1
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Zhou G, Ma S, Yang M, Yang Y. Global Quantitative Proteomics Analysis Reveals the Downstream Signaling Networks of Msx1 and Msx2 in Myoblast Differentiation. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:201-210. [PMID: 36939786 PMCID: PMC9590559 DOI: 10.1007/s43657-022-00049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
The msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) coordinate in myoblast differentiation and also contribute to muscle defects if altered during development. Deciphering the downstream signaling networks of Msx1 and Msx2 in myoblast differentiation will help us to understand the molecular events that contribute to muscle defects. Here, the proteomics characteristics in Msx1- and Msx2-mediated myoblast differentiation was evaluated using isobaric tags for the relative and absolute quantification labeling technique (iTRAQ). The downstream regulatory proteins of Msx1- and Msx2-mediated differentiation were identified. Bioinformatics analysis revealed that these proteins were primarily associated with xenobiotic metabolism by cytochrome P450, fatty acid degradation, glycolysis/gluconeogenesis, arginine and proline metabolism, and apoptosis. In addition, our data show Acta1 was probably a core of the downstream regulatory networks of Msx1 and Msx2 in myoblast differentiation. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00049-y.
Collapse
Affiliation(s)
- Guoqiang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Shuangping Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
3
|
Genome-Wide CRISPR/Cas9-Based Screening for Deubiquitinase Subfamily Identifies Ubiquitin-Specific Protease 11 as a Novel Regulator of Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23020856. [PMID: 35055037 PMCID: PMC8778097 DOI: 10.3390/ijms23020856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.
Collapse
|
4
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
5
|
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo 2018; 9:17. [PMID: 30026904 PMCID: PMC6050708 DOI: 10.1186/s13227-018-0105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Laura Kahnke
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
6
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuroda S, Kuratani S. Stepwise participation of HGF/MET signaling in the development of migratory muscle precursors during vertebrate evolution. ZOOLOGICAL LETTERS 2018; 4:18. [PMID: 29946484 PMCID: PMC6004694 DOI: 10.1186/s40851-018-0094-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is generally thought to be regulated by hepatocyte growth factor (HGF) and receptor tyrosine kinase (MET) signaling. However, the prevalence of this mechanism and the expression patterns of the genes involved in MMP development across different vertebrate species remain elusive. RESULTS We performed a comparative analysis of Hgf and Met gene expression in several vertebrates, including mouse, chicken, dogfish (Scyliorhinus torazame), and lamprey (Lethenteron camtschaticum). While both Hgf and Met were expressed during development in the mouse tongue muscle, and in limb muscle formation in the mouse and chicken, we found no clear evidence for the involvement of HGF/MET signaling in MMP development in shark or lamprey embryos. CONCLUSIONS Our results indicate that the expressions and functions of both Hgf and Met genes do not represent shared features of vertebrate MMPs, suggesting a stepwise participation of HGF/MET signaling in MMP development during vertebrate evolution.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Present address: Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Juan Pascual-Anaya
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
7
|
Abstract
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
9
|
|
10
|
Daubas P, Duval N, Bajard L, Langa Vives F, Robert B, Mankoo BS, Buckingham M. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer. Biol Open 2015; 4:1614-24. [PMID: 26538636 PMCID: PMC4736032 DOI: 10.1242/bio.014068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. Summary: Homeodomain factors Msx1 and Meox2, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development via modulation of limb enhancer gene Myf5.
Collapse
Affiliation(s)
- Philippe Daubas
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Nathalie Duval
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Lola Bajard
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | | | - Benoît Robert
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Baljinder S Mankoo
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Margaret Buckingham
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| |
Collapse
|
11
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
12
|
BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms. PLoS Genet 2014; 10:e1004625. [PMID: 25210771 PMCID: PMC4161316 DOI: 10.1371/journal.pgen.1004625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/23/2014] [Indexed: 01/26/2023] Open
Abstract
In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of “neural identity” gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages. The trunk nervous system of both vertebrates and invertebrates develops from three primary rows of neural stem cells whose fate is determined by neural identity genes expressed in an evolutionarily conserved dorso-ventral pattern. Establishment of this pattern requires a shared signaling pathway in both groups of animals. Previous studies suggested that a shared signaling pathway functions in opposite ways in vertebrates and invertebrates, despite the final patterning outcomes having remained the same. Here, we employ bioinformatics, biochemistry, and transgenic animal technology to elucidate the genetic mechanism by which this pathway can engage the same components to generate opposite instructions and yet arrive at similar outcomes in patterning of the nervous system. Our findings highlight how natural selection can act to conserve a particular output pattern despite changes during evolution in the genetic mechanisms underlying the formation of this pattern.
Collapse
|
13
|
How the avian model has pioneered the field of hematopoietic development. Exp Hematol 2014; 42:661-8. [PMID: 24997246 DOI: 10.1016/j.exphem.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
Abstract
The chicken embryo has a long history as a key model in developmental biology. Because of its distinctive developmental characteristics, it has contributed to major breakthroughs in the field of hematopoiesis. Among these, the discovery of B lymphocytes and the three rounds of thymus colonization; the embryonic origin of hematopoietic stem cells and the traffic between different hematopoietic organs; and the existence of two distinct endothelial cell lineages one angioblastic, restricted to endothelial cell production, and another, hemangioblastic, able to produce both endothelial and hematopoietic cells, should be cited. The avian model has also contributed to substantiate the endothelial-to-hematopoietic transition associated with aortic hematopoiesis and the existence of the allantois as a hematopoietic organ. Because the immune system develops relatively late in aves, the avian embryo is used to probe the tissue-forming potential of mouse tissues through mouse-into-chicken chimeras, providing insights into early mouse development by circumventing the lethality associated with some genetic strains. Finally, the avian embryo can be used to investigate the differentiation potential of human ES cells in the context of a whole organism. The combinations of classic approaches with the development of powerful genetic tools make the avian embryo a great and versatile model.
Collapse
|
14
|
Guerrero L, Villar P, Martínez L, Badia-Careaga C, Arredondo JJ, Cervera M. In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development. Genesis 2014; 52:793-808. [PMID: 24895317 DOI: 10.1002/dvg.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 11/05/2022]
Abstract
Fast and slow TnI are co-expressed in E11.5 embryos, and fast TnI is present from the very beginning of myogenesis. A novel green fluorescent protein (GFP) reporter mouse lines (FastTnI/GFP lines) that carry the primary and secondary enhancer elements of the mouse fast troponin I (fast TnI), in which reporter expression correlates precisely with distribution of the endogenous fTnI protein was generated. Using the FastTnI/GFP mouse model, we characterized the early myogenic events in mice, analyzing the migration of GFP+ myoblasts, and the formation of primary and secondary myotubes in transgenic embryos. Interestingly, we found that the two contractile fast and slow isoforms of TnI are expressed during the migration of myoblasts from the somites to the limbs and body wall, suggesting that both participate in these events. Since no sarcomeres are present in myoblasts, we speculate that the function of fast TnI in early myogenesis is, like Myosin and Tropomyosin, to participate in cell movement during the initial myogenic stages. genesis
Collapse
Affiliation(s)
- Lucia Guerrero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C., Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 2014; 28:225-38. [PMID: 24525185 DOI: 10.1016/j.devcel.2013.12.020] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
Abstract
We discuss the upstream regulators of myogenesis that lead to the activation of myogenic determination genes and subsequent differentiation, focusing on the mouse model. Key upstream genes, such as Pax3 and Pax7, Six1 and Six4, or Pitx2, participate in gene regulatory networks at different sites of skeletal muscle formation. MicroRNAs also intervene, with emerging evidence for the role of other noncoding RNAs. Myogenic determination and subsequent differentiation depend on members of the MyoD family. We discuss new insights into mechanisms underlying the transcriptional activity of these factors.
Collapse
|
16
|
Marques L, Thorsteinsdóttir S. Dynamics of Akt activation during mouse embryo development: distinct subcellular patterns distinguish proliferating versus differentiating cells. Differentiation 2013; 86:48-56. [PMID: 23968884 DOI: 10.1016/j.diff.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/21/2013] [Accepted: 07/03/2013] [Indexed: 12/19/2022]
Abstract
Akt is a highly conserved serine-threonine protein kinase which has been implicated in a wide variety of cellular functions, from the regulation of growth and metabolism, to activation of pro-survival pathways and cell proliferation, and promotion of differentiation in specific cell types. However, very little is known about the spatial and temporal pattern of Akt activity within cells and whether this pattern changes as cells enter and proceed in their differentiation programs. To address this issue we profiled Akt activation in E8.5-E13.5 mouse embryos and in C2C12 cells. We used a commercial antibody against Akt, phosphorylated on one of its activating residues, Thr-308, and performed high resolution confocal imaging of the immunofluorescence in labeled embryos. We observe strong Akt activity during mitosis in the dermomyotome, the neuroepithelium and some mesenchymal cells. This burst of activity fills the whole cell except for heterochromatin-positive areas in the nucleus. A surge in activity during mitosis is also observed in subconfluent C2C12 cells. Later on in the differentiation programs of skeletal muscle and neural cells, derivatives of the dermomyotome and neuroepithelium, respectively, we find robust, sustained Akt activity in the cytoplasm, but not in the nucleus. Concomitantly with skeletal muscle differentiation, Akt activity becomes concentrated in the sarcomeric Z-disks whereas developing neurons maintain a uniform cytoplasmic pattern of activated Akt. Our findings reveal unprecedented cellular and subcellular details of Akt activity during mouse embryo development, which is spatially and temporally consistent with proposed functions for Akt in mitosis and myogenic and neural differentiation and/or survival. Our results thus demonstrate a subcellular change in the pattern of Akt activation when skeletal muscle and neural progenitor cells cease dividing and progress in their differentiation programs.
Collapse
Affiliation(s)
- Luís Marques
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
17
|
Picard D, Miller S, Hawkins CE, Bouffet E, Rogers HA, Chan TSY, Kim SK, Ra YS, Fangusaro J, Korshunov A, Toledano H, Nakamura H, Hayden JT, Chan J, Lafay-Cousin L, Hu PX, Fan X, Muraszko KM, Pomeroy SL, Lau CC, Ng HK, Jones C, Meter TV, Clifford SC, Eberhart C, Gajjar A, Pfister SM, Grundy RG, Huang A. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol 2012; 13:838-48. [PMID: 22691720 PMCID: PMC3615440 DOI: 10.1016/s1470-2045(12)70257-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Childhood CNS primitive neuro-ectodermal brain tumours (PNETs) are very aggressive brain tumours for which the molecular features and best treatment approaches are unknown. We assessed a large cohort of these rare tumours to identify molecular markers to enhance clinical management of this disease. METHODS We obtained 142 primary hemispheric CNS PNET samples from 20 institutions in nine countries and examined transcriptional profiles for a subset of 51 samples and copy number profiles for a subset of 77 samples. We used clustering, gene, and pathway enrichment analyses to identify tumour subgroups and group-specific molecular markers, and applied immunohistochemical and gene-expression analyses to validate and assess the clinical significance of the subgroup markers. FINDINGS We identified three molecular subgroups of CNS PNETs that were distinguished by primitive neural (group 1), oligoneural (group 2), and mesenchymal lineage (group 3) gene-expression signatures with differential expression of cell-lineage markers LIN28 and OLIG2. Patients with group 1 tumours were most often female (male:female ratio 0·61 for group 1 vs 1·25 for group 2 and 1·63 for group 3; p=0·043 [group 1 vs groups 2 and 3]), youngest (median age at diagnosis 2·9 years [95% CI 2·4-5·2] for group 1 vs 7·9 years [6·0-9·7] for group 2 and 5·9 years [4·9-7·8] for group 3; p=0·005), and had poorest survival (median survival 0·8 years [95% CI 0·5-1·2] in group 1, 1·8 years [1·4-2·3] in group 2 and 4·3 years [0·8-7·8] in group 3; p=0·019). Patients with group 3 tumours had the highest incidence of metastases at diagnosis (no distant metastasis:metastasis ratio 0·90 for group 3 vs 2·80 for group 1 and 5·67 for group 2; p=0·037). INTERPRETATION LIN28 and OLIG2 are promising diagnostic and prognostic molecular markers for CNS PNET that warrant further assessment in prospective clinical trials. FUNDING Canadian Institute of Health Research, Brainchild/SickKids Foundation, and the Samantha Dickson Brain Tumour Trust.
Collapse
Affiliation(s)
- Daniel Picard
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Dept of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Suzanne Miller
- Children's Brain Tumour Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Eric Bouffet
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Dept of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hazel A Rogers
- Children's Brain Tumour Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Tiffany SY Chan
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Dept of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Seung-Ki Kim
- Dept of Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - Young-Shin Ra
- Dept of Neurosurgery, Asan Medical Center, Seoul, Korea
| | - Jason Fangusaro
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Children's Memorial Hospital, Chicago, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | - James T Hayden
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jennifer Chan
- Dept of Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Lucie Lafay-Cousin
- Dept of Pediatric Oncology, Alberta Children's Hospital, Calgary, Canada
| | - Ping X Hu
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
| | - Xing Fan
- Dept of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| | - Karin M Muraszko
- Dept of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| | | | - Ching C Lau
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, USA
| | - Ho-Keung Ng
- Dept of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Chris Jones
- Dept of Paediatric Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | | | - Steven C Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Charles Eberhart
- Division of Pathology, John Hopkins University School of Medicine, Baltimore, USA
| | - Amar Gajjar
- Neuro-oncology Division, St. Jude Children's Research Hospital, Memphis, USA
| | - Stefan M Pfister
- German Cancer Research Centre, and Paediatric, Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Annie Huang
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Dept of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Wang J, Abate-Shen C. The MSX1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells. PLoS One 2012; 7:e37647. [PMID: 22629437 PMCID: PMC3358287 DOI: 10.1371/journal.pone.0037647] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/27/2012] [Indexed: 12/22/2022] Open
Abstract
Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development.
Collapse
Affiliation(s)
- Jingqiang Wang
- Departments of Urology and Pathology & Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Cory Abate-Shen
- Departments of Urology and Pathology & Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wang J, Abate-Shen C. Transcriptional repression by the Msx1 homeoprotein is associated with global redistribution of the H3K27me3 repressive mark to the nuclear periphery. Nucleus 2012; 3:155-61. [PMID: 22555601 DOI: 10.4161/nucl.19477] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The spatial and temporal regulation of gene expression during development requires the concerted actions of sequence-specific transcriptional regulators and epigenetic chromatin modifiers, which are thought to function within precise nuclear compartments. However, coordination of these activities within the dynamic context of the nuclear environment is still largely unresolved. Here we discuss the implications of our recent work showing that transcriptional repression by the Msx1 homeoprotein is associated with global redistribution of the H3K27me3 repressive mark to the nuclear periphery during development.
Collapse
Affiliation(s)
- Jingqiang Wang
- Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
20
|
Yvernogeau L, Auda-Boucher G, Fontaine-Perus J. Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration. Development 2011; 139:277-87. [PMID: 22129828 DOI: 10.1242/dev.067678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have combined the use of mouse genetic strains and the mouse-into-chicken chimera system to determine precisely the sequence of forelimb colonization by presomitic mesoderm (PSM)-derived myoblasts and angioblasts, and the possible role of this latter cell type in myoblast guidance. By creating a new Flk1/Pax3 double reporter mouse line, we have established the precise timetable for angioblast and myoblast delamination/migration from the somite to the limb bud. This timetable was conserved when mouse PSM was grafted into a chicken host, which further validates the experimental model. The use of Pax3(GFP/GFP) knockout mice showed that establishment of vascular endothelial and smooth muscle cells (SMCs) is not compromised by the absence of Pax3. Of note, Pax3(GFP/GFP) knockout mouse PSM-derived cells can contribute to aortic, but not to limb, SMCs that are derived from the somatopleure. Finally, using the Flk1(lacZ)(/)(lacZ) knockout mouse, we show that, in the absence of angioblast and vascular network formation, myoblasts are prevented from migrating into the limb. Taken together, our study establishes for the first time the time schedule for endothelial and skeletal muscle cell colonization in the mouse limb bud and establishes the absolute requirement of endothelial cells for myoblast delamination and migration to the limb. It also reveals that cells delaminating from the somites display marked differentiation traits, suggesting that if a common progenitor exists, its lifespan is extremely short and restricted to the somite.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Université de Nantes, CNRS 6204, 2 rue de la Houssinière, 44322 Nantes, France.
| | | | | |
Collapse
|
21
|
Wang J, Kumar RM, Biggs VJ, Lee H, Chen Y, Kagey MH, Young RA, Abate-Shen C. The Msx1 Homeoprotein Recruits Polycomb to the Nuclear Periphery during Development. Dev Cell 2011; 21:575-88. [PMID: 21852201 DOI: 10.1016/j.devcel.2011.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/15/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
Control of gene expression during development requires the concerted action of sequence-specific transcriptional regulators and epigenetic modifiers, which are spatially coordinated within the nucleus through mechanisms that are poorly understood. Here we show that transcriptional repression by the Msx1 homeoprotein in myoblast cells requires the recruitment of Polycomb to target genes located at the nuclear periphery. Target genes repressed by Msx1 display an Msx1-dependent enrichment of Polycomb-directed trimethylation of lysine 27 on histone H3 (H3K27me3). Association of Msx1 with the Polycomb complex is required for repression and regulation of myoblast differentiation. Furthermore, Msx1 promotes a dynamic spatial redistribution of the H3K27me3 repressive mark to the nuclear periphery in myoblast cells and the developing limb in vivo. Our findings illustrate a hitherto unappreciated spatial coordination of transcription factors with the Polycomb complex for appropriate regulation of gene expression programs during development.
Collapse
Affiliation(s)
- Jingqiang Wang
- Departments of Urology and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ, Li Y. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:931-41. [PMID: 21684246 DOI: 10.1016/j.ajpath.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/07/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
A wide variety of myogenic cell sources have been used for repair of injured and diseased muscle including muscle stem cells, which can be isolated from skeletal muscle as a group of slow-adhering cells on a collagen-coated surface. The therapeutic use of muscle stem cells for improving muscle regeneration is promising; however, the effect of injury on their characteristics and engraftment potential has yet to be described. In the present study, slow-adhering stem cells (SASCs) from both laceration-injured and control noninjured skeletal muscles in mice were isolated and studied. Migration and proliferation rates, multidifferentiation potentials, and differences in gene expression in both groups of cells were compared in vitro. Results demonstrated that a larger population of SASCs could be isolated from injured muscle than from control noninjured muscle. In addition, SASCs derived from injured muscle demonstrated improved migration, a higher rate of proliferation and multidifferentiation, and increased expression of Notch1, STAT3, Msx1, and MMP2. Moreover, when transplanted into dystrophic muscle in MDX/SCID mice, SASCs from injured muscle generated greater engraftments with a higher capillary density than did SASCs from control noninjured muscle. These data suggest that traumatic injury may modify stem cell characteristics through trophic factors and improve the transplantation potential of SASCs in alleviating skeletal muscle injuries and diseases.
Collapse
Affiliation(s)
- Xiaodong Mu
- Laboratory of Molecular Pathology, Stem Cell Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fitzsimons RB. Retinal vascular disease and the pathogenesis of facioscapulohumeral muscular dystrophy. A signalling message from Wnt? Neuromuscul Disord 2011; 21:263-71. [PMID: 21377364 DOI: 10.1016/j.nmd.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral retinal vascular abnormality which accompanies FSHD belongs morphologically and clinically to a class of developmental 'retinal hypovasculopathies' caused by abnormalities of 'Wnt' signalling, which controls retinal angiogenesis. Wnt signalling is also fundamental to myogenesis. This paper integrates modern concepts of myogenic cell signalling and of transcription factor expression and control with data from the classic early ophthalmic and myology embryology literature. Together, they support an hypothesis that abnormalities of Wnt signalling, which activates myogenic programs and transcription factors in myoblasts and satellite cells, leads to defective muscle regeneration in FSHD. The selective vulnerability of different FSHD muscles (notably facial muscle, from the second branchial arch) might reflect patterns of transcription factor redundancies. This hypothesis has implications for FSHD research through study of transcription factors patterning in normal human muscles, and for autologous cell transplantation.
Collapse
|
24
|
Hasson P. "Soft" tissue patterning: muscles and tendons of the limb take their form. Dev Dyn 2011; 240:1100-7. [PMID: 21438070 DOI: 10.1002/dvdy.22608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2011] [Indexed: 12/18/2022] Open
Abstract
The musculoskeletal system grants our bodies a vast range of movements. Because it is mainly composed of easily identifiable components, it serves as an ideal model to study patterning of the specific tissues that make up the organ. Surprisingly, although critical for the function of the musculoskeletal system, understanding of the embryonic processes that regulate muscle and tendon patterning is very limited. The recent identification of specific markers and the reagents stemming from them has revealed some of the molecular events regulating patterning of these soft tissues. This review will focus on some of the current work, with an emphasis on the roles of the muscle connective tissue, and discuss several key points that addressing them will advance our understanding of these patterning events.
Collapse
Affiliation(s)
- Peleg Hasson
- Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel.
| |
Collapse
|
25
|
Mok GF, Sweetman D. Many routes to the same destination: lessons from skeletal muscle development. Reproduction 2011; 141:301-12. [PMID: 21183656 DOI: 10.1530/rep-10-0394] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development and differentiation of vertebrate skeletal muscle provide an important paradigm to understand the inductive signals and molecular events controlling differentiation of specific cell types. Recent findings show that a core transcriptional network, initiated by the myogenic regulatory factors (MRFs; MYF5, MYOD, myogenin and MRF4), is activated by separate populations of cells in embryos in response to various signalling pathways. This review will highlight how cells from multiple distinct starting points can converge on a common set of regulators to generate skeletal muscle.
Collapse
Affiliation(s)
- Gi Fay Mok
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | |
Collapse
|
26
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
27
|
Hasson P, DeLaurier A, Bennett M, Grigorieva E, Naiche LA, Papaioannou VE, Mohun TJ, Logan MP. Tbx4 and tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Dev Cell 2010; 18:148-56. [PMID: 20152185 PMCID: PMC3034643 DOI: 10.1016/j.devcel.2009.11.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 02/07/2023]
Abstract
Proper functioning of the musculoskeletal system requires the precise integration of bones, muscles, and tendons. Complex morphogenetic events ensure that these elements are linked together in the appropriate three-dimensional configuration. It has been difficult, however, to tease apart the mechanisms that regulate tissue morphogenesis. We find that deletion of Tbx5 in forelimbs (or Tbx4 in hindlimbs) specifically affects muscle and tendon patterning without disrupting skeletal development, thus suggesting that distinct cues regulate these processes. We identify muscle connective tissue as the site of action of these transcription factors and show that N-Cadherin and beta-Catenin are key downstream effectors acting in muscle connective tissue and regulating soft-tissue morphogenesis. In humans, TBX5 mutations lead to Holt-Oram syndrome, which is characterized by forelimb musculoskeletal defects. Our results suggest that a focus on connective tissue is required to understand the etiology of diseases affecting soft tissue formation.
Collapse
Affiliation(s)
- Peleg Hasson
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - April DeLaurier
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Michael Bennett
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Elena Grigorieva
- Division of Developmental Neurobiology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - L. A. Naiche
- Columbia University, College of Physicians and Surgeons, Department
of Genetics and Development, 701 W. 168th St., New York, NY 10032, USA
| | - Virginia E. Papaioannou
- Columbia University, College of Physicians and Surgeons, Department
of Genetics and Development, 701 W. 168th St., New York, NY 10032, USA
| | - Timothy J. Mohun
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| | - Malcolm P.O. Logan
- Division of Developmental Biology, MRC-National Institute for
Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
28
|
Houpis CH, Tosios KI, Papavasileiou D, Christopoulos PG, Koutlas IG, Sklavounou A, Alexandridis C. Parathyroid hormone-related peptide (PTHrP), parathyroid hormone/parathyroid hormone-related peptide receptor 1 (PTHR1), and MSX1 protein are expressed in central and peripheral giant cell granulomas of the jaws. ACTA ACUST UNITED AC 2010; 109:415-24. [PMID: 20060342 DOI: 10.1016/j.tripleo.2009.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/08/2009] [Accepted: 09/18/2009] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Parathyroid hormone-related peptide (PTHrP) binds to the parathyroid hormone receptor type 1 (PTHR1), which results in the activation of pathways in osteoblasts that promote osteoclastogenesis through the RANK/RANKL system. RANK/RANKL expression has been shown in central giant cell granuloma of the jaws but PTHrP/PTHR1 has not. MSX1 protein is a classical transcription regulator which promotes cell proliferation and inhibits cell differentiation by inhibiting master genes in tissues such as bone and muscle. It has been implicated in the pathogenesis of cherubism, and its expression has been reported in a single central giant cell granuloma (CGCG) case. We aimed, therefore, to study the expression of those proteins by the different cellular populations of central and peripheral giant cell granulomas (PGCGs) of the jaws. STUDY DESIGN Twenty cases of CGCG and 20 cases of PGCG of the jaws were retrospectively examined by immunohistochemistry for the percentage of positively staining cells to antibodies for PTHrP, PTHR1, and MSX1, using a semiquantitative method. RESULTS In both CGCG and PGCG of the jaws, PTHrP and PTHR1 were abundantly expressed by type I multinucleated giant cells (MGC) and mononucleated stromal cells (MSC) with vesicular nuclei, whereas type II MGC and MSC with pyknotic nuclei expressed those proteins to a lesser extent. In both CGCG and PGCG of the jaws, MSX1 was abundantly expressed by type I MGC and MSC but type II MGC did not express it. A statistically significant difference (P < .05) was observed between CGCG and PGCG in the expression of PTHrP in type II MGC and MSC with pyknotic nuclei and in the expression of PTHR1 in type II MGC. CONCLUSIONS We suggest that in CGCG and PGCG of the jaws, PTHrP-positive immature osteoblasts activate PTHR1-positive mature osteoblasts to produce RANKL which interacts with RANK on the PTHrP/PTHR1-positive osteoclast-precursor cells found in abundance in the stroma of giant cell lesions and induces osteoclastogenesis through the classic pathway. Cells of the jawbones, the periodontal ligament, or the dental follicle, originating from the neural crest, may be involved in the pathogenesis of giant cell lesions of the jaws. Further study is required for these suggestions to be proved.
Collapse
Affiliation(s)
- Constantinos H Houpis
- Department of Oral Pathology and Surgery, Dental School, National and Kapodestrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
29
|
Katerji S, Vanmuylder N, Svoboda M, Rooze M, Louryan S. Expression of Msx1 and Dlx1 during Dumbo rat head development: Correlation with morphological features. Genet Mol Biol 2009; 32:399-404. [PMID: 21637698 PMCID: PMC3036941 DOI: 10.1590/s1415-47572009005000041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
The Dumbo rat possesses some characteristics that evoke several human syndromes, such as Treacher-Collins: shortness of the maxillary, zygomatic and mandibular bones, and low position of the ears. Knowing that many homeobox genes are candidates in craniofacial development, we investigated the involvement of the Msx1 and Dlx1 genes in the Dumbo phenotype with the aim of understanding their possible role in abnormal craniofacial morphogenesis and examining the possibility of using Dumbo rat as an experimental model for understanding abnormal craniofacial development. We studied the expression of these genes during craniofacial morphogenesis by RT-PCR method. We used Dumbo embryos at E12 and E14 and included the Wistar strain as a control. Semi-quantitative PCR analysis demonstrated that Msx1 and Dlx1 are expressed differently between Dumbo and Wistar rats, indicating that their low expression may underly the Dumbo phenotype.
Collapse
Affiliation(s)
- Suhair Katerji
- Laboratory of Anatomy and Embryology, Faculté de Médecine, Université Libre de Bruxelles, Brussels Belgium
| | | | | | | | | |
Collapse
|
30
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
|
32
|
Ieronimakis N, Balasundaram G, Reyes M. Direct isolation, culture and transplant of mouse skeletal muscle derived endothelial cells with angiogenic potential. PLoS One 2008; 3:e0001753. [PMID: 18335025 PMCID: PMC2262143 DOI: 10.1371/journal.pone.0001753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/03/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. METHODOLOGY By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1(+), CD31(+), CD34(dim) and CD45(- )cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. CONCLUSION This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Gayathri Balasundaram
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Morayma Reyes
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
33
|
Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 2008; 317:430-43. [PMID: 18343360 DOI: 10.1016/j.ydbio.2008.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 01/31/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.
Collapse
Affiliation(s)
- Alexandra Saudemont
- Centre de Génétique Moléculaire, CNRS UPR 2167, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
34
|
The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 2008; 14:82-91. [PMID: 18218339 DOI: 10.1016/j.molmed.2007.12.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 12/12/2022]
Abstract
Adult skeletal muscle contains an abundant and highly accessible population of muscle stem and progenitor cells called satellite cells. The primary function of satellite cells is to mediate postnatal muscle growth and repair. Owing to their availability and remarkable capacity to regenerate damaged muscle, satellite cells and their descendent myoblasts have been considered as powerful candidates for cell-based therapies to treat muscular dystrophies and other neuromuscular diseases. However, regenerative medicine in muscle repair requires a thorough understanding of, and the ability to manipulate, the molecular mechanisms that control the proliferation, self-renewal and myogenic differentiation of satellite cells. Here, we review the latest advances in our current understanding of the quiescence, activation, proliferation and self-renewal of satellite cells and the challenges in the development of satellite cell-based regenerative medicine.
Collapse
|
35
|
Miller KA, Barrow J, Collinson JM, Davidson S, Lear M, Hill RE, Mackenzie A. A highly conserved Wnt-dependent TCF4 binding site within the proximal enhancer of the anti-myogenic Msx1 gene supports expression within Pax3-expressing limb bud muscle precursor cells. Dev Biol 2007; 311:665-78. [PMID: 17727834 DOI: 10.1016/j.ydbio.2007.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.
Collapse
Affiliation(s)
- Kerry Ann Miller
- School of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Shih HP, Gross MK, Kioussi C. Muscle development: forming the head and trunk muscles. Acta Histochem 2007; 110:97-108. [PMID: 17945333 PMCID: PMC6317512 DOI: 10.1016/j.acthis.2007.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 01/26/2023]
Abstract
The morphological events forming the body's musculature are sensitive to genetic and environmental perturbations with high incidence of congenital myopathies, muscular dystrophies and degenerations. Pattern formation generates branching series of states in the genetic regulatory network. Different states of the network specify pre-myogenic progenitor cells in the head and trunk. These progenitors reveal their myogenic nature by the subsequent onset of expression of the master switch gene MyoD and/or Myf5. Once initiated, the myogenic progression that ultimately forms mature muscle appears to be quite similar in head and trunk skeletal muscle. Several genes that are essential in specifying pre-myogenic progenitors in the trunk are known. Pax3, Lbx1, and a number of other homeobox transcription factors are essential in specifying pre-myogenic progenitors in the dermomyotome, from which the epaxial and hypaxial myoblasts, which express myogenic regulatory factors (MRFs), emerge. The proteins involved in specifying pre-myogenic progenitors in the head are just beginning to be discovered and appear to be distinct from those in the trunk. The homeobox gene Pitx2, the T-box gene Tbx1, and the bHLH genes Tcf21 and Msc encode transcription factors that play roles in specifying progenitor cells that will give rise to branchiomeric muscles of the head. Pitx2 is expressed well before the onset of myogenic progression in the first branchial arch (BA) mesodermal core and is essential for the formation of first BA derived muscle groups. Anterior-posterior patterning events that occur during gastrulation appear to initiate the Pitx2 expression domain in the cephalic and BA mesoderm. Pitx2 therefore contributes to the establishment of network states, or kernels, that specify pre-myogenic progenitors for extraocular and mastication muscles. A detailed understanding of the molecular mechanisms that regulate head muscle specification and formation provides the foundation for understanding congenital myopathies. Current technology and mouse model systems help to elucidate the molecular basis on etiology and repair of muscular degenerative diseases.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331
| | - Michael K. Gross
- Department of Biochemistry and Biophysics, College of Sciences, Oregon State University, Corvallis, OR 97331
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331
- Corresponding Author, , T (541) 737-2179, F (541) 737-3999
| |
Collapse
|
37
|
Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007; 23:645-73. [PMID: 17506689 DOI: 10.1146/annurev.cellbio.23.090506.123438] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pax genes play key roles in the formation of tissues and organs during embryogenesis. Pax3 and Pax7 mark myogenic progenitor cells and regulate their behavior and their entry into the program of skeletal muscle differentiation. Recent results have underlined the importance of the Pax3/7 population of cells for skeletal muscle development and regeneration. We present our current understanding of different aspects of Pax3/7 function in myogenesis, focusing on the mouse model. This is compared with that of other Pax proteins in the emergence of tissue specific lineages and their differentiation as well as in cell survival, proliferation, and migration. Finally, we consider the molecular mechanisms that underlie the function of Pax transcription factors, including the cofactors and regulatory networks with which they interact.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, 75015 Paris, France.
| | | |
Collapse
|
38
|
Wang Q, Kumar S, Mitsios N, Slevin M, Kumar P. Investigation of downstream target genes of PAX3c, PAX3e and PAX3g isoforms in melanocytes by microarray analysis. Int J Cancer 2007; 120:1223-31. [PMID: 17187370 DOI: 10.1002/ijc.22316] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PAX3 encodes a transcription factor, which with Zic1 is necessary for induction of the neural crest during early embryonic development. There are 7 human PAX3 isoforms (a-h). PAX3e is the full length isoform comprising 10 exons. PAX3c comprises 8 exons plus 5 codons of intron 8, while PAX3g has a truncated transactivation domain. Previous studies by us indicated that these isoforms have different activities in melanocytes in vitro. In this study, a mouse gene oligo array ( approximately 7.5 k oligos), from the Human Genome Mapping Project (HGMP) Resource Centre, was used to screen for alterations in downstream gene expression in PAX3c, PAX3e and PAX3g melanocyte transfectants, compared with empty vector controls. The data analyses identified 109 genes up or downregulated, at least 2-fold, and involved in cell differentiation, proliferation, migration, adhesion, apoptosis and angiogenesis. Semi-quantitative RT-PCR and Western blotting confirmed the changes identified by microarrays for several putative targets of PAX3, including Met, MyoD and Muc18, and previously undescribed targets, including Dhh, Fgf17, Kitl and Rac1. Thus, our data reveal that PAX3 isoforms regulate distinct but overlapping sets of genes in melanocytes in vitro.
Collapse
Affiliation(s)
- Qiuyu Wang
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenführ M, Ataliotis P, Baldini A, Scambler P, Francis-West P. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn 2007; 236:353-63. [PMID: 17117436 DOI: 10.1002/dvdy.21010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The T-box transcription factor Tbx1 has been implicated in DiGeorge syndrome, the most frequent syndrome due to a chromosomal deletion. Gene inactivation of Tbx1 in mice results in craniofacial and branchial arch defects, including myogenic defects in the first and second branchial arches. A T-box binding site has been identified in the Xenopus Myf5 promoter, and in other species, T-box genes have been implicated in myogenic fate. Here we analyze Tbx1 expression in the developing chick embryo relating its expression to the onset of myogenic differentiation and cellular fate within the craniofacial mesoderm. We show that Tbx1 is expressed before capsulin, the first known marker of branchial arch 1 and 2 muscles. We also show that, as in the mouse, Tbx1 is expressed in endothelial cells, another mesodermal derivative, and, therefore, Tbx1 alone cannot specify the myogenic lineage. In addition, Tbx1 expression was identified in both chick and mouse limb myogenic cells, initially being restricted to the dorsal muscle mass, but in contrast, to the head, here Tbx1 is expressed after the onset of myogenic commitment. Functional studies revealed that loss of Tbx1 function reduces the number of myocytes in the head and limb, whereas increasing Tbx1 activity has the converse effect. Finally, analysis of the Tbx1-mesoderm-specific knockout mouse demonstrated the cell autonomous requirement for Tbx1 during myocyte development in the cranial mesoderm.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Department of Craniofacial Development, King's College London, Guy's Tower, London Bridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hayashi K, Nakamura S, Nishida W, Sobue K. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 2006; 26:9456-70. [PMID: 17030628 PMCID: PMC1698541 DOI: 10.1128/mcb.00759-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Nakamura
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wataru Nishida
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Sobue
- Department
of Neuroscience (D13), Osaka University Graduate School of Medicine,
Yamadaoka 2-2, Suita, Osaka
565-0871, Department of Fixed
Prosthodontics, Osaka University Graduate School of Dentistry,
1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding
author. Mailing address: Department of Neuroscience (D13), Osaka
University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka
565-0871, Japan. Phone: 81 6 6879 3680. Fax: 81 6 6879 3689. E-mail:
| |
Collapse
|
41
|
Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. ACTA ACUST UNITED AC 2006; 211 Suppl 1:21-30. [PMID: 17024302 DOI: 10.1007/s00429-006-0119-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The segmental somites not only determine the vertebrate body plan, but also represent turntables of cell fates. The somite is initially naive in terms of its fate restriction as shown by grafting and rotation experiments whereby ectopically grafted or rotated tissue of newly formed somites yielded the same pattern of normal derivatives. Somitic derivatives are determined by local signalling between adjacent embryonic tissues, in particular the neural tube, notochord, surface ectoderm and the somitic compartments themselves. The correct spatio-temporal specification of the deriving tissues, skeletal muscle, cartilage, endothelia and connective tissue is achieved by a sequence of morphogenetic changes of the paraxial mesoderm, eventually leading to the three transitory somitic compartments: dermomyotome, myotome and sclerotome. These structures are specified along a double gradient from dorsal to ventral and from medial to lateral. The establishment and controlled disruption of the epithelial state of the somitic compartments are crucial for development. In this article, we give a synopsis of some of the most important signalling events involved in somite patterning and cell fate decisions. Particular emphasis has been laid on the issue of epithelio-mesenchymal transition and different types of cell division in the somite.
Collapse
Affiliation(s)
- Faisal Yusuf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|
42
|
Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C. PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 2006; 20:784-94. [PMID: 16600910 PMCID: PMC1472282 DOI: 10.1101/gad.1392006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which homeoproteins bind selectively to target genes in vivo have long remained unresolved. Here we report that PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein by regulating its subnuclear localization and proximity to target genes. We demonstrate that the interaction of Msx1 with PIAS1, but not its sumoylation, is required for Msx1 to function as an inhibitor of myoblast differentiation through repression of myogenic regulatory genes, such as MyoD. We find that PIAS1 enables Msx1 to bind selectively to a key regulatory element in MyoD, the CER, in myoblast cells and to distinguish the CER from other nonregulatory TAAT-containing sequences. We show that PIAS1 is required for the appropriate localization and retention of Msx1 at the nuclear periphery in myoblast cells. Furthermore, we demonstrate that myogenic regulatory genes that are repressed by Msx1, namely MyoD and Myf5, are located at the nuclear periphery in myoblast cells. We propose that a key regulatory event for DNA-binding specificity by homeoproteins in vivo is their appropriate targeting to subnuclear compartments where their target genes are located, which can be achieved by cofactors such as PIAS1.
Collapse
Affiliation(s)
- Hansol Lee
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ogi H, Suzuki K, Ogino Y, Kamimura M, Miyado M, Ying X, Zhang Z, Shinohara M, Chen Y, Yamada G. Ventral abdominal wall dysmorphogenesis of Msx1/Msx2 double-mutant mice. ACTA ACUST UNITED AC 2005; 284:424-30. [PMID: 15803476 DOI: 10.1002/ar.a.20180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Msx1 and Msx2 genes encode the homeodomain transcription factors. Several gene knockout mice and expression studies suggest that they possess functionally redundant roles in embryogenesis. In this study, we revealed that Msx1 and Msx2 were expressed during ventral body wall formation in an overlapping manner. Msx1/Msx2 double-mutant mice displayed embryonic abdominal wall defects with disorganized muscle layers and connective tissues. These findings indicate that Msx1 and Msx2 play roles in concert during embryonic ventral abdominal wall formation.
Collapse
Affiliation(s)
- Hidenao Ogi
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The embryonic myotome generates both the axial musculature and the appendicular muscle of the fins and limbs. Early in embryo development the mesoderm is segmented into somites, and within these the primary myotome forms by a complex series of cellular movements and migrations. A new model of primary myotome formation in amniotes has emerged recently. The myotome also includes the muscle progenitor cells that are known to contribute to the secondary formation of the myotome. The adult myotome contains satellite cells that play an important role in adult muscle regeneration. Recent studies have shed light on how the growth and patterning of the myotome occurs.
Collapse
Affiliation(s)
- Georgina Hollway
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | | |
Collapse
|
45
|
Ramos C, Fernández-Llebrez P, Bach A, Robert B, Soriano E. Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev Dyn 2004; 230:446-60. [PMID: 15188430 DOI: 10.1002/dvdy.20070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have analyzed the expression of the Msx1 gene in the developing mouse brain and examined the brain phenotype in homozygotes. Msx1 is expressed in every cerebral vesicle throughout development, particularly in neuroepithelia, such as those of the fimbria and the medulla. Timing analysis suggests that Msx1(nLacZ) cells delaminate and migrate radially from these epithelia, mainly at embryonic days 14-16, while immunohistochemistry studies reveal that some of the beta-galactosidase migrating cells are oligodendrocytes or astrocytes. Our results suggest that the Msx1 neuroepithelia of fimbria and medulla may be a source of glial precursors. The Msx1 mutants display severe hydrocephalus at birth, while the subcommissural organ, the habenula, and the posterior commissure fail to develop correctly. No label was detected in the mutant subcommissural organ using a specific antibody against Reissner's fiber. Besides, the fasciculus retroflexus deviates close to the subcommissural organ, while the paraventricular thalamic nucleus shows histological disorganization. Our results implicate the Msx1 gene in the differentiation of the subcommissural organ cells and posterior commissure and that Msx1 protein may play a role in the pathfinding and bundling of the fasciculus retroflexus and in the structural arrangement of the paraventricular thalamic nucleus.
Collapse
Affiliation(s)
- Casto Ramos
- Department of Cell Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Yamamoto M, Kuroiwa A. Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ 2004; 45:485-98. [PMID: 14706073 DOI: 10.1111/j.1440-169x.2003.00715.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Under the influence of the limb mesenchyme, Hoxa-11 is expressed in migrating and proliferating premyoblasts in the limb field and Hoxa-13 is induced in subdomains of congregated limb muscle masses. To evaluate the roles of Hoxa-11 and Hoxa-13 in myogenesis of the limb, we performed electroporation in ovo to force expression of these Hox genes in limb muscle precursors. In the presence of ectopic Hoxa-11, expression of MyoD was blocked transiently. In C2C12 myoblasts, transfection of Hoxa-11 also repressed the expression of endogenous MyoD. Forced expression of Hoxa-13 resulted in more pronounced repression of MyoD in both limb and C2C12 myoblasts. In contrast, targeted disruption of Hoxa-13 gave rise to enhanced expression of MyoD in the flexor carpi radialis muscle, a forearm muscle that normally expressed Hoxa-13. These results suggest that Hoxa-11 and Hoxa-13 are involved in the negative regulation of MyoD expression in limb muscle precursors.
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan.
| | | |
Collapse
|
47
|
Bajanca F, Luz M, Duxson MJ, Thorsteinsdóttir S. Integrins in the mouse myotome: Developmental changes and differences between the epaxial and hypaxial lineage. Dev Dyn 2004; 231:402-15. [PMID: 15366018 DOI: 10.1002/dvdy.20136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Integrins are cellular adhesion receptors that mediate signaling and play key roles in the development of multicellular organisms. However, their role in the cellular events leading to myotome formation is completely unknown. Here, we describe the expression patterns of the alpha1, alpha4, alpha5, alpha6, and alpha7 integrin subunits in the mouse myotome and correlate them with the expression of several differentiation markers. Our results indicate that these integrin subunits may be differentially involved in the various phases of myogenic determination and differentiation. A detailed characterization of the myogenic cell types expressing the alpha4 and alpha6 subunits showed a regionalization of the myotome and dermomyotome based on cell-adhesion properties. We conclude that alpha6beta1 may be an early marker of epaxial myogenic progenitor cells. In contrast, alpha4beta1 is up-regulated in the intercalated myotome after myocyte differentiation. Furthermore, alpha4beta1 is expressed in the hypaxial dermomyotome and is maintained by early hypaxial myogenic progenitor cells colonizing the myotome.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Departamento de Biologia Animal, Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
48
|
Lee H, Habas R, Abate-Shen C. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 2004; 304:1675-8. [PMID: 15192231 DOI: 10.1126/science.1098096] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Hansol Lee
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
49
|
Lézot F, Coudert A, Petit S, Vi-Fane B, Hotton D, Davideau JL, Kato S, Descroix V, Pibouin L, Berdal A. Does Vitamin D play a role on Msx1 homeoprotein expression involving an endogenous antisense mRNA? J Steroid Biochem Mol Biol 2004; 89-90:413-7. [PMID: 15225812 DOI: 10.1016/j.jsbmb.2004.03.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Msx1 homeobox gene, a member of Msx family, has been implicated in numerous organs. Its participation was established in different events, such as morphogenetic field determinism and epithelio-mesenchymal interactions. Most of Msx1 target organs are also known for their sensitivity to Vitamin D: such as bone, tooth germ, and hair follicle. Whereas, the expression of Msx2, another member of Msx family, has been shown to be controlled by Vitamin D, no information is available for Msx1. This study aims to analyze the potential relationships between Vitamin D and Msx1 through: (1) comparative analysis of Vitamin D receptor (VDR) and Msx1 protein expression, (2) investigation of Msx1 expression in VDR null mutant mice, and (3) study of Msx1 overexpression impact on osteocalcin VDR expression in immortalized MO6-G3 odontoblasts. Results show the existence of cross-talks between Vitamin D and Msx1 regulation pathways. In odontoblastic cells, Msx1 overexpression decrease VDR expression, whereas in rickets Msx1 sense transcript expression is decreased. These cross-talks may open a new window in the analysis of rickets mineralized tissues physiopathology. In Vitamin D null mutants, the study of the natural Msx1 antisense transcript which has been recently described should be informative.
Collapse
Affiliation(s)
- F Lézot
- Laboratoire de Biologie Orofaciale et Pathologie, INSERM E 110, Institut Biomédical des Cordeliers, Université Paris 7, IFR58, 15-21 rue de l'Ecole de Médecine, 75006 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Under normal circumstances, mammalian adult skeletal muscle is a stable tissue with very little turnover of nuclei. However, upon injury, skeletal muscle has the remarkable ability to initiate a rapid and extensive repair process preventing the loss of muscle mass. Skeletal muscle repair is a highly synchronized process involving the activation of various cellular responses. The initial phase of muscle repair is characterized by necrosis of the damaged tissue and activation of an inflammatory response. This phase is rapidly followed by activation of myogenic cells to proliferate, differentiate, and fuse leading to new myofiber formation and reconstitution of a functional contractile apparatus. Activation of adult muscle satellite cells is a key element in this process. Muscle satellite cell activation resembles embryonic myogenesis in several ways including the de novo induction of the myogenic regulatory factors. Signaling factors released during the regenerating process have been identified, but their functions remain to be fully defined. In addition, recent evidence supports the possible contribution of adult stem cells in the muscle regeneration process. In particular, bone marrow-derived and muscle-derived stem cells contribute to new myofiber formation and to the satellite cell pool after injury.
Collapse
|