1
|
Li XH, Lee SH, Kim JD, Lee GH, Sim JM, Cui XS. TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae123. [PMID: 39804731 DOI: 10.1093/mam/ozae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3. TBX3 expression gradually increases during early embryonic development. TBX3 knockdown resulted in decreased in the rate of four-cell and blastocyst. Depletion of TBX3 decreased the level of H3K9Ac/H3K27Ac and decreased ZGA gene expression at the four-cell stage. Furthermore, TBX3 knockdown led to a decrease in ZSACN4 protein level, DNMT1 and intracellular 5mc levels were increased, and then induced telomeres shorten and DNA damaged. Additionally, TBX3 knockdown significantly decreased histone acetylation and pluripotency genes NANOG/OCT4 expression in blastocysts. TBX3 knockdown induced apoptosis in blastocysts. Taken together, TBX3 regulate histone acetylation and play important roles in zygotic genome activation and early embryonic development in pigs.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
2
|
Franco D, Sánchez-Fernández C, García-Padilla C, Lozano-Velasco E. Exploring the role non-coding RNAs during myocardial cell fate. Biochem Soc Trans 2024; 52:1339-1348. [PMID: 38775188 DOI: 10.1042/bst20231216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
Myocardial cell fate specification takes place during the early stages of heart development as the precardiac mesoderm is configured into two symmetrical sets of bilateral precursor cells. Molecular cues of the surrounding tissues specify and subsequently determine the early cardiomyocytes, that finally matured as the heart is completed at early postnatal stages. Over the last decade, we have greatly enhanced our understanding of the transcriptional regulation of cardiac development and thus of myocardial cell fate. The recent discovery of a novel layer of gene regulation by non-coding RNAs has flourished their implication in epigenetic, transcriptional and post-transcriptional regulation of cardiac development. In this review, we revised the current state-of-the-art knowledge on the functional role of non-coding RNAs during myocardial cell fate.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| |
Collapse
|
3
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved chamber-specific polyploidy maintains heart function in Drosophila. Development 2023; 150:dev201896. [PMID: 37526609 PMCID: PMC10482010 DOI: 10.1242/dev.201896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
Affiliation(s)
- Archan Chakraborty
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nora G. Peterson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juliet S. King
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan T. Gross
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Kevin C. Zhou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Sophia DeLuca
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nenad Bursac
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Matthew J. Wolf
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Lang Y, Zheng Y, Qi B, Zheng W, Zhao C, Zhai H, Wang G, Luo Z, Li T. Case report: Novel TBX5-related pathogenic mechanism of Holt-Oram syndrome. Front Genet 2023; 14:1063202. [PMID: 36936432 PMCID: PMC10014717 DOI: 10.3389/fgene.2023.1063202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: Holt-Oram syndrome (HOS) is a rare genetic disorder characterized by upper limb abnormalities, congenital heart defects, and/or conduction abnormalities. Sequence alteration of T-box transcription factor 5 (TBX5) is correlated with the incidence of HOS. Case description: We present the case of a 24-year-old female with upper limb alterations (congenital dysplasia in the wrist and elbow joints) and an anomalous left main trunk arising from the right coronary sinus. The patient inherited a base T (reference C) at rs883079 from her mother and base C (reference T) at rs10850326 from her father, both of which belong to the 3'-untranslated region (UTR) of the TBX5 gene; no alterations in TBX5 expression or single-nucleotide polymorphisms (SNPs) in other exon areas were found. We explored the effects of TBX5 on cardiomyocytes using the HL-1 cell line and TBX5-knockdown cells. Discussion: Quantitative polymerase chain reaction analysis demonstrated that TEKT2, TEKT4, and SPTB expression decreased after TBX5 knockdown, while chromatin immunoprecipitation analysis further revealed that TBX5 binds to the TEKT2, TEKT4, and SPTB promoter regions to promote gene transcription. Our findings support a novel TBX5-related pathogenic mechanism in HOS.
Collapse
Affiliation(s)
- Yuheng Lang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yue Zheng
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Bingcai Qi
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Weifeng Zheng
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Chengxiu Zhao
- Department of Anesthesiology, Handan First Hospital, Handan, China
| | - Hu Zhai
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Gang Wang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhiqiang Luo
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tong Li
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
7
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved Chamber-Specific Polyploidy Maintains Heart Function in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528086. [PMID: 36798187 PMCID: PMC9934670 DOI: 10.1101/2023.02.10.528086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
|
8
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
9
|
Swimming exercise with L-arginine coated nanoparticles supplementation upregulated HAND2 and TBX5 expression in the cardiomyocytes of aging male rats. Biogerontology 2022; 23:473-484. [PMID: 35809117 DOI: 10.1007/s10522-022-09977-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
We investigated possible cardioprotective mechanisms of L-arginine coated nanoparticles (L-ACN) combined with swimming exercise (SE) in aging male rats considering heart and neural crest derivatives-expressed protein 2 (HAND2) and t-box transcription factor 5 (TBX5). Thirty-five male Wistar rats were randomly assigned into five groups: young, old, old + L-ACN, old + SE, and old + L-ACN + SE (n = 7 in each). L-arginine coated with chitosan nanoparticles was given to L-ACN groups via gavage at 500 mg/kg/day. SE groups performed a swimming exercise program 5 days per week for 6 weeks. The exercise program started with 20 min, gradually increasing to 60 min after four sessions, which was then constant until the completion of the training period. After the protocol completion, the rats were sacrificed, and the heart was fixed and frozen to carry out histological, immunohistochemistry (IHC), and gene expression analyses. The expression of HAND2 protein, HAND2 mRNA, and TBX5 mRNA of the heart tissue was significantly higher in the young group than in all older groups (P < 0.05). The old + L-ACN, old + SE, and old + L-ACN + SE groups showed a significant increase in these factors compared to the old group (P < 0.05). Nano-L-arginine supplement, along with swimming exercises, seems to have cardioprotective potential and improve cardiac function in old age by strengthening cardiomyocyte signaling, especially HAND2 and TBX5. However, more research is required, particularly on human samples.
Collapse
|
10
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Silva AC, Matthys OB, Joy DA, Kauss MA, Natarajan V, Lai MH, Turaga D, Blair AP, Alexanian M, Bruneau BG, McDevitt TC. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 2021; 28:2137-2152.e6. [PMID: 34861147 DOI: 10.1016/j.stem.2021.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/13/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.
Collapse
Affiliation(s)
- Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Oriane B Matthys
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Mara A Kauss
- Gladstone Institutes, San Francisco, CA 94158, USA; UC San Francisco Graduate Program in Biomedical Sciences, San Francisco, CA 94143, USA
| | | | | | | | | | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Min KD, Asakura M, Shirai M, Yamazaki S, Ito S, Fu HY, Asanuma H, Asano Y, Minamino T, Takashima S, Kitakaze M. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 2021; 11:23056. [PMID: 34845242 PMCID: PMC8630118 DOI: 10.1038/s41598-021-02390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Manabu Shirai
- Department of Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hai Ying Fu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan.
- Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan.
| |
Collapse
|
13
|
Baban A, Lodato V, Parlapiano G, Drago F. Genetics in Congenital Heart Diseases: Unraveling the Link Between Cardiac Morphogenesis, Heart Muscle Disease, and Electrical Disorders. Heart Fail Clin 2021; 18:139-153. [PMID: 34776075 DOI: 10.1016/j.hfc.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetic background of congenital heart diseases (CHDs) is extremely complex, heterogenous, and still majorly to be determined. CHDs can be sporadic or familial. In this article we discuss in detail the phenotypic spectrum of selected genes including MYH7, GATA4, NKX2-5, TBX5, and TBX20. Our goal is to offer the clinician a general overview of the clinical spectrum of the analyzed topics that are traditionally known as causative for CHDs but we underline in this review the possible progressive functional (cardiomyopathy) and electric aspects (arrhythmias) caused by the genetic background.
Collapse
Affiliation(s)
- Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Valentina Lodato
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Parlapiano
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
14
|
Chakova NN, Dolmatovich TV, Niyazova SS, Komissarova SM, Rebeko ES, Savchenko AA. New Missense Mutation Gly238Ala in the TBX5 Gene and Its Phenotypical Characteristics. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
16
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
17
|
Chen Y, Xiao D, Zhang L, Cai CL, Li BY, Liu Y. The Role of Tbx20 in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:638542. [PMID: 33585493 PMCID: PMC7876368 DOI: 10.3389/fcell.2021.638542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tbx20 is a member of the Tbx1 subfamily of T-box-containing genes and is known to play a variety of fundamental roles in cardiovascular development and homeostasis as well as cardiac remodeling in response to pathophysiological stresses. Mutations in TBX20 are widely associated with the complex spectrum of congenital heart defects (CHDs) in humans, which includes defects in chamber septation, chamber growth, and valvulogenesis. In addition, genetic variants of TBX20 have been found to be associated with dilated cardiomyopathy and heart arrhythmia. This broad spectrum of cardiac morphogenetic and functional defects is likely due to its broad expression pattern in multiple cardiogenic cell lineages and its critical regulation of transcriptional networks during cardiac development. In this review, we summarize recent findings in our general understanding of the role of Tbx20 in regulating several important aspects of cardiac development and homeostasis and heart function.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Deyong Xiao
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Lu Zhang
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Chen-Leng Cai
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| |
Collapse
|
18
|
Park DS, Fishman GI. T for Two: T-Box Factors and the Functional Dichotomy of the Conduction System. Circ Res 2020; 127:357-359. [PMID: 32673534 DOI: 10.1161/circresaha.120.317421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David S Park
- From the Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York
| | - Glenn I Fishman
- From the Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York
| |
Collapse
|
19
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
20
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
21
|
Abstract
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | | | - Eric M Small
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
22
|
Meng S, Gu Q, Yang X, Lv J, Owusu I, Matrone G, Chen K, Cooke JP, Fang L. TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway. Circulation 2019; 138:913-928. [PMID: 29545372 DOI: 10.1161/circulationaha.118.033939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBX20 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBX20 in angiogenesis has not been described. METHODS Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20. RESULTS Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis-associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 hindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis model using subcutaneously implanted Matrigel plugs, we observed that TBX20 deficiency markedly reduced PROK2 expression and restricted intraplug angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. Furthermore, loss of prok2 or its cognate receptor prokr1a also limited angiogenesis. In contrast, overexpression of prok2 or prokr1a rescued the impaired angiogenesis in tbx20-deficient animals. CONCLUSIONS Our study identifies TBX20 as a novel transcription factor regulating angiogenesis through the PROK2-PROKR1 (prokineticin receptor 1) pathway in both development and disease and reveals a novel mode of angiogenic regulation whereby the TBX20-PROK2-PROKR1 signaling cascade may act as a "biological capacitor" to relay and sustain the proangiogenic effect of vascular endothelial growth factor. This pathway may be a therapeutic target in the treatment of diseases with dysregulated angiogenesis.
Collapse
Affiliation(s)
- Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Xiaojie Yang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Iris Owusu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Gianfranco Matrone
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| |
Collapse
|
23
|
Inman KE, Caiaffa CD, Melton KR, Sandell LL, Achilleos A, Kume T, Trainor PA. Foxc2 is required for proper cardiac neural crest cell migration, outflow tract septation, and ventricle expansion. Dev Dyn 2019; 247:1286-1296. [PMID: 30376688 DOI: 10.1002/dvdy.24684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proper development of the great vessels of the heart and septation of the cardiac outflow tract requires cardiac neural crest cells. These cells give rise to the parasympathetic cardiac ganglia, the smooth muscle layer of the great vessels, some cardiomyocytes, and the conotruncal cushions and aorticopulmonary septum of the outflow tract. Ablation of cardiac neural crest cells results in defective patterning of each of these structures. Previous studies have shown that targeted deletion of the forkhead transcription factor C2 (Foxc2), results in cardiac phenotypes similar to that derived from cardiac neural crest cell ablation. RESULTS We report that Foxc2-/- embryos on the 129s6/SvEv inbred genetic background display persistent truncus arteriosus and hypoplastic ventricles before embryonic lethality. Foxc2 loss-of-function resulted in perturbed cardiac neural crest cell migration and their reduced contribution to the outflow tract as evidenced by lineage tracing analyses together with perturbed expression of the neural crest cell markers Sox10 and Crabp1. Foxc2 loss-of-function also resulted in alterations in PlexinD1, Twist1, PECAM1, and Hand1/2 expression in association with vascular and ventricular defects. CONCLUSIONS Our data indicate Foxc2 is required for proper migration of cardiac neural crest cells, septation of the outflow tract, and development of the ventricles. Developmental Dynamics 247:1286-1296, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberly E Inman
- Department of Natural Sciences, Shawnee State University, Portsmouth, Ohio
| | | | - Kristin R Melton
- Section of Neonatology, Pulmonary and Perinatal Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lisa L Sandell
- Department of Oral Immunology & Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
24
|
Wang E, Nie Y, Fan X, Zheng Z, Gu H, Zhang H, Hu S. Minor alleles of genetic variants in second heart field increase the risk of hypoplastic right heart syndrome. J Genet 2019; 98:45. [PMID: 31204705 DOI: 10.1007/s12041-019-1092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
Hypoplastic right heart syndrome(HRHS) is characterized by hypoplastic right ventricle (RV); Numerous transcriptional cascades in the second heart field (SHF) regulate RVdevelopment. The relationship of SHF gene variants with human HRHS remains unknown. The whole lengths of 17 SHF genes were sequenced in 16 HRHS, and the selected single-nucleotide variants (SNVs) were then genotyped in HRHS, other congenital heart disease (CHD) and healthy control. Luciferase assay was performed to verify the effect of FOXC2: rs34221221A>GandTBX20: rs59854940C>Gat the transcription level. There were 151 (12.86%) novel SNVs after sequence analysis, of which three were in exons (one was synonymous SNV and two were nonsynonymous SNVs), two in promoter, and most SNVs (89.95%) were in intronic regions. Genotype analyses revealed that the minor alleles of FOXC2: rs34221221 A>G and TBX20: rs59854940 C>G could increase HRHS risk (P<0.05), but not in other CHD or healthy control. Luciferase assay showed that the minor G allele in rs34221221 significantly increased FOXC2 transcription while in rs59854940 it decreased TBX20 transcription significantly. Novel variants of SHF gene associated with HRHS were identified. Minor alleles in two variants from FOXC2 and TBX20 could increase the risk of HRHS.
Collapse
Affiliation(s)
- Enshi Wang
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
26
|
Ríos-Serna LJ, Díaz-Ordoñez L, Candelo E, Pachajoa H. A novel de novo TBX5 mutation in a patient with Holt-Oram syndrome. APPLICATION OF CLINICAL GENETICS 2018; 11:157-162. [PMID: 30538526 PMCID: PMC6260184 DOI: 10.2147/tacg.s183418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Holt-Oram syndrome (HOS) is an autosomal dominant disorder characterized by congenital cardiac defects and congenital deformities of the upper limbs. Herein, we report the case of a 2-year-old patient presenting with clinical diagnostic criteria of HOS with interatrial and interventricular communication associated with hip dysplasia and upper limb reduction composed of radial ray anomaly. A novel de novo, potentially pathogenic variant in the TBX5 gene at NM_181486.2:c.243-1G>C was identified.
Collapse
Affiliation(s)
- Lady J Ríos-Serna
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Valle del Cauca, Colombia,
| | - Lorena Díaz-Ordoñez
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Valle del Cauca, Colombia,
| | - Estephania Candelo
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Valle del Cauca, Colombia, .,Biomaterial and Tissues Engineering and Genetic of Human Diseases, University College London, London, UK
| | - Harry Pachajoa
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Department of Basic Medical Sciences, Universidad Icesi, Cali, Valle del Cauca, Colombia, .,Fundación Valle del Lili, Cali, Valle del Cauca, Colombia,
| |
Collapse
|
27
|
Xia X, Wang P, Wan R, Huo W, Chang Z. Toxic effects of cyhalofop-butyl on embryos of the Yellow River carp (Cyprinus carpio var.): alters embryos hatching, development failure, mortality of embryos, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24305-24315. [PMID: 29948714 DOI: 10.1007/s11356-018-2489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
As a universal environmental contaminant, the herbicide cyhalofop-butyl is considered to have infested effects on the embryonic development of aquatic species. The present study focused on an assessment of the impacts of cyhalofop-butyl on Yellow River carp embryos. It was found that cyhalofop-butyl inhibited the hatching of the embryos, and the hatching rate decreased with higher concentrations of the herbicide. The mortality rate was increased on exposure to cyhalofop-butyl and was significantly higher in the 1.6 and 2 mg/L treatment groups over 48 h. All of the embryos of the 2 mg/L treatment group died within the 48 h post-hatching stage. And the transcription of several embryos related to apoptosis was also influenced by cyhalofop-butyl exposure. Further, cyhalofop-butyl exposure leads to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with significant modifications in the associated genes. These results provided a scientific basis for further studies into the effects of cyhalofop-butyl on aquatic organisms.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China.
| | - Peijin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Ruyan Wan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
28
|
Pursani V, Bhartiya D, Tanavde V, Bashir M, Sampath P. Transcriptional activator DOT1L putatively regulates human embryonic stem cell differentiation into the cardiac lineage. Stem Cell Res Ther 2018; 9:97. [PMID: 29631608 PMCID: PMC5891944 DOI: 10.1186/s13287-018-0810-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Commitment of pluripotent stem cells into differentiated cells and associated gene expression necessitate specific epigenetic mechanisms that modify the DNA and corresponding histone proteins to render the chromatin in an open or closed state. This in turn dictates the associated genetic machinery, including transcription factors, acknowledging the cellular signals provided. Activating histone methyltransferases represent crucial enzymes in the epigenetic machinery that cause transcription initiation by delivering the methyl mark on histone proteins. A number of studies have evidenced the vital role of one such histone modifier, DOT1L, in transcriptional regulation. Involvement of DOT1L in differentiating pluripotent human embryonic stem (hES) cells into the cardiac lineage has not yet been investigated. Methods The study was conducted on in-house derived (KIND1) and commercially available (HES3) human embryonic stem cell lines. Chromatin immunoprecipitation (ChIP) was performed followed by sequencing to uncover the cardiac genes harboring the DOT1L specific mark H3K79me2. Following this, dual immunofluorescence was employed to show the DOT1L co-occupancy along with the cardiac progenitor specific marker. DOT1L was knocked down by siRNA to further confirm its role during cardiac differentiation. Results ChIP sequencing revealed a significant number of peaks characterizing H3K79me2 occupancy in the proximity of the transcription start site. This included genes like MYOF, NR2F2, NKX2.5, and HAND1 in cardiac progenitors and cardiomyocytes, and POU5F1 and NANOG in pluripotent hES cells. Consistent with this observation, we also show that DOT1L co-localizes with the master cardiac transcription factor NKX2.5, suggesting its direct involvement during gene activation. Knockdown of DOT1L did not alter the pluripotency of hES cells, but it led to the disruption of cardiac differentiation observed morphologically as well as at transcript and protein levels. Conclusions Collectively, our data suggests the crucial role of H3K79me2 methyltransferase DOT1L for activation of NKX2.5 during the cardiac differentiation of hES cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-0810-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Varsha Pursani
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400 012, India.
| | - Vivek Tanavde
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, India.,Genome and Gene Expression Data Analysis Division, A* Star-Bioinformatics Institute, Singapore, 138671, Singapore
| | - Mohsin Bashir
- Division of Translational Control of Disease, A* Star-Institute of Medical Biology, Singapore, 138648, Singapore
| | - Prabha Sampath
- Division of Translational Control of Disease, A* Star-Institute of Medical Biology, Singapore, 138648, Singapore
| |
Collapse
|
29
|
Kojima H, Ieda M. Discovery and progress of direct cardiac reprogramming. Cell Mol Life Sci 2017; 74:2203-2215. [PMID: 28197667 PMCID: PMC11107684 DOI: 10.1007/s00018-017-2466-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/27/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.
Collapse
Affiliation(s)
- Hidenori Kojima
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
- AMED-PRIME, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
30
|
Abstract
Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.
Collapse
|
31
|
Just S, Raphel L, Berger IM, Bühler A, Keßler M, Rottbauer W. Tbx20 Is an Essential Regulator of Embryonic Heart Growth in Zebrafish. PLoS One 2016; 11:e0167306. [PMID: 27907103 PMCID: PMC5132222 DOI: 10.1371/journal.pone.0167306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that regulate cardiomyocyte proliferation during embryonic heart growth are not completely deciphered yet. In a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified the recessive embryonic-lethal zebrafish mutant line weiches herz (whz). Homozygous mutant whz embryos display impaired heart growth due to diminished embryonic cardiomyocyte proliferation resulting in cardiac hypoplasia and weak cardiac contraction. By positional cloning, we found in whz mutant zebrafish a missense mutation within the T-box 20 (Tbx20) transcription factor gene leading to destabilization of Tbx20 protein. Morpholino-mediated knock-down of Tbx20 in wild-type zebrafish embryos phenocopies whz, indicating that the whz phenotype is due to loss of Tbx20 function, thereby leading to significantly reduced cardiomyocyte numbers by impaired proliferation of heart muscle cells. Ectopic overexpression of wild-type Tbx20 in whz mutant embryos restored cardiomyocyte proliferation and heart growth. Interestingly, ectopic overexpression of Tbx20 in wild-type zebrafish embryos resulted, similar to the situation in the embryonic mouse heart, in significantly reduced proliferation rates of ventricular cardiomyocytes, suggesting that Tbx20 activity needs to be tightly fine-tuned to guarantee regular cardiomyocyte proliferation and embryonic heart growth in vivo.
Collapse
Affiliation(s)
- Steffen Just
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| | - Linda Raphel
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Ina M. Berger
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Anja Bühler
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Mirjam Keßler
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Wolfgang Rottbauer
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| |
Collapse
|
32
|
Liu P, Sun Y, Qiu G, Jiang H, Qiu G. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase. Mol Med Rep 2016; 14:2904-14. [PMID: 27572266 PMCID: PMC5042752 DOI: 10.3892/mmr.2016.5660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle arrest.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yueling Sun
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guangbin Qiu
- Department of Laboratory Medicine, 202 Hospital of People's Liberation Army, Shenyang, Heping 110003, P.R. China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital, China Medical University, Shenyang, Heping 110001, P.R. China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
33
|
Nimura K, Yamamoto M, Takeichi M, Saga K, Takaoka K, Kawamura N, Nitta H, Nagano H, Ishino S, Tanaka T, Schwartz RJ, Aburatani H, Kaneda Y. Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development. eLife 2016; 5. [PMID: 27331609 PMCID: PMC4982761 DOI: 10.7554/elife.16030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022] Open
Abstract
Transcription factors organize gene expression profiles by regulating promoter activity. However, the role of transcription factors after transcription initiation is poorly understood. Here, we show that the homeoprotein Nkx2-5 and the 5’-3’ exonuclease Xrn2 are involved in the regulation of alternative polyadenylation (APA) during mouse heart development. Nkx2-5 occupied not only the transcription start sites (TSSs) but also the downstream regions of genes, serving to connect these regions in primary embryonic cardiomyocytes (eCMs). Nkx2-5 deficiency affected Xrn2 binding to target loci and resulted in increases in RNA polymerase II (RNAPII) occupancy and in the expression of mRNAs with long 3’untranslated regions (3’ UTRs) from genes related to heart development. siRNA-mediated suppression of Nkx2-5 and Xrn2 led to heart looping anomaly. Moreover, Nkx2-5 genetically interacts with Xrn2 because Nkx2-5+/-Xrn2+/-, but neither Nkx2-5+/-nor Xrn2+/-, newborns exhibited a defect in ventricular septum formation, suggesting that the association between Nkx2-5 and Xrn2 is essential for heart development. Our results indicate that Nkx2-5 regulates not only the initiation but also the usage of poly(A) sites during heart development. Our findings suggest that tissue-specific transcription factors is involved in the regulation of APA. DOI:http://dx.doi.org/10.7554/eLife.16030.001 About one in every hundred babies is born with problems that either affect the structure of the heart or how it works. These problems are known as congenital heart disease, and result when the development of the heart is disrupted. How the heart develops is determined by thousands of genes whose activity or “expression” must be precisely regulated. Proteins called transcription factors can control gene expression; therefore, researchers may discover new ways of treating congenital heart disease if they can understand how transcription factors work during normal heart development. To produce a protein, the information in a gene must first be “transcribed” to form a molecule of messenger RNA (mRNA). Not all of the mRNA sequence is subsequently “translated” to form the protein; this includes a stretch at the end of the mRNA called the 3’ untranslated region. The length of the 3’ untranslated region for a particular mRNA may vary depending on the type of cell it has been produced in, and this length can influence how efficiently the mRNA is translated to form a protein. However, it was not clear what changes the length of the 3’ untranslated region. Nimura et al. have now studied mice to investigate the role of a transcription factor called Nkx2-5, which was known to be important for heart development. This revealed that in addition to its expected role in starting the transcription of genes that are important for heart development, Nkx2-5 also controls the length of 3’ untranslated regions of certain mRNAs. To do so, Nkx2-5 binds to a protein called Xrn2 that stops transcription when the end of the gene is reached. Mouse embryos that lacked Nkx2-5 produced mRNAs containing long 3’ untranslated regions from genes related to the development of the heart. Furthermore, suppressing the activity of both Nkx2-5 and Xrn2 resulted in the embryos developing heart defects. The findings of Nimura et al. suggest that transcription factors found in specific tissues are responsible for the different lengths of 3’ untranslated regions in mRNAs in different tissues. Furthermore, incorrectly regulating the length of these regions appears to be linked to the development of congenital heart disease. The next step is to understand exactly how the failure to correctly regulate the length of 3’ untranslated regions contributes to congenital heart disease. DOI:http://dx.doi.org/10.7554/eLife.16030.002
Collapse
Affiliation(s)
- Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makiko Takeichi
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Norihiko Kawamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohisa Nitta
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromichi Nagano
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Saki Ishino
- Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuya Tanaka
- Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Unites States
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
34
|
Wang ZC, Ji WH, Ruan CW, Liu XY, Qiu XB, Yuan F, Li RG, Xu YJ, Liu X, Huang RT, Xue S, Yang YQ. Prevalence and Spectrum of TBX5 Mutation in Patients with Lone Atrial Fibrillation. Int J Med Sci 2016; 13:60-7. [PMID: 26917986 PMCID: PMC4747871 DOI: 10.7150/ijms.13264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common type of cardiac rhythm disturbance encountered in clinical practice, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. A recent study has revealed that the TBX5 gene, which encodes a T-box transcription factor key to cardiovascular development, was associated with AF and atypical Holt-Oram syndrome. However, the prevalence and spectrum of TBX5 mutation in patients with lone AF remain unclear. In this study, the coding regions and splicing junction sites of TBX5 were sequenced in 192 unrelated patients with lone AF and 300 unrelated ethnically-matched healthy individuals used as controls. The causative potential of the identified TBX5 variation was evaluated by MutationTaster and PolyPhen-2. The functional effect of the mutant TBX5 was assayed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.H170D, was identified in a patient, with a mutational prevalence of approximately 0.52%. This mutation, which was absent in the 300 control individuals, altered the amino acid completely conserved evolutionarily across species, and was predicted to be disease-causing. Functional deciphers showed that the mutant TBX5 was associated with significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation between TBX5 and NKX2-5 or GATA4. The findings expand the mutational spectrum of TBX5 linked to AF and provide new evidence that dysfunctional TBX5 may contribute to lone AF.
Collapse
Affiliation(s)
- Zhan-Cheng Wang
- 1. Department of Cardiology, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, China
| | - Wen-Hui Ji
- 2. Department of Internal Medicine, Huajing Community Health Service Center of Xu Hui Distric, 180 Jianhua Road, Shanghai 200231, China
| | - Chang-Wu Ruan
- 1. Department of Cardiology, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, China
| | - Xing-Yuan Liu
- 3. Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Xing-Biao Qiu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Fang Yuan
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ruo-Gu Li
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ying-Jia Xu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xu Liu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ru-Tai Huang
- 5. Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- 5. Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi-Qing Yang
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China;; 6. Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China;; 7. Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
35
|
Abstract
BACKGROUND CHD is the leading cause of mortality due to birth defects. Array comparative genomic hybridisation (aCGH) detects submicroscopic copy number changes and may improve identification of the genetic basis of CHD. METHODS This is a retrospective analysis of 1252 patients from a regional referral centre who had undergone aCGH. Of the patients, 173 had CHD. A whole-genome custom-designed oligonucleotide array with >44,000 probes was used to detect copy number changes. RESULTS Of the 1252 patients, 335 (26.76%) had abnormal aCGH results. Of the 173 patients with CHD, 50 (28.9%) had abnormal aCGH results versus 284 (26.3%) of 1079 non-cardiac patients. There were six patients with CHD who had well-described syndromes such as Wolf-Hirschhorn, trisomy 13, DiGeorge, and Williams. Of the patients with CHD, those with left-sided heart disease had the highest proportion (14/31; 45.13%) of abnormal aCGH results, followed by those with conotruncal heart disease (10/29; 34.48%), endocardial cushion defects (13/50; 26%), complex/other heart disease (12/52; 23.08%), and patent ductus arteriosus (1/11; 9.09%). CONCLUSIONS Patients with CHD are at a substantial risk of having microdeletions and microduplications. The incidence of abnormalities on aCGH analysis is higher than identified with karyotype, and identification of copy number changes may help identify the genetic basis of the specific heart defects. However, aCGH may not have a significant diagnostic yield in those with isolated CHD. Further research using larger data sets may help identify candidate genes associated with CHD.
Collapse
|
36
|
Bouldin CM, Manning AJ, Peng YH, Farr GH, Hung KL, Dong A, Kimelman D. Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 2015; 142:2499-507. [PMID: 26062939 DOI: 10.1242/dev.124024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/16/2023]
Abstract
Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alyssa J Manning
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yu-Hsuan Peng
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gist H Farr
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - King L Hung
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alice Dong
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Abstract
The heart is the first organ to form during embryonic development. Given the complex nature of cardiac differentiation and morphogenesis, it is not surprising that some form of congenital heart disease is present in ≈1 percent of newborns. The molecular determinants of heart development have received much attention over the past several decades. This has been driven in large part by an interest in understanding the causes of congenital heart disease coupled with the potential of using knowledge from developmental biology to generate functional cells and tissues that could be used for regenerative medicine purposes. In this review, we highlight the critical signaling pathways and transcription factor networks that regulate cardiomyocyte lineage specification in both in vivo and in vitro models. Special focus will be given to epigenetic regulators that drive the commitment of cardiomyogenic cells from nascent mesoderm and their differentiation into chamber-specific myocytes, as well as regulation of myocardial trabeculation.
Collapse
Affiliation(s)
- Sharon L Paige
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Karolina Plonowska
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Adele Xu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA
| | - Sean M Wu
- From the Division of Pediatric Cardiology and Department of Pediatrics (S.L.P., S.M.W.), Cardiovascular Institute (K.P., A.X., S.M.W.), Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Institute for Stem Cell Biology and Regenerative Medicine Regenerative Medicine, Child Health Research Institute (S.M.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
38
|
Novel mutations in the transcriptional activator domain of the human TBX20 in patients with atrial septal defect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:718786. [PMID: 25834824 PMCID: PMC4365367 DOI: 10.1155/2015/718786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up.
Collapse
|
39
|
PAN YUN, GENG RUI, ZHOU NING, ZHENG GUIFEN, ZHAO HONG, WANG JUAN, ZHAO CUIMEI, QIU XINGBIAO, YANG YIQING, LIU XINGYUAN. TBX20 loss-of-function mutation contributes to double outlet right ventricle. Int J Mol Med 2015; 35:1058-66. [DOI: 10.3892/ijmm.2015.2077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
|
40
|
Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, Tessarollo L, Gaetano C, Mukouyama YS, Thiele CJ. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 2014; 289:29801-16. [PMID: 25190801 DOI: 10.1074/jbc.m114.570416] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome 1p36 deletion syndrome is one of the most common terminal deletions observed in humans and is related to congenital heart disease (CHD). However, the 1p36 genes that contribute to heart disease have not been clearly delineated. Human CASZ1 gene localizes to 1p36 and encodes a zinc finger transcription factor. Casz1 is required for Xenopus heart ventral midline progenitor cell differentiation. Whether Casz1 plays a role during mammalian heart development is unknown. Our aim is to determine 1p36 gene CASZ1 function at regulating heart development in mammals. We generated a Casz1 knock-out mouse using Casz1-trapped embryonic stem cells. Casz1 deletion in mice resulted in abnormal heart development including hypoplasia of myocardium, ventricular septal defect, and disorganized morphology. Hypoplasia of myocardium was caused by decreased cardiomyocyte proliferation. Comparative genome-wide RNA transcriptome analysis of Casz1 depleted embryonic hearts identifies abnormal expression of genes that are critical for muscular system development and function, such as muscle contraction genes TNNI2, TNNT1, and CKM; contractile fiber gene ACTA1; and cardiac arrhythmia associated ion channel coding genes ABCC9 and CACNA1D. The transcriptional regulation of some of these genes by Casz1 was also found in cellular models. Our results showed that loss of Casz1 during mouse development led to heart defect including cardiac noncompaction and ventricular septal defect, which phenocopies 1p36 deletion syndrome related CHD. This suggests that CASZ1 is a novel 1p36 CHD gene and that the abnormal expression of cardiac morphogenesis and contraction genes induced by loss of Casz1 contributes to the heart defect.
Collapse
Affiliation(s)
| | - Wenling Li
- the Laboratories of Stem Cell and Neuro-vascular Biology and
| | - Xuefei Ma
- the Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, and
| | | | - Francesco Spallotta
- the Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany
| | - Eileen Southon
- the Mouse Cancer Genetics Program, Neural Development Section, National Cancer Institute, Bethesda, Maryland 20892
| | - Lino Tessarollo
- the Mouse Cancer Genetics Program, Neural Development Section, National Cancer Institute, Bethesda, Maryland 20892
| | - Carlo Gaetano
- the Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany
| | | | | |
Collapse
|
41
|
Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet 2014; 57:402-13. [PMID: 24793338 DOI: 10.1016/j.ejmg.2014.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/16/2014] [Indexed: 01/14/2023]
Abstract
Cardiovascular malformations are a singularly important class of birth defects and due to dramatic improvements in medical and surgical care, there are now large numbers of adult survivors. The etiologies are complex, but there is strong evidence that genetic factors play a crucial role. Over the last 15 years there has been enormous progress in the discovery of causative genes for syndromic heart malformations and in rare families with Mendelian forms. The rapid characterization of genomic disorders as major contributors to congenital heart defects is also notable. The genes identified encode many transcription factors, chromatin regulators, growth factors and signal transduction proteins- all unified by their required roles in normal cardiac development. Genome-wide sequencing of the coding regions promises to elucidate genetic causation in several disorders affecting cardiac development. Such comprehensive studies evaluating both common and rare variants would be essential in characterizing gene-gene interactions, as well as in understanding the gene-environment interactions that increase susceptibility to congenital heart defects.
Collapse
Affiliation(s)
- Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart. J Dev Biol 2014. [DOI: 10.3390/jdb2020117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
43
|
Yilbas AE, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, Chen J, Li Q. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem 2014; 2:12. [PMID: 24790981 PMCID: PMC3982529 DOI: 10.3389/fchem.2014.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Currently, there are no effective treatments to directly repair damaged heart tissue after cardiac injury since existing therapies focus on rescuing or preserving reversibly damaged tissue. Cell-based therapies using cardiomyocytes generated from stem cells present a promising therapeutic approach to directly replace damaged myocardium with new healthy tissue. However, the molecular mechanisms underlying the commitment of stem cells into cardiomyocytes are not fully understood and will be critical to guide this new technology into the clinic. Since GATA4 is a critical regulator of cardiac differentiation, we examined the molecular basis underlying the early activation of GATA4 gene expression during cardiac differentiation of pluripotent stem cells. Our studies demonstrate the direct involvement of histone acetylation and transcriptional coactivator p300 in the regulation of GATA4 gene expression. More importantly, we show that histone acetyltransferase (HAT) activity is important for GATA4 gene expression with the use of curcumin, a HAT inhibitor. In addition, the widely used histone deacetylase inhibitor valproic acid enhances both histone acetylation and cardiac specification.
Collapse
Affiliation(s)
- Ayse E Yilbas
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Alison Hamilton
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Yingjian Wang
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Hymn Mach
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Natascha Lacroix
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Darryl R Davis
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
44
|
Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, Liu X, Fang WY, Huang RT, Xue S, Nemer G. GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat 2013; 34:1662-71. [PMID: 24000169 DOI: 10.1002/humu.22434] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/23/2013] [Indexed: 01/01/2023]
Abstract
Tetralogy of Fallot (TOF) represents the most common form of cyanotic congenital heart disease and accounts for significant morbidity and mortality in humans. Emerging evidence has implicated genetic defects in the pathogenesis of TOF. However, TOF is genetically heterogeneous and the genetic basis for TOF in most patients remains unclear. In this study, the GATA4 gene were sequenced in 52 probands with familial TOF, and three novel heterozygous mutations, including A9P and L51V both located in the putative first transactivational domain and N285S in the C-terminal zinc finger, were identified in three probands, respectively. Genetic analysis of the pedigrees demonstrated that in each family the mutation cosegregated with TOF with complete penetrance. The missense mutations were absent in 800 control chromosomes and the altered amino acids were highly conserved evolutionarily. Functional analysis showed that the GATA4 mutants were consistently associated with diminished DNA-binding affinity and decreased transcriptional activity. Furthermore, the N285S mutation completely disrupted the physical interaction between GATA4 and TBX5. To our knowledge, this report associates GATA4 loss-of-function mutations with familial TOF for the first time, providing novel insight into the molecular mechanism involved in TOF and suggesting potential implications for the early prophylaxis and allele-specific therapy of TOF.
Collapse
Affiliation(s)
- Yi-Qing Yang
- Department of Cardiology and Cardiovascular Research, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y, Yang S, Xu Z, Dai J, Pan S, Da M, Wang X, Qian B, Wen Y, Wen J, Xing J, Guo X, Xia Y, Ma H, Jin G, Yu S, Liu J, Zhou Z, Wang X, Chen Y, Sha J, Shen H. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 2013; 45:818-821. [PMID: 23708190 DOI: 10.1038/ng.2636] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Congenital heart malformation (CHM) is the most common form of congenital human birth anomaly and is the leading cause of infant mortality. Although some causative genes have been identified, little progress has been made in identifying genes in which low-penetrance susceptibility variants occur in the majority of sporadic CHM cases. To identify common genetic variants associated with sporadic non-syndromic CHM in Han Chinese populations, we performed a multistage genome-wide association study (GWAS) in a total of 4,225 CHM cases and 5,112 non-CHM controls. The GWAS stage included 945 cases and 1,246 controls and was followed by 2-stage validation with 2,160 cases and 3,866 controls. The combined analyses identified significant associations (P < 5.0 × 10⁻⁸) at 1p12 (rs2474937 near TBX15; odds ratio (OR) = 1.40; P = 8.44 × 10⁻¹⁰) and 4q31.1 (rs1531070 in MAML3; OR = 1.40; P = 4.99 × 10⁻¹²). These results extend current knowledge of genetic contributions to CHM in Han Chinese populations.
Collapse
Affiliation(s)
- Zhibin Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kerstjens-Frederikse WS, Bongers EMHF, Roofthooft MTR, Leter EM, Douwes JM, Van Dijk A, Vonk-Noordegraaf A, Dijk-Bos KK, Hoefsloot LH, Hoendermis ES, Gille JJP, Sikkema-Raddatz B, Hofstra RMW, Berger RMF. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet 2013; 50:500-6. [PMID: 23592887 PMCID: PMC3717587 DOI: 10.1136/jmedgenet-2012-101152] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Childhood-onset pulmonary arterial hypertension (PAH) is rare and differs from adult-onset disease in clinical presentation, with often unexplained mental retardation and dysmorphic features (MR/DF). Mutations in the major PAH gene, BMPR2, were reported to cause PAH in only 10–16% of childhood-onset patients. We aimed to identify more genes associated with childhood-onset PAH. Methods We studied 20 consecutive cases with idiopathic or heritable PAH. In patients with accompanying MR/DF (n=6) array-comparative genomic hybridisation analysis was performed, with the aim of finding common deletion regions containing candidate genes for PAH. Three patients had overlapping deletions of 17q23.2. TBX2 and TBX4 were selected from this area as candidate genes and sequenced in all 20 children. After identifying TBX4 mutations in these children, we subsequently sequenced TBX4 in a cohort of 49 adults with PAH. Because TBX4 mutations are known to cause small patella syndrome (SPS), all patients with newly detected TBX4 mutations were screened for features of SPS. We also screened a third cohort of 23 patients with SPS for PAH. Results TBX4 mutations (n=3) or TBX4-containing deletions (n=3) were detected in 6 out of 20 children with PAH (30%). All living patients and two parents with TBX4 mutations appeared to have previously unrecognised SPS. In the adult PAH-cohort, one TBX4 mutation (2%) was detected. Screening in the cohort of (predominantly adult) SPS patients revealed no PAH. Conclusions These data indicate that TBX4 mutations are associated with childhood-onset PAH, but that the prevalence of PAH in adult TBX4 mutation carriers is low.
Collapse
|
47
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
48
|
Parrie LE, Renfrew EM, Wal AV, Mueller RL, Garrity DM. Zebrafishtbx5paralogs demonstrate independent essential requirements in cardiac and pectoral fin development. Dev Dyn 2013; 242:485-502. [DOI: 10.1002/dvdy.23953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/31/2013] [Accepted: 02/16/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lindsay E. Parrie
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | - Erin M. Renfrew
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | - Aimee Vander Wal
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | | | - Deborah M. Garrity
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| |
Collapse
|
49
|
Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y. The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 2013; 8:e57829. [PMID: 23469079 PMCID: PMC3585213 DOI: 10.1371/journal.pone.0057829] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023] Open
Abstract
During cardiac development, a subpopulation of epicardial cells migrates into the heart as part of the epicardial epithelial-mesenchymal transition (EMT) and differentiates into smooth muscle cells and fibroblasts. However, the roles of transcription factors in the epicardial EMT are poorly understood. Here, we show that two transcription factors expressed in the developing epicardium, T-box18 (Tbx18) and Wilms’ tumor 1 homolog (Wt1), bi-directionally control the epicardial EMT through their effects on Slug expression in murine primary epicardial cells. Knockdown of Wt1 induced the epicardial EMT, which was accompanied by an increase in the migration and expression of N-cadherin and a decrease in the expression of ZO-1 as an epithelial marker. By contrast, knockdown of Tbx18 inhibited the mesenchymal transition induced by TGFβ1 treatment and Wt1 knockdown. The expression of Slug but not Snail decreased as a result of Tbx18 knockdown, but Slug expression increased following knockdown of Wt1. Knockdown of Slug also attenuated the epicardial EMT induced by TGFβ1 treatment and Wt1 knockdown. Furthermore, in normal murine mammary gland-C7 (NMuMG-C7) cells, Tbx18 acted to increase Slug expression, while Wt1 acted to decrease Slug expression. Chromatin immunoprecipitation and promoter assay revealed that Tbx18 and Wt1 directly bound to the Slug promoter region and regulated Slug expression. These results provide new insights into the regulatory mechanisms that control the epicardial EMT.
Collapse
Affiliation(s)
- Makiko Takeichi
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Hironori Nakagami
- Division of Vascular Medicine and Epigenetics, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| |
Collapse
|
50
|
Zhou L, Liu Y, Lu L, Lu X, Dixon RAF. Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd. PLoS One 2012; 7:e48028. [PMID: 23144723 PMCID: PMC3483304 DOI: 10.1371/journal.pone.0048028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation may possibly confound the observations. Moreover, due to the use of a cardiac reporter (Myh6) selection strategy for induced cardiomyocyte enrichment, and the lack of tracking signals for each transcription factors, individual roles of each transcription factors in activating cardiac gene expression in mammalian non-myoblastic cells have never been elucidated. Answers to these questions are an important step toward cardiomyocyte regeneration. Because mouse 10T1/2 fibroblasts are non-myoblastic in nature and can be induced to express genes of all three types of muscle cells, they are an ideal model for the analysis of cardiac and non-cardiac gene activation after induction. We constructed bi-cistronic lentiviral vectors, capable of expressing cardiac transcription factors along with different fluorescent tracking signals. By infecting 10T1/2 fibroblasts with Nkx2-5, Tbx5, Gata4 or Myocd cardiac transcription factor lentivirus alone or different combinations, we found that only Tbx5+Myocd and Tbx5+Gata4+Myocd combinations induced Myh6 and Tnnt2 cardiac marker protein expression. Microarray-based gene ontology analysis revealed that Tbx5 alone activated genes involved in the Wnt receptor signaling pathway and inhibited genes involved in a number of cardiac-related processes. Myocd alone activated genes involved in a number of cardiac-related processes and inhibited genes involved in the Wnt receptor signaling pathway and non-cardiac processes. Gata4 alone inhibited genes involved in non-cardiac processes. Tbx5+Gata4+Myocd was the most effective activator of genes associated with cardiac-related processes. Unlike Tbx5, Gata4, Myocd alone or Tbx5+Myocd, Tbx5+Gata4+Myocd activated the fewest genes associated with non-cardiac processes. Conclusively, Tbx5, Gata4 and Myocd play different roles in cardiac gene activation in mammalian non-myoblastic cells. Tbx5+Gata4+Myocd activates the most cardiac and the least non-cardiac gene expression.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail: (LZ); (RD)
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Li Lu
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Xinzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Richard A. F. Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail: (LZ); (RD)
| |
Collapse
|