1
|
Campanini ML, Almeida JP, Martins CS, de Castro M. The molecular pathogenesis of craniopharyngiomas. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:266-275. [PMID: 36748936 PMCID: PMC10689043 DOI: 10.20945/2359-3997000000600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023]
Abstract
Research from the last 20 years has provided important insights into the molecular pathogenesis of craniopharyngiomas (CPs). Besides the well-known clinical and histological differences between the subtypes of CPs, adamantinomatous (ACP) and papillary (PCP) craniopharyngiomas, other molecular differences have been identified, further elucidating pathways related to the origin and development of such tumors. The present minireview assesses current knowledge on embryogenesis and the genetic, epigenetic, transcriptomic, and signaling pathways involved in the ACP and PCP subtypes, revealing the similarities and differences in their profiles. ACP and PCP subtypes can be identified by the presence of mutations in CTNNB1 and BRAF genes, with prevalence around 60% and 90%, respectively. Therefore, β-catenin accumulates in the nucleus-cytoplasm of cell clusters in ACPs and, in PCPs, cell immunostaining with specific antibody against the V600E-mutated protein can be seen. Distinct patterns of DNA methylation further differentiate ACPs and PCPs. In addition, research on genetic and epigenetic changes and tumor microenvironment specificities have further clarified the development and progression of the disease. No relevant transcriptional differences in ACPs have emerged between children and adults. In conclusion, ACPs and PCPs present diverse genetic signatures and each subtype is associated with specific signaling pathways. A better understanding of the pathways related to the growth of such tumors is paramount for the development of novel targeted therapeutic agents.
Collapse
Affiliation(s)
- Marina Lanciotti Campanini
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil,
| | - João Paulo Almeida
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Clarissa Silva Martins
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Faculdade de Medicina, Universidade Federal do Mato Grosso do Sul, Campo Grande, RS, Brasil
| | - Margaret de Castro
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
2
|
McMahon R, Sibbritt T, Aryamanesh N, Masamsetti VP, Tam PPL. Loss of Foxd4 Impacts Neurulation and Cranial Neural Crest Specification During Early Head Development. Front Cell Dev Biol 2022; 9:777652. [PMID: 35178396 PMCID: PMC8843869 DOI: 10.3389/fcell.2021.777652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The specification of anterior head tissue in the late gastrulation mouse embryo relies on signaling cues from the visceral endoderm and anterior mesendoderm (AME). Genetic loss-of-function studies have pinpointed a critical requirement of LIM homeobox 1 (LHX1) transcription factor in these tissues for the formation of the embryonic head. Transcriptome analysis of embryos with gain-of-function LHX1 activity identified the forkhead box gene, Foxd4, as one downstream target of LHX1 in late-gastrulation E7.75 embryos. Our analysis of single-cell RNA-seq data show Foxd4 is co-expressed with Lhx1 and Foxa2 in the anterior midline tissue of E7.75 mouse embryos, and in the anterior neuroectoderm (ANE) at E8.25 alongside head organizer genes Otx2 and Hesx1. To study the role of Foxd4 during early development we used CRISPR-Cas9 gene editing in mouse embryonic stem cells (mESCs) to generate bi-allelic frameshift mutations in the coding sequence of Foxd4. In an in vitro model of the anterior neural tissues derived from Foxd4-loss of function (LOF) mESCs and extraembryonic endoderm cells, expression of head organizer genes as well as Zic1 and Zic2 was reduced, pointing to a need for FOXD4 in regulating early neuroectoderm development. Mid-gestation mouse chimeras harbouring Foxd4-LOF mESCs displayed craniofacial malformations and neural tube closure defects. Furthermore, our in vitro data showed a loss of FOXD4 impacts the expression of cranial neural crest markers Twist1 and Sox9. Our findings have demonstrated that FOXD4 is essential in the AME and later in the ANE for rostral neural tube closure and neural crest specification during head development.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Nadar Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| |
Collapse
|
3
|
Gregory LC, Dattani MT. Embryologic and Genetic Disorders of the Pituitary Gland. CONTEMPORARY ENDOCRINOLOGY 2019:3-27. [DOI: 10.1007/978-3-030-11339-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Martynova NY, Eroshkin FM, Оrlov EE, Zaraisky AG. HMG-box factor SoxD/Sox15 and homeodomain-containing factor Xanf1/Hesx1 directly interact and regulate the expression of Xanf1/Hesx1 during early forebrain development in Xenopus laevis. Gene 2018; 638:52-59. [DOI: 10.1016/j.gene.2017.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
5
|
Lima Amato LG, Latronico AC, Gontijo Silveira LF. Molecular and Genetic Aspects of Congenital Isolated Hypogonadotropic Hypogonadism. Endocrinol Metab Clin North Am 2017; 46:283-303. [PMID: 28476224 DOI: 10.1016/j.ecl.2017.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Congenital isolated hypogonadotropic hypogonadism (IHH) is a clinically and genetically heterogenous disorder characterized by abnormal synthesis, secretion, or action of gonadotropin-releasing hormone, a key hypothalamic decapeptide that orchestrates the reproductive axis. Several modes of inheritance have been identified. A growing list of causative genes has been implicated in the molecular pathogenesis of syndromic and nonsyndromic IHH, largely contributing for better understanding the complex neuroendocrine control of reproduction. This article summarizes the great advances of molecular genetics of IHH and pointed up the heterogeneity and complexity of the genetic basis of this condition.
Collapse
Affiliation(s)
- Lorena Guimaraes Lima Amato
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil
| | - Ana Claudia Latronico
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil.
| | - Leticia Ferreira Gontijo Silveira
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil.
| |
Collapse
|
6
|
Abstract
This article summarizes pituitary development and function as well as specific mutations of genes encoding the following transcription factors: HESX1, LHX3, LHX4, POU1F1, PROP1, and OTX2. Although several additional genetic defects related to hypopituitarism have been identified, this article focuses on these selected factors, as they have been well described in the literature in terms of clinical characterization of affected patients and molecular mechanisms of action, and therefore, are very relevant to clinical practice.
Collapse
Affiliation(s)
- Mariam Gangat
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, Room 1360, New Brunswick, NJ 08901, USA.
| | - Sally Radovick
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, Room 4212, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Bayramov AV, Ermakova GV, Eroshkin FM, Kucheryavyy AV, Martynova NY, Zaraisky AG. The presence of Anf/Hesx1 homeobox gene in lampreys suggests that it could play an important role in emergence of telencephalon. Sci Rep 2016; 6:39849. [PMID: 28008996 PMCID: PMC5180219 DOI: 10.1038/srep39849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates’ ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates. However, the failure of Anf to be detected in one of the most basal extant vertebrate species, the lamprey, seriously compromises this hypothesis. Here, we report the cloning of Anf in three lamprey species and demonstrate that this gene is indeed expressed in embryos in the same pattern as in other vertebrates and executes the same functions by inhibiting the expression of the anterior general regulator Otx2 in favour of the telencephalic regulator FoxG1. These results are consistent with the hypothesis that the Anf homeobox gene may have been important in the evolution of the telencephalon.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexandr V Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia Y Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
8
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
10
|
Fang Q, Figueredo Benedetti AF, Ma Q, Gregory L, Li JZ, Dattani M, Sadeghi-Nejad A, Arnhold IJ, de Mendonça BB, Camper SA, Carvalho LR. HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clin Endocrinol (Oxf) 2016; 85:408-14. [PMID: 27000987 PMCID: PMC4988903 DOI: 10.1111/cen.13067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mutations in the transcription factor HESX1 can cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD) with or without septo-optic dysplasia (SOD). So far there is no clear genotype-phenotype correlation. PATIENTS AND RESULTS We report four different recessive loss-of-function mutations in three unrelated families with CPHD and no midline defects or SOD. A homozygous p.R160C mutation was found by Sanger sequencing in two siblings from a consanguineous family. These patients presented with ACTH, TSH and GH deficiencies, severe anterior pituitary hypoplasia (APH) or pituitary aplasia (PA) and normal posterior pituitary. The p.R160C mutation was previously reported in a case with SOD, CPHD and ectopic posterior pituitary (EPP). Using exome sequencing, a homozygous p.I26T mutation was found in a Brazilian patient born to consanguineous parents. This patient had evolving CPHD, normal ACTH, APH and normal posterior pituitary (NPP). A previously reported patient homozygous for p.I26T had evolving CPHD and EPP. Finally, we identified compound heterozygous mutations in HESX1, p.[R159W];[R160H], in a patient with PA and CPHD. We showed that both of these mutations abrogate the ability of HESX1 to repress PROP1-mediated transcriptional activation. A patient homozygous for p.R160H was previously reported in a patient with CPHD, EPP, APH. CONCLUSION These three examples demonstrate that HESX1 mutations cause variable clinical features in patients, which suggests an influence of modifier genes or environmental factors on the phenotype.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna Flavia Figueredo Benedetti
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louise Gregory
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mehul Dattani
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Abdollah Sadeghi-Nejad
- Division of Pediatric Endocrinology, Floating Hospital for Children at Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ivo J.P. Arnhold
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho de Mendonça
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| | - Luciani R. Carvalho
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| |
Collapse
|
11
|
Li WZ, Wang ZW, Chen LL, Xue HN, Chen X, Guo ZK, Zhang Y. Hesx1 enhances pluripotency by working downstream of multiple pluripotency-associated signaling pathways. Biochem Biophys Res Commun 2015; 464:936-42. [PMID: 26188092 DOI: 10.1016/j.bbrc.2015.07.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
Hesx1, a homeobox gene expressed in embryonic stem cells (ESCs), has been implicated in the core transcription factors governing the pluripotent state. However, data about the underlying mechanism of how Hesx1 is involved in maintaining pluripotency is still scarce. In this study, we find Hesx1 responds to multiple pluripotency-related pathway inhibitors as well as LIF stimulation. Particularly, the expression of Hesx1 can be readily induced by dual inhibition (2i) of glycogen synthase kinase 3 and mitogen-activated protein kinase. Forced expression of Hesx1 can partially compensate for the withdrawal of either LIF or each component of 2i. We also demonstrate that LIF and each inhibitor of 2i can induce Hesx1 independent of one another. We tentatively put forward that Hesx1 is a common downstream target of LIF- and 2i-mediated self-renewal signaling pathways and plays an important role in maintaining ESC identity. Our study extends the methods of identifying the missing crucial factors in establishing ESC pluripotency.
Collapse
Affiliation(s)
- Wen-Zhong Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Zhi-Wei Wang
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Lin-Lin Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Hong-Ni Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Xi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | - Ze-Kun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
12
|
Abstract
Significant progress has been made recently in unravelling the embryonic events leading to pituitary morphogenesis, both in vivo and in vitro. This includes dissection of the molecular mechanisms controlling patterning of the ventral diencephalon that regulate formation of the pituitary anlagen or Rathke's pouch. There is also a better characterisation of processes that underlie maintenance of pituitary progenitors, specification of endocrine lineages and the three-dimensional organisation of newly differentiated endocrine cells. Furthermore, a population of adult pituitary stem cells (SCs), originating from embryonic progenitors, have been described and shown to have not only regenerative potential, but also the capacity to induce tumour formation. Finally, the successful recapitulation in vitro of embryonic events leading to generation of endocrine cells from embryonic SCs, and their subsequent transplantation, represents exciting advances towards the use of regenerative medicine to treat endocrine deficits. In this review, an up-to-date description of pituitary morphogenesis will be provided and discussed with particular reference to pituitary SC studies.
Collapse
Affiliation(s)
- Karine Rizzoti
- Division of Stem Cell Biology and Developmental GeneticsMRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
13
|
Sánchez-Arrones L, Ferrán JL, Hidalgo-Sanchez M, Puelles L. Origin and early development of the chicken adenohypophysis. Front Neuroanat 2015; 9:7. [PMID: 25741242 PMCID: PMC4330794 DOI: 10.3389/fnana.2015.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 01/06/2023] Open
Abstract
The adenohypophysis (ADH) is an important endocrine organ involved in the regulation of many physiological processes. The late morphogenesis of this organ at neural tube stages is well known: the epithelial ADH primordium is recognized as an invagination of the stomodeal roof (Rathke’s pouch), whose walls later thicken and differentiate as the primordium becomes pediculated, and then fully separated from the stomodeum. The primordium attaches to the pial surface of the basal hypothalamus, next to the neurohypophyseal field (NH; future posterior pituitary), from which it was previously separated by migrating prechordal plate (pp) cells. Once the NH evaginates, the ADH surrounds it and jointly forms with it the pituitary gland. In contrast, little is known about the precise origin of the ADH precursors at neural plate stages and how the primordium reaches the stomodeum. For that reason, we produced in the chicken a specific ADH fate map at early neural plate stages, which was amplified with gene markers. By means of experiments labeling the mapped presumptive ADH, we were able to follow the initial anlage into its transformation into Rathke’s pouch. The ADH origin was corroborated to be strictly extraneural, i.e., to lie at stage HH4/5 outside of the anterior neural plate (anp) within the pre-placodal field. The ADH primordium is fully segregated from the anterior neural border cells and the neighboring olfactory placodes both in terms of precursor cells and molecular profile from head fold stages onwards. The placode becomes visible as a molecularly characteristic ectodermal thickening from stage HH10 onwards. The onset of ADH genoarchitectonic regionalization into intermediate and anterior lobes occurs at closed neural tube stages.
Collapse
Affiliation(s)
- Luisa Sánchez-Arrones
- Faculty of Medicine, Department of Human Anatomy, School of Medicine and IMIB (Instiuto Murciano de Investigación Biosanitaria), University of Murcia Murcia, Spain
| | - José L Ferrán
- Faculty of Medicine, Department of Human Anatomy, School of Medicine and IMIB (Instiuto Murciano de Investigación Biosanitaria), University of Murcia Murcia, Spain
| | - Matías Hidalgo-Sanchez
- Department of Cell Biology, Faculty of Science, University of Extremadura Badajoz, Spain
| | - Luis Puelles
- Faculty of Medicine, Department of Human Anatomy, School of Medicine and IMIB (Instiuto Murciano de Investigación Biosanitaria), University of Murcia Murcia, Spain
| |
Collapse
|
14
|
Mortensen AH, Schade V, Lamonerie T, Camper SA. Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet 2014; 24:939-53. [PMID: 25315894 DOI: 10.1093/hmg/ddu506] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland.
Collapse
Affiliation(s)
- Amanda H Mortensen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| | - Vanessa Schade
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice 06108, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| |
Collapse
|
15
|
Matsuda K, Kondoh H. Dkk1-dependent inhibition of Wnt signaling activates Hesx1 expression through its 5' enhancer and directs forebrain precursor development. Genes Cells 2014; 19:374-85. [PMID: 24520934 DOI: 10.1111/gtc.12136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2023]
Abstract
Development of the anterior forebrain precursor (AFBP) in the anterior neural plate (ANP) depends on the activation of the Hesx1 transcription factor gene. The Hesx1-expression domain of the ANP is underlain by Dkk1-expressing tissues, initially proximal-most anterior visceral endoderm (AVE), and later anterior mesendoderm (AME). As Dkk1-null embryos fail to develop the Hesx1-expressing domain, it is likely that Wnt signal inhibition in the ANP is required for the Hesx1 activation. To investigate the regulation of the AFBP development, we took advantage of epiblast stem cells (EpiSCs), which develop into the ANP in the absence of activin signaling. Expression of Hesx1 and Six3, both involved in the AFBP development, was strongly activated 2 days after activin removal and concomitant addition of Wnt signal inhibitors, Dkk1 or XAV939. Furthermore, we showed that activation of the 720-bp Hesx1 5' enhancer is responsible for Hesx1 expression in the AFBP and depends on Wnt signal inhibition. In addition, we showed that Wnt inhibition during the first day has larger impact on the activation of Hesx1 and Six3 than the second day, suggesting that in embryos Wnt inhibition caused by the AVE-derived Dkk1, rather than the AME-derived Dkk1, contributes greatly in the establishment of the AFBP.
Collapse
Affiliation(s)
- Kazunari Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
16
|
Weltzien FA, Hildahl J, Hodne K, Okubo K, Haug TM. Embryonic development of gonadotrope cells and gonadotropic hormones--lessons from model fish. Mol Cell Endocrinol 2014; 385:18-27. [PMID: 24145126 DOI: 10.1016/j.mce.2013.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. The different cell types in the vertebrate pituitary develop from common progenitor cells just after gastrulation. Proper development and merging of the anterior and posterior pituitary is dependent upon carefully regulated cell-to-cell interactions, and a suite of signaling pathways with precisely organized temporal and spatial expression patterns, which include transcription factors and their co-activators and repressors. Among the pituitary endocrine cell types, the gonadotropes are the last to develop and become functional. Although much progress has been made during the last decade regarding details of gonadotrope development, the coordinated program for their maturation is not well described. FSH and LH form an integral part of the hypothalamo-pituitary-gonad axis, the main regulator of gonad development and reproduction. Besides regulating gonad development, pre- and early post-natal activity in this axis is thought to be essential for proper development, especially of the central nervous system in mammals. As a means to investigate early functions of FSH and LH in more detail, we have developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promoter driving green fluorescent protein (Gfp) expression to characterize development of lhb-expressing gonadotropes. The lhb gene is maternally expressed early during embryogenesis. lhb-Expressing cells are initially localized outside the primordial pituitary in the developing gut tube as early as 32 hpf. At hatching, lhb-Gfp is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-Gfp expression later consolidates in the developing pituitary by 2 weeks post-fertilization. This review discusses status of knowledge regarding pituitary morphology and development, with emphasis on gonadotrope cells and gonadotropins during early development, comparing main model species like mouse, zebrafish and medaka, including possible developmental functions of the observed extra pituitary expression of lhb in medaka.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jon Hildahl
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 2013; 140:3128-38. [PMID: 23824574 DOI: 10.1242/dev.088765] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.
Collapse
Affiliation(s)
- Silvia Engert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ellestad LE, Porter TE. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland. Endocrinology 2013; 154:308-19. [PMID: 23161868 PMCID: PMC3591683 DOI: 10.1210/en.2012-1566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program and Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
20
|
de Moraes DC, Vaisman M, Conceição FL, Ortiga-Carvalho TM. Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 2012; 215:239-45. [PMID: 22872762 DOI: 10.1530/joe-12-0229] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary organogenesis is a highly complex and tightly regulated process that depends on several transcription factors (TFs), such as PROP1, PIT1 (POU1F1), HESX1, LHX3 and LHX4. Normal pituitary development requires the temporally and spatially organised expression of TFs and interactions between different TFs, DNA and TF co-activators. Mutations in these genes result in different combinations of hypopituitarism that can be associated with structural alterations of the central nervous system, causing the congenital form of panhypopituitarism. This review aims to elucidate the complex process of pituitary organogenesis, to clarify the role of the major TFs, and to compile the lessons learned from functional studies of TF mutations in panhypopituitarism patients and TF deletions or mutations in transgenic animals.
Collapse
Affiliation(s)
- Débora Cristina de Moraes
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Rio de Janeiro, Brasil.
| | | | | | | |
Collapse
|
21
|
Emmett LSD, O'Shea KS. Geminin is required for epithelial to mesenchymal transition at gastrulation. Stem Cells Dev 2012; 21:2395-409. [PMID: 22335560 DOI: 10.1089/scd.2011.0483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Geminin is a multifunctional protein previously suggested to both maintain the bone morphogenetic protein inhibition required for neural induction and to control cell-cycle progression and cell fate in the early embryo. Since Geminin is required in the blastocyst on E3.5, we employed shRNA to examine its role during postimplantation development. Geminin knockdown inhibited the epithelial to mesenchymal transition (EMT) required at gastrulation and neural crest delamination, resulting in anterior-posterior axis and patterning defects, while overexpression promoted EMT at both locations. Geminin was negatively correlated with expression of E-cadherin, which is critically involved in controlling epithelial architecture. In addition, Geminin expression level was correlated with Wnt signaling and expression of the Wnt target gene Axin2 and with Msx2, and negatively correlated with the expression of Bmp4 and Neurog1 in quantitative reverse transcriptase-polymerase chain reaction analysis of RNAs from individual embryos. These results suggest that in addition to patterning the early embryo, Geminin plays a previously unrecognized role in EMT via its ability to affect Wnt signaling and E-cadherin expression.
Collapse
Affiliation(s)
- Lisa S D Emmett
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
22
|
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 2012; 92:1-38. [PMID: 22298650 DOI: 10.1152/physrev.00003.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Collapse
Affiliation(s)
- Carolina Perez-Castro
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular,Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
23
|
Cajal M, Lawson KA, Hill B, Moreau A, Rao J, Ross A, Collignon J, Camus A. Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo. Development 2012; 139:423-36. [PMID: 22186731 DOI: 10.1242/dev.075499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, F-75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To discuss pituitary development and function related to those factors in which molecular defects resulting in combined pituitary hormone deficiency have been described in humans, and to describe recently reported novel mutations in these factors (January 2010 to September 2011). RECENT FINDINGS Novel mutations have been found in transcription factors involved in pituitary development, HESX1; LHX3; LHX4; SOX3; Prophet of Pit-1; and POU1FI, and in some of the signaling molecules expressed in the ventral diencephalon (fibroblast growth factor 8 and GLI2). There is phenotypic variability for the same mutation suggesting variable penetrance due to other genetic, epigenetic, or environmental factors. The incidence of mutations in these factors is low suggesting that other genes or environmental factors are responsible for the majority of cases of combined pituitary hormone deficiency. SUMMARY Development of the pituitary gland and pituitary cell determination and specification depend on the expression and interaction of signaling molecules and transcription factors in overlapping, but distinct, spatial and temporal patterns. Studying genotype-phenotype correlations in patients with mutations in these factors give insight into the mechanisms involved in normal pituitary development and function.
Collapse
Affiliation(s)
- Laurie E Cohen
- Division of Endocrinology, Children's Hospital Boston, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Prince KL, Walvoord EC, Rhodes SJ. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 2011; 7:727-37. [PMID: 21788968 DOI: 10.1038/nrendo.2011.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anterior pituitary gland secretes hormones that regulate developmental and physiological processes, including growth, the stress response, metabolic status, reproduction and lactation. During embryogenesis, cellular determination and differentiation events establish specialized hormone-secreting cell types within the anterior pituitary gland. These developmental decisions are mediated in part by the actions of a cascade of transcription factors, many of which belong to the homeodomain class of DNA-binding proteins. The discovery of some of these regulatory proteins has facilitated genetic analyses of patients with hormone deficiencies. The findings of these studies reveal that congenital defects-ranging from isolated hormone deficiencies to combined pituitary hormone deficiency syndromes-are sometimes associated with mutations in the genes encoding pituitary-acting developmental transcription factors. The phenotypes of affected individuals and animal models have together provided useful insights into the biology of these transcription factors and have suggested new hypotheses for testing in the basic science laboratory. Here, we summarize the gene regulatory pathways that control anterior pituitary development, with emphasis on the role of the homeodomain transcription factors in normal pituitary organogenesis and heritable pituitary disease.
Collapse
Affiliation(s)
- Kelly L Prince
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
26
|
Vivenza D, Godi M, Faienza MF, Mellone S, Moia S, Rapa A, Petri A, Bellone S, Riccomagno S, Cavallo L, Giordano M, Bona G. A novel HESX1 splice mutation causes isolated GH deficiency by interfering with mRNA processing. Eur J Endocrinol 2011; 164:705-13. [PMID: 21325470 DOI: 10.1530/eje-11-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Mutations in HESX1 represent a rare cause of GH deficiency (GHD) associated with a broad spectrum of other anomalies. We searched for causative mutations in a cohort of 244 Italian patients affected by combined and isolated GHD (IGHD). METHODS The HESX1 gene-coding region and exon-intron boundaries were screened by denaturing HPLC scanning. RESULTS A novel mutation adjacent to the invariant donor splice site of intron 2 (c.357+3G>A) was identified at the heterozygous state in an IGHD patient. The in vitro and in vivo mRNA analysis of the wild-type HESX1 allele revealed the presence of the whole cDNA and two isoforms lacking exon 2 and exons 2-3 respectively. The mutant HESX1 allele yielded only two splicing products, the whole cDNA and the cDNA missing exons 2-3, whereas the mRNA lacking exon 2 was absent. An in vitro assay demonstrated that the exon 2-deleted mRNA, predicting a prematurely truncated protein, is subjected to nonsense-mediated mRNA decay (NMD). CONCLUSIONS The c.357+3G>A mutation prevents the generation of one of the alternative isoforms normally produced by the wild-type allele, predicting a truncated HESX1 protein. The mutation is likely to cause IGHD in the heterozygous patient by interfering with the downregulation of HESX1 expression mediated by alternative splicing and NMD. Our results open new insight into the mechanism of HESX1 regulation suggesting that the coupling of alternative splicing and NMD might play a fundamental role in directing the HESX1 expression, and that the alteration of this process might lead to severe consequences.
Collapse
Affiliation(s)
- Daniela Vivenza
- Laboratorio di Oncologia Ospedale Santa Croce e Carle, 12100 Cuneo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Proszkowiec-Weglarz M, Higgins SE, Porter TE. Changes in gene expression during pituitary morphogenesis and organogenesis in the chick embryo. Endocrinology 2011; 152:989-1000. [PMID: 21239434 DOI: 10.1210/en.2010-1021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anterior pituitary gland plays an important role in the regulation of many physiological processes. Formation of Rathke's pouch (RP), the precursor of the anterior pituitary, involves evagination of the oral ectoderm in a multi-step process regulated by cell interactions, signaling pathways, and transcription factors. Chickens are an excellent model to study development because of the availability of large sample sizes, accurate timing of development, and embryo accessibility. The aim of this study was to quantify mRNA expression patterns in the developing chicken anterior pituitary to evaluate the chicken embryo as a model for mammalian pituitary development. The expression profiles of 16 genes differentially expressed in RP and neuroectoderm were determined in this study. Among these, Pitx1, Pitx2, and Hesx1 mRNA levels were high on embryonic days (e) 2.5 to e3 in RP and decreased during development. Expression of Pit1 and Tbx19 mRNA in RP reached the highest levels by e7 and e6.5, respectively. Levels of glycoprotein subunit α mRNA increased beginning at e4. FGF8 mRNA showed the highest expression at e3 to e3.5 in neuroectoderm. BMP2 showed slight decreases in mRNA expression in both tissues during development, while Isl1 and Noggin mRNA expression increased in later development. Taken together, we present the first quantitative transcriptional profile of pituitary organogenesis. Our results will help further understanding of the functional development of this gland. Moreover, because of the high similarity in gene expression patterns observed between chicken and mouse, chickens could serve as an excellent model to study genetic and molecular mechanisms underlying pituitary development.
Collapse
|
28
|
Koike S, Yutoh Y, Keino-Masu K, Noji S, Masu M, Ohuchi H. Autotaxin is required for the cranial neural tube closure and establishment of the midbrain-hindbrain boundary during mouse development. Dev Dyn 2011; 240:413-21. [PMID: 21246658 DOI: 10.1002/dvdy.22543] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2010] [Indexed: 11/07/2022] Open
Abstract
Autotaxin (ATX) is a lysophospholipid-generating exoenzyme expressed in embryonic and adult neural tissues. We previously showed that ATX is expressed in the neural organizing centers, anterior head process, and midbrain-hindbrain boundary (MHB). To elucidate the role of ATX during neural development, here we examined the neural phenotypes of ATX-deficient mice. Expression analysis of neural marker genes revealed that lateral expansion of the rostral forebrain is reduced and establishment of the MHB is compromised as early as the late headfold stage in ATX mutant embryos. Moreover, ATX mutant embryos fail to complete cranial neural tube closure. These results indicate that ATX is essential for cranial neurulation and MHB establishment.
Collapse
Affiliation(s)
- Seiichi Koike
- Department of Molecular Neurobiology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Oki S, Kitajima K, Meno C. Dissecting the role of Fgf signaling during gastrulation and left-right axis formation in mouse embryos using chemical inhibitors. Dev Dyn 2010; 239:1768-78. [PMID: 20503372 DOI: 10.1002/dvdy.22282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fgf signaling plays pivotal roles in mouse gastrulation and left-right axis formation. However, although genetic analyses have revealed important aspects of Fgf signaling in these processes, the temporal resolution of genetic studies is low. Here, we combined whole-embryo culture with application of chemical compounds to inhibit Fgf signaling at specific time points. We found that sodium chlorate and PD173074 are potent inhibitors of Fgf signaling in early mouse embryos. Fgf signaling is required for the epithelial-to-mesenchymal transition of the primitive streak before the onset of gastrulation. Once gastrulation begins, Fgf signaling specifies mesodermal fates via the Ras/MAPK downstream cascade. Finally, Fgf signaling on the posterior side of the embryo during gastrulation induces Nodal expression in the node via Tbx6-Dll1, the initial event required for Nodal expression in the left lateral plate mesoderm.
Collapse
Affiliation(s)
- Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
31
|
Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Mol Cell Endocrinol 2010; 315:168-73. [PMID: 19879326 DOI: 10.1016/j.mce.2009.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 01/19/2023]
Abstract
The development and differentiation of the pituitary gland progress through spatial and temporal expressions of many transcription factors. Transcription factor HESX1, which begins to be expressed in the Rathke's pouch at the early stage of pituitary development, acts as a transcription repressor. Another transcription factor, PROP1, which is a pituitary-specific factor and important for the determination of the differentiation of pituitary hormone-producing cells, appears later than HESX1 and is assumed to block the action of HESX1. Both factors are members of the homeodomain family, and the amino acid residue at the 50th position of the homeodomain is glutamine (Gln-50). We recently observed that both factors share the same target sequence through different binding profiles. Hence, using random oligonucleotides and an electrophoretic mobility-shift assay, we have examined the DNA-binding preference of HESX1 by a determination of its binding sequence. HESX1 binds as a monomer to a TAATT motif but not to a TAAT motif. In the presence of PROP1, HESX1 develops to bind to an inverted TAAT motif by forming a heterodimer. Thus, the formation of a heterodimer between HESX1 and PROP1 provides a condition in which, in the early pituitary primordium, HESX1 alters its repressive role to an active one by forming a heterodimer with newly appearing PROP1 so that PROP1 finally replaces HESX1 to advance to the middle stage of pituitary development.
Collapse
Affiliation(s)
- Yukio Kato
- Laboratory of Molecular Biology and Gene Regulation, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009; 30:790-829. [PMID: 19837867 PMCID: PMC2806371 DOI: 10.1210/er.2009-0008] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Lai X, Lan X, Chen H, Wang X, Wang K, Wang M, Yu H, Zhao M. A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol Biol Rep 2009; 36:1677-81. [PMID: 18853282 DOI: 10.1007/s11033-008-9368-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
As an essential repressor, the homeobox gene Hesx1/HESX1 is required within the anterior neural plate for normal forebrain development. Mutations within the Hesx1 gene have been associated with GH deficiency or combined pituitary hormone deficiency. We detected the polymorphism of Hesx1 gene by PCR-SSCP and DNA sequencing methods in 702 individuals from four Chinese cattle breeds. A novel single nucleotide polymorphism (SNP) (IVS1 + 382T > C) was detected. The frequencies of genotype TC in four breeds were 0.000-0.222. Polymorphism of the Hesx1 gene was shown to be associated with growth in the Nanyang breed. Individuals with genotype TC was significantly lower average daily gain than TT at 18 months (P < 0.05).
Collapse
Affiliation(s)
- Xinsheng Lai
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No.22 Xinong Road, Yangling, Shaanxi, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lan X, Lai X, Li Z, Wang J, Lei C, Chen H. Effects of genetic variability of the caprine homeobox transcription factor HESX1 gene on performance traits. Mol Biol Rep 2009; 37:441-9. [PMID: 19629745 DOI: 10.1007/s11033-009-9625-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
HESX1 plays a key role in the development of the forebrain and pituitary gland and produces potential effects on performance traits. The objective of this study was to detect and assess the associations of the possible polymorphisms of six loci within HESX1 gene with performance traits in Chinese 1,119 goats. Only one novel SNP (NM_001494116:g.307049A > G) locating on IVS1 + 348A > G was identified and detected by HaeIII forced-RFLP-PCR. The frequencies of allele "G" varied from 0.025 to 0.245 in analyzed populations with the Hardy-Weinberg equilibrium (P > 0.05). Genotypic and allelic frequencies were found to be significantly different in four breeds (chi(2) = 147.674, df = 6, P < 0.001; chi(2) = 157.250, df = 3, P < 0.001, respectively), implying that the distribution of genotypic and allelic frequencies of goat HESX1 gene was significantly associated with different goat utilities (cashmere, meat and dairy). Association analysis results revealed no significant effects of caprine HESX1 gene on body sizes in XNSN population (P > 0.05) and cashmere traits in IMWC population (P > 0.05). Significant statistical of HESX1 gene with body weight was found (*P < 0.05). The genotype AA showed significantly higher body weight than those of AG in 2-year-old age (*P < 0.05), while the AA genotype was senior to AG genotype in 4-year-old body weight trait (*P < 0.05). These suggestions indicated that the HESX1 gene has significant effect on goat body weight depending on ages, which is accordance with the function repressor of the HESX1.
Collapse
Affiliation(s)
- Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
35
|
Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS One 2009; 4:e4513. [PMID: 19229337 PMCID: PMC2641000 DOI: 10.1371/journal.pone.0004513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/08/2009] [Indexed: 11/19/2022] Open
Abstract
Rx is a paired-like homeobox gene that is required for vertebrate eye formation. Mice lacking Rx function do not develop eyes or the posterior pituitary. To determine whether Rx is required cell autonomously in these tissues, we generated embryonic chimeras consisting of wild type and Rx−/− cells. We found that in the eye, Rx-deficient cells cannot participate in the formation of the neuroretina, retina pigment epithelium and the distal part of the optic stalk. In addition, in the ventral forebrain, Rx function is required cell autonomously for the formation of the posterior pituitary. Interestingly, Rx−/− and wild type cells segregate before the morphogenesis of these two tissues begins. Our observations suggest that Rx function is not only required for the morphogenesis of the retina and posterior pituitary, but also prior to morphogenesis, for the sorting out of cells to form distinct fields of retinal/pituitary cells.
Collapse
|
36
|
Gaston-Massuet C, Andoniadou CL, Signore M, Sajedi E, Bird S, Turner JM, Martinez-Barbera JP. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 2008; 324:322-33. [PMID: 18775421 PMCID: PMC3606136 DOI: 10.1016/j.ydbio.2008.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
Hesx1 has been shown to be essential for normal pituitary development. The homeobox gene Six3 is expressed in the developing pituitary gland during mouse development but its function in this tissue has been precluded by the fact that in the Six3-deficient embryos the pituitary gland is not induced. To gain insights into the function of Six3 during pituitary development we have generated Six3+/- ;Hesx1Cre/+ double heterozygous mice. Strikingly, these mice show marked dwarfism, which is first detectable around weaning, and die by the 5th-6th week of age. Thyroid and gonad development is also impaired in these animals. Analysis of Six3+/- ;Hesx1Cre/+ compound embryos indicates that hypopituitarism is the likely cause of these defects since pituitary development is severely impaired in these mutants. Similar to the Hesx1-deficient embryos, Rathke's pouch is initially expanded in Six3+/- ;Hesx1Cre/+ compound embryos due to an increase in cell proliferation. Subsequently, the anterior pituitary gland appears bifurcated, dysmorphic and occasionally ectopically misplaced in the nasopharyngeal cavity, but cell differentiation is unaffected. Our research has revealed a role for Six3 in normal pituitary development, which has likely been conserved during evolution as SIX3 is also expressed in the pituitary gland of the human embryo.
Collapse
Affiliation(s)
- Carles Gaston-Massuet
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Cynthia L. Andoniadou
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Massimo Signore
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Ezat Sajedi
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Sophie Bird
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - James M.A. Turner
- Developmental Genetics and Stem Cell Research, National Institute for Medical Research, Mill Hill, London
| | | |
Collapse
|
37
|
Ikeshita N, Kawagishi M, Shibahara H, Toda K, Yamashita T, Yamamoto D, Sugiyama Y, Iguchi G, Iida K, Takahashi Y, Kaji H, Chihara K, Okimura Y. Identification and analysis of prophet of Pit-1-binding sites in human Pit-1 gene. Endocrinology 2008; 149:5491-9. [PMID: 18653712 DOI: 10.1210/en.2008-0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prophet of Pit-1 (Prop1) is a transcription factor that regulates Pit-1 gene expression. Because Pit-1 regulates the differentiation of pituitary cells and the expressions of GH, prolactin and TSHbeta genes, Prop1 mutation results in combined pituitary hormone deficiency in humans. However, Prop1-binding sites in human Pit-1 gene and the mechanism leading to combined pituitary hormone deficiency have remained unclear. In this study, we identified and analyzed Prop1-binding elements of the human Pit-1 gene. Prop1 stimulated the expression of the reporter plasmid containing Pit-1 gene from translation start site to -1340 dose dependently in GH3 cells. The activation by Prop1 was observed in GH3 and TtT/GF cells but not COS7, HeLa, JEG3, and HuH7 cells. Deletion analysis of Pit-1 gene showed that the Prop1-responsive elements were present within the -257-bp region. Within the -257-bp region, there are four elements similar to consensus sequence of paired-like transcription factors. Because Prop1 is a member of paired-like transcription factors, we assessed the elements. EMSA and transient transfection assay using the mutation of the elements revealed that the element from -63 to -53 (the proximal Prop1 binding element) was essential to Prop1-binding and Prop1-induced activation of Pit-1 reporter plasmid. A region at -8kb of human Pit-1 gene is similar to the distal region containing Prop1-binding elements in mouse Pit-1 gene. We showed the region functioned as an enhancer. Furthermore, chromatin immunoprecipitation assay showed that the proximal element could bind Prop1 in vivo cultured cells. Taken together, these findings indicated the novel functioning binding elements of Prop1 in human Pit-1 gene.
Collapse
Affiliation(s)
- Nobuko Ikeshita
- Department of Basic Allied Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sajedi E, Gaston-Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, Etchevers HC, Gerrelli D, Dattani MT, Martinez-Barbera JP. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Dis Model Mech 2008; 1:241-54. [PMID: 19093031 PMCID: PMC2590837 DOI: 10.1242/dmm.000711] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/28/2008] [Indexed: 01/20/2023] Open
Abstract
A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1(I26T/I26T) embryos show pituitary defects comparable with Hesx1(-/-) mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1(R160C/R160C) mutants display forebrain and pituitary defects that are identical to those observed in Hesx1(-/-) null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans.
Collapse
|
39
|
|
40
|
Chakravarthy H, Boer B, Desler M, Mallanna SK, McKeithan TW, Rizzino A. Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays. J Cell Physiol 2008; 216:651-62. [PMID: 18366076 DOI: 10.1002/jcp.21440] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sox2 and Oct-3/4 function as master regulators during mammalian embryogenesis, where they are believed to regulate a critical gene regulatory network by cooperatively binding to DNA regulatory regions composed of adjacent HMG and POU motifs (HMG/POU cassettes). Previous studies have identified seven genes that contain highly active HMG/POU cassettes (referred to as Sox2:Oct-3/4 target genes). Importantly, nearly all known Sox2:Oct-3/4 target genes appear to be essential for embryogenesis. Recent genome-wide ChIP-chip studies identified over 300 genes that are co-occupied by Sox2 and Oct-3/4, which suggests that most Sox2:Oct-3/4 target genes remain to be identified. The work described here used a 3-step strategy for identifying additional Sox2:Oct-3/4 target genes. First, we employed in silico analysis to search for putative HMG/POU cassettes in 50 genes reported to be co-occupied by Sox2 and Oct-3/4 in embryonic stem cells. We identified 39 genes that contain putative HMG/POU cassettes. Next, we tested the activity of seven of the putative HMG/POU cassettes in a transcription-based assay and determined that nearly all are functional. Finally, as a proof-of-principle, we tested one of the seven cassettes (DPPA4) in the context of its endogenous promoter using a promoter/reporter gene construct. DPPA4 was tested in part because it was shown recently to play an important role in ES cell self-renewal. We determined that the 5' flanking region of the DPPA4 gene contains a functional HMG/POU cassette and behaves as a Sox2:Oct-3/4 target gene. Finally, we used a transcription-based assay to help develop a refined consensus sequence for HMG/POU cassettes.
Collapse
Affiliation(s)
- Harini Chakravarthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
41
|
Corneli G, Vivenza D, Prodam F, Di Dio G, Vottero A, Rapa A, Bellone S, Bernasconi S, Bona G. Heterozygous mutation of HESX1 causing hypopituitarism and multiple anatomical malformations without features of septo-optic dysplasia. J Endocrinol Invest 2008; 31:689-93. [PMID: 18852528 DOI: 10.1007/bf03346416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Isolated GH deficiency or combined pituitary hormone deficiencies have been associated with mutations in transcription factors encoding genes that control organogenesis or cell differentiation. Among these factors, Hesx1 is essential for the development of the optic nerve and regulates some of the earliest stages in pituitary development and is intimately involved in orchestrating the expression of other factors involved in pituitary organogenesis. Mutations in HESX1 are reported in patients with hypopituitarism either with typical septo-optic dysplasia (SOD) or with neuromorphological abnormalities not included in classical SOD. The present report describes clinical features, biochemical parameters, and characterization of a missense mutation (Gln6His) in exon1 of HESX1 in a pre-pubertal child who progressively developed multiple hypopituitarism, firstly GH and, afterwards, TSH and ACTH deficiencies, in a pluri-malformative syndrome characterized by short stature and anatomical malformations not associated with a classical SOD phenotype. This finding further supports the necessity to stay alert in evaluating a gene that plays a minor role in the pathogenesis of sporadic hypopituitarism, such as HESX1 gene even when the phenotype does not fit in with a classical SOD syndrome.
Collapse
Affiliation(s)
- G Corneli
- Division of Pediatrics, Department of Medical Sciences, Amedeo Avogadro University of Novara, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DNMT1 interacts with the developmental transcriptional repressor HESX1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:131-43. [PMID: 17931718 PMCID: PMC2233781 DOI: 10.1016/j.bbamcr.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/18/2023]
Abstract
Hesx1 is a highly conserved homeobox gene present in vertebrates, but absent from invertebrates. Gene targeting experiments in mice have shown that this transcriptional repressor is required for normal forebrain and pituitary development. In humans, mutations in HESX1 impairing either its repressing activity or DNA binding properties lead to a comparable phenotype to that observed in Hesx1 deficient mice. In an attempt to gain insights into the molecular function of HESX1, we have performed a yeast two-hybrid screen and identified DNA methyltransferase 1 (DNMT1) as a HESX1 binding protein. We show that Dnmt1 is co-expressed with Hesx1 within the anterior forebrain and in the developing Rathke's pouch. Mapping of the interacting regions indicates that the entire HESX1 protein is required to establish binding to a portion of the N-terminus of DNMT1 and its catalytic domain in the C-terminus. The HESX1–DNMT1 complexes can be immunoprecipitated in cells and co-localise in the nucleus. These results establish a link between HESX1 and DNMT1 and suggest a novel mechanism for the repressing properties of HESX1.
Collapse
|
43
|
Tajima T, Hattori T, Nakajima T, Okuhara K, Tsubaki J, Fujieda K. A novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr J 2007; 54:637-41. [PMID: 17527005 DOI: 10.1507/endocrj.k06-200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
LIM homeodomain transcription factors regulate many aspects of development in multicellular organisms. LHX4/Lhx4 is a protein that is essential for pituitary development and motor neuron specification in mammals. In human, a heterozygous splicing mutation of the LHX4 gene was reported in a family with combined pituitary hormone deficiencies (CPHD). In addition to CPHD, these patients were characterized by small sella turcica and chiari malformation. Here we report a Japanese patient with CPHD (GH, PRL, TSH, LH, FSH, and ACTH deficiency) due to a novel missense mutation (P366T) of the LHX 4 gene. She showed severe respiratory disease and hypoglycemia soon after birth. Brain MRI demonstrated hypoplastic anterior pituitary, ectopic posterior lobe, a poorly developed sella turcica, and chiari malformation. Sequence analysis of the LHX 4 gene identified a heterozygous missense mutation (P366T) in exon 6, which was present in LIM4 specific domain. Neither of the patient's parents harbored this mutation, indicating de novo mutation.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, N15, W7, Sapporo 060-0835, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Pfister S, Steiner KA, Tam PPL. Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns 2007; 7:558-73. [PMID: 17331809 DOI: 10.1016/j.modgep.2007.01.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/17/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
During development of the mouse conceptus from implantation to the early gastrula stage, a multitude of genes encoding structural proteins, transcription factors and components of signalling pathways are expressed in the extraembryonic and embryonic tissues derived from the trophectoderm and the inner cell mass. Some genes are expressed widely in the extraembryonic ectoderm, the visceral endoderm or the epiblast, while others display more restricted expression domains in these tissues or are expressed upon the specification of the germ layers at gastrulation. Overall, the developmental changes in gene expression mirror key events of embryogenesis, and reveal the regionalization of signalling activity and the emergence of tissue patterning.
Collapse
Affiliation(s)
- Sabine Pfister
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville, NSW 2145, Australia
| | | | | |
Collapse
|
45
|
Abstract
Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising a variable phenotype of optic nerve hypoplasia, midline forebrain abnormalities and pituitary hypoplasia with consequent endocrine deficits. The majority of cases are sporadic and several aetiologies including drug and alcohol abuse have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described and the identification of mutations in the key developmental gene HESX1 in patients with SOD and associated phenotypes suggests that a genetic causation is likely in the more common sporadic cases of the condition. More recently, we have implicated duplications of SOX3 and mutations of both SOX2 and SOX3 in the aetiology of variants of SOD. As with other developmental disorders such as holoprosencephaly, the precise aetiology is most likely multifactorial involving contributions from environmental factors in addition to an important role for crucial developmental genes. This potentially complex interaction between genetics and the environment is borne out by the variability of the penetrance and phenotypes in patients with genetic SOD, but at present, the understanding of these interactions is rudimentary. Further study of these critical factors may shed light on the aetiology of this complex disorder.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrine Research Group, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
46
|
Sobrier ML, Maghnie M, Vié-Luton MP, Secco A, di Iorgi N, Lorini R, Amselem S. Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J Clin Endocrinol Metab 2006; 91:4528-36. [PMID: 16940453 DOI: 10.1210/jc.2006-0426] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hesx1 is one of the earliest homeodomain transcription factors expressed during pituitary development. Very few HESX1 mutations have been identified in humans; although in those cases the disease phenotype shows considerable variability, all but one of the patients display an ectopic posterior pituitary and/or optic nerve abnormalities. OBJECTIVE The objectives of the study were to describe the complex phenotype associated with the panhypopituitarism of two unrelated Italian patients who, at birth, presented with hypoglycemic seizures and respiratory distress complicated by shock, in a familial context of neonatal death in one family and spontaneous miscarriage in both families and to identify the molecular basis of this unusual syndrome. MAIN OUTCOME MEASURES Magnetic resonance imaging of the pituitary region, study of HESX1 gene and transcripts, and assessment of the ability of mutated HESX1 proteins to repress transcription were measured. RESULTS Magnetic resonance imaging examination showed an anterior pituitary aplasia in a flat sella turcica and a normally located posterior pituitary in both patients. A constellation of extrapituitary developmental defects were found in the two patients, but without any optic nerve abnormalities. Sequencing of HESX1 exons and their flanking intronic regions revealed two different homozygous mutations. A frameshift (c.449_450delAC) was identified in one case, whereas the other patient carried a splice defect (c.357 + 2Tb > C) confirmed by the study of HESX1 transcripts. If translated, these mutations would lead to the synthesis of truncated proteins partly or entirely lacking the homeodomain, with no transcriptional repression, as shown by their inability to inhibit PROP1 activity. CONCLUSIONS These observations reveal two novel HESX1 mutations in a so-far-undescribed disease phenotype characterized by a life-threatening neonatal condition associated with anterior pituitary aplasia, in the absence of ectopic posterior pituitary and optic nerve abnormalities, two features classically associated with HESX1 defects.
Collapse
Affiliation(s)
- Marie-Laure Sobrier
- Institut National de la Santé et de la Recherche Médicale, U654, Hôpital Henri-Mondor, Créteil F-94010, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 2006; 125:593-605. [PMID: 16678101 DOI: 10.1016/j.cell.2006.02.046] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 12/13/2005] [Accepted: 02/09/2006] [Indexed: 11/24/2022]
Abstract
While the biological roles of canonical Wnt/beta-catenin signaling in development and disease are well documented, understanding the molecular logic underlying the functionally distinct nuclear transcriptional programs mediating the diverse functions of beta-catenin remains a major challenge. Here, we report an unexpected strategy for beta-catenin-dependent regulation of cell-lineage determination based on interactions between beta-catenin and a specific homeodomain factor, Prop1, rather than Lef/Tcfs. beta-catenin acts as a binary switch to simultaneously activate expression of the critical lineage-determining transcription factor, Pit1, and to repress the gene encoding the lineage-inhibiting transcription factor, Hesx1, acting via TLE/Reptin/HDAC1 corepressor complexes. The strategy of functionally distinct actions of a homeodomain factor in response to Wnt signaling is suggested to be prototypic of a widely used mechanism for generating diverse cell types from pluripotent precursor cells in response to common signaling pathways during organogenesis.
Collapse
Affiliation(s)
- Lorin E Olson
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang YP, Klingensmith J. Roles of organizer factors and BMP antagonism in mammalian forebrain establishment. Dev Biol 2006; 296:458-75. [PMID: 16839541 DOI: 10.1016/j.ydbio.2006.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
A critical question in mammalian development is how the forebrain is established. In amphibians, bone morphogenetic protein (BMP) antagonism emanating from the gastrula organizer is key. Roles of BMP antagonism and the organizer in mammals remain unclear. Anterior visceral endoderm (AVE) promotes early mouse head development, but its function is controversial. Here, we explore the timing and regulation of forebrain establishment in the mouse. Forebrain specification requires tissue interaction through the late streak stage of gastrulation. Foxa2(-/-) embryos lack both the organizer and its BMP antagonists, yet about 25% show weak forebrain gene expression. A similar percentage shows ectopic AVE gene expression distally. The distal VE may thus be a source of forebrain promoting signals in these embryos. In wild-type ectoderm explants, AVE promoted forebrain specification, while anterior mesendoderm provided maintenance signals. Embryological and molecular data suggest that the AVE is a source of active BMP antagonism in vivo. In prespecification ectoderm explants, exogenous BMP antagonists triggered forebrain gene expression and inhibited posterior gene expression. Conversely, BMP inhibited forebrain gene expression, an effect that could be antagonized by anterior mesendoderm, and promoted expression of some posterior genes. These results lead to a model in which BMP antagonism supplied by exogenous tissues promotes forebrain establishment and maintenance in the murine ectoderm.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA
| | | |
Collapse
|
49
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
50
|
Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, Magnuson TR, O'Neal W, Milgram SL. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 2006; 26:77-87. [PMID: 16354681 PMCID: PMC1317614 DOI: 10.1128/mcb.26.1.77-87.2006] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YAP is a multifunctional adapter protein and transcriptional coactivator with several binding partners well described in vitro and in cell culture. To explore in vivo requirements for YAP, we generated mice carrying a targeted disruption of the Yap gene. Homozygosity for the Yap(tm1Smil) allele (Yap-/-) caused developmental arrest around E8.5. Phenotypic characterization revealed a requirement for YAP in yolk sac vasculogenesis. Yolk sac endothelial and erythrocyte precursors were specified as shown by histology, PECAM1 immunostaining, and alpha globin expression. Nonetheless, development of an organized yolk sac vascular plexus failed in Yap-/- embryos. In striking contrast, vasculogenesis proceeded in both the allantois and the embryo proper. Mutant embryos showed patterned gene expression domains along the anteroposterior neuraxis, midline, and streak/tailbud. Despite this evidence of proper patterning and tissue specification, Yap-/- embryos showed developmental perturbations that included a notably shortened body axis, convoluted anterior neuroepithelium, caudal dysgenesis, and failure of chorioallantoic fusion. These results reveal a vital requirement for YAP in the developmental processes of yolk sac vasculogenesis, chorioallantoic attachment, and embryonic axis elongation.
Collapse
Affiliation(s)
- Elizabeth M Morin-Kensicki
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|