1
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
2
|
Vermeiren S, Cabochette P, Dannawi M, Desiderio S, San José AS, Achouri Y, Kricha S, Sitte M, Salinas-Riester G, Vanhollebeke B, Brunet JF, Bellefroid EJ. Prdm12 represses the expression of the visceral neuron determinants Phox2a/b in developing somatosensory ganglia. iScience 2023; 26:108364. [PMID: 38025786 PMCID: PMC10663820 DOI: 10.1016/j.isci.2023.108364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.
Collapse
Affiliation(s)
- Simon Vermeiren
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maya Dannawi
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Institut de Duve, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Gabriela Salinas-Riester
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Benoit Vanhollebeke
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Jean-François Brunet
- Institut de Biologie de l’ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, 75005 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| | - Eric J. Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
3
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
4
|
Logan RW, Xue X, Ketchesin KD, Hoffman G, Roussos P, Tseng G, McClung CA, Seney ML. Sex Differences in Molecular Rhythms in the Human Cortex. Biol Psychiatry 2022; 91:152-162. [PMID: 33934884 PMCID: PMC8423868 DOI: 10.1016/j.biopsych.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Gabriel Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, New York
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Jahan I, Kersigo J, Elliott KL, Fritzsch B. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res 2021; 384:59-72. [PMID: 33409653 PMCID: PMC11718404 DOI: 10.1007/s00441-020-03352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
The trochlear projection is unique among the cranial nerves in that it exits the midbrain dorsally to innervate the contralateral superior oblique muscle in all vertebrates. Trochlear as well as oculomotor motoneurons uniquely depend upon Phox2a and Wnt1, both of which are downstream of Lmx1b, though why trochlear motoneurons display such unusual projections is not fully known. We used Pax2-cre to drive expression of ectopically activated Smoothened (SmoM2) dorsally in the midbrain and anterior hindbrain. We documented the expansion of oculomotor and trochlear motoneurons using Phox2a as a specific marker at E9.5. We show that the initial expansion follows a demise of these neurons by E14.5. Furthermore, SmoM2 expression leads to a ventral exit and ipsilateral projection of trochlear motoneurons. We compare that data with Unc5c mutants that shows a variable ipsilateral number of trochlear fibers that exit dorsal. Our data suggest that Shh signaling is involved in trochlear motoneuron projections and that the deflected trochlear projections after SmoM2 expression is likely due to the dorsal expression of Gli1, which impedes the normal dorsal trajectory of these neurons.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennifer Kersigo
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
García-Guillén IM, Alonso A, Morales-Delgado N, Andrés B, Puelles L, López-Bendito G, Marín F, Aroca P. Netrin-1/DCC Signaling Differentially Regulates the Migration of Pax7, Nkx6.1, Irx2, Otp, and Otx2 Cell Populations in the Developing Interpeduncular Nucleus. Front Cell Dev Biol 2020; 8:588851. [PMID: 33195252 PMCID: PMC7606981 DOI: 10.3389/fcell.2020.588851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the Nkx6.1, Otp, Otx2, Pax7, and/or Irx2 transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1. Here we set out to examine the influence of the Netrin-1/DCC pathway on these migrations, since it is known to regulate other processes of neuronal migration in the brain. To this end, we analyzed IPN development in late gestational wild-type and DCC-/- mice, using mainly in situ hybridization (ISH) to identify the cells expressing each of the aforementioned genes. We found that the migration of Nkx6.1 + and Irx2 + cells into the Pro domain was strongly disrupted by the loss of DCC, as occurred with the migration of Pax7 +, Irx2 +, and Otp + cells that would normally form the IPR. In addition, there was mild impairment of the migration of the Pax7 + and Otx2 + cells that form the IPC. These results demonstrate that the Netrin-1/DCC signaling pathway is involved in the migration of most of the IPN populations, mainly affecting those of the Pro and IPR domains of this nucleus. There are psychiatric disorders that involve the medial habenula (mHb)-IPN system, so that this experimental model could provide a basis to study their neurodevelopmental etiology.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Histology and Anatomy, School of Medicine, Miguel Hernández University, Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias de Alicante, CSIC, Universidad Miguel Hernández, Alicante, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
7
|
Chung HH, Lee CT, Hu JM, Chou YC, Lin YW, Shih YL. NKX6.1 Represses Tumorigenesis, Metastasis, and Chemoresistance in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21145106. [PMID: 32707737 PMCID: PMC7404324 DOI: 10.3390/ijms21145106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence suggests that NKX6.1 (NK homeobox 1) plays a role in various types of cancer. In our previous studies, we identified NKX6.1 hypermethylation as a promising marker and demonstrated that the NKX6.1 gene functions as a metastasis suppressor through the epigenetic regulation of the epithelial-to-mesenchymal transition (EMT) in cervical cancer. More recently, we have demonstrated that NKX6.1 methylation is related to the chemotherapy response in colorectal cancer (CRC). Nevertheless, the biological function of NKX6.1 in the tumorigenesis of CRC remains unclear. In this study, we showed that NKX6.1 suppresses tumorigenic and metastatic ability both in vitro and in vivo. NKX6.1 represses cell invasion partly through the modulation of EMT. The overexpression of NKX6.1 enhances chemosensitivity in CRC cells. To further explore how NKX6.1 exerts its tumor-suppressive function, we used RNA sequencing technology for comprehensive analysis. The results showed that differentially expressed genes (DEGs) were mainly related to cell migration, response to drug, transcription factor activity, and growth factor activity, suggesting that these DEGs are involved in the function of NKX6.1 suppressing cancer invasion and metastasis. Our results demonstrated that NKX6.1 functions as a tumor suppressor partly by repressing EMT and enhancing chemosensitivity in CRC, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Hsin-Hua Chung
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
| | - Chun-Te Lee
- Division of Urological Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, No.131, Jiankang Rd., Songshan District, Taipei 10581, Taiwan;
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan;
| | - Ya-Wen Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan
| | - Yu-Lueng Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
- Correspondence: ; Tel./Fax: +886-2-87917654
| |
Collapse
|
8
|
Fritzsch B, Elliott KL, Pavlinkova G, Duncan JS, Hansen MR, Kersigo JM. Neuronal Migration Generates New Populations of Neurons That Develop Unique Connections, Physiological Properties and Pathologies. Front Cell Dev Biol 2019; 7:59. [PMID: 31069224 PMCID: PMC6491807 DOI: 10.3389/fcell.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Marlan R Hansen
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
9
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
10
|
Company V, Moreno-Bravo JA, Perez-Balaguer A, Puelles E. The Amniote Oculomotor Complex. Anat Rec (Hoboken) 2018; 302:446-451. [DOI: 10.1002/ar.23827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC; Sant Joan d'Alacant, Alicante 03550 Spain
| | - Juan Antonio Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC; Sant Joan d'Alacant, Alicante 03550 Spain
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau, Paris 75012 France
| | - Ariadna Perez-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC; Sant Joan d'Alacant, Alicante 03550 Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC; Sant Joan d'Alacant, Alicante 03550 Spain
| |
Collapse
|
11
|
Chang SY, Kuo CC, Wu CC, Hsiao CW, Hu JM, Hsu CH, Chou YC, Shih YL, Lin YW. NKX6.1 hypermethylation predicts the outcome of stage II colorectal cancer patients undergoing chemotherapy. Genes Chromosomes Cancer 2018; 57:268-277. [PMID: 29363224 DOI: 10.1002/gcc.22529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. CRC patients in the same stage often present with dramatically different clinical scenarios. Thus, robust prognostic biomarkers are urgently needed to guide therapies and improve treatment outcomes. The NKX6.1 gene has been identified as a hypermethylation marker in cervical cancer, functioning as a metastasis suppressor by regulating epithelial-mesenchymal transition. Here, we investigated whether hypermethylation of NKX6.1 might be a prognostic biomarker for CRC. By analyzing the methylation and expression of NKX6.1 in CRC tissues and CRC cell lines. We quantitatively examined the NKX6.1 methylation levels in 151 pairs of CRC tissues by using methylation-specific polymerase chain reaction analysis and found that NKX6.1 was hypermethylated in 35 of 151 CRC tissues (23%). NKX6.1 gene expression was inversely correlated with the DNA methylation level in CRC cell lines in vitro. Then, we analyzed the association of NKX6.1 methylation with clinical characteristics of these CRC patients. Our data demonstrated that patients with NKX6.1 methylation presented poorer 5-year overall survival (P = 0.0167) and disease-free survival (P = 0.0083) than patients without NKX6.1 methylation after receiving adjuvant chemotherapy. Most importantly, these data revealed that stage II CRC patients with NKX6.1 methylation had poorer 5-year disease-free survival (P = 0.0322) than patients without NKX6.1 methylation after adjuvant chemotherapy. Our results demonstrate that methylation of NKX6.1 is a novel prognostic biomarker in CRC and that it may be used as a predictor of the response to chemotherapy.
Collapse
Affiliation(s)
- Sou-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Hematology & Oncology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Taipei, Taiwan, Republic of China
| | - Chih-Chi Kuo
- Teaching and Research Office, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Chieh Wu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Hsiung Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Lueng Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ya-Wen Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
12
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
13
|
Fritzsch B, Elliott KL, Glover JC. Gaskell revisited: new insights into spinal autonomics necessitate a revised motor neuron nomenclature. Cell Tissue Res 2017; 370:195-209. [PMID: 28856468 DOI: 10.1007/s00441-017-2676-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 01/01/2023]
Abstract
Several concepts developed in the nineteenth century have formed the basis of much of our neuroanatomical teaching today. Not all of these were based on solid evidence nor have withstood the test of time. Recent evidence on the evolution and development of the autonomic nervous system, combined with molecular insights into the development and diversification of motor neurons, challenges some of the ideas held for over 100 years about the organization of autonomic motor outflow. This review provides an overview of the original ideas and quality of supporting data and contrasts this with a more accurate and in depth insight provided by studies using modern techniques. Several lines of data demonstrate that branchial motor neurons are a distinct motor neuron population within the vertebrate brainstem, from which parasympathetic visceral motor neurons of the brainstem evolved. The lack of an autonomic nervous system in jawless vertebrates implies that spinal visceral motor neurons evolved out of spinal somatic motor neurons. Consistent with the evolutionary origin of brainstem parasympathetic motor neurons out of branchial motor neurons and spinal sympathetic motor neurons out of spinal motor neurons is the recent revision of the organization of the autonomic nervous system into a cranial parasympathetic and a spinal sympathetic division (e.g., there is no sacral parasympathetic division). We propose a new nomenclature that takes all of these new insights into account and avoids the conceptual misunderstandings and incorrect interpretation of limited and technically inferior data inherent in the old nomenclature.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, 129 E Jefferson Street, 214 Biology Building, Iowa City, IA, 52242, USA. .,Center on Aging & Aging Mind and Brain Initiative, Weslawn Office 2159 A-2, Iowa City, IA, 52242-1324, USA.
| | - Karen L Elliott
- Department of Biology, University of Iowa, 129 E Jefferson Street, 214 Biology Building, Iowa City, IA, 52242, USA
| | - Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Fritzsch B, Elliott KL. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors. Front Cell Neurosci 2017; 11:114. [PMID: 28484373 PMCID: PMC5401870 DOI: 10.3389/fncel.2017.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
All craniate chordates have inner ears with hair cells that receive input from the brain by cholinergic centrifugal fibers, the so-called inner ear efferents (IEEs). Comparative data suggest that IEEs derive from facial branchial motor (FBM) neurons that project to the inner ear instead of facial muscles. Developmental data showed that IEEs develop adjacent to FBMs and segregation from IEEs might depend on few transcription factors uniquely associated with IEEs. Like other cholinergic terminals in the peripheral nervous system (PNS), efferent terminals signal on hair cells through nicotinic acetylcholine channels, likely composed out of alpha 9 and alpha 10 units (Chrna9, Chrna10). Consistent with the evolutionary ancestry of IEEs is the even more conserved ancestry of Chrna9 and 10. The evolutionary appearance of IEEs may reflect access of FBMs to a novel target, possibly related to displacement or loss of mesoderm-derived muscle fibers by the ectoderm-derived ear vesicle. Experimental transplantations mimicking this possible aspect of ear evolution showed that different motor neurons of the spinal cord or brainstem form cholinergic synapses on hair cells when ears replace somites or eyes. Transplantation provides experimental evidence in support of the evolutionary switch of FBM neurons to become IEEs. Mammals uniquely evolved a prestin related motor system to cause shape changes in outer hair cells regulated by the IEEs. In summary, an ancient motor neuron population drives in craniates via signaling through highly conserved Chrna receptors a uniquely derived cellular contractility system that is essential for hearing in mammals.
Collapse
|
15
|
ISL1-based LIM complexes control Slit2 transcription in developing cranial motor neurons. Sci Rep 2016; 6:36491. [PMID: 27819291 PMCID: PMC5098159 DOI: 10.1038/srep36491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023] Open
Abstract
LIM-homeodomain (HD) transcription factors form a multimeric complex and assign neuronal subtype identities, as demonstrated by the hexameric ISL1-LHX3 complex which gives rise to somatic motor (SM) neurons. However, the roles of combinatorial LIM code in motor neuron diversification and their subsequent differentiation is much less well understood. In the present study, we demonstrate that the ISL1 controls postmitotic cranial branchiomotor (BM) neurons including the positioning of the cell bodies and peripheral axon pathfinding. Unlike SM neurons, which transform into interneurons, BM neurons are normal in number and in marker expression in Isl1 mutant mice. Nevertheless, the movement of trigeminal and facial BM somata is stalled, and their peripheral axons are fewer or misrouted, with ectopic branches. Among genes whose expression level changes in previous ChIP-seq and microarray analyses in Isl1-deficient cell lines, we found that Slit2 transcript was almost absent from BM neurons of Isl1 mutants. Both ISL1-LHX3 and ISL1-LHX4 bound to the Slit2 enhancer and drove endogenous Slit2 expression in SM and BM neurons. Our findings suggest that combinations of ISL1 and LHX factors establish cell-type specificity and functional diversity in terms of motor neuron identities and/or axon development.
Collapse
|
16
|
Kim M, Fontelonga T, Roesener AP, Lee H, Gurung S, Mendonca PRF, Mastick GS. Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction. Dev Biol 2015; 399:68-79. [PMID: 25530182 PMCID: PMC4339514 DOI: 10.1016/j.ydbio.2014.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/22/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | | | - Haeram Lee
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Suman Gurung
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | | |
Collapse
|
17
|
Yang T, Bassuk AG, Stricker S, Fritzsch B. Prickle1 is necessary for the caudal migration of murine facial branchiomotor neurons. Cell Tissue Res 2014; 357:549-61. [PMID: 24927917 DOI: 10.1007/s00441-014-1925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Facial branchiomotor neurons (FBMs) of vertebrates typically develop in rhombomere 4 (r4), and in mammals and several other vertebrate taxa, migrate caudally into r6 and subsequently laterally and ventrally to the pial surface. How similar or dissimilar these migratory processes between species are at a molecular level remains unclear. In zebrafish and mouse, mutations in certain PCP genes disrupt normal caudal migration of FBMs. Zebrafish prickle1a (prickle-like 1a) and prickle1b, two orthologs of Prickle1, act non-cell-autonomously and cell-autonomously, respectively, to regulate FBM migration. Here, we show that, in Prickle1 (C251X/C251X) mice which have reduced Prickle1 expression, the caudal migration of FBMs is affected. Most FBM neurons do not migrate caudally along the floor plate. However, some neurons perform limited caudal migration such that the neurons eventually lie near the pial surface from r4 to anterior r6. FBMs in Prickle1 (C251X/C251X) mice survive until P0 and form an ectopic nucleus dorsal to the olivo-cochlear efferents of r4. Ror2, which modifies the PCP pathway in other systems, is expressed by the migrating mouse FBMs, but is not required for FBM caudal migration. Our results suggest that, in mice, Prickle1 is part of a molecular mechanism that regulates FBM caudal migration and separates the FBM and the olivo-cochlear efferents. This defective caudal migration of FBMs in Prickle1C251X mutants resembles Vangl2 mutant defects. In contrast to other developing systems that show similar defects in Prickle1, Wnt5a and Ror2, the latter two only have limited or no effect on FBM caudal migration.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | |
Collapse
|
18
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
19
|
Jenstad M, Chaudhry FA. The Amino Acid Transporters of the Glutamate/GABA-Glutamine Cycle and Their Impact on Insulin and Glucagon Secretion. Front Endocrinol (Lausanne) 2013; 4:199. [PMID: 24427154 PMCID: PMC3876026 DOI: 10.3389/fendo.2013.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, CNS proteins involved in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA, and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32, and Slc38) and physiology of hormone secretion in islets of Langerhans.
Collapse
Affiliation(s)
- Monica Jenstad
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- *Correspondence: Monica Jenstad, Institute for Medical Informatics, Oslo University Hospital, Radiumhospitalet, PO Box 4953 Nydalen, Oslo NO-0424, Norway e-mail:
| | - Farrukh Abbas Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Zannino DA, Sagerström CG, Appel B. olig2-Expressing hindbrain cells are required for migrating facial motor neurons. Dev Dyn 2012; 241:315-26. [PMID: 22275004 DOI: 10.1002/dvdy.23718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The complicated trajectory of facial motor neuron migration requires coordination of intrinsic signals and cues from the surrounding environment. Migration begins in rhombomere (r) 4 where facial motor neurons are born and proceeds in a caudal direction. Once facial motor neurons reach their target rhombomeres, they migrate laterally and radially from the ventral neural tube. In zebrafish, as facial motor neurons migrate through r5/r6, they pass near cells that express olig2, which encodes a bHLH transcription factor. In this study, we found that olig2 function is required for facial motor neurons to complete their caudal migration into r6 and r7 and form stereotypical clusters. Additionally, embryos that lack mafba function, in which facial motor neurons also fail to complete caudal migration, lack olig2 expression in r5 and r6. Our data raise the possibility that cells expressing olig2 are intermediate targets that help guide facial motor neuron migration.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
21
|
Lance-Jones C, Shah V, Noden DM, Sours E. Intrinsic properties guide proximal abducens and oculomotor nerve outgrowth in avian embryos. Dev Neurobiol 2012; 72:167-85. [PMID: 21739615 DOI: 10.1002/dneu.20948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices.
Collapse
Affiliation(s)
- Cynthia Lance-Jones
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
22
|
Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P. Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 2011; 361:12-26. [PMID: 22019302 DOI: 10.1016/j.ydbio.2011.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/22/2023]
Abstract
The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 2011; 278:21-33. [PMID: 21414397 PMCID: PMC3130837 DOI: 10.1016/j.heares.2011.03.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 11/28/2022]
Abstract
The bipolar spiral ganglion neurons apparently delaminate from the growing cochlear duct and migrate to Rosenthal's canal. They project radial fibers to innervate the organ of Corti (type I neurons to inner hair cells, type II neurons to outer hair cells) and also project tonotopically to the cochlear nuclei. The early differentiation of these neurons requires transcription factors to regulate migration, pathfinding and survival. Neurog1 null mice lack formation of neurons. Neurod1 null mice show massive neuronal death combined with aberrant central and peripheral projections. Prox1 protein is necessary for proper type II neuron process navigation, which is also affected by the neurotrophins Bdnf and Ntf3. Neurotrophin null mutants show specific patterns of neuronal loss along the cochlea but remaining neurons compensate by expanding their target area. All neurotrophin mutants have reduced radial fiber growth proportional to the degree of loss of neurotrophin alleles. This suggests a simple dose response effect of neurotrophin concentration. Keeping overall concentration constant, but misexpressing one neurotrophin under regulatory control of another one results in exuberant fiber growth not only of vestibular fibers to the cochlea but also of spiral ganglion neurons to outer hair cells suggesting different effectiveness of neurotrophins for spiral ganglion neurite growth. Finally, we report here for the first time that losing all neurons in double null mutants affects extension of the cochlear duct and leads to formation of extra rows of outer hair cells in the apex, possibly by disrupting the interaction of the spiral ganglion with the elongating cochlea.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, 143 BB, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
24
|
Arntfield ME, van der Kooy D. β-Cell evolution: How the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. Bioessays 2011; 33:582-7. [PMID: 21681773 DOI: 10.1002/bies.201100015] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Margot E Arntfield
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
25
|
|
26
|
Xue XD, Kimura W, Wang B, Hikosaka K, Itakura T, Uezato T, Matsuda M, Koseki H, Miura N. A unique expression pattern of Tbx10 in the hindbrain as revealed by Tbx10(LacZ) allele. Genesis 2010; 48:295-302. [PMID: 20162674 DOI: 10.1002/dvg.20615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To study the expression/function of Tbx10, a T-box gene, Tbx10(LacZ/+) mice were established by replacing the T-box coding region with a LacZ gene. X-gal staining showed that LacZ(+) cells were localized to two-cell populations in rhombomere 4 and rhombomere 6. No significant differences in the locations of LacZ(+) cells were found between Tbx10(LacZ/+) and Tbx10(LacZ/LacZ) mice, and the Tbx10(LacZ/LacZ) mice were viable and fertile. We found that the LacZ(+) cells are present in both embryonic and adult mice. Histological studies suggest that the rhombomere 4-derived LacZ(+) cells are a subpopulation of the ventral interneurons in the pons.
Collapse
|
27
|
Bingham SM, Sittaramane V, Mapp O, Patil S, Prince VE, Chandrasekhar A. Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain. Dev Neurobiol 2010; 70:87-99. [PMID: 19937772 DOI: 10.1002/dneu.20761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5-r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2(-) (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an "r4-like" compartment. Using time-lapse imaging, we show that GFP-expressing motor neurons in the r2/r3 region of a hoxb1b-overexpressing wild-type embryo migrate along the anterior-posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP-expressing motor neurons in the r2/r3 region of hoxb1b-overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1-r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2-independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain.
Collapse
Affiliation(s)
- Stephanie M Bingham
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
28
|
Prakash N, Puelles E, Freude K, Trümbach D, Omodei D, Di Salvio M, Sussel L, Ericson J, Sander M, Simeone A, Wurst W. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 2009; 136:2545-55. [PMID: 19592574 PMCID: PMC2729334 DOI: 10.1242/dev.031781] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a(+) (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1(+) oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord.
Collapse
Affiliation(s)
- Nilima Prakash
- Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich/Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Perez-Balaguer A, Puelles E, Wurst W, Martinez S. Shh dependent and independent maintenance of basal midbrain. Mech Dev 2009; 126:301-13. [DOI: 10.1016/j.mod.2009.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 12/21/2022]
|
30
|
Nobrega-Pereira S, Marin O. Transcriptional Control of Neuronal Migration in the Developing Mouse Brain. Cereb Cortex 2009; 19 Suppl 1:i107-13. [DOI: 10.1093/cercor/bhp044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Syu LJ, Uhler J, Zhang H, Mellerick DM. The Drosophila Nkx6 homeodomain protein has both activation and repression domains and can activate target gene expression. Brain Res 2009; 1266:8-17. [PMID: 19232326 DOI: 10.1016/j.brainres.2009.01.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/04/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Consistent with the common role of Nkx6 family members in specifying motor neuron identity, we show that over-expression of Drosophila Nkx6 results in an increase in the number of Fasiclin II expressing motor neurons in the intersegmental nerve B branch. Our dissection of the regulatory domains of Nkx6 using chimeric cell culture assays revealed the presence of two repression domains and a single activation domain within this transcription factor. As well as its conserved homeodomain, Nkx6 also has a candidate Engrailed homology 1 (Eh1) domain that is conserved amongst all NKx6 family members, through which vertebrate NKx6-type proteins bind the co-repressor, Groucho (Muhr, J., et al., 2001. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861-73). Paralleling our previous reports that the Eh1 domain of Vnd and Ind are ineffective in Gal4 chimeric assays (Von Ohlen, T., Syu, L.J., Mellerick, D.M., 2007. Conserved properties of the Drosophila homeodomain protein. Ind. Mech. Dev. 124, 925-934; Yu, Z., et al., 2005. Contextual interactions determine whether the Drosophila homeodomain protein, Vnd, acts as a repressor or activator. Nucleic Acids Res. 33, 1-12), we found that the Eh1 domain of Nkx6 did not significantly enhance repression in Gal4 chimeric assays. However, when we performed co-immunoprecipitation analyses, we found that Nkx6 can bind Groucho and that binding of Nkx6 to this co-repressor is modulated intra-molecularly. Full length Nkx6 interacted with Groucho poorly, because sequences at the carboxyl terminal of NKx6 interfere with Groucho binding, despite the presence of the Eh1 domain. In contrast, a carboxyl terminal Nkx6 deletion bound Groucho strongly. In keeping with the presence of an activation domain within Nkx6, we also report that Nkx6 can activate reporter expression driven by an Nkx6.1 enhancer that mediates auto-activation in transient transfection assays. The presence of multiple repression domains in Nkx6 supports Nkx6's role as a repressor, potentially using both Groucho-dependent and independent mechanisms. Thus, Nkx6 likely functions as a dual regulator in embryos.
Collapse
Affiliation(s)
- Li-Jyun Syu
- Pathology Department, University of Michigan, Med Sci I, M5240 Ann Arbor, MI 48109-0646, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Adenovirus type 12 (Ad12) E1A protein (E1A-12) contains a unique 20-amino-acid spacer region between the second and third conserved regions. Substitution of a single amino acid in the spacer is able to abrogate Ad12 tumorigenesis. To investigate the function of the spacer, microarray analysis was performed on cells transformed by tumorigenic and nontumorigenic Ad12s that differ only by one amino acid in the spacer. Fewer than 0.8% of approximately 8,000 genes in the microarray exhibited differential expression of threefold and higher. Of these, more than half of the known genes with higher expression in the wild-type Ad12-transformed cells have neuronal-specific functions. Some of the other differentially expressed genes are involved in the regulation of the cell cycle, transcription, cell structure, and tumor invasiveness. Northern blot analyses of a subset of the neuronal genes, including Robo1, N-MYC, and alpha-internexin, confirmed their strong expression in multiple Ad12 tumorigenic cell lines. In contrast, these neuronal genes displayed only minor or negligible expression in cells transformed by spacer-mutated Ad12. Significantly, stable introduction of E1A-12 into nontumorigenic Ad5-transformed cells induced neuronal gene expression. We found that the neuron-restrictive silencer factor, which serves as a master repressor of neuronal genes, was inactivated in both Ad12- and Ad5-transformed cells via cytoplasmic retention, though only Ad12-transformed cells exhibited neuronal gene induction. Mutational analyses of the alpha-internexin promoter demonstrated that E1A-12-mediated neuronal gene induction further required the activation of neuronal promoter E-box elements. These results indicate that the spacer is involved in mediating neuronal and tumor-related genes.
Collapse
|
33
|
Nóbrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marín O. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 2008; 59:733-45. [PMID: 18786357 PMCID: PMC2643060 DOI: 10.1016/j.neuron.2008.07.024] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/20/2008] [Accepted: 07/17/2008] [Indexed: 11/28/2022]
Abstract
The homeodomain transcription factor Nkx2-1 plays key roles in the developing telencephalon, where it regulates the identity of progenitor cells in the medial ganglionic eminence (MGE) and mediates the specification of several classes of GABAergic and cholinergic neurons. Here, we have investigated the postmitotic function of Nkx2-1 in the migration of interneurons originating in the MGE. Experimental manipulations and mouse genetics show that downregulation of Nkx2-1 expression in postmitotic cells is necessary for the migration of interneurons to the cortex, whereas maintenance of Nkx2-1 expression is required for interneuron migration to the striatum. Nkx2-1 exerts this role in the migration of MGE-derived interneurons by directly regulating the expression of a guidance receptor, Neuropilin-2, which enables interneurons to invade the developing striatum. Our results demonstrate a role for the cell-fate determinant Nkx2-1 in regulating neuronal migration by direct transcriptional regulation of guidance receptors in postmitotic cells.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Spain
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London WC1E 6AE, United Kingdom
| | - Tonggong Du
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Ave., Box 244, New York, NY 10021, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stewart A. Anderson
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Ave., Box 244, New York, NY 10021, USA
| | - Oscar Marín
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Spain
| |
Collapse
|
34
|
De Marco Garcia NV, Jessell TM. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 2008; 57:217-31. [PMID: 18215620 PMCID: PMC2276619 DOI: 10.1016/j.neuron.2007.11.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/11/2007] [Accepted: 11/26/2007] [Indexed: 12/29/2022]
Abstract
The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.
Collapse
|
35
|
Moving cell bodies: understanding the migratory mechanism of facial motor neurons. Arch Pharm Res 2007; 30:1273-82. [PMID: 18038906 DOI: 10.1007/bf02980268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Facial branchiomotor (FBM) neurons innervate facial musculature to control facial and jaw movement, which is crucial for facial expressions, speaking, and eating. FBM neurons are one of the largest populations among cranial motor neuronal class forming distinct nucleus in the hindbrain. To construct functional FBM neuronal system, a variety of cellular and molecular mechanisms play a role during embryonic development and thereby present a good framework for understanding the principles of neural development. Over the past decade, genetic approaches in mice and zebrafish have provided a better understanding of molecular pathways for FBM neuron development. This review will focus on regulatory mechanisms for cell body movement of FBM neurons, one of the unique features of FBM neuronal development. First, I will describe the basic anatomy of hindbrain, organization of cranial motor neurons, and developmental sequence of FBM neurons in vertebrates. Next, I will focus on the migratory process of FBM neurons in detail in conjunction with recent genetic evidence for underlying regulatory mechanisms, candidate environmental signals, and transcription factors for FBM neuronal development.
Collapse
|
36
|
Abstract
The cranial motor nerves control muscles involved in eye, head and neck movements, feeding, speech and facial expression. The generic and specific properties of cranial motor neurons depend on a matrix of rostrocaudal and dorsoventral patterning information. Repertoires of transcription factors, including Hox genes, confer generic and specific properties on motor neurons, and endow subpopulations at various axial levels with the ability to navigate to their targets. Cranial motor axon projections are guided by diffusible cues and aided by guideposts, such as nerve exit points, glial cells and muscle primordia. The recent identification of genes that are mutated in human cranial dysinnervation disorders is now shedding light on the functional consequences of perturbations of cranial motor neuron development.
Collapse
Affiliation(s)
- Sarah Guthrie
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
37
|
Pasqualetti M, Díaz C, Renaud JS, Rijli FM, Glover JC. Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 2007; 27:9670-81. [PMID: 17804628 PMCID: PMC6672974 DOI: 10.1523/jneurosci.2189-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a step toward generating a fate map of identified neuron populations in the mammalian hindbrain, we assessed the contributions of individual rhombomeres to the vestibular nuclear complex, a major sensorimotor area that spans the entire rhombencephalon. Transgenic mice harboring either the lacZ or the enhanced green fluorescent protein reporter genes under the transcriptional control of rhombomere-specific Hoxa2 enhancer elements were used to visualize rhombomere-derived domains. We labeled functionally identifiable vestibular projection neuron groups retrogradely with conjugated dextran-amines at successive embryonic stages and obtained developmental fate maps through direct comparison with the rhombomere-derived domains in the same embryos. The fate maps show that each vestibular neuron group derives from a unique rostrocaudal domain that is relatively stable developmentally, suggesting that anteroposterior migration is not a major contributor to the rostrocaudal patterning of the vestibular system. Most of the groups are multisegmental in origin, and each rhombomere is fated to give rise to two or more vestibular projection neuron types, in a complex pattern that is not segmentally iterated. Comparison with studies in the chicken embryo shows that the rostrocaudal patterning of identified vestibular projection neuron groups is generally well conserved between avians and mammalians but that significant species-specific differences exist in the rostrocaudal limits of particular groups. This mammalian hindbrain fate map can be used as the basis for targeting genetic manipulation to specific subpopulations of vestibular projection neurons.
Collapse
Affiliation(s)
- Massimo Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Inserm/Université Louis Pasteur, Unité Mixte de Recherche 7104, Commanaute Urbaine de Strasbourg, 67404 Illkirch Cedex, France
| | - Carmen Díaz
- Faculty of Medicine, University of Castilla-La Mancha, Regional Center for Biomedical Science, 02071 Albacete, Spain, and
| | - Jean-Sébastien Renaud
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Filippo M. Rijli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Inserm/Université Louis Pasteur, Unité Mixte de Recherche 7104, Commanaute Urbaine de Strasbourg, 67404 Illkirch Cedex, France
| | - Joel C. Glover
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
38
|
Song MR, Shirasaki R, Cai CL, Ruiz EC, Evans SM, Lee SK, Pfaff SL. T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 2007; 133:4945-55. [PMID: 17119020 PMCID: PMC5851594 DOI: 10.1242/dev.02694] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Members of the T-box transcription factor family (Tbx) are associated with several human syndromes during embryogenesis. Nevertheless, their functions within the developing CNS remain poorly characterized. Tbx20 is expressed by migrating branchiomotor/visceromotor (BM/VM) neurons within the hindbrain during neuronal circuit formation. We examined Tbx20 function in BM/VM cells using conditional Tbx20-null mutant mice to delete the gene in neurons. Hindbrain rhombomere patterning and the initial generation of post-mitotic BM/VM neurons were normal in Tbx20 mutants. However, Tbx20 was required for the tangential (caudal) migration of facial neurons, the lateral migration of trigeminal cells and the trans-median movement of vestibuloacoustic neurons. Facial cell soma migration defects were associated with the coordinate downregulation of multiple components of the planar cell polarity pathway including Fzd7, Wnt11, Prickle1, Vang1 and Vang2. Our study suggests that Tbx20 programs a variety of hindbrain motor neurons for migration, independent of directionality, and in facial neurons is a positive regulator of the non-canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mi-Ryoung Song
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Chen-Leng Cai
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Esmeralda C. Ruiz
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Soo-Kyung Lee
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Samuel L. Pfaff
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
- Author for correspondence ()
| |
Collapse
|
39
|
Borday C, Coutinho A, Germon I, Champagnat J, Fortin G. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo. ACTA ACUST UNITED AC 2006; 66:1285-301. [PMID: 16967510 DOI: 10.1002/neu.20271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
How regional patterning of the neural tube in vertebrate embryos may influence the emergence and the function of neural networks remains elusive. We have begun to address this issue in the embryonic mouse hindbrain by studying rhythmogenic properties of different neural tube segments. We have isolated pre- and post-otic hindbrain segments and spinal segments of the mouse neural tube, when they form at embryonic day (E) 9, and grafted them into the same positions in stage-matched chick hosts. Three days after grafting, in vitro recordings of the activity in the cranial nerves exiting the grafts indicate that a high frequency (HF) rhythm (order: 10 bursts/min) is generated in post-otic segments while more anterior pre-otic and more posterior spinal territories generate a low frequency (LF) rhythm (order: 1 burst/min). Comparison with homo-specific grafting of corresponding chick segments points to conservation in mouse and chick of the link between the patterning of activities and the axial origin of the hindbrain segment. This HF rhythm is reminiscent of the respiratory rhythm known to appear at E15 in mice. We also report on pre-/post-otic interactions. The pre-otic rhombomere 5 prevents the emergence of the HF rhythm at E12. Although the nature of the interaction with r5 remains obscure, we propose that ontogeny of fetal-like respiratory circuits relies on: (i) a selective developmental program enforcing HF rhythm generation, already set at E9 in post-otic segments, and (ii) trans-segmental interactions with pre-otic territories that may control the time when this rhythm appears.
Collapse
Affiliation(s)
- C Borday
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
40
|
Hunt PN, McCabe AK, Gust J, Bosma MM. Spatial restriction of spontaneous activity towards the rostral primary initiating zone during development of the embryonic mouse hindbrain. ACTA ACUST UNITED AC 2006; 66:1225-38. [PMID: 16902989 DOI: 10.1002/neu.20260] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the developing embryonic mouse hindbrain, we have previously shown that synchronized spontaneous activity is driven by midline serotonergic neurons at E11.5. This is mediated, at least in part, by the 5-HT2A receptor, which is expressed laterally in the hindbrain. Activity at E11.5 is widespread within the hindbrain tissue, propagating from the midline to more lateral regions. Using rapid acquisition of [Ca2+]i events along the midline, we now show that the rostral midline, primarily in the region of former rhombomere r2, is the primary initiating zone for this activity. We propose that at E11.5, the combined events along the rostral-caudal axis in combination with events propagating along the medial-lateral axis could assign positional information to developing neurons within the hindbrain. With further development, to E13.5, both the lateral and caudal dimensions of spontaneous activity retract to the rostral midline, occupying an area only 14% of that exhibited at E11.5. We also show that increased levels of [K+]o (to 8 mM) at E13.5 are able to increase the spread of spontaneous activity laterally and rostro-caudally. This suggests that spontaneous activity in the hindbrain depends in a dynamic way on the dominant initiating zone of the rostral midline, and that this relationship changes over development.
Collapse
Affiliation(s)
- P N Hunt
- Department of Biology, University of Washington, Seattle, Washington 89195-1800, USA
| | | | | | | |
Collapse
|
41
|
Dillon AK, Fujita SC, Matise MP, Jarjour AA, Kennedy TE, Kollmus H, Arnold HH, Weiner JA, Sanes JR, Kaprielian Z. Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord. J Neurosci 2006; 25:10119-30. [PMID: 16267219 PMCID: PMC6725793 DOI: 10.1523/jneurosci.3455-05.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Within the developing vertebrate spinal cord, motor neuron subtypes are distinguished by the settling positions of their cell bodies, patterns of gene expression, and the paths their axons follow to exit the CNS. The inclusive set of cues required to guide a given motor axon subtype from cell body to target has yet to be identified, in any species. This is attributable, in part, to the unavailability of markers that demarcate the complete trajectory followed by a specific class of spinal motor axons. Most spinal motor neurons extend axons out of the CNS through ventral exit points. In contrast, spinal accessory motor neurons (SACMNs) project dorsally directed axons through lateral exit points (LEPs), and these axons assemble into the spinal accessory nerve (SAN). Here we show that an antibody against BEN/ALCAM/SC1/DM-GRASP/MuSC selectively labels mouse SACMNs and can be used to trace the pathfinding of SACMN axons. We use this marker, together with a battery of transcription factor-deficient or guidance cue/receptor-deficient mice to identify molecules required for distinct stages of SACMN development. Specifically, we find that Gli2 is required for the initial extension of axons from SACMN cell bodies, and that netrin-1 and its receptor Dcc are required for the proper dorsal migration of these cells and the dorsally directed extension of SACMN axons toward the LEPs. Furthermore, in the absence of the transcription factor Nkx2.9, SACMN axons fail to exit the CNS. Together, these findings suggest molecular mechanisms that are likely to regulate key steps in SACMN development.
Collapse
Affiliation(s)
- Allison K Dillon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ohsawa R, Ohtsuka T, Kageyama R. Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors. J Neurosci 2006; 25:5857-65. [PMID: 15976074 PMCID: PMC6724803 DOI: 10.1523/jneurosci.4621-04.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors are known to play important roles in neuronal determination and differentiation. However, their exact roles in neural development still remain to be determined because of the functional redundancy. Here, we examined the roles of neural bHLH genes Mash1 and Math3 in the development of trigeminal and facial branchiomotor neurons, which derive from rhombomeres 2-4. In Math3-null mutant mice, facial branchiomotor neurons are misspecified, and both trigeminal and facial branchiomotor neurons adopt abnormal migratory pathways. In Mash1;Math3 double-mutant mice, trigeminal and facial branchiomotor neurons are severely reduced in number partly because of increased apoptosis. In addition, neurons with migratory defects are intermingled over the midline from either side of the neural tube. Furthermore, oligodendrocyte progenitors of rhombomere 4 are reduced in number. In the absence of Mash1 and Math3, expression of Notch signaling components is severely downregulated in rhombomere 4 and neural progenitors are not properly maintained, which may lead to intermingling of neurons and a decrease in oligodendrocyte progenitors. These results indicate that Mash1 and Math3 not only promote branchiomotor neuron development but also regulate the subsequent oligodendrocyte development and the cytoarchitecture by maintaining neural progenitors through Notch signaling.
Collapse
Affiliation(s)
- Ryosuke Ohsawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
43
|
Straka H, Baker R, Gilland E. Preservation of segmental hindbrain organization in adult frogs. J Comp Neurol 2006; 494:228-45. [PMID: 16320236 DOI: 10.1002/cne.20801] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework.
Collapse
Affiliation(s)
- Hans Straka
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7060, Université Paris 5, Cédex 06, France.
| | | | | |
Collapse
|
44
|
Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M. Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J 2005; 24:4392-403. [PMID: 16319924 PMCID: PMC1356338 DOI: 10.1038/sj.emboj.7600897] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/10/2005] [Indexed: 01/03/2023] Open
Abstract
The paralogous paired-like homeobox genes Phox2a and Phox2b are involved in the development of specific neural subtypes in the central and peripheral nervous systems. The different phenotypes of Phox2 knockout mutants, together with their asynchronous onset of expression, prompted us to generate two knock-in mutant mice, in which Phox2a is replaced by the Phox2b coding sequence, and vice versa. Our results indicate that Phox2a and Phox2b are not functionally equivalent, as only Phox2b can fulfill the role of Phox2a in the structures that depend on both genes. Furthermore, we demonstrate unique roles of Phox2 genes in the differentiation of specific motor neurons. Whereas the oculomotor and the trochlear neurons require Phox2a for their proper development, the migration of the facial branchiomotor neurons depends on Phox2b. Therefore, our analysis strongly indicates that biochemical differences between the proteins rather than temporal regulation of their expression account for the specific function of each paralogue.
Collapse
Affiliation(s)
- Eva Coppola
- TIGEM (Telethon Institute of Genetics and Medicine), Napoli, Italy
- MRC Centre for Developmental Neurobiology, King's College Guy's Campus; London, UK
| | - Alexandre Pattyn
- UMR 8542 CNRS, Département de Biologie, Ecole Normale Supérieure, Paris, France
| | - Sarah C Guthrie
- MRC Centre for Developmental Neurobiology, King's College Guy's Campus; London, UK
| | - Christo Goridis
- UMR 8542 CNRS, Département de Biologie, Ecole Normale Supérieure, Paris, France
| | - Michèle Studer
- TIGEM (Telethon Institute of Genetics and Medicine), Napoli, Italy
| |
Collapse
|
45
|
Pedersen JK, Nelson SB, Jorgensen MC, Henseleit KD, Fujitani Y, Wright CVE, Sander M, Serup P. Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev Biol 2005; 288:487-501. [PMID: 16297379 DOI: 10.1016/j.ydbio.2005.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 08/09/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
Nkx family members are essential for normal development of many different tissues such as the heart, lungs, thyroid, prostate, and CNS. Here, we describe the endodermal expression pattern of three Nkx6 family genes of which two shows conserved expression in the early pancreatic epithelium. In chicken, Nkx6.1 expression is not restricted to the presumptive pancreatic area but is more broadly expressed in the endoderm. In mice, expression of Nkx6.1 is restricted to the pancreatic epithelium. In both mice and chicken, Nkx6.2 and Pdx1 are expressed in very similar domains, identifying Nkx6.2 as a novel marker of pancreas endoderm. Additionally, our results show that Nkx6.3 is expressed transiently in pancreatic endoderm in chicken but not mouse embryos. At later stages, Nkx6.3 is found in the caudal stomach and rostral duodenum in both species. Finally, we demonstrate that Pdx1 is required for Nkx6.1 but not Nkx6.2 expression in mice and that ectopic Pdx1 can induce Nkx6.1 but not Nkx6.2 or Nkx6.3 expression in anterior chicken endoderm. These results demonstrate that Nkx6.1 lies downstream of Pdx1 in a genetic pathway and that Pdx1 is required and sufficient for Nkx6.1 expression in the early foregut endoderm.
Collapse
Affiliation(s)
- Jesper K Pedersen
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK-2820, Gentofte, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cooper KL, Armstrong J, Moens CB. Zebrafish foggy/spt 5 is required for migration of facial branchiomotor neurons but not for their survival. Dev Dyn 2005; 234:651-8. [PMID: 16193504 PMCID: PMC2597073 DOI: 10.1002/dvdy.20584] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcript elongation is a critical step in the production of mature messenger RNAs. Many factors have been identified that are required for transcript elongation, including Spt 5. Studies in yeast determined that spt 5 is required for cell viability, and analyses in Drosophila indicate Spt 5 is localized to sites of active transcription, suggesting it is required generally for transcription. However, the requirement for spt 5 for cell viability in a metazoan organism has not been addressed. We determined that zebrafish foggy/spt 5 is required cell-autonomously for the posterior migration of facial branchiomotor neurons from rhombomere 4 (r4) into r6 and r7 of the hindbrain. These genetic mosaics also give us the unique opportunity to determine whether spt 5 is required for mRNA transcription equivalently at all loci by addressing two processes within the same cell-neuronal migration and cell viability. In a wild-type host, spt 5 null facial branchiomotor neurons survive to at least 5 days postfertilization while failing to migrate posteriorly. This finding indicates that spt 5-dependent transcript elongation is required cell-autonomously for a complex cell migration but not for the survival of these same cells. This work provides evidence that transcript elongation is not a global mechanism equivalently required by all loci and may actually be under more strict developmental regulation.
Collapse
Affiliation(s)
- Kimberly L Cooper
- HHMI, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
47
|
Nelson SB, Janiesch C, Sander M. Expression of Nkx6 genes in the hindbrain and gut of the developing mouse. J Histochem Cytochem 2005; 53:787-90. [PMID: 15928328 DOI: 10.1369/jhc.5b6619.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Nkx6 gene family of homeodomain transcription factors consists of three members. For two, Nkx6.1 and Nkx6.2, important developmental roles in the central nervous system and pancreas have been demonstrated. Here we introduce the third member of the Nkx6 gene family, Nkx6.3, and identify similar and distinct patterns of expression for all three Nkx6 genes in the hindbrain and gut of the developing mouse embryo.
Collapse
Affiliation(s)
- Shelley B Nelson
- Department of Developmental and Cell Biology, University of California at Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
48
|
Uemura O, Okada Y, Ando H, Guedj M, Higashijima SI, Shimazaki T, Chino N, Okano H, Okamoto H. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev Biol 2005; 278:587-606. [PMID: 15680372 DOI: 10.1016/j.ydbio.2004.11.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 11/22/2004] [Accepted: 11/23/2004] [Indexed: 12/30/2022]
Abstract
Islet-1 (Isl1) is a member of the Isl1 family of LIM-homeodomain transcription factors (LIM-HD) that is expressed in a defined subset of motor and sensory neurons during vertebrate embryogenesis. To investigate how this specific expression of isl1 is regulated, we searched for enhancers of the isl1 gene that are conserved in vertebrate evolution. Initially, two enhancer elements, CREST1 and CREST2, were identified downstream of the isl1 locus in the genomes of fugu, chick, mouse, and human by BLAST searching for highly similar elements to those originally identified as motor and sensory neuron-specific enhancers in the zebrafish genome. The combined action of these elements is sufficient for completely recapitulating the subtype-specific expression of the isl1 gene in motor neurons of the mouse spinal cord. Furthermore, by direct comparison of the upstream flanking regions of the zebrafish and human isl1 genes, we identified another highly conserved noncoding element, CREST3, and subsequently C3R, a similar element to CREST3 with two CDP CR1 recognition motifs, in the upstream regions of all other isl1 family members. In mouse and human, CRESTs are located as far as more than 300 kb away from the isl1 locus, while they are much closer to the isl1 locus in zebrafish. Although all of zebrafish CREST2, CREST3, and C3R activate gene expression in the sensory neurons of zebrafish, CREST2 of mouse and human does not have the sequence necessary for sensory neuron-specific expression. Our results revealed both a remarkable conservation of the regulatory elements regulating subtype-specific gene expression in motor and sensory neurons and the dynamic process of reorganization of these elements whereby each element increases the level of cell-type specificity by losing redundant functions with the other elements during vertebrate evolution.
Collapse
Affiliation(s)
- Osamu Uemura
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuzin A, Brody T, Moore AW, Odenwald WF. Nerfin-1 is required for early axon guidance decisions in the developing Drosophila CNS. Dev Biol 2005; 277:347-65. [PMID: 15617679 DOI: 10.1016/j.ydbio.2004.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/15/2004] [Accepted: 09/20/2004] [Indexed: 11/25/2022]
Abstract
Many studies have focused on the mechanisms of axon guidance; however, little is known about the transcriptional control of the navigational components that carryout these decisions. This report describes the functional analysis of Nerfin-1, a nuclear regulator of axon guidance required for a subset of early pathfinding events in the developing Drosophila CNS. Nerfin-1 belongs to a highly conserved subfamily of Zn-finger proteins with cognates identified in nematodes and man. We show that the neural precursor gene prospero is essential for nerfin-1 expression. Unlike nerfin-1 mRNA, which is expressed in many neural precursor cells, the encoded Nerfin-1 protein is only detected in the nuclei of neuronal precursors that will divide just once and then transiently in their nascent neurons. Although nerfin-1 null embryos have no discernible alterations in neural lineage development nor in neuronal or glial identities, CNS pioneering neurons require nerfin-1 function for early axon guidance decisions. Furthermore, nerfin-1 is required for the proper development of commissural and connective axon fascicles. Our studies also show that Nerfin-1 is essential for the proper expression of robo2, wnt5, derailed, G-oalpha47A, Lar, and futsch, genes whose encoded proteins participate in these early navigational events.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda MD 20892-4160, USA.
| | | | | | | |
Collapse
|
50
|
Trainor PA. Specification and patterning of neural crest cells during craniofacial development. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:266-80. [PMID: 16254415 DOI: 10.1159/000088130] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Indexed: 01/15/2023]
Abstract
Craniofacial evolution is considered fundamental to the origin of vertebrates and central to this process was the formation of a migratory, multipotent cell population known as the neural crest. The number of cell types that arise from the neural crest is truly astonishing as is the number of tissues and organs to which the neural crest contributes. In addition to forming melanocytes as well as many neurons and glia in the peripheral nervous system, neural crest cells also contribute much of the cartilage, bone and connective tissue of the face. These multipotent migrating cells are capable of self renewing decisions and based upon these criteria are often considered stem cells or stem cell-like. Rapid advances in our understanding of neural crest cell patterning continue to shape our appreciation of the evolution of neural crest cells and their impact on vertebrate craniofacial morphogenesis.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|