1
|
Randolph LN, Castiglioni C, Tavian M, Sturgeon CM, Ditadi A. Bloodhounds chasing the origin of blood cells. Trends Cell Biol 2025:S0962-8924(25)00067-4. [PMID: 40221343 DOI: 10.1016/j.tcb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The generation of blood cells during embryonic development involves a process resembling lineage reprogramming, where specialized cells within the vasculature become blood forming, or hemogenic. These hemogenic cells undergo rapid transcriptional and morphological changes as they appear to switch from an endothelial to blood identity. What controls this process and the exact nature of the hemogenic cells remains debated, with evidence supporting several hypotheses. In this opinion, we synthesize current knowledge and propose a model reconciling conflicting observations, integrating evolutionary and mechanistic insights into blood cell emergence.
Collapse
Affiliation(s)
- Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Tavian
- University of Strasbourg, INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Kukreja K, Jia BZ, McGeary SE, Patel N, Megason SG, Klein AM. Cell state transitions are decoupled from cell division during early embryo development. Nat Cell Biol 2024; 26:2035-2045. [PMID: 39516639 DOI: 10.1038/s41556-024-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. Here, to determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues from early gastrulation to the end of segmentation. However, arresting cell division does slow down differentiation in some cell types, and it induces global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not, but show evidence of partial compensation. This work clarifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues.
Collapse
Affiliation(s)
- Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Bill Z Jia
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Sean E McGeary
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nikit Patel
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
4
|
Miles LB, Calcinotto V, Oveissi S, Serrano RJ, Sonntag C, Mulia O, Lee C, Bryson-Richardson RJ. CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit. Nat Commun 2024; 15:5011. [PMID: 38866742 PMCID: PMC11169554 DOI: 10.1038/s41467-024-49341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Site-directed insertion is a powerful approach for generating mutant alleles, but low efficiency and the need for customisation for each target has limited its application. To overcome this, we developed a highly efficient targeted insertional mutagenesis system, CRIMP, and an associated plasmid toolkit, CRIMPkit, that disrupts native gene expression by inducing complete transcriptional termination, generating null mutant alleles without inducing genetic compensation. The protocol results in a high frequency of integration events and can generate very early targeted insertions, during the first cell division, producing embryos with expression in one or both halves of the body plan. Fluorescent readout of integration events facilitates selection of successfully mutagenized fish and, subsequently, visual identification of heterozygous and mutant animals. Together, these advances greatly improve the efficacy of generating and studying mutant lines. The CRIMPkit contains 24 ready-to-use plasmid vectors to allow easy and complete mutagenesis of any gene in any reading frame without requiring custom sequences, modification, or subcloning.
Collapse
Affiliation(s)
- Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Sara Oveissi
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Rita J Serrano
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Carmen Sonntag
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Orlen Mulia
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Clara Lee
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | | |
Collapse
|
5
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in Caenorhabditis elegans development. PLoS Comput Biol 2023; 19:e1011733. [PMID: 38113280 PMCID: PMC10763962 DOI: 10.1371/journal.pcbi.1011733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch edit distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch edit distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
| | - Timothy Hamilton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Kukreja K, Patel N, Megason SG, Klein AM. Global decoupling of cell differentiation from cell division in early embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551123. [PMID: 37546736 PMCID: PMC10402169 DOI: 10.1101/2023.07.29.551123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. To determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues during initial cell type differentiation from early gastrulation to the end of segmentation. In the absence of cell division, differentiation slows down in some cell types, and cells exhibit global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not. This work simplifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues.
Collapse
Affiliation(s)
- Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nikit Patel
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in C. elegans development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540617. [PMID: 37292606 PMCID: PMC10245744 DOI: 10.1101/2023.05.12.540617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
| | - Timothy Hamilton
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
8
|
A proteolytic pathway coordinates cell division and heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2022; 119:e2207963119. [PMID: 36037363 PMCID: PMC9457339 DOI: 10.1073/pnas.2207963119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.
Collapse
|
9
|
Developmental energetics: Energy expenditure, budgets and metabolism during animal embryogenesis. Semin Cell Dev Biol 2022; 138:83-93. [PMID: 35317962 DOI: 10.1016/j.semcdb.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
Abstract
Developing embryos are metabolically active, open systems that constantly exchange matter and energy with their environment. They function out of thermodynamic equilibrium and continuously use metabolic pathways to obtain energy from maternal nutrients, in order to fulfill the energetic requirements of growth and development. While an increasing number of studies highlight the role of metabolism in different developmental contexts, the physicochemical basis of embryogenesis, or how cellular processes use energy and matter to act together and transform a zygote into an adult organism, remains unknown. As we obtain a better understanding of metabolism, and benefit from current technology development, it is a promising time to revisit the energetic cost of development and how energetic principles may govern embryogenesis. Here, we review recent advances in methodology to measure and infer energetic parameters in developing embryos. We highlight a potential common pattern in embryonic energy expenditure and metabolic strategy across animal embryogenesis, and discuss challenges and open questions in developmental energetics.
Collapse
|
10
|
Han SK, Herrmann A, Yang J, Iwasaki R, Sakamoto T, Desvoyes B, Kimura S, Gutierrez C, Kim ED, Torii KU. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. Dev Cell 2022; 57:569-582.e6. [PMID: 35148836 PMCID: PMC8926846 DOI: 10.1016/j.devcel.2022.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation. However, the role of cell-cycle machineries in this transition remains unknown. We discover that the symmetric division is slower than the asymmetric division in Arabidopsis. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a MUTE-induced molecular brake that decelerates the cell cycle. SMR4 physically and functionally associates with CYCD3;1 and extends the G1 phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for stomatal-lineage identity. During stomatal differentiation, asymmetric divisions are faster than terminal divisions Upon commitment to differentiation, MUTE induces the cell-cycle inhibitor SMR4 SMR4 decelerates the asymmetric cell division cycle via selective binding to cyclin D Regulating duration of the G1 phase is critical for epidermal cell fate specification
Collapse
Affiliation(s)
- Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiyuan Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tomoaki Sakamoto
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Seisuke Kimura
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Muhr J, Hagey DW. The cell cycle and differentiation as integrated processes: Cyclins and CDKs reciprocally regulate Sox and Notch to balance stem cell maintenance. Bioessays 2021; 43:e2000285. [PMID: 34008221 DOI: 10.1002/bies.202000285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Development and maintenance of diverse organ systems require context-specific regulation of stem cell behaviour. We hypothesize that this is achieved via reciprocal regulation between the cell cycle machinery and differentiation factors. This idea is supported by the parallel evolutionary emergence of differentiation pathways, cell cycle components and complex multicellularity. In addition, the activities of different cell cycle phases have been found to bias cells towards stem cell maintenance or differentiation. Finally, several direct mechanistic links between these two processes have been established. Here, we focus on interactions between cyclin-CDK complexes and differentiation regulators of the Notch pathway and Sox family of transcription factors within the context of pluripotent and neural stem cells. Thus, this hypothesis formalizes the links between these two processes as an integrated network. Since such factors are common to all stem cells, better understanding their interconnections will help to explain their behaviour in health and disease.
Collapse
Affiliation(s)
- Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Hydroxyurea and Caffeine Impact pRb-like Protein-Dependent Chromatin Architecture Profiles in Interphase Cells of Vicia faba. Int J Mol Sci 2021; 22:ijms22094572. [PMID: 33925461 PMCID: PMC8123844 DOI: 10.3390/ijms22094572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
The survival of cells depends on their ability to replicate correctly genetic material. Cells exposed to replication stress can experience a number of problems that may lead to deregulated proliferation, the development of cancer, and/or programmed cell death. In this article, we have induced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph). Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender 2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better the events occurring within the nuclei and acted as a high-resolution aid for presenting the results. We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and clearly recognizable, with some local alterations that may correspond to the increased demand in transcriptional activity. Our findings suggest that Vicia faba’s ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.
Collapse
|
13
|
Sun C, Wang H, Ma Q, Chen C, Yue J, Li B, Zhang X. Time-course single-cell RNA sequencing reveals transcriptional dynamics and heterogeneity of limbal stem cells derived from human pluripotent stem cells. Cell Biosci 2021; 11:24. [PMID: 33485387 PMCID: PMC7824938 DOI: 10.1186/s13578-021-00541-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cell-derived limbal stem cells (hPSC-derived LSCs) provide a promising cell source for corneal transplants and ocular surface reconstruction. Although recent efforts in the identification of LSC markers have increased our understanding of the biology of LSCs, much more remains to be characterized in the developmental origin, cell fate determination, and identity of human LSCs. The lack of knowledge hindered the establishment of efficient differentiation protocols for generating hPSC-derived LSCs and held back their clinical application. RESULTS Here, we performed a time-course single-cell RNA-seq to investigate transcriptional heterogeneity and expression changes of LSCs derived from human embryonic stem cells (hESCs). Based on current protocol, expression heterogeneity of reported LSC markers were identified in subpopulations of differentiated cells. EMT has been shown to occur during differentiation process, which could possibly result in generation of untargeted cells. Pseudotime trajectory analysis revealed transcriptional changes and signatures of commitment of hESCs-derived LSCs and their progeny-the transit amplifying cells. CONCLUSION Single-cell RNA-seq revealed time-course expression changes and significant transcriptional heterogeneity during hESC-derived LSC differentiation in vitro. Our results demonstrated candidate developmental trajectory and several new candidate markers for LSCs, which could facilitate elucidating the identity and developmental origin of human LSCs in vivo.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Hailun Wang
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Jianhui Yue
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| |
Collapse
|
14
|
Jishage M, Roeder RG. Regulation of hepatocyte cell cycle re-entry by RNA polymerase II-associated Gdown1. Cell Cycle 2020; 19:3222-3230. [PMID: 33238793 PMCID: PMC7751663 DOI: 10.1080/15384101.2020.1843776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Liver is the central organ responsible for whole-body metabolism, and its constituent hepatocytes are the major players that carry out liver functions. Although they are highly differentiated and rarely divide, hepatocytes re-enter the cell cycle following hepatic loss due to liver damage or injury. However, the exact molecular mechanisms underlying cell cycle re-entry remain undefined. Gdown1 is an RNA polymerase II (Pol II)-associated protein that has been linked to the function of the Mediator transcriptional coactivator complex. We recently found that Gdown1 ablation in mouse liver leads to down-regulation of highly expressed liver-specific genes and a concomitant cell cycle re-entry associated with the induction of cell cycle-related genes. Unexpectedly, in view of a previously documented inhibitory effect on transcription initiation by Pol II in vitro, we found that Gdown1 is associated with elongating Pol II on the highly expressed genes and that its ablation leads to a reduced Pol II occupancy that correlates with the reduced expression of these genes. Based on these observations, we discuss the in vitro and in vivo functions of Gdown1 and consider mechanisms by which the dysregulated Pol II recruitment associated with Gdown1 loss might induce quiescent cell re-entry into the cell cycle.
Collapse
Affiliation(s)
- Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Huang Q, Zhang H, Bai LP, Law BYK, Xiong H, Zhou X, Xiao R, Qu YQ, Mok SWF, Liu L, Wong VKW. Novel ginsenoside derivative 20(S)-Rh2E2 suppresses tumor growth and metastasis in vivo and in vitro via intervention of cancer cell energy metabolism. Cell Death Dis 2020; 11:621. [PMID: 32796841 PMCID: PMC7427995 DOI: 10.1038/s41419-020-02881-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
Increased energy metabolism is responsible for supporting the abnormally upregulated proliferation and biosynthesis of cancer cells. The key cellular energy sensor AMP-activated protein kinase (AMPK) and the glycolytic enzyme alpha-enolase (α-enolase) have been identified as the targets for active components of ginseng. Accordingly, ginseng or ginsenosides have been demonstrated with their potential values for the treatment and/or prevention of cancer via the regulation of energy balance. Notably, our previous study demonstrated that the R-form derivative of 20(R)-Rh2, 20(R)-Rh2E2 exhibits specific and potent anti-tumor effect via suppression of cancer energy metabolism. However, the uncertain pharmacological effect of S-form derivative, 20(S)-Rh2E2, the by-product during the synthesis of 20(R)-Rh2E2 from parental compound 20(R/S)-Rh2 (with both R- and S-form), retarded the industrialized production, research and development of this novel effective candidate drug. In this study, 20(S)-Rh2E2 was structurally modified from pure 20(S)-Rh2, and this novel compound was directly compared with 20(R)-Rh2E2 for their in vitro and in vivo antitumor efficacy. Results showed that 20(S)-Rh2E2 effectively inhibited tumor growth and metastasis in a lung xenograft mouse model. Most importantly, animal administrated with 20(S)-Rh2E2 up to 320 mg/kg/day survived with no significant body weight lost or observable toxicity upon 7-day treatment. In addition, we revealed that 20(S)-Rh2E2 specifically suppressed cancer cell energy metabolism via the downregulation of metabolic enzyme α-enolase, leading to the reduction of lactate, acetyl-coenzyme (acetyl CoA) and adenosine triphosphate (ATP) production in Lewis lung cancer cells (LLC-1), but not normal cells. These findings are consistent to the results obtained from previous studies using a similar isomer 20(R)-Rh2E2. Collectively, current results suggested that 20(R/S)-Rh2E2 isomers could be the new and safe anti-metabolic agents by acting as the tumor metabolic suppressors, which could be generated from 20(R/S)-Rh2 in industrialized scale with low cost.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Haoming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
16
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
17
|
Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y, Li B, Zhang X, Wang M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2020; 10:11448. [PMID: 32651427 PMCID: PMC7351787 DOI: 10.1038/s41598-020-68224-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Yinzhihuang granules (YZHG) is a patented Chinese medicine for the treatment of hepatitis B. This study aimed to investigate the intrinsic mechanisms of YZHG in the treatment of hepatitis B and to provide new evidence and insights for its clinical application. The chemical compounds of YZHG were searched in the CNKI and PUBMED databases, and their putative targets were then predicted through a search of the SuperPred and Swiss Target Prediction databases. In addition, the targets of hepatitis B were obtained from TTD, PharmGKB and DisGeNET. The abovementioned data were visualized using Cytoscape 3.7.1, and network construction identified a total of 13 potential targets of YZHG in the treatment of hepatitis B. Molecular docking verification showed that CDK6, CDK2, TP53 and BRCA1 might be strongly correlated with hepatitis B treatment. Furthermore, GO and KEGG analyses indicated that the treatment of hepatitis B by YZHG might be related to positive regulation of transcription, positive regulation of gene expression, the hepatitis B pathway and the viral carcinogenesis pathway. Network pharmacology intuitively shows the multicomponent, multitarget and multichannel pharmacological effects of YZHG in the treatment of hepatitis B and provides a scientific basis for its mechanism of action.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xinkui Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wei Zhou
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shanshan Jia
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yingying Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Xiaomeng Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Miaomiao Wang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
18
|
Zhang K, Wang J. Exploring the underlying mechanisms of the coupling between cell differentiation and cell cycle. J Phys Chem B 2019; 123:3490-3498. [PMID: 30933510 DOI: 10.1021/acs.jpcb.9b00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differentiation and replication are the two major fates of the cells. They are the fundamental processes for completing the cellular functions. Although the underlying biological processes have been considerably explored for each of these processes and significant progresses have been made, global quantification and physical understanding are still challenging, especially for the relationship among them. In this study, we developed a theoretical framework for both the cell cycle and cell differentiation by exploring the associated global dynamics and their underlying relationship. We found that the dynamics of the cell cycle and cell differentiation is governed by both the landscape gradient and rotational curl flux. While landscape attracts the system down to the stable state basins, the curl flux drives the stable oscillation flow. We uncovered the irregular sombrero-shaped landscapes of the cell cycle at different developmental stages. We studied how the cells develop from undifferentiated cells to differentiated cells and how the cell cycle proceeds at different developmental stages. We investigated how the cell differentiation can influence the cell cycle where more progressive differentiation can lead to the changes of the cell cycle oscillations. In contrast, we can also quantitatively illustrate how the cell cycle can influence the cell differentiation where cell cycle regulation can lead to the changes of the differentiation processes. Through the landscape and flux analysis, we uncovered the key regulatory elements controlling the progression of the cell differentiation and cell cycle. This can help to design an effective strategy for drug discovery against associated diseases.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P.R.China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P.R.China.,Department of Chemistry and of Physics and Astronomy , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
19
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
20
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
21
|
Maurer JM, Sagerström CG. A parental requirement for dual-specificity phosphatase 6 in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2018; 18:6. [PMID: 29544468 PMCID: PMC5856328 DOI: 10.1186/s12861-018-0164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Background Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood. Results Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the 1-cell stage for several hours before dying by 10 h post fertilization. We demonstrate that dusp6 is expressed in gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults. Conclusions The fact that offspring of homozygous dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis and/or parentally-directed early development. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for proper embryogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other regulators of the ERK pathway compensate for loss of dusp6 at later stages. Electronic supplementary material The online version of this article (10.1186/s12861-018-0164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Maurer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Nguyen TPH, Yong HEJ, Chollangi T, Brennecke SP, Fisher SJ, Wallace EM, Ebeling PR, Murthi P. Altered downstream target gene expression of the placental Vitamin D receptor in human idiopathic fetal growth restriction. Cell Cycle 2018; 17:182-190. [PMID: 29161966 DOI: 10.1080/15384101.2017.1405193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Fetal growth restriction (FGR) affects up to 5% of pregnancies and is associated with significant perinatal complications. Maternal deficiency of vitamin D, a secosteroid hormone, is common in FGR-affected pregnancies. We recently demonstrated that decreased expression of the vitamin D receptor (VDR) in idiopathic FGR placentae could impair trophoblast growth. As strict regulation of cell-cycle genes in trophoblast cells is critical for optimal feto-placental growth, we hypothesised that pathologically decreased placental VDR contributes to aberrant regulation of cell-cycle genes. The study aims were to (i) identify the downstream cell-cycle regulatory genes of VDR in trophoblast cells, and (ii) determine if expression was changed in cases of FGR. Targeted cell-cycle gene cDNA arrays were used to screen for downstream targets of VDR in VDR siRNA-transfected BeWo and HTR-8/SVneo trophoblast-derived cell lines, and in third trimester placentae from FGR and gestation-matched control pregnancies (n = 25 each). The six candidate genes identified were CDKN2A, CDKN2D, HDAC4, HDAC6, TGFB2 and TGFB3. TGFB3 was prioritised for further validation, as its expression is largely unknown in FGR. Significantly reduced mRNA and protein expression of TGFB3 was verified in FGR placentae and the BeWo and HTR-8/SVneo trophoblast cell lines, using real-time PCR and immunoblotting respectively. In summary, decreased placental VDR expression alters the expression of regulatory cell-cycle genes in FGR placentae. Aberrant regulation of cell-cycle genes in the placental trophoblast cells may constitute a mechanistic pathway by which decreased placental VDR reduces feto-placental growth.
Collapse
Affiliation(s)
- Thy P H Nguyen
- a Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Australia.,b Department of Obstetrics and Gynaecology , The University of Melbourne , Parkville , Australia
| | - Hannah E J Yong
- a Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Australia.,b Department of Obstetrics and Gynaecology , The University of Melbourne , Parkville , Australia
| | - Tejasvy Chollangi
- a Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Australia.,b Department of Obstetrics and Gynaecology , The University of Melbourne , Parkville , Australia
| | - Shaun P Brennecke
- a Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Australia.,b Department of Obstetrics and Gynaecology , The University of Melbourne , Parkville , Australia
| | - Susan J Fisher
- c Division of Maternal-Fetal Medicine, Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences , University of California San Francisco , San Francisco , USA.,d The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research , University of California San Francisco , San Francisco , USA.,e Department of Anatomy , University of California San Francisco , San Francisco , USA
| | - Euan M Wallace
- f Department of Obstetrics and Gynaecology , Monash University , Clayton , Australia.,g The Ritchie Centre , The Hudson Institute for Medical Research , Clayton , Australia
| | - Peter R Ebeling
- h Australian Institute of Musculoskeletal Science , Western Health , St Albans , Australia.,i Department of Medicine, School of Clinical Sciences , Monash University , Clayton , Australia
| | - Padma Murthi
- a Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Australia.,b Department of Obstetrics and Gynaecology , The University of Melbourne , Parkville , Australia.,g The Ritchie Centre , The Hudson Institute for Medical Research , Clayton , Australia.,h Australian Institute of Musculoskeletal Science , Western Health , St Albans , Australia.,i Department of Medicine, School of Clinical Sciences , Monash University , Clayton , Australia
| |
Collapse
|
23
|
Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition. Dev Cell 2017; 42:82-96.e3. [PMID: 28697335 PMCID: PMC5505860 DOI: 10.1016/j.devcel.2017.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/19/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
The early cell divisions of many metazoan embryos are rapid and occur in the near absence of transcription. At the mid-blastula transition (MBT), the cell cycle elongates and several processes become established including the onset of bulk transcription and cell-cycle checkpoints. How these events are timed and coordinated is poorly understood. Here we show in Xenopus laevis that developmental activation of the checkpoint kinase Chk1 at the MBT results in the SCFβ-TRCP-dependent degradation of a limiting replication initiation factor Drf1. Inhibition of Drf1 is the primary mechanism by which Chk1 blocks cell-cycle progression in the early embryo and is an essential function of Chk1 at the blastula-to-gastrula stage of development. This study defines the downregulation of Drf1 as an important mechanism to coordinate the lengthening of the cell cycle and subsequent developmental processes. Activation of Chk1 at the Xenopus MBT results in the degradation of Drf1 Drf1 degradation is SCFβ-TRCP dependent Chk1 blocks the cell cycle in the early embryo through inhibition of Drf1 Inhibition of Drf1 is an essential function of Chk1 during gastrulation
Collapse
|
24
|
Ladouceur AM, Ranjan R, Smith L, Fadero T, Heppert J, Goldstein B, Maddox AS, Maddox PS. CENP-A and topoisomerase-II antagonistically affect chromosome length. J Cell Biol 2017; 216:2645-2655. [PMID: 28733327 PMCID: PMC5584148 DOI: 10.1083/jcb.201608084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 11/22/2022] Open
Abstract
The size of mitotic chromosomes is coordinated with cell size. Through an RNAi screen in Caenorhabditis elegans, Ladouceur et al. identify CENP-A and topo-II as factors affecting chromosome length. Quantitative analyses of protein dynamics suggest that CENP-A and topo-II localize and function independently to provide centromeric chromatin structure and determine the length of holocentric mitotic chromosomes. The size of mitotic chromosomes is coordinated with cell size in a manner dependent on nuclear trafficking. In this study, we conducted an RNA interference screen of the Caenorhabditis elegans nucleome in a strain carrying an exceptionally long chromosome and identified the centromere-specific histone H3 variant CENP-A and the DNA decatenizing enzyme topoisomerase-II (topo-II) as candidate modulators of chromosome size. In the holocentric organism C. elegans, CENP-A is positioned periodically along the entire length of chromosomes, and in mitosis, these genomic regions come together linearly to form the base of kinetochores. We show that CENP-A protein levels decreased through development coinciding with chromosome-size scaling. Partial loss of CENP-A protein resulted in shorter mitotic chromosomes, consistent with a role in setting chromosome length. Conversely, topo-II levels were unchanged through early development, and partial topo-II depletion led to longer chromosomes. Topo-II localized to the perimeter of mitotic chromosomes, excluded from the centromere regions, and depletion of topo-II did not change CENP-A levels. We propose that self-assembly of centromeric chromatin into an extended linear array promotes elongation of the chromosome, whereas topo-II promotes chromosome-length shortening.
Collapse
Affiliation(s)
- A-M Ladouceur
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rajesh Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Lydia Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tanner Fadero
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jennifer Heppert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
25
|
Kuo DH. The polychaete-to-clitellate transition: An EvoDevo perspective. Dev Biol 2017; 427:230-240. [DOI: 10.1016/j.ydbio.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
|
26
|
Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture. Stem Cell Reports 2017; 8:1549-1562. [PMID: 28479304 PMCID: PMC5469869 DOI: 10.1016/j.stemcr.2017.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation. Expansion of HSC precursors is accompanied by increased proliferation Final steps of HSC maturation are accompanied by decelerating proliferation Proliferative architecture of intra-aortic clusters is maintained during HSC development c-Kit expression levels correlate with the proliferative status of HSC precursors
Collapse
Affiliation(s)
- Antoniana Batsivari
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Anahi Binagui-Casas
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - David Hills
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul Travers
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
27
|
Sasamoto T, Fujimoto K, Kanawa M, Kimura J, Takeuchi J, Harada N, Goto N, Kawamoto T, Noshiro M, Suardita K, Tanne K, Kato Y. DEC2 is a negative regulator for the proliferation and differentiation of chondrocyte lineage-committed mesenchymal stem cells. Int J Mol Med 2016; 38:876-84. [PMID: 27430159 DOI: 10.3892/ijmm.2016.2660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/15/2016] [Indexed: 11/06/2022] Open
Abstract
Differentiated embryo chondrocyte 2 (DEC2) is a basic helix-loop-helix-Orange transcription factor that regulates cell differentiation in various mammalian tissues. DEC2 has been shown to suppress the differentiation of mesenchymal stem cells (MSCs) into myocytes and adipocytes. In the present study, we examined the role of DEC2 in the chondrogenic differentiation of human MSCs. The overexpression of DEC2 exerted minimal effects on the proliferation of MSCs in monolayer cultures with the growth medium under undifferentiating conditions, whereas it suppressed increases in DNA content, glycosaminoglycan content, and the expression of several chondrocyte-related genes, including aggrecan and type X collagen alpha 1, in MSC pellets in centrifuge tubes under chondrogenic conditions. In the pellets exposed to chondrogenesis induction medium, DEC2 overexpression downregulated the mRNA expression of fibroblast growth factor 18, which is involved in the proliferation and differentiation of chondrocytes, and upregulated the expression of p16INK4, which is a cell cycle inhibitor. These findings suggest that DEC2 is a negative regulator of the proliferation and differentiation of chondrocyte lineage-committed mesenchymal cells.
Collapse
Affiliation(s)
- Tomoko Sasamoto
- Department of Orthodontic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Junko Kimura
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Junpei Takeuchi
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Naoko Harada
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriko Goto
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ketut Suardita
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuo Tanne
- Department of Orthodontic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
28
|
Gómez-Saldivar G, Fernandez A, Hirano Y, Mauro M, Lai A, Ayuso C, Haraguchi T, Hiraoka Y, Piano F, Askjaer P. Identification of Conserved MEL-28/ELYS Domains with Essential Roles in Nuclear Assembly and Chromosome Segregation. PLoS Genet 2016; 12:e1006131. [PMID: 27341616 PMCID: PMC4920428 DOI: 10.1371/journal.pgen.1006131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleoporins are the constituents of nuclear pore complexes (NPCs) and are essential regulators of nucleocytoplasmic transport, gene expression and genome stability. The nucleoporin MEL-28/ELYS plays a critical role in post-mitotic NPC reassembly through recruitment of the NUP107-160 subcomplex, and is required for correct segregation of mitotic chromosomes. Here we present a systematic functional and structural analysis of MEL-28 in C. elegans early development and human ELYS in cultured cells. We have identified functional domains responsible for nuclear envelope and kinetochore localization, chromatin binding, mitotic spindle matrix association and chromosome segregation. Surprisingly, we found that perturbations to MEL-28’s conserved AT-hook domain do not affect MEL-28 localization although they disrupt MEL-28 function and delay cell cycle progression in a DNA damage checkpoint-dependent manner. Our analyses also uncover a novel meiotic role of MEL-28. Together, these results show that MEL-28 has conserved structural domains that are essential for its fundamental roles in NPC assembly and chromosome segregation. Most animal cells have a nucleus that contains the genetic material: the chromosomes. The nucleus is enclosed by the nuclear envelope, which provides a physical barrier between the chromosomes and the surrounding cytoplasm, and enables precisely controlled transport of proteins into and out of the nucleus. Transport occurs through nuclear pore complexes, which consist of multiple copies of ~30 different proteins called nucleoporins. Although the composition of nuclear pore complexes is known, the mechanisms of their assembly and function are still unclear. We have analyzed the nucleoporin MEL-28/ELYS through a systematic dissection of functional domains both in the nematode Caenorhabditis elegans and in human cells. Interestingly, MEL-28/ELYS localizes not only to nuclear pore complexes, but is also associated with chromosomal structures known as kinetochores during cell division. Our studies have revealed that even small perturbations in MEL-28/ELYS can have dramatic consequences on nuclear pore complex assembly as well as on separation of chromosomes during cell division. Surprisingly, inhibition of MEL-28/ELYS causes cell-cycle delay, suggesting activation of a cellular surveillance system for chromosomal damages. Finally, we conclude that the structural domains of MEL-28/ELYS are conserved from nematodes to humans.
Collapse
Affiliation(s)
- Georgina Gómez-Saldivar
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Anita Fernandez
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
- * E-mail: (AF); (PA)
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Michael Mauro
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Allison Lai
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- New York University, Abu Dhabi, United Arab Emirates
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AF); (PA)
| |
Collapse
|
29
|
Ogura Y, Sasakura Y. Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation. Dev Cell 2016; 37:148-61. [DOI: 10.1016/j.devcel.2016.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
|
30
|
Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016; 57:93-99. [PMID: 27032479 DOI: 10.1016/j.semcdb.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.
Collapse
Affiliation(s)
- José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.
| | - Paola Bardetti
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Antonio de la Torre
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - María Tenorio-Gómez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
31
|
Wong VKW, Dong H, Liang X, Bai LP, Jiang ZH, Guo Y, Kong ANT, Wang R, Kam RKT, Law BYK, Hsiao WWL, Chan KM, Wang J, Chan RWK, Guo J, Zhang W, Yen FG, Zhou H, Leung ELH, Yu Z, Liu L. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells. Oncotarget 2016; 7:9907-24. [PMID: 26799418 PMCID: PMC4891092 DOI: 10.18632/oncotarget.6934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/26/2015] [Indexed: 01/04/2023] Open
Abstract
Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Hang Dong
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xu Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Richard Kin Ting Kam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wendy Wen Luen Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ka Man Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jingrong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Rick Wai Kit Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jianru Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Feng Gen Yen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhiling Yu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
32
|
Tenorio-Gómez M, de Sena-Tomás C, Pérez-Martín J. MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis. PLoS One 2015; 10:e0137192. [PMID: 26367864 PMCID: PMC4573213 DOI: 10.1371/journal.pone.0137192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
DNA damage response (DDR) leads to DNA repair, and depending on the extent of the
damage, to further events, including cell death. Evidence suggests that cell
differentiation may also be a consequence of the DDR. During the formation of
the infective hypha in the phytopathogenic fungus Ustilago
maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2
cell cycle arrest, which in turn is essential to display the virulence program.
However, the triggering factor of DDR in this process has remained elusive. In
this report we provide data suggesting that no DNA damage is associated with the
activation of the DDR during the formation of the infective filament in
U. maydis. We have analyzed bulk DNA
replication during the formation of the infective filament, and we found no
signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a
surrogate marker of the presence of DNA damage, we were unable to detect any
sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1
complexes, both instrumental to transmit the DNA damage signal, are required for
the induction of the above mentioned cell cycle arrest, as well as for
virulence. In contrast, we have found that the claspin-like protein Mrc1, which
in other systems serves as scaffold for Atr1 and Chk1, was required for both
processes. We discuss possible alternative ways to trigger the DDR, independent
of DNA damage, in U. maydis during virulence
program activation.
Collapse
Affiliation(s)
| | | | - Jose Pérez-Martín
- Instituto de Biología Funcional y Genómica
(CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|
33
|
Cannon D, Corrigan AM, Miermont A, McDonel P, Chubb JR. Multiple cell and population-level interactions with mouse embryonic stem cell heterogeneity. Development 2015. [PMID: 26209649 DOI: 10.1242/dev.120741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Much of development and disease concerns the generation of gene expression differences between related cells sharing similar niches. However, most analyses of gene expression only assess population and time-averaged levels of steady-state transcription. The mechanisms driving differentiation are buried within snapshots of the average cell, lacking dynamic information and the diverse regulatory history experienced by individual cells. Here, we use a quantitative imaging platform with large time series data sets to determine the regulation of developmental gene expression by cell cycle, lineage, motility and environment. We apply this technology to the regulation of the pluripotency gene Nanog in mouse embryonic stem cells. Our data reveal the diversity of cell and population-level interactions with Nanog dynamics and heterogeneity, and how this regulation responds to triggers of pluripotency. Cell cycles are highly heterogeneous and cycle time increases with Nanog reporter expression, with longer, more variable cycle times as cells approach ground-state pluripotency. Nanog reporter expression is highly stable over multiple cell generations, with fluctuations within cycles confined by an attractor state. Modelling reveals an environmental component to expression stability, in addition to any cell-autonomous behaviour, and we identify interactions of cell density with both cycle behaviour and Nanog. Rex1 expression dynamics showed shared and distinct regulatory effects. Overall, our observations of multiple partially overlapping dynamic heterogeneities imply complex cell and environmental regulation of pluripotent cell behaviour, and suggest simple deterministic views of stem cell states are inappropriate.
Collapse
Affiliation(s)
- Danielle Cannon
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Adam M Corrigan
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Agnes Miermont
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Patrick McDonel
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Jonathan R Chubb
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
34
|
Sonneville R, Craig G, Labib K, Gartner A, Blow JJ. Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C. elegans Embryos. Cell Rep 2015; 12:405-17. [PMID: 26166571 PMCID: PMC4521082 DOI: 10.1016/j.celrep.2015.06.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/22/2015] [Accepted: 06/13/2015] [Indexed: 01/19/2023] Open
Abstract
During cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2-7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication.
Collapse
Affiliation(s)
- Remi Sonneville
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gillian Craig
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - J Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
35
|
Nordman JT, Orr-Weaver TL. Understanding replication fork progression, stability, and chromosome fragility by exploiting the Suppressor of Underreplication protein. Bioessays 2015; 37:856-61. [PMID: 26059810 DOI: 10.1002/bies.201500021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There are many layers of regulation governing DNA replication to ensure that genetic information is accurately transmitted from mother cell to daughter cell. While much of the control occurs at the level of origin selection and firing, less is known about how replication fork progression is controlled throughout the genome. In Drosophila polytene cells, specific regions of the genome become repressed for DNA replication, resulting in underreplication and decreased copy number. Importantly, underreplicated domains share properties with common fragile sites. The Suppressor of Underreplication protein SUUR is essential for this repression. Recent work established that SUUR functions by directly inhibiting replication fork progression, raising several interesting questions as to how replication fork progression and stability can be modulated within targeted regions of the genome. Here we discuss potential mechanisms by which replication fork inhibition can be achieved and the consequences this has on genome stability and copy number control.
Collapse
Affiliation(s)
- Jared T Nordman
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Terry L Orr-Weaver
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Buckalew R, Finley K, Tanda S, Young T. Evidence for internuclear signaling in drosophila embryogenesis. Dev Dyn 2015; 244:1014-21. [PMID: 26033666 DOI: 10.1002/dvdy.24298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/23/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Syncytial nuclei in Drosophila embryos undergo their first 13 divisions nearly synchronously. In the last several cell cycles, these division events travel across the anterior-posterior axis of the syncytial blastoderm in a wave. The phenomenon is well documented but the underlying mechanisms are not yet understood. RESULTS We study timing and positional data obtained from in vivo imaging of Drosophila embryos. We determine the statistical properties of the distribution of division times within and across generations with the null hypothesis that timing of division events is an independent random variable for each nucleus. We also compare timing data with a model of Drosophila cell cycle regulation that does not include internuclear signaling, and to a universal model of phase-dependent signaling to determine the probable form of internuclear signaling in the syncytial embryo. CONCLUSIONS The statistical variance of division times is lower than one would expect from uncoordinated activity. In fact, the variance decreases between the 10th and 11th divisions, which demonstrates a contribution of internuclear signaling to the observed synchrony and division waves. Our comparison with a coupled oscillator model leads us to conclude that internuclear signaling must be of Response/Signaling type with a positive impulse.
Collapse
Affiliation(s)
| | - Kara Finley
- Biological Sciences, Ohio University, Athens, Ohio
| | - Soichi Tanda
- Biological Sciences, Ohio University, Athens, Ohio
| | - Todd Young
- Mathematics, Ohio University, Athens, Ohio
| |
Collapse
|
37
|
Zerihun MB, Vaillant C, Jost D. Effect of replication on epigenetic memory and consequences on gene transcription. Phys Biol 2015; 12:026007. [PMID: 25884278 DOI: 10.1088/1478-3975/12/2/026007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene activity in eukaryotes is in part regulated at the level of chromatin through the assembly of local chromatin states that are more or less permissive to transcription. How do these chromatin states achieve their functions and whether or not they contribute to the epigenetic inheritance of the transcriptional program remain to be elucidated. In cycling cells, stability is indeed strongly challenged by the periodic occurrence of replication and cell division. To address this question, we perform simulations of the stochastic dynamics of chromatin states when driven out-of-equilibrium by periodic perturbations. We show how epigenetic memory is significantly affected by the cell cycle length. In addition, we develop a simple model to connect the epigenetic state to the transcriptional state and gene activity. In particular, it suggests that replication may induce transcriptional bursting at repressive loci. Finally, we discuss how our findings-effect of replication and link to gene transcription-have original and deep implications to various biological contexts of epigenetic memory.
Collapse
Affiliation(s)
- Mehari B Zerihun
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR 5672, Lyon, France
| | | | | |
Collapse
|
38
|
Kim W, Kim HD, Jung Y, Kim J, Chung J. Drosophila Low Temperature Viability Protein 1 (LTV1) Is Required for Ribosome Biogenesis and Cell Growth Downstream of Drosophila Myc (dMyc). J Biol Chem 2015; 290:13591-604. [PMID: 25858587 DOI: 10.1074/jbc.m114.607036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 11/06/2022] Open
Abstract
During animal development, various signaling pathways converge to regulate cell growth. In this study, we identified LTV1 as a novel cell growth regulator in Drosophila. LTV1 mutant larvae exhibited developmental delays and lethality at the second larval stage. Using biochemical studies, we discovered that LTV1 interacted with ribosomal protein S3 and co-purified with free 40S ribosome subunits. We further demonstrated that LTV1 is crucial for ribosome biogenesis through 40S ribosome subunit synthesis and preribosomal RNA processing, suggesting that LTV1 is required for cell growth by regulating protein synthesis. We also demonstrated that Drosophila Myc (dMyc) directly regulates LTV1 transcription and requires LTV1 to stimulate ribosome biogenesis. Importantly, the loss of LTV1 blocked the cell growth and endoreplication induced by dMyc. Combined, these results suggest that LTV1 is a key downstream factor of dMyc-induced cell growth by properly maintaining ribosome biogenesis.
Collapse
Affiliation(s)
- Wonho Kim
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, and
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, and
| |
Collapse
|
39
|
Griffin EE. Cytoplasmic localization and asymmetric division in the early embryo of Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:267-82. [PMID: 25764455 DOI: 10.1002/wdev.177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/16/2014] [Accepted: 01/04/2015] [Indexed: 11/09/2022]
Abstract
During the initial cleavages of the Caenorhabditis elegans embryo, a series of rapid and invariant asymmetric cell divisions pattern the fate, size, and position of four somatic blastomeres and a single germline blastomere. These asymmetric divisions are orchestrated by a collection of maternally deposited factors that are initially symmetrically distributed in the newly fertilized embryo. Maturation of the sperm-derived centrosome in the posterior cytoplasm breaks this symmetry by triggering a dramatic and highly stereotyped partitioning of these maternal factors. A network of conserved cell polarity regulators, the PAR proteins, form distinct anterior and posterior domains at the cell cortex. From these domains, the PAR proteins direct the segregation of somatic and germline factors into opposing regions of the cytoplasm such that, upon cell division, they are preferentially inherited by the somatic blastomere or the germline blastomere, respectively. The segregation of these factors is controlled, at least in part, by a series of reaction-diffusion mechanisms that are asymmetrically deployed along the anterior/posterior axis. The characterization of these mechanisms has important implications for our understanding of how cells are polarized and how spatial organization is generated in the cytoplasm. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Erik E Griffin
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
40
|
Castanheira S, Mielnichuk N, Pérez-Martín J. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Development 2014; 141:4817-26. [PMID: 25411209 DOI: 10.1242/dev.113415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.
Collapse
Affiliation(s)
- Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - Natalia Mielnichuk
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
41
|
MEIS2 is essential for neuroblastoma cell survival and proliferation by transcriptional control of M-phase progression. Cell Death Dis 2014; 5:e1417. [PMID: 25210800 PMCID: PMC4540202 DOI: 10.1038/cddis.2014.370] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
MEIS2 has an important role in development and organogenesis, and is implicated in the pathogenesis of human cancer. The molecular basis of MEIS2 action in tumorigenesis is not clear. Here, we show that MEIS2 is highly expressed in human neuroblastoma cell lines and is required for neuroblastoma cell survival and proliferation. Depletion of MEIS2 in neuroblastoma cells leads to M-phase arrest and mitotic catastrophe, whereas ectopic expression of MEIS2 markedly enhances neuroblastoma cell proliferation, anchorage-independent growth, and tumorigenicity. Gene expression profiling reveals an essential role of MEIS2 in maintaining the expression of a large number of late cell-cycle genes, including those required for DNA replication, G2-M checkpoint control and M-phase progression. Importantly, we identify MEIS2 as a transcription activator of the MuvB-BMYB-FOXM1 complex that functions as a master regulator of cell-cycle gene expression. Further, we show that FOXM1 is a direct target gene of MEIS2 and is required for MEIS2 to upregulate mitotic genes. These findings link a developmentally important gene to the control of cell proliferation and suggest that high MEIS2 expression is a molecular mechanism for high expression of mitotic genes that is frequently observed in cancers of poor prognosis.
Collapse
|
42
|
Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:9503-8. [PMID: 24979803 DOI: 10.1073/pnas.1408638111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attainment of the differentiated state during the final stages of somatic cell differentiation is closely tied to cell cycle progression. Much less is known about the role of the cell cycle at very early stages of embryonic development. Here, we show that molecular pathways involving the cell cycle can be engineered to strongly affect embryonic stem cell differentiation at early stages in vitro. Strategies based on perturbing these pathways can shorten the rate and simplify the lineage path of ES differentiation. These results make it likely that pathways involving cell proliferation intersect at various points with pathways that regulate cell lineages in embryos and demonstrate that this knowledge can be used profitably to guide the path and effectiveness of cell differentiation of pluripotent cells.
Collapse
|
43
|
Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. ACTA ACUST UNITED AC 2014; 204:507-22. [PMID: 24535824 PMCID: PMC3926958 DOI: 10.1083/jcb.201310083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Timely phosphorylation of SLD-2 by CDK is essential for proper replication initiation and cell proliferation in the germline of C. elegans. Cyclin-dependent kinase (CDK) plays a vital role in proliferation control across eukaryotes. Despite this, how CDK mediates cell cycle and developmental transitions in metazoa is poorly understood. In this paper, we identify orthologues of Sld2, a CDK target that is important for DNA replication in yeast, and characterize SLD-2 in the nematode worm Caenorhabditis elegans. We demonstrate that SLD-2 is required for replication initiation and the nuclear retention of a critical component of the replicative helicase CDC-45 in embryos. SLD-2 is a CDK target in vivo, and phosphorylation regulates the interaction with another replication factor, MUS-101. By mutation of the CDK sites in sld-2, we show that CDK phosphorylation of SLD-2 is essential in C. elegans. Finally, using a phosphomimicking sld-2 mutant, we demonstrate that timely CDK phosphorylation of SLD-2 is an important control mechanism to allow normal proliferation in the germline. These results determine an essential function of CDK in metazoa and identify a developmental role for regulated SLD-2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, 2 Department of Genetics, and 3 Department of Zoology, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | | | | | | | | | |
Collapse
|
44
|
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA. TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase η. Development 2014; 141:1332-41. [PMID: 24553286 DOI: 10.1242/dev.101196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Jost D. Bifurcation in epigenetics: implications in development, proliferation, and diseases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:010701. [PMID: 24580158 DOI: 10.1103/physreve.89.010701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 06/03/2023]
Abstract
Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.
Collapse
Affiliation(s)
- Daniel Jost
- Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS UMR 5672, Lyon, France
| |
Collapse
|
46
|
Yan B, Memar N, Gallinger J, Conradt B. Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet 2013; 9:e1003884. [PMID: 24204299 PMCID: PMC3814331 DOI: 10.1371/journal.pgen.1003884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
The coordination of cell proliferation and cell fate determination is critical during development but the mechanisms through which this is accomplished are unclear. We present evidence that the Snail-related transcription factor CES-1 of Caenorhabditis elegans coordinates these processes in a specific cell lineage. CES-1 can cause loss of cell polarity in the NSM neuroblast. By repressing the transcription of the BH3-only gene egl-1, CES-1 can also suppress apoptosis in the daughters of the NSM neuroblasts. We now demonstrate that CES-1 also affects cell cycle progression in this lineage. Specifically, we found that CES-1 can repress the transcription of the cdc-25.2 gene, which encodes a Cdc25-like phosphatase, thereby enhancing the block in NSM neuroblast division caused by the partial loss of cya-1, which encodes Cyclin A. Our results indicate that CDC-25.2 and CYA-1 control specific cell divisions and that the over-expression of the ces-1 gene leads to incorrect regulation of this functional ‘module’. Finally, we provide evidence that dnj-11 MIDA1 not only regulate CES-1 activity in the context of cell polarity and apoptosis but also in the context of cell cycle progression. In mammals, the over-expression of Snail-related genes has been implicated in tumorigenesis. Our findings support the notion that the oncogenic potential of Snail-related transcription factors lies in their capability to, simultaneously, affect cell cycle progression, cell polarity and apoptosis and, hence, the coordination of cell proliferation and cell fate determination. Animal development is a complex process and requires the coordination in space and time of various processes. These processes include the controlled production of cells, also referred to as ‘cell proliferation’, and the adoption by cells of specific fates, also referred to as ‘cell fate determination’. The observation that uncontrolled cell proliferation and cell fate determination contribute to conditions such as cancer, demonstrates that a precise coordination of these processes is not only important for development but for the prevention of disease throughout life. Snail-related transcription factors have previously been shown to be involved in the regulation of cell proliferation and cell fate determination. For example, the Caenorhabditis elegans Snail-related protein CES-1 affects cell fate determination in a specific cell lineage, the NSM (neurosecretory motorneuron) lineage. We now present evidence that CES-1 also controls cell proliferation in this lineage. Within a short period of time, CES-1 therefore coordinates cell proliferation and cell fate determination in one and the same lineage. Based on this finding, we propose that CES-1 is an important coordinator that is involved in the precise control - in space (NSM lineage) and time (<150 min) - of processes that are critical for animal development.
Collapse
Affiliation(s)
- Bo Yan
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
- Department of Genetics, MCB Graduate Program, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nadin Memar
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
| | - Julia Gallinger
- Department of Genetics, MCB Graduate Program, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Barbara Conradt
- Center for Integrated Protein Science, Department of Biology II, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
47
|
Dumollard R, Hebras C, Besnardeau L, McDougall A. Beta-catenin patterns the cell cycle during maternal-to-zygotic transition in urochordate embryos. Dev Biol 2013; 384:331-42. [PMID: 24140189 DOI: 10.1016/j.ydbio.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
Abstract
During the transition from maternal to zygotic control of development, cell cycle length varies in different lineages, and this is important for their fates and functions. The maternal to zygotic transition (MZT) in metazoan embryos involves a profound remodeling of the cell cycle: S phase length increases then G2 is introduced. Although β-catenin is the master regulator of endomesoderm patterning at MZT in all metazoans, the influence of maternal β-catenin on the cell cycle at MZT remains poorly understood. By studying urochordate embryogenesis we found that cell cycle remodeling during MZT begins with the formation of 3 mitotic domains at the 16-cell stage arising from differential S phase lengthening, when endomesoderm is specified. Then, at the 64-cell stage, a G2 phase is introduced in the endoderm lineage during its specification. Strikingly, these two phases of cell cycle remodeling are patterned by β-catenin-dependent transcription. Functional analysis revealed that, at the 16-cell stage, β-catenin speeds up S phase in the endomesoderm. In contrast, two cell cycles later at gastrulation, nuclear β-catenin induces endoderm fate and delays cell division. Such interphase lengthening in invaginating cells is known to be a requisite for gastrulation movements. Therefore, in basal chordates β-catenin has a dual role to specify germ layers and remodel the cell cycle.
Collapse
Affiliation(s)
- Rémi Dumollard
- UMR 7009, UPMC University, Paris 06, France; Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | | | | | |
Collapse
|
48
|
Noatynska A, Tavernier N, Gotta M, Pintard L. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open Biol 2013; 3:130083. [PMID: 23926048 PMCID: PMC3758543 DOI: 10.1098/rsob.130083] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.
Collapse
Affiliation(s)
- Anna Noatynska
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
49
|
Ogura Y, Sasakura Y. Ascidians as excellent models for studying cellular events in the chordate body plan. THE BIOLOGICAL BULLETIN 2013; 224:227-236. [PMID: 23995746 DOI: 10.1086/bblv224n3p227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The larvae of non-vertebrate chordate ascidians consist of countable numbers of cells. With this feature, ascidians provide us with excellent models for studying cellular events in the construction of the chordate body. This review discusses the recent observations of morphogenetic movements and cell cycles and divisions along with tissue specifications during ascidian embryogenesis. Unequal cleavages take place at the posterior blastomeres during the early cleavage stages of ascidians, and the structure named the centrosome-attracting body restricts the position of the nuclei near the posterior pole to achieve the unequal cleavages. The most-posterior cells differentiate into the primordial germ cells. The gastrulation of ascidians starts as early as the 110-cell stage. During gastrulation, the endodermal cells show two-step changes in cell shape that are crucial for gastrulation. The ascidian notochord is composed of only 40 cells. The 40 cells align to form a single row by an event named the convergent extension, and then the notochord cells undergo vacuolation to transform the notochord into a single hollowed tube. The strictly restricted number of notochord cells is achieved by the regulated number of cell divisions coupled with the differentiation of the cells conducted by a key transcription factor, Brachyury. The dorsally located neural tube is a characteristic of chordates. During the closure of the ascidian neural tube, the epidermis surrounding the neural plate moves toward the midline to close the neural fold. This morphogenetic movement is allowed by an elongation of interphase in the epidermal cell cycles.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
50
|
Mendieta-Serrano MA, Schnabel D, Lomelí H, Salas-Vidal E. Cell proliferation patterns in early zebrafish development. Anat Rec (Hoboken) 2013; 296:759-73. [PMID: 23554225 DOI: 10.1002/ar.22692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/20/2013] [Indexed: 11/05/2022]
Abstract
Although cell proliferation is an essential cell behavior for animal development, a detailed analysis of spatial and temporal patterns of proliferation in whole embryos are still lacking for most model organisms. Zebrafish embryos are particularly suitable for this type of analysis due to their transparency and size. Therefore, the main objective of the present work was to analyze the spatial and temporal patterns of proliferation during the first day of zebrafish embryo development by indirect immunofluorescence against phosphorylated histone H3, a commonly used mitotic marker. Several interesting findings were established. First, we found that mitosis metasynchrony among blastomeres could begin at the 2- to 4-cell stage embryos. Second, mitosis synchrony was lost before the midblastula transition (MBT). Third, we observed a novel pattern of mitotic clusters that coincided in time with the mitotic pseudo "waves" described to occur before the MBT. Altogether, our findings indicate that early development is less synchronic than anticipated and that synchrony is not a requirement for proper development in zebrafish.
Collapse
Affiliation(s)
- Mario A Mendieta-Serrano
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, Morelos, C.P., 62210, México
| | | | | | | |
Collapse
|