1
|
Jeon S, Park J, Moon JH, Shin D, Li L, O'Shea H, Hwang SU, Lee HJ, Brimble E, Lee JW, Clark SD, Lee SK. The patient-specific mouse model with Foxg1 frameshift mutation provides insights into the pathophysiology of FOXG1 syndrome. Nat Commun 2025; 16:4760. [PMID: 40404610 DOI: 10.1038/s41467-025-59838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/01/2025] [Indexed: 05/24/2025] Open
Abstract
Single allelic mutations in the FOXG1 gene lead to FOXG1 syndrome (FS). To understand the pathophysiology of FS, which vary depending on FOXG1 mutation types, patient-specific animal models are critical. Here, we report a patient-specific Q84Pfs heterozygous (Q84Pfs-Het) mouse model, which recapitulates various FS phenotypes across cellular, brain structural, and behavioral levels. Q84Pfs-Het cortex shows dysregulations of genes controlling cell proliferation, neuronal projection and migration, synaptic assembly, and synaptic vesicle transport. The Q84Pfs allele produces the N-terminal fragment of FOXG1 (Q84Pfs protein) in Q84Pfs-Het mouse brains, which forms intracellular speckles, interacts with FOXG1 full-length protein, and triggers the sequestration of FOXG1 to distinct subcellular domains. Q84Pfs protein promotes the radial glial cell identity and suppresses neuronal migration in the cortex. Our study uncovers the role of the FOXG1 fragment from FS-causing FOXG1 variants and identifies the genes involved in FS-like cellular and behavioral phenotypes, providing insights into the pathophysiology of FS.
Collapse
Affiliation(s)
- Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA.
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Jaein Park
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Ji Hwan Moon
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Dongjun Shin
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Holly O'Shea
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Elise Brimble
- FOXG1 Research Foundation, Port Washington, New York, USA
- Citizen Health, San Francisco, California, USA
| | - Jae W Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA.
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
2
|
Jeon S, Park J, Moon JH, Shin D, Li L, O'Shea H, Hwang SU, Lee HJ, Brimble E, Lee JW, Clark S, Lee SK. The patient-specific mouse model with Foxg1 frameshift mutation provides insights into the pathophysiology of FOXG1 syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634140. [PMID: 39896554 PMCID: PMC11785084 DOI: 10.1101/2025.01.21.634140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Single allelic mutations in the forebrain-specific transcription factor gene FOXG1 lead to FOXG1 syndrome (FS). To decipher the disease mechanisms of FS, which vary depending on FOXG1 mutation types, patient-specific animal models are critical. Here, we report the first patient-specific FS mouse model, Q84Pfs heterozygous (Q84Pfs-Het) mice, which emulates one of the most predominant FS variants. Remarkably, Q84Pfs-Het mice recapitulate various human FS phenotypes across cellular, brain structural, and behavioral levels, such as microcephaly, corpus callosum agenesis, movement disorders, repetitive behaviors, and anxiety. Q84Pfs-Het cortex showed dysregulations of genes controlling cell proliferation, neuronal projection and migration, synaptic assembly, and synaptic vesicle transport. Interestingly, the FS-causing Q84Pfs allele produced the N-terminal fragment of FOXG1, denoted as Q84Pfs protein, in Q84Pfs-Het mouse brains. Q84Pfs fragment forms intracellular speckles, interacts with FOXG1 full-length protein, and triggers the sequestration of FOXG1 to distinct subcellular domains. Q84Pfs protein also promotes the radial glial cell identity and suppresses neuronal migration in the cortex. Together, our study uncovered the role of the FOXG1 fragment derived from FS-causing FOXG1 variants and identified the genes involved in FS-like cellular and behavioral phenotypes, providing essential insights into the pathophysiology of FS.
Collapse
|
3
|
Tan DCS, Jung S, Deng Y, Morey N, Chan G, Bongers A, Ke YD, Ittner LM, Delerue F. PLP1-Targeting Antisense Oligonucleotides Improve FOXG1 Syndrome Mice. Int J Mol Sci 2024; 25:10846. [PMID: 39409184 PMCID: PMC11477415 DOI: 10.3390/ijms251910846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Collapse
Affiliation(s)
- Daniel C. S. Tan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Seonghee Jung
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Yuanyuan Deng
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Nicolle Morey
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Gabriella Chan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.)
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Lars M. Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| |
Collapse
|
4
|
Artimagnella O, Maftei ES, Esposito M, Sanges R, Mallamaci A. Foxg1 regulates translation of neocortical neuronal genes, including the main NMDA receptor subunit gene, Grin1. BMC Biol 2024; 22:180. [PMID: 39183266 PMCID: PMC11346056 DOI: 10.1186/s12915-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Mainly known as a transcription factor patterning the rostral brain and governing its histogenesis, FOXG1 has been also detected outside the nucleus; however, biological meaning of that has been only partially clarified. RESULTS Prompted by FOXG1 expression in cytoplasm of pallial neurons, we investigated its implication in translational control. We documented the impact of FOXG1 on ribosomal recruitment of Grin1-mRNA, encoding for the main subunit of NMDA receptor. Next, we showed that FOXG1 increases GRIN1 protein level by enhancing the translation of its mRNA, while not increasing its stability. Molecular mechanisms underlying this activity included FOXG1 interaction with EIF4E and, possibly, Grin1-mRNA. Besides, we found that, within murine neocortical cultures, de novo synthesis of GRIN1 undergoes a prominent and reversible, homeostatic regulation and FOXG1 is instrumental to that. Finally, by integrated analysis of multiple omic data, we inferred that FOXG1 is implicated in translational control of hundreds of neuronal genes, modulating ribosome engagement and progression. In a few selected cases, we experimentally verified such inference. CONCLUSIONS These findings point to FOXG1 as a key effector, potentially crucial to multi-scale temporal tuning of neocortical pyramid activity, an issue with profound physiological and neuropathological implications.
Collapse
Affiliation(s)
- Osvaldo Artimagnella
- Laboratory of Cerebral Cortex Development, SISSA, Via Bonomea 265, 34136, Trieste, Italy
- Present Address: IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Elena Sabina Maftei
- Laboratory of Cerebral Cortex Development, SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | - Mauro Esposito
- Laboratory of Computational Genomics, SISSA, via Bonomea 265, 34136, Trieste, Italy
- Present Address: Neomatrix SRL, Rome, Italy
| | - Remo Sanges
- Laboratory of Computational Genomics, SISSA, via Bonomea 265, 34136, Trieste, Italy
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, SISSA, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
5
|
Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci 2024; 47:1-20. [PMID: 38360566 PMCID: PMC11787624 DOI: 10.1146/annurev-neuro-081423-093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
Collapse
Affiliation(s)
- Sonja J Pyott
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Groningen, Graduate School of Medical Sciences, and Research School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
6
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
7
|
Umeda K, Tanaka K, Chowdhury G, Nasu K, Kuroyanagi Y, Yamasu K. Evolutionarily conserved roles of foxg1a in the developing subpallium of zebrafish embryos. Dev Growth Differ 2024; 66:219-234. [PMID: 38378191 PMCID: PMC11457518 DOI: 10.1111/dgd.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.
Collapse
Affiliation(s)
- Koto Umeda
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kaiho Tanaka
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Gazlima Chowdhury
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Department of Aquatic Environment and Resource ManagementSher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Kouhei Nasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Yuri Kuroyanagi
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
8
|
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. Developmental progression continues during embryonic diapause in the roe deer. Commun Biol 2024; 7:270. [PMID: 38443549 PMCID: PMC10914810 DOI: 10.1038/s42003-024-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - João Agostinho de Sousa
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ferdinand von Meyenn
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Hubert Pausch
- ETH Zurich, Animal Genomics, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
9
|
Pross A, Metwalli AH, Abellán A, Desfilis E, Medina L. Subpopulations of corticotropin-releasing factor containing neurons and internal circuits in the chicken central extended amygdala. J Comp Neurol 2024; 532:e25569. [PMID: 38104270 DOI: 10.1002/cne.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
10
|
Gan Y, Chen Y, Zhong H, Liu Z, Geng J, Wang H, Wang W. Gut microbes in central nervous system development and related disorders. Front Immunol 2024; 14:1288256. [PMID: 38343438 PMCID: PMC10854220 DOI: 10.3389/fimmu.2023.1288256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The association between gut microbiota and central nervous system (CNS) development has garnered significant research attention in recent years. Evidence suggests bidirectional communication between the CNS and gut microbiota through the brain-gut axis. As a long and complex process, CNS development is highly susceptible to both endogenous and exogenous factors. The gut microbiota impacts the CNS by regulating neurogenesis, myelination, glial cell function, synaptic pruning, and blood-brain barrier permeability, with implication in various CNS disorders. This review outlines the relationship between gut microbiota and stages of CNS development (prenatal and postnatal), emphasizing the integral role of gut microbes. Furthermore, the review explores the implications of gut microbiota in neurodevelopmental disorders, such as autism spectrum disorder, Rett syndrome, and Angelman syndrome, offering insights into early detection, prompt intervention, and innovative treatments.
Collapse
Affiliation(s)
- Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yao Chen
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
11
|
Sarrafha L, Neavin DR, Parfitt GM, Kruglikov IA, Whitney K, Reyes R, Coccia E, Kareva T, Goldman C, Tipon R, Croft G, Crary JF, Powell JE, Blanchard J, Ahfeldt T. Novel human pluripotent stem cell-derived hypothalamus organoids demonstrate cellular diversity. iScience 2023; 26:107525. [PMID: 37646018 PMCID: PMC10460991 DOI: 10.1016/j.isci.2023.107525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region. Using an hPSC line with a tyrosine hydroxylase (TH)-TdTomato reporter for dopaminergic neurons (DNs) and other TH-expressing cells, we interrogated DN-specific pathways and functions in electrophysiologically active hypothalamus organoids. Single-cell RNA sequencing (scRNA-seq) revealed diverse neuronal and non-neuronal cell types in mature hypothalamus organoids. We identified several molecularly distinct hypothalamic DN subtypes that demonstrated different developmental maturities. Our in vitro 3D hypothalamus differentiation protocol can be used to study the development of this critical brain structure and can be applied to disease modeling to generate novel therapeutic approaches for disorders centered around the hypothalamus.
Collapse
Affiliation(s)
- Lily Sarrafha
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Drew R. Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gustavo M. Parfitt
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | | | - Kristen Whitney
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Mount Sinai, New York, NY 10029, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Elena Coccia
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Regine Tipon
- New York Stem Cell Foundation, New York, NY 10019, USA
| | - Gist Croft
- New York Stem Cell Foundation, New York, NY 10019, USA
| | - John F. Crary
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Mount Sinai, New York, NY 10029, USA
- Windreich Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Joel Blanchard
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Cao G, Sun C, Shen H, Qu D, Shen C, Lu H. Conditional Deletion of Foxg1 Delayed Myelination during Early Postnatal Brain Development. Int J Mol Sci 2023; 24:13921. [PMID: 37762220 PMCID: PMC10530892 DOI: 10.3390/ijms241813921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
FOXG1 (forkhead box G1) syndrome is a neurodevelopmental disorder caused by variants in the Foxg1 gene that affect brain structure and function. Individuals affected by FOXG1 syndrome frequently exhibit delayed myelination in neuroimaging studies, which may impair the rapid conduction of nerve impulses. To date, the specific effects of FOXG1 on oligodendrocyte lineage progression and myelination during early postnatal development remain unclear. Here, we investigated the effects of Foxg1 deficiency on myelin development in the mouse brain by conditional deletion of Foxg1 in neural progenitors using NestinCreER;Foxg1fl/fl mice and tamoxifen induction at postnatal day 0 (P0). We found that Foxg1 deficiency resulted in a transient delay in myelination, evidenced by decreased myelin formation within the first two weeks after birth, but ultimately recovered to the control levels by P30. We also found that Foxg1 deletion prevented the timely attenuation of platelet-derived growth factor receptor alpha (PDGFRα) signaling and reduced the cell cycle exit of oligodendrocyte precursor cells (OPCs), leading to their excessive proliferation and delayed maturation. Additionally, Foxg1 deletion increased the expression of Hes5, a myelin formation inhibitor, as well as Olig2 and Sox10, two promoters of OPC differentiation. Our results reveal the important role of Foxg1 in myelin development and provide new clues for further exploring the pathological mechanisms of FOXG1 syndrome.
Collapse
Affiliation(s)
- Guangliang Cao
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Congli Sun
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hualin Shen
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Dewei Qu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Chuanlu Shen
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haiqin Lu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| |
Collapse
|
13
|
Hettige NC, Fleming P, Semenak A, Zhang X, Peng H, Hagel MD, Théroux JF, Zhang Y, Ni A, Jefri M, Antonyan L, Alsuwaidi S, Schuppert A, Stumpf PS, Ernst C. FOXG1 targets BMP repressors and cell cycle inhibitors in human neural progenitor cells. Hum Mol Genet 2023; 32:2511-2522. [PMID: 37216650 PMCID: PMC10360395 DOI: 10.1093/hmg/ddad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing. We also performed deep RNA sequencing of NPCs from two females with loss-of-function mutations in FOXG1 and their healthy biological mothers. Integrative analyses of RNA and ChIP sequencing data showed that cell cycle regulation and Bone Morphogenic Protein (BMP) repression gene ontology categories were over-represented as FOXG1 targets. Using engineered brain cell lines, we show that FOXG1 specifically activates SMAD7 and represses CDKN1B. Activation of SMAD7 which inhibits BMP signaling may be one way that FOXG1 patterns the forebrain, while repression of cell cycle regulators such as CDKN1B may be one way that FOXG1 expands the NPC pool to ensure proper brain size. Our data reveal novel mechanisms on how FOXG1 may control forebrain patterning and cell proliferation in human brain development.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Peter Fleming
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amelia Semenak
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Marc-Daniel Hagel
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | | | - Ying Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
14
|
Park J, Moon JH, O'Shea H, Shin D, Hwang SU, Li L, Lee H, Brimble E, Lee J, Clark S, Lee SK, Jeon S. The patient-specific mouse model with Foxg1 frameshift mutation uncovers the pathophysiology of FOXG1 syndrome. RESEARCH SQUARE 2023:rs.3.rs-2953760. [PMID: 37398410 PMCID: PMC10312924 DOI: 10.21203/rs.3.rs-2953760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Single allelic mutations in the gene encoding the forebrain-specific transcription factor FOXG1 lead to FOXG1 syndrome (FS). Patient-specific animal models are needed to understand the etiology of FS, as FS patients show a wide spectrum of symptoms correlated with location and mutation type in the FOXG1 gene. Here we report the first patient-specific FS mouse model, Q84Pfs heterozygous (Q84Pfs-Het) mice, mimicking one of the most predominant single nucleotide variants in FS. Intriguingly, we found that Q84Pfs-Het mice faithfully recapitulate human FS phenotypes at the cellular, brain structural, and behavioral levels. Importantly, Q84Pfs-Het mice exhibited myelination deficits like FS patients. Further, our transcriptome analysis of Q84Pfs-Het cortex revealed a new role for FOXG1 in synapse and oligodendrocyte development. The dysregulated genes in Q84Pfs-Het brains also predicted motor dysfunction and autism-like phenotypes. Correspondingly, Q84Pfs-Het mice showed movement deficits, repetitive behaviors, increased anxiety, and prolonged behavior arrest. Together, our study revealed the crucial postnatal role of FOXG1 in neuronal maturation and myelination and elucidated the essential pathophysiology mechanisms of FS.
Collapse
|
15
|
Multimodal epigenetic changes and altered NEUROD1 chromatin binding in the mouse hippocampus underlie FOXG1 syndrome. Proc Natl Acad Sci U S A 2023; 120:e2122467120. [PMID: 36598943 PMCID: PMC9926245 DOI: 10.1073/pnas.2122467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.
Collapse
|
16
|
Lu G, Zhang Y, Xia H, He X, Xu P, Wu L, Li D, Ma L, Wu J, Peng Q. Identification of a de novo mutation of the FOXG1 gene and comprehensive analysis for molecular factors in Chinese FOXG1-related encephalopathies. Front Mol Neurosci 2022; 15:1039990. [PMID: 36568277 PMCID: PMC9768341 DOI: 10.3389/fnmol.2022.1039990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background FOXG1-related encephalopathy, also known as FOXG1 syndrome or FOXG1-related disorder, affects most aspects of development and causes microcephaly and brain malformations. This syndrome was previously considered to be the congenital variant of Rett syndrome. The abnormal function or expression of FOXG1, caused by intragenic mutations, microdeletions or microduplications, was considered to be crucial pathological factor for this disorder. Currently, most of the FOXG1-related encephalopathies have been identified in Europeans and North Americans, and relatively few Chinese cases were reported. Methods Array-Comparative Genomic Hybridization (Array-CGH) and whole-exome sequencing (WES) were carried out for the proband and her parent to detect pathogenic variants. Results A de novo nonsense mutation (c.385G>T, p.Glu129Ter) of FOXG1 was identified in a female child in a cohort of 73 Chinese children with neurodevelopmental disorders/intellectual disorders (NDDs/IDs). In order to have a comprehensive view of FOXG1-related encephalopathy in China, relevant published reports were browsed and twelve cases with mutations in FOXG1 or copy number variants (CNVs) involving FOXG1 gene were involved in the analysis eventually. Feeding difficulties, seizures, delayed speech, corpus callosum hypoplasia and underdevelopment of frontal and temporal lobes occurred in almost all cases. Out of the 12 cases, eight patients (66.67%) had single-nucleotide mutations of FOXG1 gene and four patients (33.33%) had CNVs involving FOXG1 (3 microdeletions and 1 microduplication). The expression of FOXG1 could also be potentially disturbed by deletions of several brain-active regulatory elements located in intergenic FOXG1-PRKD1 region. Further analysis indicated that PRKD1 might be a cooperating factor to regulate the expression of FOXG1, MECP2 and CDKL5 to contribute the RTT/RTT-like disorders. Discussion This re-analysis would broaden the existed knowledge about the molecular etiology and be helpful for diagnosis, treatment, and gene therapy of FOXG1-related disorders in the future.
Collapse
Affiliation(s)
- Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Strategic Support Force Medical Center, Beijing, China
| | - Huiyun Xia
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xiaoyan He
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Pei Xu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Lianying Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Ding Li
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
17
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Santos-Durán GN, Ferreiro-Galve S, Mazan S, Anadón R, Rodríguez-Moldes I, Candal E. Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Front Neuroanat 2022; 16:901451. [PMID: 35991967 PMCID: PMC9385951 DOI: 10.3389/fnana.2022.901451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
Collapse
Affiliation(s)
- Gabriel N. Santos-Durán
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Susana Ferreiro-Galve
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Sylvie Mazan
- CNRS-UMR 7232, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Paris, France
| | - Ramón Anadón
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Eva Candal
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
- *Correspondence: Eva Candal,
| |
Collapse
|
19
|
Metwalli AH, Abellán A, Freixes J, Pross A, Desfilis E, Medina L. Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Front Neuroanat 2022; 16:883537. [PMID: 35645737 PMCID: PMC9133795 DOI: 10.3389/fnana.2022.883537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Based on the coexpression of the transcription factors Foxg1 and Otp, we recently identified in the mouse a new radial embryonic division named the telencephalon-opto-hypothalamic (TOH) domain that produces the vast majority of glutamatergic neurons found in the medial extended amygdala. To know whether a similar division exists in other amniotes, we carried out double labeling of Foxg1 and Otp in embryonic brain sections of two species of sauropsids, the domestic chicken (Gallus gallus domesticus), and the long-tailed lacertid lizard (Psammodromus algirus). Since in mice Otp overlaps with the transcription factor Sim1, we also analyzed the coexpression of Foxg1 and Sim1 and compared it to the glutamatergic cell marker VGLUT2. Our results showed that the TOH domain is also present in sauropsids and produces subpopulations of Otp/Foxg1 and Sim1/Foxg1 cells for the medial extended amygdala. In addition, we found Sim1/Foxg1 cells that invade the central extended amygdala, and other Otp and Sim1 cells not coexpressing Foxg1 that invade the extended and the pallial amygdala. These different Otp and Sim1 cell subpopulations, with or without Foxg1, are likely glutamatergic. Our results highlight the complex divisional organization of telencephalon-hypothalamic transition, which contributes to the heterogeneity of amygdalar cells. In addition, our results open new venues to study further the amygdalar cells derived from different divisions around this transition zone and their relationship to other cells derived from the pallium or the subpallium.
Collapse
Affiliation(s)
- Alek H. Metwalli
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Júlia Freixes
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
20
|
Tascini G, Dell'Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Sleep Disorders in Rett Syndrome and Rett-Related Disorders: A Narrative Review. Front Neurol 2022; 13:817195. [PMID: 35299616 PMCID: PMC8923297 DOI: 10.3389/fneur.2022.817195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and severe X-linked developmental brain disorder that occurs primarily in females, with a ratio of 1:10.000. De novo mutations in the Methyl-CpG Binding protein 2 (MECP2) gene on the long arm of X chromosome are responsible for more than 95% cases of classical Rett. In the remaining cases (atypical Rett), other genes are involved such as the cyclin-dependent kinase-like 5 (CDKL5) and the forkhead box G1 (FOXG1). Duplications of the MECP2 locus cause MECP2 duplication syndrome (MDS) which concerns about 1% of male patients with intellectual disability. Sleep disorders are common in individuals with intellectual disability, while the prevalence in children is between 16 and 42%. Over 80% of individuals affected by RTT show sleep problems, with a higher prevalence in the first 7 years of life and some degree of variability in correlation to age and genotype. Abnormalities in circadian rhythm and loss of glutamate homeostasis play a key role in the development of these disorders. Sleep disorders, epilepsy, gastrointestinal problems characterize CDKL5 Deficiency Disorder (CDD). Sleep impairment is an area of overlap between RTT and MECP2 duplication syndrome along with epilepsy, regression and others. Sleep dysfunction and epilepsy are deeply linked. Sleep deprivation could be an aggravating factor of epilepsy and anti-comitial therapy could interfere in sleep structure. Epilepsy prevalence in atypical Rett syndrome with severe clinical phenotype is higher than in classical Rett syndrome. However, RTT present a significant lifetime risk of epilepsy too. Sleep disturbances impact on child's development and patients' families and the evidence for its management is still limited. The aim of this review is to analyze pathophysiology, clinical features, the impact on other comorbidities and the management of sleep disorders in Rett syndrome and Rett-related syndrome.
Collapse
Affiliation(s)
- Giorgia Tascini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
21
|
Frisari S, Santo M, Hosseini A, Manzati M, Giugliano M, Mallamaci A. Multidimensional Functional Profiling of Human Neuropathogenic FOXG1 Alleles in Primary Cultures of Murine Pallial Precursors. Int J Mol Sci 2022; 23:ijms23031343. [PMID: 35163265 PMCID: PMC8835715 DOI: 10.3390/ijms23031343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
FOXG1 is an ancient transcription factor gene mastering telencephalic development. A number of distinct structural FOXG1 mutations lead to the “FOXG1 syndrome”, a complex and heterogeneous neuropathological entity, for which no cure is presently available. Reconstruction of primary neurodevelopmental/physiological anomalies evoked by these mutations is an obvious pre-requisite for future, precision therapy of such syndrome. Here, as a proof-of-principle, we functionally scored three FOXG1 neuropathogenic alleles, FOXG1G224S, FOXG1W308X, and FOXG1N232S, against their healthy counterpart. Specifically, we delivered transgenes encoding for them to dedicated preparations of murine pallial precursors and quantified their impact on selected neurodevelopmental and physiological processes mastered by Foxg1: pallial stem cell fate choice, proliferation of neural committed progenitors, neuronal architecture, neuronal activity, and their molecular correlates. Briefly, we found that FOXG1G224S and FOXG1W308X generally performed as a gain- and a loss-of-function-allele, respectively, while FOXG1N232S acted as a mild loss-of-function-allele or phenocopied FOXG1WT. These results provide valuable hints about processes misregulated in patients heterozygous for these mutations, to be re-addressed more stringently in patient iPSC-derivative neuro-organoids. Moreover, they suggest that murine pallial cultures may be employed for fast multidimensional profiling of novel, human neuropathogenic FOXG1 alleles, namely a step propedeutic to timely delivery of therapeutic precision treatments.
Collapse
Affiliation(s)
- Simone Frisari
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
| | - Manuela Santo
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
| | - Ali Hosseini
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Matteo Manzati
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Michele Giugliano
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Antonello Mallamaci
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
- Correspondence:
| |
Collapse
|
22
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:305-317. [PMID: 34537767 DOI: 10.1159/000519026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
23
|
Miyoshi G, Ueta Y, Natsubori A, Hiraga K, Osaki H, Yagasaki Y, Kishi Y, Yanagawa Y, Fishell G, Machold RP, Miyata M. FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nat Commun 2021; 12:3773. [PMID: 34145239 PMCID: PMC8213811 DOI: 10.1038/s41467-021-23987-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kou Hiraga
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hironobu Osaki
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Gord Fishell
- NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Stanley Center at the Broad Institute, Cambridge, MA, USA
| | - Robert P Machold
- NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
24
|
Morales L, Castro-Robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. J Comp Neurol 2021; 529:2418-2449. [PMID: 33386618 DOI: 10.1002/cne.25103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp-eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon-opto-hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp-lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic-like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.
Collapse
Affiliation(s)
- Lorena Morales
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Beatriz Castro-Robles
- Laboratory of Cerebrovascular, Neurodegenerative and Neuro-oncology Diseases, Research Unit, Complejo Hospitalario Universitario de Albacete, Castilla-La Mancha, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| |
Collapse
|
25
|
Ding Y, Meng W, Kong W, He Z, Chai R. The Role of FoxG1 in the Inner Ear. Front Cell Dev Biol 2020; 8:614954. [PMID: 33344461 PMCID: PMC7744801 DOI: 10.3389/fcell.2020.614954] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural deafness is mainly caused by damage to the tissues of the inner ear, and hearing impairment has become an increasingly serious global health problem. When the inner ear is abnormally developed or is damaged by inflammation, ototoxic drugs, or blood supply disorders, auditory signal transmission is inhibited resulting in hearing loss. Forkhead box G1 (FoxG1) is an important nuclear transcriptional regulator, which is related to the differentiation, proliferation, development, and survival of cells in the brain, telencephalon, inner ear, and other tissues. Previous studies have shown that when FoxG1 is abnormally expressed, the development and function of inner ear hair cells is impaired. This review discusses the role and regulatory mechanism of FoxG1 in inner ear tissue from various aspects – such as the effect on inner ear development, the maintenance of inner ear structure and function, and its role in the inner ear when subjected to various stimulations or injuries – in order to explain the potential significance of FoxG1 as a new target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Direct Conversion of Human Stem Cell-Derived Glial Progenitor Cells into GABAergic Interneurons. Cells 2020; 9:cells9112451. [PMID: 33182669 PMCID: PMC7698048 DOI: 10.3390/cells9112451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Glial progenitor cells are widely distributed in brain parenchyma and represent a suitable target for future therapeutic interventions that generate new neurons via in situ reprogramming. Previous studies have shown successful reprogramming of mouse glia into neurons whereas the conversion of human glial cells remains challenging due to the limited accessibility of human brain tissue. Here, we have used a recently developed stem cell-based model of human glia progenitor cells (hGPCs) for direct neural reprogramming by overexpressing a set of transcription factors involved in GABAergic interneuron fate specification. GABAergic interneurons play a key role in balancing excitatory and inhibitory neural circuitry in the brain and loss or dysfunction of these have been implicated in several neurological disorders such as epilepsy, schizophrenia, and autism. Our results demonstrate that hGPCs successfully convert into functional induced neurons with postsynaptic activity within a month. The induced neurons have properties of GABAergic neurons, express subtype-specific interneuron markers (e.g. parvalbumin) and exhibit a complex neuronal morphology with extensive dendritic trees. The possibility of inducing GABAergic interneurons from a renewable in vitro hGPC system could provide a foundation for the development of therapies for interneuron pathologies.
Collapse
|
27
|
Du A, Wu X, Chen H, Bai QR, Han X, Liu B, Zhang X, Ding Z, Shen Q, Zhao C. Foxg1 Directly Represses Dbx1 to Confine the POA and Subsequently Regulate Ventral Telencephalic Patterning. Cereb Cortex 2020; 29:4968-4981. [PMID: 30843579 DOI: 10.1093/cercor/bhz037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
During early development, signaling centers, such as the cortical hem and the preoptic area (POA), are critical for telencephalic patterning. However, the mechanisms underlying the maintenance of signal centers are poorly understood. Here, we report that the transcription factor Foxg1 is required to confine the POA, a resource of Sonic Hedgehog (Shh) that is pivotal for ventral telencephalic development. Cell-specific deletion of Foxg1 achieved by crossing Foxg1fl/fl with Dbx1-cre or Nestin-CreER combined with tamoxifen induction results in a dramatic expansion of the POA accompanied by the significantly increased activity of the Shh signaling pathway. Ventral pattern formation was severely impaired. Moreover, we demonstrated that Foxg1 directly represses Dbx1 to restrict the POA. Furthermore, we found that the ventral pallium was expanded, which might also contribute to the observed patterning defects. These findings will improve our understanding of the maintenance of signal centers and help to elucidate the mechanisms underlying ventral telencephalic patterning.
Collapse
Affiliation(s)
- Ailing Du
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hanhan Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qing-Ran Bai
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaohu Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhaoying Ding
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qin Shen
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of histology and embryology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
28
|
Falcone C, Santo M, Liuzzi G, Cannizzaro N, Grudina C, Valencic E, Peruzzotti-Jametti L, Pluchino S, Mallamaci A. Foxg1 Antagonizes Neocortical Stem Cell Progression to Astrogenesis. Cereb Cortex 2020; 29:4903-4918. [PMID: 30821834 DOI: 10.1093/cercor/bhz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.
Collapse
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Noemi Cannizzaro
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Clara Grudina
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Erica Valencic
- Department of Diagnostics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| |
Collapse
|
29
|
A Simple Differentiation Protocol for Generation of Induced Pluripotent Stem Cell-Derived Basal Forebrain-Like Cholinergic Neurons for Alzheimer's Disease and Frontotemporal Dementia Disease Modeling. Cells 2020; 9:cells9092018. [PMID: 32887382 PMCID: PMC7564334 DOI: 10.3390/cells9092018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022] Open
Abstract
The study of neurodegenerative diseases using pluripotent stem cells requires new methods to assess neurodevelopment and neurodegeneration of specific neuronal subtypes. The cholinergic system, characterized by its use of the neurotransmitter acetylcholine, is one of the first to degenerate in Alzheimer’s disease and is also affected in frontotemporal dementia. We developed a differentiation protocol to generate basal forebrain-like cholinergic neurons (BFCNs) from induced pluripotent stem cells (iPSCs) aided by the use of small molecule inhibitors and growth factors. Ten iPSC lines were successfully differentiated into BFCNs using this protocol. The neuronal cultures were characterised through RNA and protein expression, and functional analysis of neurons was confirmed by whole-cell patch clamp. We have developed a reliable protocol using only small molecule inhibitors and growth factors, while avoiding transfection or cell sorting methods, to achieve a BFCN culture that expresses the characteristic markers of cholinergic neurons.
Collapse
|
30
|
Tigani W, Rossi MP, Artimagnella O, Santo M, Rauti R, Sorbo T, Ulloa Severino FP, Provenzano G, Allegra M, Caleo M, Ballerini L, Bozzi Y, Mallamaci A. Foxg1 Upregulation Enhances Neocortical Activity. Cereb Cortex 2020; 30:5147-5165. [PMID: 32383447 DOI: 10.1093/cercor/bhaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.
Collapse
Affiliation(s)
- Wendalina Tigani
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Moira Pinzan Rossi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy.,AgenTus Therapeutics, Inc., Cambridge CB4 OWG, United Kingdom
| | - Osvaldo Artimagnella
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Rossana Rauti
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy.,Dept. Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Teresa Sorbo
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Francesco Paolo Ulloa Severino
- Laboratory of Bionanotechnologies, Neuroscience Area, SISSA, Trieste 34136, Italy.,Cell Biology Dept, Duke University Medical Center, Duke University, Durham NC-27710, USA
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento 38123, Italy
| | - Manuela Allegra
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Laboratory G5 Circuits Neuronaux, Institut Pasteur, Paris 75015, France
| | - Matteo Caleo
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Laura Ballerini
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Yuri Bozzi
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Center for Mind/Brain Sciences, University of Trento, Trento 38068, Italy
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| |
Collapse
|
31
|
Hou PS, hAilín DÓ, Vogel T, Hanashima C. Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders. Front Cell Neurosci 2020; 14:35. [PMID: 32158381 PMCID: PMC7052011 DOI: 10.3389/fncel.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Darren Ó hAilín
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carina Hanashima
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, Tokyo, Japan
| |
Collapse
|
32
|
Barretto N, Zhang H, Powell SK, Fernando MB, Zhang S, Flaherty EK, Ho SM, Slesinger PA, Duan J, Brennand KJ. ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs. J Neurosci Methods 2020; 334:108548. [PMID: 32065989 PMCID: PMC7426253 DOI: 10.1016/j.jneumeth.2019.108548] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Somatic cell reprogramming is routinely used to generate donor-specific human induced pluripotent stem cells (hiPSCs) to facilitate studies of disease in a human context. The directed differentiation of hiPSCs can generate large quantities of patient-derived cells; however, such methodologies frequently yield heterogeneous populations of neurons and glia that require extended timelines to achieve electrophysiological maturity. More recently, transcription factor-based induction protocols have been show to rapidly generate defined neuronal populations from hiPSCs. NEW METHOD In a manner similar to our previous adaption of NGN2-glutamatergic neuronal induction from hiPSC-derived neural progenitor cells (NPCs), we now adapt an established protocol of lentiviral overexpression of ASCL1 and DLX2 to hiPSC-NPCs. RESULTS We demonstrate induction of a robust and highly pure population of functional GABAergic neurons (iGANs). Importantly, we successfully applied this technique to hiPSC-NPCs derived from ten donors across two independent laboratories, finding it to be an efficient and highly reproducible approach to generate induced GABAergic neurons. Our results show that, like hiPSC-iGANs, NPC-iGANs exhibit increased GABAergic marker expression, electrophysiological maturity, and have distinct transcriptional profiles that distinguish them from other cell-types of the brain. Nonetheless, until donor-matched hiPSCs-iGANs and NPC-iGANs are directly compared, we cannot rule out the possibility that subtle differences in patterning or maturity may exist between these populations; one should always control for cell source in all iGAN experiments. CONCLUSIONS This methodology, relying upon an easily cultured starting population of hiPSC-NPCs, makes possible the generation of large-scale defined co-cultures of induced glutamatergic and GABAergic neurons for hiPSC-based disease models and precision drug screening.
Collapse
Affiliation(s)
- Natalie Barretto
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Samuel K Powell
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Erin K Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Man Ho
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
FOXG1-Related Syndrome: From Clinical to Molecular Genetics and Pathogenic Mechanisms. Int J Mol Sci 2019; 20:ijms20174176. [PMID: 31454984 PMCID: PMC6747066 DOI: 10.3390/ijms20174176] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022] Open
Abstract
Individuals with mutations in forkhead box G1 (FOXG1) belong to a distinct clinical entity, termed “FOXG1-related encephalopathy”. There are two clinical phenotypes/syndromes identified in FOXG1-related encephalopathy, duplications and deletions/intragenic mutations. In children with deletions or intragenic mutations of FOXG1, the recognized clinical features include microcephaly, developmental delay, severe cognitive disabilities, early-onset dyskinesia and hyperkinetic movements, stereotypies, epilepsy, and cerebral malformation. In contrast, children with duplications of FOXG1 are typically normocephalic and have normal brain magnetic resonance imaging. They also have different clinical characteristics in terms of epilepsy, movement disorders, and neurodevelopment compared with children with deletions or intragenic mutations. FOXG1 is a transcriptional factor. It is expressed mainly in the telencephalon and plays a pleiotropic role in the development of the brain. It is a key player in development and territorial specification of the anterior brain. In addition, it maintains the expansion of the neural proliferating pool, and also regulates the pace of neocortical neuronogenic progression. It also facilitates cortical layer and corpus callosum formation. Furthermore, it promotes dendrite elongation and maintains neural plasticity, including dendritic arborization and spine densities in mature neurons. In this review, we summarize the clinical features, molecular genetics, and possible pathogenesis of FOXG1-related syndrome.
Collapse
|
34
|
Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y, Liu K, Lisota B, Jones JR, Petersen A, Bhattacharyya A, Palecek SP, Shusta EV, Kendziorski C, Zhang SC. Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 2019; 146:dev.170910. [PMID: 31189664 DOI: 10.1242/dev.170910] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Astrocytes display diverse morphologies in different regions of the central nervous system. Whether astrocyte diversity is attributable to developmental processes and bears functional consequences, especially in humans, is unknown. RNA-seq of human pluripotent stem cell-derived regional astrocytes revealed distinct transcript profiles, suggesting differential functional properties. This was confirmed by differential calcium signaling as well as effects on neurite growth and blood-brain barrier formation. Distinct transcriptional profiles and functional properties of human astrocytes generated from regionally specified neural progenitors under the same conditions strongly implicate the developmental impact on astrocyte diversity. These findings provide a rationale for renewed examination of regional astrocytes and their role in the pathogenesis of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Robert A Bradley
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA.,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jack Shireman
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Caya McFalls
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeea Choi
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University - Terre Haute, IN 47885, USA
| | - Yi Dong
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Katie Liu
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Brianne Lisota
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeffery R Jones
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Andrew Petersen
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Su-Chun Zhang
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA .,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI 53705, USA.,Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
35
|
Colasante G, Rubio A, Massimino L, Broccoli V. Direct Neuronal Reprogramming Reveals Unknown Functions for Known Transcription Factors. Front Neurosci 2019; 13:283. [PMID: 30971887 PMCID: PMC6445133 DOI: 10.3389/fnins.2019.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
In recent years, the need to derive sources of specialized cell types to be employed for cell replacement therapies and modeling studies has triggered a fast acceleration of novel cell reprogramming methods. In particular, in neuroscience, a number of protocols for the efficient differentiation of somatic or pluripotent stem cells have been established to obtain a renewable source of different neuronal cell types. Alternatively, several neuronal populations have been generated through direct reprogramming/transdifferentiation, which concerns the conversion of fully differentiated somatic cells into induced neurons. This is achieved through the forced expression of selected transcription factors (TFs) in the donor cell population. The reprogramming cocktail is chosen after an accurate screening process involving lists of TFs enriched into desired cell lineages. In some instances, this type of studies has revealed the crucial role of TFs whose function in the differentiation of a given specific cell type had been neglected or underestimated. Herein, we will speculate on how the in vitro studies have served to better understand physiological mechanisms of neuronal development in vivo.
Collapse
Affiliation(s)
- Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alicia Rubio
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| |
Collapse
|
36
|
Abstract
Brain development is a highly regulated process that involves the precise spatio-temporal activation of cell signaling cues. Transcription factors play an integral role in this process by relaying information from external signaling cues to the genome. The transcription factor Forkhead box G1 (FOXG1) is expressed in the developing nervous system with a critical role in forebrain development. Altered dosage of FOXG1 due to deletions, duplications, or functional gain- or loss-of-function mutations, leads to a complex array of cellular effects with important consequences for human disease including neurodevelopmental disorders. Here, we review studies in multiple species and cell models where FOXG1 dose is altered. We argue against a linear, symmetrical relationship between FOXG1 dosage states, although FOXG1 levels at the right time and place need to be carefully regulated. Neurodevelopmental disease states caused by mutations in FOXG1 may therefore be regulated through different mechanisms.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Han X, Gu X, Zhang Q, Wang Q, Cheng Y, Pleasure SJ, Zhao C. FoxG1 Directly Represses Dentate Granule Cell Fate During Forebrain Development. Front Cell Neurosci 2018; 12:452. [PMID: 30532694 PMCID: PMC6265346 DOI: 10.3389/fncel.2018.00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023] Open
Abstract
The cortex consists of 100s of neuronal subtypes that are organized into distinct functional regions; however, the mechanisms underlying cell fate determination remain unclear. Foxg1 is involved in several developmental processes, including telencephalic patterning, cell proliferation and cell fate determination. Constitutive disruption of Foxg1 leads to the transformation of cortical neurons into Cajal-Retzius (CR) cells, accompanied by a substantial expansion of the cortical hem through the consumption of the cortex. However, rather than the induction of a cell fate switch, another group has reported a large lateral to medial repatterning of the developing telencephalon as the explanation for this change in cell type output. Here, we conditionally disrupted Foxg1 in telencephalic progenitor cells by crossing Foxg1fl/fl mice with Nestin-CreERTM mice combined with tamoxifen (TM) induction at distinct developmental stages beginning at E10.5 to further elucidate the role of FoxG1 in cell fate determination after telencephalon pattern formation. The number of dentate gyrus (DG) granule-like cells was significantly increased in the cortex. The increase was even detected after deletion at E14.5. In vivo mosaic deletion and in vitro cell culture further revealed a cell-autonomous role for FoxG1 in repressing granule cell fate. However, the cortical hem, which is required for the patterning and the development of the hippocampus, was only slightly enlarged and thus may not contribute to the cell fate switch. Lef1 expression was significantly upregulated in the lateral, cortical VZ and FoxG1 may function upstream of Wnt signaling. Our results provide new insights into the functions of FoxG1 and the mechanisms of cell fate determination during telencephalic development.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Xiaochun Gu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Qianqian Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Qingxia Wang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Yao Cheng
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Samuel J Pleasure
- Programs in Neuroscience and Developmental Stem Cell Biology, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Ma K, Deng X, Xia X, Fan Z, Qi X, Wang Y, Li Y, Ma Y, Chen Q, Peng H, Ding J, Li C, Huang Y, Tian C, Zheng JC. Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl Neurodegener 2018; 7:29. [PMID: 30410751 PMCID: PMC6217767 DOI: 10.1186/s40035-018-0132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. METHODS Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. RESULTS Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. CONCLUSIONS Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangmu Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Xiaobei Deng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Zhaohuan Fan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yongxiang Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yuju Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Qiang Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Hui Peng
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Changhai Tian
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
39
|
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 2018; 144:43-57. [PMID: 30336149 DOI: 10.1016/j.neuropharm.2018.10.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated. In this study, we took advantage of transgenic mice that have a specific knockout of Foxg1 in HCs, thus allowing us to explore the role of FOXG1 in postnatal HC development and survival. In the Foxg1 conditional knockout (CKO) HCs, an extra row of HCs appeared in the apical turn of the cochlea and some parts of the middle turn at postnatal day (P)1 and P7; however, these HCs gradually underwent apoptosis, and the HC number was significantly decreased by P21. Auditory brainstem response tests showed that the Foxg1 CKO mice had lost their hearing by P30. The RNA-Seq results and the qPCR verification both showed that the Wnt, Notch, IGF, EGF, and Hippo signaling pathways were down-regulated in the HCs of Foxg1 CKO mice. The significant down-regulation of the Notch signaling pathway might be the reason for the increased numbers of HCs in the cochleae of Foxg1 CKO mice at P1 and P7, while the down-regulation of the Wnt, IGF, and EGF signaling pathways might lead to subsequent HC apoptosis. Together, these results indicate that knockout of Foxg1 induces an extra row of HCs via Notch signaling inhibition and induces subsequent apoptosis of these HCs by inhibiting the Wnt, IGF, and EGF signaling pathways. This study thus provides new evidence for the function and mechanism of FOXG1 in HC development and survival in mice.
Collapse
Affiliation(s)
- Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lusen Shi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China; Center of Depression, Beijing Institute for Brain Disorders, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
40
|
Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun 2018; 504:46-53. [PMID: 30172378 DOI: 10.1016/j.bbrc.2018.08.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND To investigate the effects and underlying molecular mechanisms of FoxG1 expression on glioblastoma multiforme (GBM) models. METHODS Expression levels of FoxG1 and other cancer-related biomarkers were evaluated by qRT-PCR, immunoblotting and immunohistochemistry. Crystal violet staining and MTT assay and were applied in this study to verify cell proliferation ability and viability of GBM cell models with/without drug treatment. RESULTS Immunohistochemical and qRT-PCR assays showed that endogenous FoxG1 expression levels were positively correlated to the GBM disease progression. Overexpression of FoxG1 protein resulted in increased cell viability, G2/M cell cycle arrest, as well as the downregulation of p21 and cyclin B1. In addition, western blot assays reported that enforced expression of FoxG1 suppressed GAPF and facilitated the expression of Sox2 and Sox5. Meanwhile the downstream targets of FoxG1, such as FoxO1 and pSmad1/5/8 were activated. Overexpression of FoxG1 under TMZ treatment restored the cell viability as well as the expression levels of Sox2 and Sox5, yet downregulated expression levels of p21 and cyclin B1. The downstream FoxG1-induced FoxO/Smad signaling was re-inhibited under TMZ treatments. CONCLUSIONS Our findings suggest that FoxG1 functions as an onco-factor by promoting proliferation, as well as inhibiting differential responses in glioblastoma by downregulating FoxO/Smad signaling.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingchao Wang
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Jin
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Zhou
- Department of Neurosurgery, Renmin Hospital of Hubei University of Medicine, Hubei, 442000, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
41
|
Chiola S, Do MD, Centrone L, Mallamaci A. Foxg1 Overexpression in Neocortical Pyramids Stimulates Dendrite Elongation Via Hes1 and pCreb1 Upregulation. Cereb Cortex 2018; 29:1006-1019. [DOI: 10.1093/cercor/bhy007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simone Chiola
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Mihn Duc Do
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Lucy Centrone
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Antonello Mallamaci
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| |
Collapse
|
42
|
Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A 2018; 115:E762-E771. [PMID: 29311338 DOI: 10.1073/pnas.1715865115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that early neurodevelopmental defects in Huntington's disease (HD) patients could contribute to the later adult neurodegenerative phenotype. Here, by using HD-derived induced pluripotent stem cell lines, we report that early telencephalic induction and late neural identity are affected in cortical and striatal populations. We show that a large CAG expansion causes complete failure of the neuro-ectodermal acquisition, while cells carrying shorter CAGs repeats show gross abnormalities in neural rosette formation as well as disrupted cytoarchitecture in cortical organoids. Gene-expression analysis showed that control organoid overlapped with mature human fetal cortical areas, while HD organoids correlated with the immature ventricular zone/subventricular zone. We also report that defects in neuroectoderm and rosette formation could be rescued by molecular and pharmacological approaches leading to a recovery of striatal identity. These results show that mutant huntingtin precludes normal neuronal fate acquisition and highlights a possible connection between mutant huntingtin and abnormal neural development in HD.
Collapse
|
43
|
Kumamoto T, Hanashima C. Evolutionary conservation and conversion of Foxg1 function in brain development. Dev Growth Differ 2017; 59:258-269. [PMID: 28581027 DOI: 10.1111/dgd.12367] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Among the forkhead box protein family, Foxg1 is a unique transcription factor that plays pleiotropic and non-redundant roles in vertebrate brain development. The emergence of the telencephalon at the rostral end of the neural tube and its subsequent expansion that is mediated by Foxg1 was a key reason for the vertebrate brain to acquire higher order information processing, where Foxg1 is repetitively used in the sequential events of telencephalic development to control multi-steps of brain circuit formation ranging from cell cycle control to neuronal differentiation in a clade- and species-specific manner. The objective of this review is to discuss how the evolutionary changes in cis- and trans-regulatory network that is mediated by a single transcription factor has contributed to determining the fundamental vertebrate brain structure and its divergent roles in instructing species-specific neuronal circuitry and functional specialization.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 75012, Paris, France
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.,Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| |
Collapse
|
44
|
Temporal variations in early developmental decisions: an engine of forebrain evolution. Curr Opin Neurobiol 2017; 42:152-159. [PMID: 28092740 DOI: 10.1016/j.conb.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/21/2022]
Abstract
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition.
Collapse
|
45
|
Geng X, Acosta S, Lagutin O, Gil HJ, Oliver G. Six3 dosage mediates the pathogenesis of holoprosencephaly. Development 2016; 143:4462-4473. [PMID: 27770010 PMCID: PMC5201039 DOI: 10.1242/dev.132142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/12/2016] [Indexed: 01/06/2023]
Abstract
Holoprosencephaly (HPE) is defined as the incomplete separation of the two cerebral hemispheres. The pathology of HPE is variable and, based on the severity of the defect, HPE is divided into alobar, semilobar, and lobar. Using a novel hypomorphic Six3 allele, we demonstrate in mice that variability in Six3 dosage results in different HPE phenotypes. Furthermore, we show that whereas the semilobar phenotype results from severe downregulation of Shh expression in the rostral diencephalon ventral midline, the alobar phenotype is caused by downregulation of Foxg1 expression in the anterior neural ectoderm. Consistent with these results, in vivo activation of the Shh signaling pathway rescued the semilobar phenotype but not the alobar phenotype. Our findings show that variations in Six3 dosage result in different forms of HPE.
Collapse
Affiliation(s)
- Xin Geng
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sandra Acosta
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Oleg Lagutin
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyea Jin Gil
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10:101-120. [PMID: 27721656 PMCID: PMC5053108 DOI: 10.4137/jen.s32843] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.
Collapse
Affiliation(s)
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Humann J, Mann B, Gao G, Moresco P, Ramahi J, Loh LN, Farr A, Hu Y, Durick-Eder K, Fillon SA, Smeyne RJ, Tuomanen EI. Bacterial Peptidoglycan Traverses the Placenta to Induce Fetal Neuroproliferation and Aberrant Postnatal Behavior. Cell Host Microbe 2016; 19:388-99. [PMID: 26962947 PMCID: PMC4787272 DOI: 10.1016/j.chom.2016.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/04/2016] [Accepted: 02/21/2016] [Indexed: 11/26/2022]
Abstract
Maternal infection during pregnancy is associated with adverse outcomes for the fetus, including postnatal cognitive disorders. However, the underlying mechanisms are obscure. We find that bacterial cell wall peptidoglycan (CW), a universal PAMP for TLR2, traverses the murine placenta into the developing fetal brain. In contrast to adults, CW-exposed fetal brains did not show any signs of inflammation or neuronal death. Instead, the neuronal transcription factor FoxG1 was induced, and neuroproliferation leading to a 50% greater density of neurons in the cortical plate was observed. Bacterial infection of pregnant dams, followed by antibiotic treatment, which releases CW, yielded the same result. Neuroproliferation required TLR2 and was recapitulated in vitro with fetal neuronal precursor cells and TLR2/6, but not TLR2/1, ligands. The fetal neuroproliferative response correlated with abnormal cognitive behavior in CW-exposed pups following birth. Thus, the bacterial CW-TLR2 signaling axis affects fetal neurodevelopment and may underlie postnatal cognitive disorders.
Collapse
Affiliation(s)
- Jessica Humann
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Philip Moresco
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph Ramahi
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lip Nam Loh
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arden Farr
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yunming Hu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kelly Durick-Eder
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sophie A Fillon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J Smeyne
- Department of Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elaine I Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
48
|
Frullanti E, Amabile S, Lolli MG, Bartolini A, Livide G, Landucci E, Mari F, Vaccarino FM, Ariani F, Massimino L, Renieri A, Meloni I. Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice. Eur J Hum Genet 2016; 24:252-7. [PMID: 25966633 PMCID: PMC4717204 DOI: 10.1038/ejhg.2015.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Foxg1 gene encodes for a transcription factor essential for telencephalon development in the embryonic mammalian forebrain. Its complete absence is embryonic lethal while Foxg1 heterozygous mice are viable but display microcephaly, altered hippocampal neurogenesis and behavioral and cognitive deficiencies. In order to evaluate the effects of Foxg1 alteration in adult brain, we performed expression profiling in total brains from Foxg1+/- heterozygous mutants and wild-type littermates. We identified statistically significant differences in expression levels for 466 transcripts (P<0.001), 29 of which showed a fold change ≥ 1.5. Among the differentially expressed genes was found a group of genes expressed in the basal ganglia and involved in the control of movements. A relevant (three to sevenfold changes) and statistically significant increase of expression, confirmed by qRT-PCR, was found in two highly correlated genes with expression restricted to the hypothalamus: Oxytocin (Oxt) and Arginine vasopressin (Avp). These neuropeptides have an important role in maternal and social behavior, and their alteration is associated with impaired social interaction and autistic behavior. In addition, Neuronatin (Nnat) levels appear significantly higher both in Foxg1+/- whole brain and in hippocampal neurons after silencing Foxg1, strongly suggesting that it is directly or indirectly repressed by Foxg1. During fetal and neonatal brain development, Nnat may regulate neuronal excitability, receptor trafficking and calcium-dependent signaling and, in the adult brain, it is predominantly expressed in parvalbumin-positive GABAergic interneurons. Overall, these results implicate the overexpression of a group of neuropeptides in the basal ganglia, hypothalamus, cortex and hippocampus in the pathogenesis FOXG1 behavioral impairments.
Collapse
Affiliation(s)
- Elisa Frullanti
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Anna Bartolini
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Gabriella Livide
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Francesca Mari
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Flora M Vaccarino
- Child Study Center and Department of Neurobiology, Yale University, New Haven, CT, USA
| | - Francesca Ariani
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | | | - Alessandra Renieri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | | |
Collapse
|
49
|
Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M, Leo D, Alexopoulou D, Dell'Anno MT, Ciabatti E, Orlando M, Studer M, Dahl A, Gainetdinov RR, Taverna S, Benfenati F, Broccoli V. Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell 2015; 17:719-734. [PMID: 26526726 DOI: 10.1016/j.stem.2015.09.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 06/21/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
Abstract
Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.
Collapse
Affiliation(s)
- Gaia Colasante
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Gabriele Lignani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Alicia Rubio
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Latefa Yekhlef
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Sessa
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Silvio Sacchetti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Dimitra Alexopoulou
- Deep Sequencing Group, Biotechnology Center TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | | | - Ernesto Ciabatti
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Marta Orlando
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Studer
- University of Nice-Sophia Antipolis, 06108 Nice, France; INSERM, iBV, UMR 1091, 06108 Nice, France
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Raul R Gainetdinov
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stefano Taverna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Vania Broccoli
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|
50
|
Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate. Cell Rep 2015; 12:1414-29. [PMID: 26299970 DOI: 10.1016/j.celrep.2015.07.061] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/29/2015] [Indexed: 02/08/2023] Open
Abstract
Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1) as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11) translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.
Collapse
|