1
|
Metzker-Pinto T, Tran YTH, Buzzatto-Leite I, Lok L, Sampar JF, Carvalho HF, Del Monte-Nieto G, Alvares LE. The chicken embryo brings new insights into the evolutionary role of WFDC1 during amniote development. Dev Biol 2025; 521:96-107. [PMID: 39947419 DOI: 10.1016/j.ydbio.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/19/2025]
Abstract
WFDC1 encodes an extracellular matrix protein involved in cell proliferation, migration, and epithelial-mesenchymal transition in disease conditions. Despite this, Wfdc1-null mice display no discernible malformations while cattle bearing a WFDC1 mutation present multiple ocular defects, leaving the role of WFDC1 during embryonic development unclear. To address this, we used the chicken embryo as a model to investigate WFDC1 developmental roles in amniotes. We performed a comparative expression analysis during chicken and mouse development, which revealed expression in ectodermal and mesodermal derivatives, with both conserved and species-specific domains. Conserved expression was observed in the eye, otic vesicle, central and peripheral nervous systems, and neural crest cells. Chicken-specific expression was identified in mesodermal structures, including the notochord, limbs and heart. However, even in the conserved sites like the eyes, WFDC1 localizes to different retinal layers, indicating potential divergence roles in retinal development and function across species. In contrast, WFDC1 expression in the limb buds is specific to chicken, encompassing the distal mesenchyme, interdigital membranes, and blastemas. Functional enrichment analysis links WFDC1 to limb patterning, morphogenesis, and Wnt signaling. The species-specific differences likely stem from evolutionary changes in gene regulation, supported by differences in proximal cis-regulatory elements of the WFDC1 loci between chicken and mouse. The complexity of WFDC1 expression in the chicken embryo, along with WFDC1 regulatory conservation within birds, indicates that this gene may play specific roles in avian development, possibly contributing to features specific to this lineage. Future studies using the chicken model will be valuable in further uncovering the specific roles of WFDC1.
Collapse
Affiliation(s)
- Thaís Metzker-Pinto
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Yen T H Tran
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Igor Buzzatto-Leite
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lloyd Lok
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Jórdan F Sampar
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | - Lúcia E Alvares
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
3
|
Eldred KC, Edgerton SJ, Ortuño-Lizarán I, Wohlschlegel J, Sherman SM, Petter S, Wyatt-Draher G, Hoffer D, Glass I, La Torre A, Reh TA. Ciliary marginal zone of the developing human retina maintains retinal progenitor cells until late gestational stages. Cell Rep 2025; 44:115460. [PMID: 40178972 DOI: 10.1016/j.celrep.2025.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Non-mammalian vertebrates maintain a proliferative cell population at the far periphery of their retina called the ciliary marginal zone (CMZ), which contributes to retinal regeneration upon injury. Humans do not maintain a proliferative CMZ into adulthood; however, it is unknown how long in development this region continues to generate neurons. Here, we identify a population of cells in the far-peripheral retina of the human that continues to proliferate after the rest of the retina is quiescent. Single-cell RNA sequencing and 5-ethynyl-2'-deoxyuridine tracing at late developmental time points reveal that this region has the capacity to produce both early- and late-born cell types late in development and a longer cell cycle than more centrally located retinal progenitor cells (RPCs). Moreover, while most RPCs exit the cell cycle with the addition of a transforming growth factor β inhibitor, early RPCs within the CMZ do not. These findings define the late stages of neurogenesis in human retinal development.
Collapse
Affiliation(s)
- Kiara C Eldred
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sierra J Edgerton
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isabel Ortuño-Lizarán
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA; Physiology, Genetics, and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Juliette Wohlschlegel
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie M Sherman
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sidnee Petter
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gracious Wyatt-Draher
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Pediatrics/Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Medical Genetics, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thomas A Reh
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Murcia-Belmonte V, Liu Y, Shamsi S, Shaw S, Collie-Duguid E, Herrera E, Collinson JM, Vargesson N, Erskine L. Identification of lens-regulated genes driving anterior eye development. Dev Biol 2025; 520:91-107. [PMID: 39814158 DOI: 10.1016/j.ydbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal. Lens-regulated genes implicated in periocular mesenchyme, cornea and anterior optic cup development were identified, including factors not previously implicated in eye development. Unexpectedly, transcriptomic differences were identified in retinas from male versus female chicken embryos, suggesting sexual dimorphism from early stages. In situ hybridisation of embryonic chicken eyes and analyses of datasets from embryonic mouse and adult human eyes confirmed expression of candidate genes, including multiple WNT genes, in tissues important for anterior eye development and function. Remarkably, pharmacological activation of canonical WNT signalling restored eye development and size in the absence of the lens. These analyses have identified candidate genes and biological pathways involved in eye development, providing avenues for new research in this area.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - Yanlin Liu
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sadia Shamsi
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: All Wales Medical Genomics Service, Cardiff and Vale University Health Board, University Hospital of Wales, CF14 4XW, UK
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - J Martin Collinson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lynda Erskine
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
5
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
6
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Lei Z, He‐Lin Z, Hai‐Yan W, Wei J, Ru W, Zhi‐Li C, Qian‐Feng W. Retinitis pigmentosa with iris coloboma due to miR-204 gene variant in a Chinese family. Mol Genet Genomic Med 2024; 12:e2481. [PMID: 38867642 PMCID: PMC11169764 DOI: 10.1002/mgg3.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
PURPOSE To characterize the phenotype and genotype of a Chinese family with autosomal-dominant retinitis pigmentosa (RP) accompanied by iris coloboma. METHODS The proband, a 34-year-old male, was examined with his family by using fundus photography, optical coherence tomography (OCT), autofluorescence, and full-field electroretinography (ffERG). Genetic analyses were conducted through whole-exome sequencing (WES) to screen for variations. RESULTS Three members of this Chinese family were shown to be bilateral iris coloboma. The male proband and his mother exhibited typical RP feature. The proband's late grandfather had been documented manifestation of iris coloboma. The mode of inheritance was confirmed to be autosomal dominance. Through linkage analysis and WES, a heterozygous variation in the miR-204 gene (n.37C>T), a noncoding RNA gene, was identified in these three members. CONCLUSIONS In this third independent and the first Asian family, the existence of a miR-204 variant associated with RP accompanied by iris coloboma was confirmed. Our findings reinforce the significance of miR-204 as an important factor influencing visual function in the retina. When phenotypes like RP accompanied by iris coloboma in an autosomal-dominant pattern, including in Chinese patients, miR-204 aberrations should be considered.
Collapse
Affiliation(s)
- Zhang Lei
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Zhu He‐Lin
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Wang Hai‐Yan
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Jia Wei
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Wang Ru
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Cui Zhi‐Li
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic ImagingShaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Wang Qian‐Feng
- Medical College of Optometry and OphthalmologyShandong University of Traditional Chinese MedicineJinanShandongChina
| |
Collapse
|
8
|
Li B, Xie T, Nawy S, Shen Y. The development and the genetic diseases of the ciliary body. CELL INSIGHT 2024; 3:100162. [PMID: 38595769 PMCID: PMC11002873 DOI: 10.1016/j.cellin.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The ciliary body, located at the junction of the choroid and iris, is crucial in the development of the embryonic eye. Notch2 signalling, Wnt signalling, transforming growth factor β (TGF-β) signalling, and Pax6 signalling are critical for coordinating the ciliary body formation. These signalling pathways are coordinated with each other and participate in the ciliary body development, ensuring the precise formation and optimal functioning of the eye structure. Although rare, ciliary body hypoplasia, ciliary tumours, and genetic-related iritis indicate the intricate nature of ciliary body development. Given the ciliary body's important biological significance and potential medical relevance, we aim to provide a comprehensive overview of the developmental molecular mechanisms governing ciliary body formation and function. Here, we focus on the intricate signalling pathways governing ciliary body development and corresponding genetic ciliary diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Kim JM, Min KW, Kim YJ, Smits R, Basler K, Kim JW. Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium. Mol Cells 2023; 46:441-450. [PMID: 37190767 PMCID: PMC10336276 DOI: 10.14348/molcells.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.
Collapse
Affiliation(s)
- Jong-Myeong Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kwang Wook Min
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You-Joung Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
12
|
Collin J, Hasoon MSR, Zerti D, Hammadi S, Dorgau B, Clarke L, Steel D, Hussain R, Coxhead J, Lisgo S, Queen R, Lako M. Single-cell RNA sequencing reveals transcriptional changes of human choroidal and retinal pigment epithelium cells during fetal development, in healthy adult and intermediate age-related macular degeneration. Hum Mol Genet 2023; 32:1698-1710. [PMID: 36645183 PMCID: PMC10162434 DOI: 10.1093/hmg/ddad007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Megan S R Hasoon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
- Microscopy Centre and Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L'aquila 67100, Italy
| | - Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Lucy Clarke
- Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, NE1 4LP, UK
| | - David Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| |
Collapse
|
13
|
Blomfield AK, Maurya M, Bora K, Pavlovich MC, Yemanyi F, Huang S, Fu Z, O’Connell AE, Chen J. Ectopic Rod Photoreceptor Development in Mice with Genetic Deficiency of WNT2B. Cells 2023; 12:1033. [PMID: 37048106 PMCID: PMC10093714 DOI: 10.3390/cells12071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Wnt/β-catenin signaling is essential for embryonic eye development in both the anterior eye and retina. WNT2B, a ligand and activator of the Wnt/β-catenin pathway, assists in the development of the lens and peripheral regions of the eye. In humans WNT2B mutations are associated with coloboma and WNT2B may also assist in retinal progenitor cell differentiation in chicken, yet the potential role of WNT2B in retinal neuronal development is understudied. This study explored the effects of WNT2B on retinal neuronal and vascular formation using systemic Wnt2b knockout (KO) mice generated by crossing Wnt2bflox/flox (fl/fl) mice with CMV-cre mice. Wnt2b KO eyes exhibited relatively normal anterior segments and retinal vasculature. Ectopic formation of rod photoreceptor cells in the subretinal space was observed in Wnt2b KO mice as early as one week postnatally and persisted through nine-month-old mice. Other retinal neuronal layers showed normal organization in both thickness and lamination, without detectable signs of retinal thinning. The presence of abnormal photoreceptor genesis was also observed in heterozygous Wnt2b mice, and occasionally in wild type mice with decreased Wnt2b expression levels. Expression of Wnt2b was found to be enriched in the retinal pigment epithelium compared with whole retina. Together these findings suggest that WNT2B is potentially involved in rod photoreceptor genesis during eye development; however, potential influence by a yet unknown genetic factor is also possible.
Collapse
Affiliation(s)
- Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Meenakshi Maurya
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Madeline C. Pavlovich
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
14
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
16
|
Wahlin KJ, Cheng J, Jurlina SL, Jones MK, Dash NR, Ogata A, Kibria N, Ray S, Eldred KC, Kim C, Heng JS, Phillips J, Johnston RJ, Gamm DM, Berlinicke C, Zack DJ. CRISPR Generated SIX6 and POU4F2 Reporters Allow Identification of Brain and Optic Transcriptional Differences in Human PSC-Derived Organoids. Front Cell Dev Biol 2021; 9:764725. [PMID: 34869356 PMCID: PMC8635054 DOI: 10.3389/fcell.2021.764725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023] Open
Abstract
Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States,*Correspondence: Karl J. Wahlin,
| | - Jie Cheng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shawna L. Jurlina
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Melissa K. Jones
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nicholas R. Dash
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Anna Ogata
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nawal Kibria
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Sunayan Ray
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Kiara C. Eldred
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Catherine Kim
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacob S. Heng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, United States
| | - Jenny Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J. Johnston
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David M. Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Cynthia Berlinicke
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Grisé KN, Coles BLK, Bautista NX, van der Kooy D. Activation of adult mammalian retinal stem cells in vivo via antagonism of BMP and sFRP2. Stem Cell Res Ther 2021; 12:560. [PMID: 34717744 PMCID: PMC8557620 DOI: 10.1186/s13287-021-02630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background The adult mammalian retina does not have the capacity to regenerate cells lost due to damage or disease. Therefore, retinal injuries and blinding diseases result in irreversible vision loss. However, retinal stem cells (RSCs), which participate in retinogenesis during development, persist in a quiescent state in the ciliary epithelium (CE) of the adult mammalian eye. Moreover, RSCs retain the ability to generate all retinal cell types when cultured in vitro, including photoreceptors. Therefore, it may be possible to activate endogenous RSCs to induce retinal neurogenesis in vivo and restore vision in the adult mammalian eye. Methods To investigate if endogenous RSCs can be activated, we performed combinatorial intravitreal injections of antagonists to BMP and sFRP2 proteins (two proposed mediators of RSC quiescence in vivo), with or without growth factors FGF and Insulin. We also investigated the effects of chemically-induced N-methyl-N-Nitrosourea (MNU) retinal degeneration on RSC activation, both alone and in combination withthe injected factors. Further, we employed inducible Msx1-CreERT2 genetic lineage labeling of the CE followed by stimulation paradigms to determine if activated endogenous RSCs could migrate into the retina and differentiate into retinal neurons. Results We found that in vivo antagonism of BMP and sFRP2 proteins induced CE cells in the RSC niche to proliferate and expanded the RSC population. BMP and sFRP2 antagonism also enhanced CE cell proliferation in response to exogenous growth factor stimulation and MNU-induced retinal degeneration. Furthermore, Msx1-CreERT2 genetic lineage tracing revealed that CE cells migrated into the retina following stimulation and/or injury, where they expressed markers of mature photoreceptors and retinal ganglion cells. Conclusions Together, these results indicate that endogenous adult mammalian RSCs may have latent regenerative potential that can be activated by modulating the RSC niche and hold promise as a means for endogenous retinal cell therapy to repair the retina and improve vision. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02630-0.
Collapse
Affiliation(s)
- Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nelson X Bautista
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
18
|
Ni Y, Liu B, Wu X, Liu J, Ba R, Zhao C. FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus. Neurosci Bull 2021; 37:298-310. [PMID: 33389683 PMCID: PMC7954983 DOI: 10.1007/s12264-020-00618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays key roles in various developmental processes. Wnt5a, which activates the non-canonical pathway, has been shown to be particularly important for axon guidance and outgrowth as well as dendrite morphogenesis. However, the mechanism underlying the regulation of Wnt5a remains unclear. Here, through conditional disruption of Foxg1 in hippocampal progenitors and postmitotic neurons achieved by crossing Foxg1fl/fl with Emx1-Cre and Nex-Cre, respectively, we found that Wnt5a rather than Wnt3a/Wnt2b was markedly upregulated. Overexpression of Foxg1 had the opposite effects along with decreased dendritic complexity and reduced mossy fibers in the hippocampus. We further demonstrated that FOXG1 directly repressed Wnt5a by binding to its promoter and one enhancer site. These results expand our knowledge of the interaction between Foxg1 and Wnt signaling and help elucidate the mechanisms underlying hippocampal development.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Pang J, Le L, Zhou Y, Tu R, Hou Q, Tsuchiya D, Thomas N, Wang Y, Yu Z, Alexander R, Thexton M, Lewis B, Corbin T, Durnin M, Li H, Ashery-Padan R, Yan D, Xie T. NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Rep 2021; 34:108603. [PMID: 33440163 DOI: 10.1016/j.celrep.2020.108603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.
Collapse
Affiliation(s)
- Ji Pang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Le
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yi Zhou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Qiang Hou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; State Key Laboratory and Key Laboratory of Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Richard Alexander
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Marina Thexton
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brandy Lewis
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Timothy Corbin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
20
|
O'Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: a window into human retinal development. Development 2020; 147:147/24/dev189746. [PMID: 33361444 PMCID: PMC7774906 DOI: 10.1242/dev.189746] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal development and maturation are orchestrated by a series of interacting signalling networks that drive the morphogenetic transformation of the anterior developing brain. Studies in model organisms continue to elucidate these complex series of events. However, the human retina shows many differences from that of other organisms and the investigation of human eye development now benefits from stem cell-derived organoids. Retinal differentiation methods have progressed from simple 2D adherent cultures to self-organising micro-physiological systems. As models of development, these have collectively offered new insights into the previously unexplored early development of the human retina and informed our knowledge of the key cell fate decisions that govern the specification of light-sensitive photoreceptors. Although the developmental trajectories of other retinal cell types remain more elusive, the collation of omics datasets, combined with advanced culture methodology, will enable modelling of the intricate process of human retinogenesis and retinal disease in vitro. Summary: Retinal organoid systems derived from human pluripotent stem cells are micro-physiological systems that offer new insights into previously unexplored human retina development.
Collapse
Affiliation(s)
- Michelle O'Hara-Wright
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| |
Collapse
|
21
|
Wallace J, Narasipura SD, Sha BE, French AL, Al-Harthi L. Canonical Wnts Mediate CD8 + T Cell Noncytolytic Anti-HIV-1 Activity and Correlate with HIV-1 Clinical Status. THE JOURNAL OF IMMUNOLOGY 2020; 205:2046-2055. [PMID: 32887752 DOI: 10.4049/jimmunol.1801379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
CD8+ T cells do not rely solely on cytotoxic functions for significant HIV control. Moreover, the noncytotoxic CD8+ T cell antiviral response is a primary mediator of natural HIV control such as that seen in HIV elite controllers and long-term nonprogressors that does not require combined antiretroviral therapy. In this study, we investigated the biological factors contributing to the noncytotoxic control of HIV replication mediated by primary human CD8+ T cells. We report that canonical Wnt signaling inhibits HIV transcription in an MHC-independent, noncytotoxic manner and that mediators of this pathway correlate with HIV controller clinical status. We show that CD8+ T cells express all 19 Wnts and CD8+ T cell-conditioned medium (CM) induced canonical Wnt signaling in infected recipient cells while simultaneously inhibiting HIV transcription. Antagonizing canonical Wnt activity in CD8+ T cell CM resulted in increased HIV transcription in infected cells. Further, Wnt2b expression was upregulated in HIV controllers versus viremic patients, and in vitro depletion of Wnt2b and/or Wnt9b from CD8+ CM reversed HIV inhibitory activity. Finally, plasma concentration of Dkk-1, an antagonist of canonical Wnt signaling, was higher in viremic patients with lower CD4 counts. This study demonstrates that canonical Wnt signaling inhibits HIV and significantly correlates with HIV controller status.
Collapse
Affiliation(s)
- Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612
| | - Beverly E Sha
- Division of Infectious Diseases, Rush University Medical Center, Chicago, IL 60612
| | - Audrey L French
- Division of Infectious Diseases, Rush University Medical Center, Chicago, IL 60612.,Stroger Hospital of Cook County, Cook County Health and Hospitals System, Chicago, IL 60612; and.,Ruth M. Rothstein CORE Center, Cook County Health and Hospitals System, Chicago, IL 60612
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
22
|
Medina-Martinez O, Haller M, Rosenfeld JA, O'Neill MA, Lamb DJ, Jamrich M. The transcription factor Maz is essential for normal eye development. Dis Model Mech 2020; 13:dmm044412. [PMID: 32571845 PMCID: PMC7449797 DOI: 10.1242/dmm.044412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling has an essential role in eye development. Faulty regulation of this pathway results in ocular malformations, owing to defects in cell-fate determination and differentiation. Herein, we show that disruption of Maz, the gene encoding Myc-associated zinc-finger transcription factor, produces developmental eye defects in mice and humans. Expression of key genes involved in the Wnt cascade, Sfrp2, Wnt2b and Fzd4, was significantly increased in mice with targeted inactivation of Maz, resulting in abnormal peripheral eye formation with reduced proliferation of the progenitor cells in the region. Paradoxically, the Wnt reporter TCF-Lef1 displayed a significant downregulation in Maz-deficient eyes. Molecular analysis indicates that Maz is necessary for the activation of the Wnt/β-catenin pathway and participates in the network controlling ciliary margin patterning. Copy-number variations and single-nucleotide variants of MAZ were identified in humans that result in abnormal ocular development. The data support MAZ as a key contributor to the eye comorbidities associated with chromosome 16p11.2 copy-number variants and as a transcriptional regulator of ocular development.
Collapse
Affiliation(s)
- Olga Medina-Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meade Haller
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Marisol A O'Neill
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- James Buchanan Brady Foundation Department of Urology, Weill Cornell Medical College, New York City, NY 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, NY 10065, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York City, NY 10065, USA
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ikelle L, Al-Ubaidi MR, Naash MI. Pluripotent Stem Cells for the Treatment of Retinal Degeneration: Current Strategies and Future Directions. Front Cell Dev Biol 2020; 8:743. [PMID: 32923439 PMCID: PMC7457054 DOI: 10.3389/fcell.2020.00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023] Open
Abstract
Stem cells have been part of the biomedical landscape since the early 1960s. However, the translation of stem cells to effective therapeutics have met significant challenges, especially for retinal diseases. The retina is a delicate and complex architecture of interconnected cells that are steadfastly interdependent. Degenerative mechanisms caused by acquired or inherited diseases disrupt this interconnectivity, devastating the retina and causing severe vision loss in many patients. Consequently, retinal differentiation of exogenous and endogenous stem cells is currently being explored as replacement therapies in the debilitating diseases. In this review, we will examine the mechanisms involved in exogenous stem cells differentiation and the challenges of effective integration to the host retina. Furthermore, we will explore the current advancements in trans-differentiation of endogenous stem cells, primarily Müller glia.
Collapse
Affiliation(s)
- Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
24
|
Peng X, Fan S, Tan J, Zeng Z, Su M, Zhang Y, Yang M, Xia L, Fan X, Cai W, Tang WH. Wnt2bb Induces Cardiomyocyte Proliferation in Zebrafish Hearts via the jnk1/c-jun/creb1 Pathway. Front Cell Dev Biol 2020; 8:323. [PMID: 32523947 PMCID: PMC7261892 DOI: 10.3389/fcell.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that inhibition of canonical Wnt signaling promotes zebrafish heart regeneration and that treatment of injured heart tissue with the Wnt activator 6-bromo-indirubin-3-oxime (BIO) can impede cardiomyocyte proliferation. However, the mechanism by which Wnt signaling regulates downstream gene expression following heart injury remains unknown. In this study, we have demonstrated that inhibition of injury-induced myocardial wnt2bb and jnk1/creb1/c-jun signaling impedes heart repair following apex resection. The expression of jnk1, creb1, and c-jun were inhibited in wnt2bb dominant negative (dn) mutant hearts and elevated in wnt2bb-overexpresssing hearts following ventricular amputation. The overexpression of creb1 sufficiently rescued the dn-wnt2bb-induced phenotype of reduced nkx2.5 expression and attenuated heart regeneration. In addition, wnt2bb/jnk1/c-jun/creb1 signaling was increased in Tg(hsp70l:dkk1) transgenic fish, whereas it was inhibited in Tg(hsp70l:wnt8) transgenic fish, indicating that canonical Wnt and non-canonical Wnt antagonize each other to regulate heart regeneration. Overall, the results of our study demonstrate that the wnt2bb-mediated jnk1/c-jun/creb1 non-canonical Wnt pathway regulates cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Xiangwen Peng
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Tan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Zeng
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Meiling Su
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhang
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ming Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Luoxing Xia
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xuejiao Fan
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratary Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wai Ho Tang
- Guangzhou Women and Children's Medical Centre, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Lu Y, Shiau F, Yi W, Lu S, Wu Q, Pearson JD, Kallman A, Zhong S, Hoang T, Zuo Z, Zhao F, Zhang M, Tsai N, Zhuo Y, He S, Zhang J, Stein-O'Brien GL, Sherman TD, Duan X, Fertig EJ, Goff LA, Zack DJ, Handa JT, Xue T, Bremner R, Blackshaw S, Wang X, Clark BS. Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Dev Cell 2020; 53:473-491.e9. [PMID: 32386599 PMCID: PMC8015270 DOI: 10.1016/j.devcel.2020.04.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/05/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023]
Abstract
The development of single-cell RNA sequencing (scRNA-seq) has allowed high-resolution analysis of cell-type diversity and transcriptional networks controlling cell-fate specification. To identify the transcriptional networks governing human retinal development, we performed scRNA-seq analysis on 16 time points from developing retina as well as four early stages of retinal organoid differentiation. We identified evolutionarily conserved patterns of gene expression during retinal progenitor maturation and specification of all seven major retinal cell types. Furthermore, we identified gene-expression differences between developing macula and periphery and between distinct populations of horizontal cells. We also identified species-specific patterns of gene expression during human and mouse retinal development. Finally, we identified an unexpected role for ATOH7 expression in regulation of photoreceptor specification during late retinogenesis. These results provide a roadmap to future studies of human retinal development and may help guide the design of cell-based therapies for treating retinal dystrophies.
Collapse
Affiliation(s)
- Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fion Shiau
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenyang Yi
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Alyssa Kallman
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suijuan Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqi Zhao
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mei Zhang
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicole Tsai
- Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas D Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xin Duan
- Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T Handa
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Sindhu SK, Udaykumar N, Zaidi MAA, Soni A, Sen J. MicroRNA-19b restricts Wnt7b to the hem, which induces aspects of hippocampus development in the avian forebrain. Development 2019; 146:146/20/dev175729. [PMID: 31578189 DOI: 10.1242/dev.175729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
The functions of the hippocampus are conserved between birds and mammals; however, it is not known whether similar mechanisms are responsible for its development in these two classes. In mammals, hippocampus development is known to be regulated by the hem organizer. Here, we have identified that, in birds, Wnt7b secreted from the hem is sufficient for inducing the expression of hippocampal markers. Furthermore, we have demonstrated that a microRNA, miR-19b, which is selectively excluded from the hem region, is necessary and sufficient for restricting the expression of Wnt7b to the hem. This study suggests that the role of the Wnt signal emanating from the hem is conserved between birds and mammals, and that a microRNA-based mechanism is crucial for determining the position of the hippocampus.
Collapse
Affiliation(s)
- Suvimal Kumar Sindhu
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Mohd Ali Abbas Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Abhinav Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
27
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
29
|
Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, Gronostajski RM, Fertig EJ, Goff LA, Blackshaw S. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019; 102:1111-1126.e5. [PMID: 31128945 PMCID: PMC6768831 DOI: 10.1016/j.neuron.2019.04.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle H Cannon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca E James-Esposito
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, Rainger J. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. eLife 2019; 8:43877. [PMID: 31162046 PMCID: PMC6606025 DOI: 10.7554/elife.43877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research. Our bodies are made of many different groups of cells, which are arranged into tissues that perform specific roles. As tissues form in the embryo they must adopt precise three-dimensional structures, depending on their position in the body. In many cases this involves two edges of tissue fusing together to prevent gaps being present in the final structure. In individuals with a condition called ocular coloboma some of the tissues in the eyes fail to merge together correctly, leading to wide gaps that can severely affect vision. There are currently no treatments available for ocular coloboma and in over 70% of patients the cause of the defect is not known. Identifying new genes that control how tissues fuse may help researchers to find what causes this condition and multiple other tissue fusion defects, and establish whether these may be preventable in the future. Much of what is currently known about how tissues fuse has come from studying mice and zebrafish embryos. Although the extensive genetic tools available in these ‘models’ have proved very useful, both offer only a limited time window for observing tissues as they fuse, and the regions involved are very small. Chick embryos, on the other hand, are much larger than mouse or zebrafish embryos and are easier to access from within their eggs. This led Hardy et al. to investigate whether the developing chick eye could be a more useful model for studying the precise details of how tissues merge. Examining chick embryos revealed that tissues in the base of their eyes fuse between five and eight days after the egg had been fertilised, a comparatively long time compared to existing models. Also, many of the genes that Hardy et al. found switched on in chick eyes as the tissues merged had previously been identified as being essential for tissue fusion in humans. However, several new genes were also shown to be involved in the fusing process. For example, Netrin-1 was important for tissues to fuse in the eyes as well as in other regions of the developing embryo. These findings demonstrate that the chick eye is an excellent new model system to study how tissues fuse in animals. Furthermore, the genes identified by Hardy et al. may help researchers to identify the genetic causes of ocular coloboma and other tissue fusion defects in humans.
Collapse
Affiliation(s)
- Holly Hardy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James Gd Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Aara Patel
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Hannah Kroeger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Jane C Sowden
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
31
|
Zhu L, Yang N, Du G, Li C, Liu G, Liu S, Xu Y, Di Y, Pan W, Li X. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:1156-1164. [PMID: 30430650 PMCID: PMC6587876 DOI: 10.1002/jcb.26762] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Nenghong Yang
- Department of Hepatobiliary SurgerySurgery, Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Guiqin Du
- The First People's Hospital of GuiyangGuiyangGuizhouChina
| | - Chengcheng Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guoqi Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shengju Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yongjie Xu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanan Di
- Department of Clinical Laboratory MedicineBeifang Hospital of China North Industries Group CorporationBeijingChina
| | - Wei Pan
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xing Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
32
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
33
|
Diacou R, Zhao Y, Zheng D, Cvekl A, Liu W. Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep 2018; 25:2510-2523.e4. [PMID: 30485816 PMCID: PMC6317371 DOI: 10.1016/j.celrep.2018.10.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/19/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Gene regulation of multipotent neuroretinal progenitors is partially understood. Through characterizing Six3 and Six6 double knockout retinas (DKOs), we demonstrate Six3 and Six6 are jointly required for the maintenance of multipotent neuroretinal progenitors. Phenotypes in DKOs were not found in either Six3 nulls or Six6 nulls. At the far periphery, ciliary margin (CM) markers Otx1 and Cdon together with Wnt3a and Fzd1 were ectopically upregulated, whereas neuroretinal progenitor markers Sox2, Notch1, and Otx2 were absent or reduced. At the mid periphery, multi-lineage differentiation was defective. The gene set jointly regulated by Six3 and Six6 significantly overlapped with the gene networks regulated by WNT3A, CTNNB1, POU4F2, or SOX2. Stimulation of Wnt/β-catenin signaling by either Wnt-3a or a GS3Kβ inhibitor promoted CM progenitors at the cost of neuroretinal identity at the periphery of eyecups. Therefore, Six3 and Six6 together directly or indirectly suppress Wnt/β-catenin signaling but promote retinogenic factors for the maintenance of multipotent neuroretinal progenitors.
Collapse
Affiliation(s)
- Raven Diacou
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yilin Zhao
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Deyou Zheng
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Wei Liu
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
34
|
Iwai-Takekoshi L, Balasubramanian R, Sitko A, Khan R, Weinreb S, Robinson K, Mason C. Activation of Wnt signaling reduces ipsilaterally projecting retinal ganglion cells in pigmented retina. Development 2018; 145:dev163212. [PMID: 30254141 PMCID: PMC6240318 DOI: 10.1242/dev.163212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/15/2018] [Indexed: 11/20/2022]
Abstract
In mammalian albinism, disrupted melanogenesis in the retinal pigment epithelium (RPE) is associated with fewer retinal ganglion cells (RGCs) projecting ipsilaterally to the brain, resulting in numerous abnormalities in the retina and visual pathway, especially binocular vision. To further understand the molecular link between disrupted RPE and a reduced ipsilateral RGC projection in albinism, we compared gene expression in the embryonic albino and pigmented mouse RPE. We found that the Wnt pathway, which directs peripheral retinal differentiation and, generally, cell proliferation, is dysregulated in the albino RPE. Wnt2b expression is expanded in the albino RPE compared with the pigmented RPE, and the expanded region adjoins the site of ipsilateral RGC neurogenesis and settling. Pharmacological activation of Wnt signaling in pigmented mice by lithium (Li+) treatment in vivo reduces the number of Zic2-positive RGCs, which are normally fated to project ipsilaterally, to numbers observed in the albino retina. These results implicate Wnt signaling from the RPE to neural retina as a potential factor in the regulation of ipsilateral RGC production, and thus the albino phenotype.
Collapse
Affiliation(s)
- Lena Iwai-Takekoshi
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Revathi Balasubramanian
- Department of Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Austen Sitko
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Rehnuma Khan
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Samuel Weinreb
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Kiera Robinson
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
- Department of Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
35
|
Matsushita T, Steinfeld J, Fujihara A, Urayama S, Taketani S, Araki M. Regulation of neuronal and photoreceptor cell differentiation by Wnt signaling from iris-derived stem/progenitor cells of the chick in flat vs. Matrigel-embedding cultures. Brain Res 2018; 1704:207-218. [PMID: 30347217 DOI: 10.1016/j.brainres.2018.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/03/2023]
Abstract
Previously we developed a simple culture method of the iris tissues and reported novel properties of neural stem/progenitor-like cells in the iris tissues of the chick and pig. When the iris epithelium or connective tissue (stroma) was treated with dispase, embedded in Matrigel, and cultured, neuronal cells extended from the explants within 24 h of culture, and cells positively stained for photoreceptor cell markers were also observed within a few days of culturing. In ordinary flat tissue culture conditions, explants had the same differentiation properties to those in tissue environments. Previously, we suggested that iris neural stem/progenitor cells are simply suppressed from neuronal differentiation within tissue, and that separation from the tissue releases the cells from this suppression mechanism. Here, we examined whether Wnt signaling suppressed neuronal differentiation of iris tissue cells in tissue environments because the lens, which has direct contact with the iris, is a rich source of Wnt proteins. When the Wnt signaling activator 6-bromoindirubin-3'-oxime (BIO) was administered to Matrigel culture, neuronal differentiation was markedly suppressed, but cell proliferation was not affected. When Wnt signaling inhibitors, such as DKK-1 and IWR-1, were applied to the same culture, they did not have any effect on cell differentiation and proliferation. However, when the inhibitors were applied to flat tissue culture, cells with neural properties emerged. These results indicate that the interaction of iris tissue with neighboring tissues and the environment regulates the stemness nature of iris tissue cells, and that Wnt signaling is a major factor.
Collapse
Affiliation(s)
- Tamami Matsushita
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan
| | | | - Ai Fujihara
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Urayama
- Unit of Neural Development and Regeneration, Nara Medical University, Kashihara 634-8521, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Masasuke Araki
- Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506, Japan; Unit of Neural Development and Regeneration, Nara Medical University, Kashihara 634-8521, Japan.
| |
Collapse
|
36
|
Smith JN, Walker HM, Thompson H, Collinson JM, Vargesson N, Erskine L. Lens-regulated retinoic acid signalling controls expansion of the developing eye. Development 2018; 145:145/19/dev167171. [PMID: 30305274 DOI: 10.1242/dev.167171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.
Collapse
Affiliation(s)
- Jonathan N Smith
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Walker
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hannah Thompson
- Department of Craniofacial Development and Stem Cell Biology, Kings College, London WC2R 2LS, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
37
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
38
|
Expression Analysis of ACSL5 and Wnt2B in Human Congenital Pulmonary Airway Malformations. J Surg Res 2018; 232:128-136. [PMID: 30463708 DOI: 10.1016/j.jss.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this study was to determine acyl-CoA synthetase 5 (ACSL5) and Wnt2B expression patterns in human congenital pulmonary airway malformations (CPAMs) and to identify the possible roles of ACSL5 and Wnt2B in the pathogenesis of CPAM. METHODS Expression of ACSL5 and Wnt2B was evaluated by immunohistochemical staining, Western blotting, and quantitative real-time polymerase chain reaction, which were performed on surgical specimens of CPAM and adjacent normal lung tissues as controls. RESULTS Immunohistochemistry revealed that ACSL5 and Wnt2B immunopositive cells were predominantly detected in the mesenchymal cell nucleus, and there were lower expressions of ACSL5 and Wnt2B immunopositive cells in CPAM tissues than those in adjacent normal lung tissues. Western blotting and quantitative real-time polymerase chain reaction showed that ACSL5 and Wnt2B protein and mRNA expressions were significantly decreased in CPAM tissues as compared to the adjacent normal lung tissues (P < 0.05). In addition, there was a reduced level of ACSL5 relative to that of Wnt2B. CONCLUSIONS The decreased ACSL5 and Wnt2B expressions correlated with aberrations in pulmonary development and in the pathogenesis of CPAM, so downregulation of ACSL5 and Wnt2B could play an important role in the development of bronchial-alveolar structures in CPAM.
Collapse
|
39
|
Moon KH, Kim JW. Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells 2018; 41:257-263. [PMID: 29665674 PMCID: PMC5935098 DOI: 10.14348/molcells.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
40
|
Borday C, Parain K, Thi Tran H, Vleminckx K, Perron M, Monsoro-Burq AH. An atlas of Wnt activity during embryogenesis in Xenopus tropicalis. PLoS One 2018; 13:e0193606. [PMID: 29672592 PMCID: PMC5908154 DOI: 10.1371/journal.pone.0193606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins form a family of highly conserved secreted molecules that are critical mediators of cell-cell signaling during embryogenesis. Partial data on Wnt activity in different tissues and at different stages have been reported in frog embryos. Our objective here is to provide a coherent and detailed description of Wnt activity throughout embryo development. Using a transgenic Xenopus tropicalis line carrying a Wnt-responsive reporter sequence, we depict the spatial and temporal dynamics of canonical Wnt activity during embryogenesis. We provide a comprehensive series of in situ hybridization in whole-mount embryos and in cross-sections, from gastrula to tadpole stages, with special focus on neural tube, retina and neural crest cell development. This collection of patterns will thus constitute a valuable resource for developmental biologists to picture the dynamics of Wnt activity during development.
Collapse
Affiliation(s)
- Caroline Borday
- CNRS UMR 3347, INSERM U1021, Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
- * E-mail: (MP); (AHMB)
| | - Anne H. Monsoro-Burq
- CNRS UMR 3347, INSERM U1021, Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail: (MP); (AHMB)
| |
Collapse
|
41
|
Ahmad SAI, Anam MB, Ito N, Ohta K. Involvement of Tsukushi in diverse developmental processes. J Cell Commun Signal 2018; 12:205-210. [PMID: 29352451 PMCID: PMC5842206 DOI: 10.1007/s12079-018-0452-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Tsukushi (TSK) is a small signaling molecule which takes part in different developmental processes of multiple vertebrate organisms. The diverse activity of TSK depends on its ability to bind various intermediate molecules from different major signaling pathways. Interactions of TSK with BMP, FGF, TGF-β and Wnt pathways have already been confirmed. In this review, we will introduce the latest information regarding the involvement of TSK in developmental events. We suggest a fine tuning role for TSK in multiple signaling cascades. Also, we recommend further studies on the developmental role of TSK to fully reveal its potential.
Collapse
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
42
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
43
|
Su H, Sureda-Gomez M, Rabaneda-Lombarte N, Gelabert M, Xie J, Wu W, Adell T. A C-terminally truncated form of β-catenin acts as a novel regulator of Wnt/β-catenin signaling in planarians. PLoS Genet 2017; 13:e1007030. [PMID: 28976975 PMCID: PMC5643146 DOI: 10.1371/journal.pgen.1007030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/16/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
β-Catenin, the core element of the Wnt/β-catenin pathway, is a multifunctional and evolutionarily conserved protein which performs essential roles in a variety of developmental and homeostatic processes. Despite its crucial roles, the mechanisms that control its context-specific functions in time and space remain largely unknown. The Wnt/β-catenin pathway has been extensively studied in planarians, flatworms with the ability to regenerate and remodel the whole body, providing a ‘whole animal’ developmental framework to approach this question. Here we identify a C-terminally truncated β-catenin (β-catenin4), generated by gene duplication, that is required for planarian photoreceptor cell specification. Our results indicate that the role of β-catenin4 is to modulate the activity of β-catenin1, the planarian β-catenin involved in Wnt signal transduction in the nucleus, mediated by the transcription factor TCF-2. This inhibitory form of β-catenin, expressed in specific cell types, would provide a novel mechanism to modulate nuclear β-catenin signaling levels. Genomic searches and in vitro analysis suggest that the existence of a C-terminally truncated form of β-catenin could be an evolutionarily conserved mechanism to achieve a fine-tuned regulation of Wnt/β-catenin signaling in specific cellular contexts. The Wnt signaling pathway is essential for proper intercellular communication in every developmental process since it controls basic cellular events as cell fate or proliferation. The key element of the Wnt signaling is β-catenin, which controls the transcription of multiple genes in the Wnt receiving cell. A main level of regulation of the Wnt/β-catenin signaling occurs in the cytoplasm, where β-catenin protein levels depend on the activity of the β-catenin destruction complex. However, once it reaches the nucleus, β-catenin transcriptional activity requires a fine-tuned regulation to enable the multiple context-specific responses that it performs. These nuclear mechanisms that regulate the Wnt/β-catenin signaling remain poorly understood. Here we report the existence of C-terminal truncated forms of β-catenin in planarians (β-cat3 and 4), which, in vitro, do not show transactivation activity and compete with the canonical planarian β-catenin (β-cat1), thus acting as competitor inhibitors. Functional analyses in planarians indicate that β-cat4 acts as a negative regulator of β-cat1 during planarian eye photoreceptor specification. We provide evidence to suggest that this novel mechanism for the regulation of nuclear β-catenin activity could be conserved across animal evolution.
Collapse
Affiliation(s)
- Hanxia Su
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Miquel Sureda-Gomez
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Neus Rabaneda-Lombarte
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Gelabert
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Teresa Adell
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
- * E-mail:
| |
Collapse
|
44
|
Alldredge A, Fuhrmann S. Loss of Axin2 Causes Ocular Defects During Mouse Eye Development. Invest Ophthalmol Vis Sci 2017; 57:5253-5262. [PMID: 27701636 PMCID: PMC5054732 DOI: 10.1167/iovs.15-18599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The scaffold protein Axin2 is an antagonist and universal target of the Wnt/β-catenin pathway. Disruption of Axin2 may lead to developmental eye defects; however, this has not been examined. The purpose of this study was to investigate the role of Axin2 during ocular and extraocular development in mouse. Methods Animals heterozygous and homozygous for a Axin2lacZ knock-in allele were analyzed at different developmental stages for reporter expression, morphology as well as for the presence of ocular and extraocular markers using histologic and immunohistochemical techniques. Results During early eye development, the Axin2lacZ reporter was expressed in the periocular mesenchyme, RPE, and optic stalk. In the developing retina, Axin2lacZ reporter expression was initiated in ganglion cells at late embryonic stages and robustly expressed in subpopulations of amacrine and horizontal cells postnatally. Activation of the Axin2lacZ reporter overlapped with labeling of POU4F1, PAX6, and Calbindin. Germline deletion of Axin2 led to variable ocular phenotypes ranging from normal to severely defective eyes exhibiting microphthalmia, coloboma, lens defects, and expanded ciliary margin. These defects were correlated with abnormal tissue patterning in individual affected tissues, such as the optic fissure margins in the ventral optic cup and in the expanded ciliary margin. Conclusions Our results reveal a critical role for Axin2 during ocular development, likely by restricting the activity of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ashley Alldredge
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
45
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
46
|
Fujimura N. WNT/β-Catenin Signaling in Vertebrate Eye Development. Front Cell Dev Biol 2016; 4:138. [PMID: 27965955 PMCID: PMC5127792 DOI: 10.3389/fcell.2016.00138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.
Collapse
Affiliation(s)
- Naoko Fujimura
- Laboratory of Eye Biology, BIOCEV Division, Institute of Molecular Genetics Prague, Czechia
| |
Collapse
|
47
|
Eckei G, Böing M, Brand-Saberi B, Morosan-Puopolo G. Expression Pattern of Axin2 During Chicken Development. PLoS One 2016; 11:e0163610. [PMID: 27680024 PMCID: PMC5040342 DOI: 10.1371/journal.pone.0163610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Canonical Wnt-signalling is well understood and has been extensively described in many developmental processes. The regulation of this signalling pathway is of outstanding relevance for proper development of the vertebrate and invertebrate embryo. Axin2 provides a negative-feedback-loop in the canonical Wnt-pathway, being a target gene and a negative regulator. Here we provide a detailed analysis of the expression pattern in the development of the chicken embryo. By performing in-situ hybridization on chicken embryos from stage HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of Axin2. In particular, data about the expression of Axin2 mRNA in early embryogenesis, somites, neural tube, limbs, kidney and eyes was obtained.
Collapse
Affiliation(s)
- Gesa Eckei
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
48
|
Hasegawa Y, Takata N, Okuda S, Kawada M, Eiraku M, Sasai Y. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue. Development 2016; 143:3895-3906. [PMID: 27633992 DOI: 10.1242/dev.134601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that mouse embryonic stem cell (mESC)-derived retinal epithelium self-forms an optic cup-like structure. In the developing retina, the dorsal and ventral sides differ in terms of local gene expression and morphological features. This aspect has not yet been shown in vitro Here, we demonstrate that mESC-derived retinal tissue spontaneously acquires polarity reminiscent of the dorsal-ventral (D-V) patterning of the embryonic retina. Tbx5 and Vax2 were expressed in a mutually exclusive manner, as seen in vivo Three-dimensional morphometric analysis showed that the in vitro-formed optic cup often contains cleft structures resembling the embryonic optic fissure. To elucidate the mechanisms underlying the spontaneous D-V polarization of mESC-derived retina, we examined the effects of patterning factors, and found that endogenous BMP signaling plays a predominant role in the dorsal specification. Further analysis revealed that canonical Wnt signaling, which was spontaneously activated at the proximal region, acts upstream of BMP signaling for dorsal specification. These observations suggest that D-V polarity could be established within the self-formed retinal neuroepithelium by intrinsic mechanisms involving the spatiotemporal regulation of canonical Wnt and BMP signals.
Collapse
Affiliation(s)
- Yuiko Hasegawa
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan.,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Nozomu Takata
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan.,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Satoru Okuda
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan.,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Masako Kawada
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan.,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| |
Collapse
|
49
|
Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Biol 2016; 419:336-347. [PMID: 27616714 DOI: 10.1016/j.ydbio.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.
Collapse
|
50
|
Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget 2016; 6:37257-68. [PMID: 26484565 PMCID: PMC4741928 DOI: 10.18632/oncotarget.6133] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Wnt2 is implicated in various human cancers. However, it remains unknown how Wnt2 is upregulated in human cancer and contributes to tumorigenesis. Here we found that Wnt2 is highly expressed in colorectal cancer (CRC) cells. In addition to co-expression of Wnt2 with Wnt/β-catenin target genes in CRC, knockdown or knockout of Wnt2 significantly downregulates Wnt/β-catenin target gene expression in CRC cells. Importantly, depletion or ablation of endogenous Wnt2 inhibits CRC cell proliferation. Similarly, neutralizing secreted Wnt2 reduces Wnt target gene expression and suppresses CRC cell proliferation. Conversely, Wnt2 increases cell proliferation of intestinal epithelial cells. Intriguingly, WNT2 expression is transcriptionally silenced by EZH2-mediated H3K27me3 histone modification in non-CRC cells, However, WNT2 expression is de-repressed by the loss of PRC2's promoter occupancy in CRC cells. Our results reveal the unexpected roles of Wnt2 in complementing Wnt/β-catenin signaling for CRC cell proliferation.
Collapse
|