1007/s00125-012-2491-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022]
Abstract
For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results.
Collapse
Affiliation(s)
- K. Andralojc
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - M. Srinivas
- Department of Tumour Immunology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - M. Brom
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - L. Joosten
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - I. J. M. de Vries
- Department of Tumour Immunology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - D. L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - O. C. Boerman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - P. Meda
- Deparment of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - M. Gotthardt
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
38
|
Suckow AT, Zhang C, Egodage S, Comoletti D, Taylor P, Miller MT, Sweet IR, Chessler SD. Transcellular neuroligin-2 interactions enhance insulin secretion and are integral to pancreatic β cell function. J Biol Chem 2012; 287:19816-26. [PMID: 22528485 DOI: 10.1074/jbc.m111.280537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal glucose-stimulated insulin secretion is dependent on interactions between neighboring β cells. Elucidation of the reasons why this cell-to-cell contact is essential will probably yield critical insights into β cell maturation and function. In the central nervous system, transcellular protein interactions (i.e. interactions between proteins on the surfaces of different cells) involving neuroligins are key mediators of synaptic functional development. We previously demonstrated that β cells express neuroligin-2 and that insulin secretion is affected by changes in neuroligin-2 expression. Here we show that the effect of neuroligin-2 on insulin secretion is mediated by transcellular interactions. Neuroligin-2 binds with nanomolar affinity to a partner on the β cell surface and contributes to the increased insulin secretion brought about by β cell-to-β cell contact. It does so in a manner seemingly independent of interactions with neurexin, a known binding partner. As in the synapse, transcellular neuroligin-2 interactions enhance the functioning of the submembrane exocytic machinery. Also, as in the synapse, neuroligin-2 clustering is important. Neuroligin-2 in soluble form, rather than presented on a cell surface, decreases insulin secretion by rat islets and MIN-6 cells, most likely by interfering with endogenous neuroligin interactions. Prolonged contact with neuroligin-2-expressing cells increases INS-1 β cell proliferation and insulin content. These results extend the known parallels between the synaptic and β cell secretory machineries to extracellular interactions. Neuroligin-2 interactions are one of the few transcellular protein interactions thus far identified that directly enhance insulin secretion. Together, these results indicate a significant role for transcellular neuroligin-2 interactions in the establishment of β cell function.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine and Pediatric Diabetes Research Center, UCSD School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mosedale M, Egodage S, Calma RC, Chi NW, Chessler SD. Neurexin-1α contributes to insulin-containing secretory granule docking. J Biol Chem 2012; 287:6350-61. [PMID: 22235116 DOI: 10.1074/jbc.m111.299081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurexins are a family of transmembrane, synaptic adhesion molecules. In neurons, neurexins bind to both sub-plasma membrane and synaptic vesicle-associated constituents of the secretory machinery, play a key role in the organization and stabilization of the presynaptic active zone, and help mediate docking of synaptic vesicles. We have previously shown that neurexins, like many other protein constituents of the neurotransmitter exocytotic machinery, are expressed in pancreatic β cells. We hypothesized that the role of neurexins in β cells parallels their role in neurons, with β-cell neurexins helping to mediate insulin granule docking and secretion. Here we demonstrate that β cells express a more restricted pattern of neurexin transcripts than neurons, with a clear predominance of neurexin-1α expressed in isolated islets. Using INS-1E β cells, we found that neurexin-1α interacts with membrane-bound components of the secretory granule-docking machinery and with the granule-associated protein granuphilin. Decreased expression of neurexin-1α, like decreased expression of granuphilin, reduces granule docking at the β-cell membrane and improves insulin secretion. Perifusion of neurexin-1α KO mouse islets revealed a significant increase in second-phase insulin secretion with a trend toward increased first-phase secretion. Upon glucose stimulation, neurexin-1α protein levels decrease. This glucose-induced down-regulation may enhance glucose-stimulated insulin secretion. We conclude that neurexin-1α is a component of the β-cell secretory machinery and contributes to secretory granule docking, most likely through interactions with granuphilin. Neurexin-1α is the only transmembrane component of the docking machinery identified thus far. Our findings provide new insights into the mechanisms of insulin granule docking and exocytosis.
Collapse
Affiliation(s)
- Merrie Mosedale
- Pediatric Diabetes Research Center, Veterans Affairs San Diego Healthcare System, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
40
|
Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proc Natl Acad Sci U S A 2011; 108:20719-24. [PMID: 22143775 DOI: 10.1073/pnas.1109480108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We combined multimodal imaging (bioluminescence, X-ray computed tomography, and PET), tomographic reconstruction of bioluminescent sources, and two unique, complementary models to evaluate three previously synthesized PET radiotracers thought to target pancreatic beta cells. The three radiotracers {[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]FP-DTBZ), [(18)F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline ((18)F-AV-266), and (2S,3R,11bR)-9-(3-fluoropropoxy)-2-(hydroxymethyl)-3-isobutyl-10-methoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-ol ((18)F-AV-300)} bind vesicular monoamine transporter 2. Tomographic reconstruction of the bioluminescent signal in mice expressing luciferase only in pancreatic beta cells was used to delineate the pancreas and was coregistered with PET and X-ray computed tomography images. This strategy enabled unambiguous identification of the pancreas on PET images, permitting accurate quantification of the pancreatic PET signal. We show here that, after conditional, specific, and rapid mouse beta-cell ablation, beta-cell loss was detected by bioluminescence imaging but not by PET imaging, given that the pancreatic signal provided by three PET radiotracers was not altered. To determine whether these ligands bound human beta cells in vivo, we imaged mice transplanted with luciferase-expressing human islets. The human islets were imaged by bioluminescence but not with the PET ligands, indicating that these vesicular monoamine transporter 2-directed ligands did not specifically bind beta cells. These data demonstrate the utility of coregistered multimodal imaging as a platform for evaluation and validation of candidate ligands for imaging islets.
Collapse
|
41
|
Dorrell C, Schug J, Lin CF, Canaday PS, Fox AJ, Smirnova O, Bonnah R, Streeter PR, Stoeckert CJ, Kaestner KH, Grompe M. Transcriptomes of the major human pancreatic cell types. Diabetologia 2011; 54:2832-44. [PMID: 21882062 PMCID: PMC3880150 DOI: 10.1007/s00125-011-2283-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS We sought to determine the mRNA transcriptome of all major human pancreatic endocrine and exocrine cell subtypes, including human alpha, beta, duct and acinar cells. In addition, we identified the cell type-specific distribution of transcription factors, signalling ligands and their receptors. METHODS Islet samples from healthy human donors were enzymatically dispersed to single cells and labelled with cell type-specific surface-reactive antibodies. Live endocrine and exocrine cell subpopulations were isolated by FACS and gene expression analyses were performed using microarray analysis and quantitative RT-PCR. Computational tools were used to evaluate receptor-ligand representation in these populations. RESULTS Analysis of the transcriptomes of alpha, beta, large duct, small duct and acinar cells revealed previously unrecognised gene expression patterns in these cell types, including transcriptional regulators HOPX and HDAC9 in the human beta cell population. The abundance of some regulatory proteins was different from that reported in mouse tissue. For example, v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (avian) (MAFB) was detected at equal levels in adult human alpha and beta cells, but is absent from adult mouse beta cells. Analysis of ligand-receptor interactions suggested that EPH receptor-ephrin communication between exocrine and endocrine cells contributes to pancreatic function. CONCLUSIONS/INTERPRETATION This is the first comprehensive analysis of the transcriptomes of human exocrine and endocrine pancreatic cell types-including beta cells-and provides a useful resource for diabetes research. In addition, paracrine signalling pathways within the pancreas are shown. These results will help guide efforts to specify human beta cell fate by embryonic stem cell or induced pluripotent stem cell differentiation or genetic reprogramming.
Collapse
Affiliation(s)
- C. Dorrell
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - J. Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C. F. Lin
- Department of Genetics and Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - P. S. Canaday
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - A. J. Fox
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - O. Smirnova
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - R. Bonnah
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - P. R. Streeter
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - C. J. Stoeckert
- Department of Genetics and Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - K. H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M. Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA,
| |
Collapse
|
42
|
Martens GA, Jiang L, Hellemans KH, Stangé G, Heimberg H, Nielsen FC, Sand O, Van Helden J, Van Lommel L, Schuit F, Gorus FK, Pipeleers DG. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype. PLoS One 2011; 6:e24134. [PMID: 21912665 PMCID: PMC3166300 DOI: 10.1371/journal.pone.0024134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background and Methodology The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators. Principal Findings A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell phenotype. Conclusions Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to identify changes in the differentiated state of beta cells.
Collapse
Affiliation(s)
- Geert A Martens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsao HH, Skovronsky DM, Lin KJ, Yen TC, Wey SP, Kung MP. Sigma receptor binding of tetrabenazine series tracers targeting VMAT2 in rat pancreas. Nucl Med Biol 2011; 38:1029-34. [PMID: 21982574 DOI: 10.1016/j.nucmedbio.2011.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/17/2011] [Accepted: 03/28/2011] [Indexed: 11/19/2022]
Abstract
UNLABELLED The vesicular monoamine transporter type II (VMAT2) is highly expressed in pancreatic β-cells and thus has been proposed to be a potential target for measuring β-cell mass (BCM) by molecular imaging. Several tracers based on the TBZ backbone, including 9-fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133), have shown some promising results as potential biomarkers for BCM despite a relatively high background signal in the pancreas. In the present study, we explore the background binding characteristics of [(18)F]AV-133 in rat pancreas. METHODS Pancreatic exocrine cells and islet cells were isolated and purified from Sprague-Dawley rats. Membrane homogenates, prepared from both pancreatic exocrine and islet cells as well as from brain striatum regions, were used for in vitro binding studies of [(18)F]AV-133 under a selective masking condition. 1,3-Di-o-tolylguanidine (DTG), displaying high and roughly equal affinity for both sigma-1 and sigma-2 receptors, was chosen at 5 μM concentration for the masking/blocking studies. RESULTS [(18)F]AV-133 binding to rat striatum homogenates was not significantly altered by the presence of DTG. In contrast, [(18)F]AV-133 showed significant competition with DTG for binding sites in rat pancreatic exocrine homogenates as well as in rat islet cell homogenates. Importantly, in the presence of DTG, [(18)F]AV-133 showed a single high-affinity binding site on islet cell homogenates with a K(d) value of 3.8 nM which is consistent with the affinity reported previously for VMAT2 sites in rat pancreas. CONCLUSIONS [(18)F]AV-133, in addition to a high-affinity VMAT2 binding site, binds with low affinity (but high capacity) to sigma components that are present in the rat pancreas. Identification of the cause of background binding of [(18)F]AV-133 to rat pancreatic tissue may lead to improved methods for quantification.
Collapse
Affiliation(s)
- Hsin-Hsin Tsao
- Department of Nuclear Medicine, Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Reiner T, Kohler RH, Liew CW, Hill JA, Gaglia J, Kulkarni RN, Weissleder R. Near-infrared fluorescent probe for imaging of pancreatic beta cells. Bioconjug Chem 2010; 21:1362-8. [PMID: 20583828 DOI: 10.1021/bc100184w] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to image and ultimately quantitate beta-cell mass in vivo will likely have far reaching implications in the study of diabetes biology, in the monitoring of disease progression or response to treatment, and for drug development. Here, using animal models, we report on the synthesis, characterization, and intravital microscopic imaging properties of a near-infrared fluorescent exendin-4 analogue with specificity for the GLP-1 receptor on beta cells (E4(K12)-Fl). The agent demonstrated subnanomolar EC(50) binding concentrations, with high specificity and binding that could be inhibited by GLP-1R agonists. Following intravenous administration to mice, pancreatic islets were readily distinguishable from exocrine pancreas, achieving target-to-background ratios within the pancreas of 6:1, as measured by intravital microscopy. Serial imaging revealed rapid accumulation kinetics (with initial signal within the islets detectable within 3 min and peak fluorescence within 20 min of injection), making this an ideal agent for in vivo imaging.
Collapse
Affiliation(s)
- Thomas Reiner
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 2010; 13:973-84. [PMID: 20824509 DOI: 10.1007/s11307-010-0406-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/06/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this study is to compare the utility of two positron emission tomography (PET) imaging ligands ((+)-[(11)C]dihydrotetrabenazine ([(11)C]DTBZ) and the fluoropropyl analog ([(18)F]FP-(+)-DTBZ)) that target islet β-cell vesicular monoamine transporter type II to measure pancreatic β-cell mass (BCM). PROCEDURES [(11)C]DTBZ or [(18)F]FP-(+)-DTBZ was injected, and serial PET images were acquired in rat models of diabetes (streptozotocin-treated and Zucker diabetic fatty) and β-cell compensation (Zucker fatty). Radiotracer standardized uptake values (SUV) were correlated to pancreas insulin content measured biochemically and histomorphometrically. RESULTS On a group level, a positive correlation of [(11)C]DTBZ pancreatic SUV with pancreas insulin content and BCM was observed. In the STZ diabetic model, both [(18)F]FP-(+)-DTBZ and [(11)C]DTBZ correlated positively with BCM, although only ∼25% of uptake could be attributed to β-cell uptake. [(18)F]FP-(+)-DTBZ displacement studies indicate that there is a substantial fraction of specific binding that is not to pancreatic islet β cells. CONCLUSIONS PET imaging with [(18)F]FP-(+)-DTBZ provides a noninvasive means to quantify insulin-positive BCM and may prove valuable as a diagnostic tool in assessing treatments to maintain or restore BCM.
Collapse
|
46
|
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62:1125-38. [PMID: 20854861 DOI: 10.1016/j.addr.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed.
Collapse
|
47
|
Fagerholm V, Mikkola KK, Ishizu T, Arponen E, Kauhanen S, Någren K, Solin O, Nuutila P, Haaparanta M. Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 2010; 51:1439-46. [PMID: 20720057 DOI: 10.2967/jnumed.109.074492] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Vesicular monoamine transporter 2 (VMAT2) is a putative molecular target for the quantitative imaging of pancreatic beta-cell mass by PET. The VMAT2 PET tracer (11)C-dihydrotetrabenazine ((11)C-DTBZ) exhibits high pancreatic uptake that is reduced in type 1 diabetes. The aim of this study was to assess the islet and VMAT2 specificity of DTBZ binding in the pancreas. METHODS The biodistribution of (11)C-DTBZ in rats was determined 10 and 60 min after injection. The localization of DTBZ radioactivity in rat and human pancreatic tissue sections was investigated by autoradiography. Saturation and competition binding assays were performed with (3)H-DTBZ and sections of rat pancreatic and control tissues. The binding of (11)C-DTBZ in pancreatic sections from rats with streptozotocin-induced diabetes was compared with that in control rats. RESULTS The values for the pancreatic uptake of (11)C-DTBZ (percentage injected dose per gram of tissue) were 3.0 at 10 min and 2.7 at 60 min. At 10 min, pancreatic radioactivity was heterogeneously distributed, with higher levels toward the head of the pancreas (head-to-tail ratio, 1.7). No such gradient was observed in pancreatic sections incubated with (11)C-DTBZ and (3)H-DTBZ in vitro. In rats, (11)C-DTBZ and (3)H-DTBZ binding in pancreatic islets did not exceed binding in the exocrine pancreas. Saturable (3)H-DTBZ binding was observed in the rat brain striatum (dissociation constant [K(d)], 1.3 nM) and the bovine adrenal medulla (K(d), 3.3 nM), whereas in the rat pancreas, (3)H-DTBZ binding was nonsaturable. Competition binding with (3)H-DTBZ and VMAT2 antagonists also indicated that DTBZ binding in the rat pancreas was nonspecific and did not represent binding to VMAT2. Nonspecific pancreatic (11)C-DTBZ binding was lower in rats with streptozotocin-induced diabetes than in control rats. In sections of human pancreas, a subset of pancreatic islets were weakly but VMAT2-specifically labeled with (3)H-DTBZ. CONCLUSION The results showed that the pancreatic uptake of (11)C-DTBZ is mainly due to nonspecific binding in the exocrine pancreas and suggested that the reduction in pancreatic (11)C-DTBZ binding observed in type 1 diabetes is not specific for the loss of beta-cell mass.
Collapse
|
48
|
Abstract
In both type 1 and type 2 diabetes mellitus, beta-cell mass (BCM), which exclusively produces insulin, is lost. Various therapeutic strategies are being developed that target BCM to restore its function by promoting beta-cell neogenesis and regeneration or by preventing its apoptosis. To this end, it is essential to identify biomarkers of BCM. Of the various imaging platforms, radionuclide-based imaging methods using radioligands that directly target BCM appear promising. In particular, the vesicular monoamine transporter type 2 (VMAT2), which is expressed almost exclusively by beta-cells and found in close association with insulin, can be noninvasively imaged with PET and (11)C-dihydrotetrabenazine or its derivatives. Despite the major limitation that beta-cells are low in abundance (1%-2%) and dispersed throughout the pancreas, VMAT2 PET is sensitive enough to detect VMAT2 signal and to allow kinetic model-based quantification of VMAT2 binding within the pancreas. However, these techniques are still in early stages, and careful further evaluations and technical developments are needed before they can be clinically used as a valid biomarker of BCM.
Collapse
Affiliation(s)
- Masanori Ichise
- Department of Radiology, Columbia University Medical College, New York, New York 11032, USA.
| | | |
Collapse
|
49
|
Flamez D, Roland I, Berton A, Kutlu B, Dufrane D, Beckers MC, De Waele E, Rooman I, Bouwens L, Clark A, Lonneux M, Jamar JF, Goldman S, Maréchal D, Goodman N, Gianello P, Van Huffel C, Salmon I, Eizirik DL. A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2)gammaa as a pancreatic beta cell-specific biomarker. Diabetologia 2010; 53:1372-83. [PMID: 20379810 DOI: 10.1007/s00125-010-1714-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Non-invasive imaging of the pancreatic beta cell mass (BCM) requires the identification of novel and specific beta cell biomarkers. We have developed a systems biology approach to the identification of promising beta cell markers. METHODS We followed a functional genomics strategy based on massive parallel signal sequencing (MPSS) and microarray data obtained in human islets, purified primary rat beta cells, non-beta cells and INS-1E cells to identify promising beta cell markers. Candidate biomarkers were validated and screened using established human and macaque (Macacus cynomolgus) tissue microarrays. RESULTS After a series of filtering steps, 12 beta cell-specific membrane proteins were identified. For four of the proteins we selected or produced antibodies targeting specifically the human proteins and their splice variants; all four candidates were confirmed as islet-specific in human pancreas. Two splice variants of FXYD domain containing ion transport regulator 2 (FXYD2), a regulating subunit of the Na(+)-K(+)-ATPase, were identified as preferentially present in human pancreatic islets. The presence of FXYD2gammaa was restricted to pancreatic islets and selectively detected in pancreatic beta cells. Analysis of human fetal pancreas samples showed the presence of FXYD2gammaa at an early stage (15 weeks). Histological examination of pancreatic sections from individuals with type 1 diabetes or sections from pancreases of streptozotocin-treated Macacus cynomolgus monkeys indicated a close correlation between loss of FXYD2gammaa and loss of insulin-positive cells. CONCLUSIONS/INTERPRETATION We propose human FXYD2gammaa as a novel beta cell-specific biomarker.
Collapse
Affiliation(s)
- D Flamez
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim H, Seed B. The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3. Nat Immunol 2010; 11:743-50. [PMID: 20581830 PMCID: PMC3050627 DOI: 10.1038/ni.1897] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/28/2010] [Indexed: 12/23/2022]
Abstract
Viral infections induce Type I interferons (IFN-α and -β) that recruit unexposed cells in a self-amplifying response. We report that the transcription factor MAFB thwarts auto-amplification by a metastable switch behavior. MAFB acts as a weak positive basal regulator of transcription at the IFN-β promoter through activity at AP-1-like sites. Interferon elicitors recruit the transcription factor IRF3 to the promoter, whereupon MAFB acts as a transcriptional antagonist, impairing the interaction of CREB-binding protein (CBP) with IRF3. Mathematical modeling supports the view that prepositioning of MAFB on the promoter allows the system to respond rapidly to fluctuations in IRF3 activity. Elevated expression of MAFB in human pancreatic islet β-cells might increase cellular vulnerability to viral infections associated with the etiology of type I diabetes.
Collapse
Affiliation(s)
- Hwijin Kim
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|