1
|
Steffes LC, Kumar ME, Varghese NP. Why some and not others? Understanding vascular phenotypes in genetic developmental lung diseases. Curr Opin Pediatr 2025; 37:278-288. [PMID: 40172258 DOI: 10.1097/mop.0000000000001459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Pulmonary vascular disease is more common in certain genetic developmental lung disorders. This review synthesizes clinical descriptions, molecular analyses, and single-cell transcriptional data to build a conceptual framework to help understand why some variants affect the vasculature while others primarily manifest with parenchymal disease. RECENT FINDINGS Genes predominantly expressed in endothelial and mesenchymal compartments ( TBX4 , FGF10 , FOXF1 , KDR ) commonly present with both parenchymal and pulmonary vascular disease, while epithelial-restricted genes ( SFTPC , ABCA3 , NKX2.1 ) typically manifest as parenchymal disease. Single-cell analyses reveal that compartment-specific expression patterns correlate with clinical phenotypes. Phenotypic variability, even among individuals sharing identical variants, suggests complex interactions between genetic modifiers, epigenetic factors, and developmental processes that remain poorly understood. SUMMARY Compartment-specific gene expression patterns fundamentally underlie the differential presence of vascular phenotypes in DEVLDs. Genetic advances and single cell technologies have revolutionized our understanding of these disorders, but we are in the early stages of translating this knowledge into meaningful clinical advances. Future efforts must bridge this gap to transform clinical care from supportive to targeted, disease-modifying treatment based on cell-specific molecular mechanisms.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Maya E Kumar
- Division of Pulmonology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Nidhy P Varghese
- Division of Pulmonology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Hogan BLM. Bud, branch, breathe! Building a mammalian lung over space and time. Dev Biol 2025; 522:64-75. [PMID: 40107482 DOI: 10.1016/j.ydbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Many mammalian organs, such as the mammary and lachrymal glands, kidney and lungs develop by the process known as branching morphogenesis. An essential feature of this process is the reciprocal interaction between the inner branched tubular epithelium and the surrounding mesenchyme to optimize the final amount of epithelial tissue that is generated for specific functions. To achieve this expansion the initial epithelial population undergoes repeated rounds of bud formation, branch outgrowth and tip bifurcations, with each repertoire requiring dynamic changes in cell behavior. The process of branching morphogenesis was first studied experimentally by Grobstein and others who showed that the embryonic epithelium did not develop without so-called inductive signals from the mesenchyme. However, it was not known whether this activity was uniformly distributed throughout the mesoderm or localized to specific regions. The mouse lung was seen as a powerful system in which to investigate such questions since its early branching is highly stereotypic, both in vivo and in culture. This advantage was exploited by two young scientists, Alescio and Cassini, who used grafting techniques with explanted embryonic mouse lungs. They showed that mesenchyme from around distal buds could induce ectopic buds in the trachea and other non-branching regions of the epithelium. At the same time, distal regions denuded of their mesoderm failed to develop further. They speculated that inductive factors that promote bud formation and continued outgrowth in competent endoderm are specifically localized within the distal mesenchyme, establishing a conceptual framework for future experimentation. Since then, advances in many areas of biology and bioengineering have enabled the identification of gene regulatory networks, signaling pathways and biomechanical properties that mediate lung branching morphogenesis. However, a quantitative model of how these parameters are coordinated over space and time to control the pattern and scale of branching and the overall size of the lung, still remains elusive.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke University Medical School, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Berdnikovs S, Newcomb DC, Haruna NF, McKernan KE, Kuehnle SN, Gebretsadik T, McKennan C, Ma S, Cephus JY, Rosas-Salazar C, Anderson LJ, Gern JE, Hartert T. Single-cell profiling demonstrates the combined effect of wheeze phenotype and infant viral infection on airway epithelial development. SCIENCE ADVANCES 2025; 11:eadr9995. [PMID: 40408478 PMCID: PMC12101503 DOI: 10.1126/sciadv.adr9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/21/2025] [Indexed: 05/25/2025]
Abstract
The development of the airway epithelium in asthma is unclear. We characterized nasal airway epithelial cell (NAEC) developmental phenotypes from children aged 2 to 3 years in an a priori designed nested birth cohort from four mutually exclusive groups of wheezers/nonwheezers and respiratory syncytial virus (RSV)-infected/uninfected in the first year of life. NAECs were differentiated, followed by single-cell RNA sequencing analysis and in vitro RSV infection. Gene expression of NAECs from children with a wheeze phenotype indicated abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation, delayed onset of maturation, increased diversity of RSV receptors, and blunted antiviral immune responses to in vitro RSV infection. The most marked changes in differentiation were observed in NAECs from children with both wheeze and RSV in the first year of life. Together, this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and altered RSV receptor expression.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nana-Fatima Haruna
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kaitlin E. McKernan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelby N. Kuehnle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Siyuan Ma
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health-Madison, Madison WI, USA
| | - Tina Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
van Galen DJM, Martins Costa A, Siche-Pantel F, Kemper R, Rochow N, Brandani M, Halfwerk FR, Arens J. Artificial Placenta and Artificial Womb Technologies for Lung and Kidney Failure: A Holistic Perspective. ASAIO J 2025:00002480-990000000-00688. [PMID: 40279540 DOI: 10.1097/mat.0000000000002443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025] Open
Abstract
Preterm birth remains the leading cause of mortality among neonates. Despite improvements in neonatal intensive care over the years, current treatments for lung and kidney failure are highly invasive, associated with lifelong disability, and limit family integration. Artificial womb and artificial placenta technologies offer a promising alternative by providing more tailored and less invasive neonatal care. Although these technologies share some similarities, artificial womb and artificial placenta technologies differ significantly in terms of treatment initiation, treatment environment, and the potential to support family-centered care. Moreover, even though acute kidney injury is common in neonatal extracorporeal membrane oxygenation (ECMO) patients, current artificial placenta and artificial womb devices lack renal support functionality. Most artificial womb and artificial placenta studies focus on the technical feasibility of these technologies based on in-vivo animal tests. However, translation toward envisioned use of these devices in preterm neonates remains mostly underexposed. A comprehensive stakeholder analysis, including parents and caregivers, is critical to the development of socially acceptable artificial placenta and artificial womb systems. This state-of-the-art review provides an overview of conventional neonatal lung and kidney treatments, delineates the differences between artificial womb and placenta technologies, and addresses the technological and ethical challenges in advancing these technologies toward potential clinical implementation.
Collapse
Affiliation(s)
- Danny J M van Galen
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| | - Ana Martins Costa
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| | - Franziska Siche-Pantel
- Policy and Advocacy Department, European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
| | - Ruth Kemper
- Policy and Advocacy Department, European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
| | - Niels Rochow
- Department of Pediatrics, Paracelsus Medical University, Nuremberg, Germany
- Department of Pediatrics, University Medicine Rostock, Rostock, Germany
| | - Maria Brandani
- Department of Pediatrics, Paracelsus Medical University, Nuremberg, Germany
| | - Frank R Halfwerk
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
- Department of Cardio-Thoracic Surgery, Thorax Centrum Twente, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jutta Arens
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
5
|
Chirculescu R, Balanescu PC, Peltecu G. The impact of external environment on pulmonary development - a morphological evaluation of pulmonary tissue in preterm infants. J Med Life 2025; 18:338-343. [PMID: 40405927 PMCID: PMC12094313 DOI: 10.25122/jml-2025-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 05/26/2025] Open
Abstract
Preterm birth disrupts the natural progression of pulmonary development, which can trigger functional and morphological consequences that may lead to death or the development of a chronic lung disease. The objective of this research was to evaluate the pulmonary morphological characteristics in 67 preterm neonates who had survived for a minimum of 24 hours. All evaluations were carried out on paraffin-embedded lung tissue, sliced at 5 micrometers, and stained with a standard hematoxylin-eosin stain. From each case, photomicrographs of one square millimeter were assessed, and the quantity of alveoli, the diameter of the alveoli, the thickness of the alveolar septum, and the total thickness of the arteriolar and venular walls were measured. The research findings revealed that prolonged oxygen therapy has an impact on the density of alveoli per square millimeter in premature infants, regardless of their gestational age at birth. Additionally, neonates with lobar lung abnormalities exhibit a reduced number of alveoli per square millimeter. Moreover, preterm neonates delivered at extreme gestational ages demonstrated a notably reduced alveolar diameter compared to those born at more advanced gestational ages, and infants who developed bronchopulmonary dysplasia may exhibit increased alveolar septal thickness compared to other newborns.
Collapse
Affiliation(s)
- Raluca Chirculescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pathology, Filantropia Clinical Hospital, Bucharest, Romania
| | - Paul Cristian Balanescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine, Colentina Clinical Hospital, Bucharest, Romania
| | - Gheorghe Peltecu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Ponderas Academic Hospital, Bucharest, Romania
| |
Collapse
|
6
|
McEvoy CT, MacDonald KD, Shorey-Kendrick LE, Davies MH, Lund KC, Lam R, Dozier BL, Martin LD, Corcoran F, Schelonka RL, Tepper RS, Spindel ER. Nasal CPAP increases alveolar number in a rhesus monkey model of moderate prematurity. Eur Respir J 2025; 65:2400727. [PMID: 39819570 DOI: 10.1183/13993003.00727-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Most premature human infants are born in the moderate to late preterm (MLP) range, ≥30 to <37 weeks gestation, and demonstrate increased incidence of wheeze and respiratory illness as they age. Animal models suggest that mechanical lung distention stimulates lung growth and alveolar development. To determine if nasal continuous positive airway pressure (nCPAP) influences MLP infant lung development, we developed a rhesus monkey model of moderate prematurity, randomised to 9 days of nCPAP or sham nCPAP. METHODS Timed-pregnant fetuses were delivered by elective hysterotomy at gestational age (GA) 140±1 days (85% gestation; term=165 days; human equivalent of 32-34 weeks) or at GA-149±1 days as a relative gestational age reference (GA-control). The day after delivery, the GA-140 animals were treated with nCPAP or sham nCPAP for 9 days, 12 consecutive hours each day. Pulmonary function testing followed by necropsy for analysis of lung structure and gene expression was performed on the equivalent of GA-150 for all animals. RESULTS The nCPAP and sham groups were clinically similar but distinct from the GA-control group. Stereological analysis of lung structure showed significantly increased numbers of alveoli in the nCPAP group compared to the sham group. Other functional and anatomical changes were consistent with increased alveolarisation. Gene expression between the nCPAP and sham groups remained highly similar and distinct from GA-control animals. CONCLUSIONS We show that nCPAP in MLP infants stimulates alveolarisation with relatively few other changes. How this may benefit subsequent infant respiratory health requires further study.
Collapse
Affiliation(s)
- Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Kelvin D MacDonald
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | | | - Michael H Davies
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Kelli C Lund
- Department of Pediatrics, University of Utah Health, Salt Lake City, UT, USA
| | - Ryan Lam
- Department of Neonatology, Salem Hospital, Salem, OR, USA
| | - Brandy L Dozier
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Lauren Drew Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Fiona Corcoran
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Robert L Schelonka
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, H.B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- R.S. Tepper and E.R. Spindel made equal contributions as senior authors
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- R.S. Tepper and E.R. Spindel made equal contributions as senior authors
| |
Collapse
|
7
|
Schmiedl A, Mühlfeld C. Morphological and molecular aspects of lung development. Histol Histopathol 2025; 40:411-430. [PMID: 39344418 DOI: 10.14670/hh-18-807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthy breathing relies on normal morphological and functional development of the lung. This includes different prenatal and postnatal developmental stages. Depending on species and postnatal behavior as nest escapers or nest squatters, the duration of individual developmental phases and the state of differentiation of the lungs at birth differ. However, the sequence and morphology of the lung developmental stages are similar in all mammals, so knowledge gained from animal models about development-specific genetic control and regulatory mechanisms can be translated in principle to the human lung. Functional lung development comprises the maturation of the surfactant system, which is closely linked to the morphological development of the pulmonary acini. Although a number of reviews are found in the literature, a presentation that integrates the morphological and molecular regulatory mechanisms is missing. Therefore, the aim of this article was to provide an up-to-date comprehensive review of the main morphological steps and regulatory mechanisms of lung development, including clinical aspects related to developmental disorders.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
8
|
Ushakumary MG, Chrisler WB, Bandyopadhyay G, Huyck H, Gorman BL, Beishembieva N, Pitonza A, Lai ZJ, Fillmore TL, Attah IK, Dylag AM, Misra R, Carson JP, Adkins JN, Pryhuber GS, Clair G. Sorted-Cell Proteomics Reveals an AT1-Associated Epithelial Cornification Phenotype and Suggests Endothelial Redox Imbalance in Human Bronchopulmonary Dysplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644398. [PMID: 40166356 PMCID: PMC11957130 DOI: 10.1101/2025.03.20.644398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bronchopulmonary dysplasia (BPD) is a neonatal lung disease characterized by inflammation and scarring leading to long-term tissue damage. Previous whole tissue proteomics identified BPD-specific proteome changes and cell type shifts. Little is known about the proteome-level changes within specific cell populations in disease. Here, we sorted epithelial (EPI) and endothelial (ENDO) cell populations based on their differential surface markers from normal and BPD human lungs. Using a low-input compatible sample preparation method (MicroPOT), proteins were extracted and digested into peptides and subjected to Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) proteome analysis. Of the 4,970 proteins detected, 293 were modulated in abundance or detection in the EPI population and 422 were modulated in ENDO cells. Modulation of proteins associated with actin-cytoskeletal function such as SCEL, LMO7, and TBA1B were observed in the BPD EPIs. Using confocal imaging and analysis, we validated the presence of aberrant multilayer-like structures comprising SCEL and LMO7, known to be associated with epidermal cornification, in the human BPD lung. This is the first report of accumulation of cornification-associated proteins in BPD. Their localization in the alveolar parenchyma, primarily associated with alveolar type 1 (AT1) cells, suggests a role in the BPD post-injury response. In the ENDOs, redox balance and mitochondrial function pathways were modulated. Alternative mRNA splicing and cell proliferative functions were elevated in both populations suggesting potential dysregulation of cell progenitor fate. This study characterized the proteome of epithelial and endothelial cells from the BPD lung for the first time, identifying population-specific changes in BPD pathogenesis. New & Noteworthy The study is the first to perform proteomics on sorted pulmonary epithelial and endothelial populations from BPD and age-matched control human donors. We identified an increase in cornification-associated proteins in BPD (e.g., SCEL and LMO7), and evidenced the presence of multilayered structures unique to BPD alveolar regions, associated with alveolar type 1 (AT1) cells. By changing the nature and/or biomechanical properties of the epithelium, these structures may alter the behavior of other alveolar cell types potentially contributing to the arrested alveolarization observed in BPD. Lastly, our data suggest the modulation of cell proliferation and redox homeostasis in BPD providing potential mechanisms for the reduced vascular growth associated with BPD.
Collapse
|
9
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
10
|
Yoshida M, Arzili R, Nikolić MZ. Immune-epithelial cell interactions in lung development, homeostasis and disease. Int J Biochem Cell Biol 2025; 178:106703. [PMID: 39592067 DOI: 10.1016/j.biocel.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The importance of the crosstalk between lung epithelial and immune cells, which emerges from early development and lasts throughout life, is corroborated by a growing body of scientific evidence. This communication not only has a role in driving lung morphogenesis during development, but it is also required in adulthood for the maintenance of homeostasis and repair following infection or injury. Disruption of the intricate immune-epithelial crosstalk can lead to diseases such as COPD and IPF. In this review we summarise the current knowledge regarding the communication between various immune and epithelial cells in development, homeostasis, regeneration and disease, while identifying the current gaps in our knowledge required to facilitate the development of more effective therapies.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
12
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
13
|
Sariyar S, Sountoulidis A, Hansen JN, Marco Salas S, Mardamshina M, Martinez Casals A, Ballllosera Navarro F, Andrusivova Z, Li X, Czarnewski P, Lundeberg J, Linnarsson S, Nilsson M, Sundström E, Samakovlis C, Lundberg E, Ayoglu B. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat Commun 2024; 15:9381. [PMID: 39477961 PMCID: PMC11525936 DOI: 10.1038/s41467-024-53752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.
Collapse
Affiliation(s)
- Sanem Sariyar
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Niklas Hansen
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariya Mardamshina
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frederic Ballllosera Navarro
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Emma Lundberg
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Burcu Ayoglu
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
14
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
15
|
Rosser F. Outdoor Air Pollution and Pediatric Respiratory Disease. Clin Chest Med 2024; 45:531-541. [PMID: 39069319 PMCID: PMC11286236 DOI: 10.1016/j.ccm.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Outdoor air pollution is ubiquitous, and no safe level of exposure has been identified for the most common air pollutants such as ozone and particle pollution. Children are uniquely more susceptible to the harms of outdoor air pollution, which can cause and exacerbate respiratory disease. Although challenging to identify the effects of outdoor air pollution on individual patients, understanding the basics of outdoor air pollution is essential for pediatric respiratory health care providers. This review covers basic information regarding outdoor air pollution, unique considerations for children, mechanisms for increased susceptibility, and association with incident and exacerbation of respiratory disease in children.
Collapse
Affiliation(s)
- Franziska Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
16
|
Acosta-Plasencia M, Castellano JJ, Díaz T, He Y, Marrades RM, Navarro A. Discovering genes and microRNAs involved in human lung development unveils IGFBP3/miR-34a dynamics and their relevance for alveolar differentiation. Stem Cell Res Ther 2024; 15:263. [PMID: 39183355 PMCID: PMC11346212 DOI: 10.1186/s13287-024-03883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND During pseudoglandular stage of the human lung development the primitive bronchial buds are initially conformed by simple tubules lined by endoderm-derived epithelium surrounded by mesenchyme, which will progressively branch into airways and start to form distal epithelial saculles. For first time alveolar type II (AT2) pneumocytes appears. This study aims to characterize the genes and microRNAs involved in this differentiation process and decipher its role in the starting alveolar differentiation. METHODS Gene and microRNA profiling was performed in human embryonic lungs from 7 to 12 post conception weeks (pcw). Protein expression location of candidate genes were analyzed by immunofluorescense in embryonic lung tissue sections. mRNA/miRNA target pairs were identified using computational approaches and their expression was studied in purified epithelial/mesenchymal cell populations and in isolated tips and stalks from the bronchial tree. Additionally, silencing experiments in human embryonic lung mesenchymal cells and in human embryonic tip-derived lung organoids were performed, as well as organoid differentiation studies. AT2 cell markers were studied by qRT-PCR and by immunofluorescence. The TGFB-β phosphorylated pathways was analyzed with membrane protein arrays. Lung explants were cultured in air/liquid interface with/without peptides. RESULTS We identified 88 differentially expressed genes, including IGFBP3. Although IGFBP3 mRNA was detected in both epithelial and mesenchymal populations, the protein was restricted to the epithelium, indicating post-transcriptional regulation preventing IGFBP3 protein expression in the mesenchyme. MicroRNA profiling identified miR-34a as an IGFBP3 regulator. miR-34a was up-regulated in mesenchymal cells, and its silencing in human embryonic lung mesenchymal cells increased IGFBP3 levels. Additionally, IGFBP3 expression showed a marked downregulation from 7 to 12 pcw, suggesting its involvement in the differentiation process. The differentiation of human tip-derived lung embryonic organoids showed a drastic reduction in IGFBP3, supported by the scRNAseq data. IGFBP3 silencing in organoids activated an alveolar-like differentiation process characterized by stem cell markers downregulation and upregulation of AT2 markers. This process was mediated by TGFβ signalling inhibition and BMP pathway activation. CONCLUSIONS The IGFBP3/miR-34a axis restricts IGFBP3 expression in the embryonic undifferentiated lung epithelium, and the progressive downregulation of IGFBP3 during the pseudoglandular stage is required for alveolar differentiation.
Collapse
Affiliation(s)
- Melissa Acosta-Plasencia
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Joan J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Tania Díaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Yangyi He
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Ramón M Marrades
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain
- Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain.
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
17
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
18
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
19
|
Quach H, Farrell S, Wu MJM, Kanagarajah K, Leung JWH, Xu X, Kallurkar P, Turinsky AL, Bear CE, Ratjen F, Kalish B, Goyal S, Moraes TJ, Wong AP. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat Commun 2024; 15:5898. [PMID: 39003323 PMCID: PMC11246468 DOI: 10.1038/s41467-024-50281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.
Collapse
Affiliation(s)
- Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer Farrell
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Ming Jia Michael Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kayshani Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Wai-Hin Leung
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoqiao Xu
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prajkta Kallurkar
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Kalish
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Berdnikovs S, Newcomb DC, McKernan KE, Kuehnle SN, Haruna NF, Gebretsadik T, McKennan C, Ma S, Cephus JY, Rosas-Salazar C, Anderson LJ, Gern JE, Hartert T. Single cell profiling to determine influence of wheeze and early-life viral infection on developmental programming of airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602506. [PMID: 39026695 PMCID: PMC11257436 DOI: 10.1101/2024.07.08.602506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Although childhood asthma is in part an airway epithelial disorder, the development of the airway epithelium in asthma is not understood. We sought to characterize airway epithelial developmental phenotypes in those with and without recurrent wheeze and the impact of infant infection with respiratory syncytial virus (RSV). Nasal airway epithelial cells (NAECs) were collected at age 2-3 years from an a priori designed nested birth cohort of children from four mutually exclusive groups of wheezers/non-wheezers and RSV-infected/uninfected in the first year of life. NAECs were cultured in air-liquid interface differentiation conditions followed by a combined analysis of single cell RNA sequencing (scRNA-seq) and in vitro infection with respiratory syncytial virus (RSV). NAECs from children with a wheeze phenotype were characterized by abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation and a delayed onset of maturation. NAECs from children with wheeze also had increased diversity of currently known RSV receptors and blunted anti-viral immune responses to in vitro infection. The most dramatic changes in differentiation of cultured epithelium were observed in NAECs derived from children that had both wheeze and RSV in the first year of life. Together this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and increased RSV receptors, which may predispose to and amplify the effects of RSV infection in infancy and susceptibility to other asthma risk factors that interact with the airway mucosa. SUMMARY Nasal airway epithelial cells from children with wheeze are characterized by altered development and increased susceptibility to RSV infection.
Collapse
|
21
|
Song L, Li K, Chen H, Xie L. Cell Cross-Talk in Alveolar Microenvironment: From Lung Injury to Fibrosis. Am J Respir Cell Mol Biol 2024; 71:30-42. [PMID: 38579159 PMCID: PMC11225874 DOI: 10.1165/rcmb.2023-0426tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024] Open
Abstract
Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Licheng Song
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| | - Kuan Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
22
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
23
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
24
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Lim K, Lee MO, Choi J, Kim JH, Kim EM, Woo CG, Chung C, Cho YH, Hong SH, Cho YJ, Ahn SJ. Guidelines for Manufacturing and Application of Organoids: Lung. Int J Stem Cells 2024; 17:147-157. [PMID: 38777828 PMCID: PMC11170115 DOI: 10.15283/ijsc24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.
Collapse
Affiliation(s)
- Kyungtae Lim
- Organoid Standards Initiative
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Mi-Ok Lee
- Organoid Standards Initiative
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jinwook Choi
- Organoid Standards Initiative
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jung-Hyun Kim
- Organoid Standards Initiative
- Collage of Pharmacy, Ajou University, Suwon, Korea
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon, Korea
| | - Eun-Mi Kim
- Organoid Standards Initiative
- Department of Bio and Environmental Technology, Seoul Women’s University, Seoul, Korea
| | - Chang Gyu Woo
- Organoid Standards Initiative
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Chaeuk Chung
- Organoid Standards Initiative
- Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yong-Hee Cho
- Organoid Standards Initiative
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
- Department of Medical Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Seok-Ho Hong
- Organoid Standards Initiative
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Young-Jae Cho
- Organoid Standards Initiative
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
26
|
Bandyopadhyay G, Jehrio MG, Baker C, Bhattacharya S, Misra RS, Huyck HL, Chu C, Myers JR, Ashton J, Polter S, Cochran M, Bushnell T, Dutra J, Katzman PJ, Deutsch GH, Mariani TJ, Pryhuber GS. Bulk RNA sequencing of human pediatric lung cell populations reveals unique transcriptomic signature associated with postnatal pulmonary development. Am J Physiol Lung Cell Mol Physiol 2024; 326:L604-L617. [PMID: 38442187 PMCID: PMC11381037 DOI: 10.1152/ajplung.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cameron Baker
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - ChinYi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jason R Myers
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - John Ashton
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven Polter
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew Cochran
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Timothy Bushnell
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Jennifer Dutra
- UR Clinical & Translational Science Institute Informatics, University of Rochester Medical Center, Rochester, New York, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
27
|
Li Y, Zhang L, Yu H, Wang J, Wang S, Liu J, Zheng Q. A comprehensive segmentation of chest X-ray improves deep learning-based WHO radiologically confirmed pneumonia diagnosis in children. Eur Radiol 2024; 34:3471-3482. [PMID: 37930411 DOI: 10.1007/s00330-023-10367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES To investigate a comprehensive segmentation of chest X-ray (CXR) in promoting deep learning-based World Health Organization's (WHO) radiologically confirmed pneumonia diagnosis in children. METHODS A total of 4400 participants between January 2016 and June 2021were identified for a cross-sectional study and divided into primary endpoint pneumonia (PEP), other infiltrates, and normal groups according to WHO's diagnostic criteria. The CXR was divided into six segments of left lung, right lung, mediastinum, diaphragm, ext-left lung, and ext-right lung by adopting the RA-UNet. To demonstrate the benefits of lung field segmentation in pneumonia diagnosis, the segmented images and images that were not segmented, which constituted seven segmentation combinations, were fed into the CBAM-ResNet under a three-category classification comparison. The interpretability of the CBAM-ResNet for pneumonia diagnosis was also performed by adopting a Grad-CAM module. RESULTS The RA-UNet achieved a high spatial overlap between manual and automatic segmentation (averaged DSC = 0.9639). The CBAM-ResNet when fed with the six segments achieved superior three-category diagnosis performance (accuracy = 0.8243) over other segmentation combinations and deep learning models under comparison, which was increased by around 6% in accuracy, precision, specificity, sensitivity, F1-score, and around 3% in AUC. The Grad-CAM could capture the pneumonia lesions more accurately, generating a more interpretable visualization and enhancing the superiority and reliability of our study in assisting pediatric pneumonia diagnosis. CONCLUSIONS The comprehensive segmentation of CXR could improve deep learning-based pneumonia diagnosis in childhood with a more reasonable WHO's radiological standardized pneumonia classification instead of conventional dichotomous bacterial pneumonia and viral pneumonia. CLINICAL RELEVANCE STATEMENT The comprehensive segmentation of chest X-ray improves deep learning-based WHO confirmed pneumonia diagnosis in children, laying a strong foundation for the potential inclusion of computer-aided pediatric CXR readings in precise classification of pneumonia and PCV vaccine trials efficacy in children. KEY POINTS • The chest X-ray was comprehensively segmented into six anatomical structures of left lung, right lung, mediastinum, diaphragm, ext-left lung, and ext-right lung. • The comprehensive segmentation improved the three-category classification of primary endpoint pneumonia, other infiltrates, and normal with an increase by around 6% in accuracy, precision, specificity, sensitivity, F1-score, and around 3% in AUC. • The comprehensive segmentation gave rise to a more accurate and interpretable visualization results in capturing the pneumonia lesions.
Collapse
Affiliation(s)
- Yuemei Li
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Lin Zhang
- Department of Radiology, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen, Fujian, China
| | - Hu Yu
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Jian Wang
- Department of Radiology, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen, Fujian, China
| | - Shuo Wang
- Yantai University Trier College of Sustainable Technology, Yantai, 264005, Shandong Province, China
- Trier University of Applied Sciences, D-54208, Trier, Germany
| | - Jungang Liu
- Department of Radiology, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen, Fujian, China.
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
28
|
Dohna M, Hirsch WF, Dingemann J, Gräfe D. [Congenital pulmonary malformations : Diagnosis and treatment]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:357-365. [PMID: 38546875 DOI: 10.1007/s00117-024-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
PERFORMANCE Congenital pulmonary malformations (CPM) are rare and can be associated with high morbidity. Clinical presentation, diagnostic procedures, imaging, and therapy of CPM are discussed. ACHIEVEMENTS Today, most CPM can be diagnosed prenatally by ultrasound. Postnatally, respiratory symptoms up to respiratory failure and recurrent lower respiratory tract infection are typical findings. Due to low diagnostic accuracy of chest x‑ray in CPM, all children with prenatal diagnosis of CPM or postnatally suspected CPM should undergo cross-sectional imaging. PRACTICAL RECOMMENDATIONS Based on imaging alone, the various subtypes of CPM cannot be definitively differentiated, which is why histological confirmation remains the gold standard. Surgical resection is the standard of care with minimally invasive procedures increasingly being employed. In certain situations, a watch-and-wait approach is possible.
Collapse
Affiliation(s)
- M Dohna
- Institut für diagnostische und interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
- Klinik für diagnostische und interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - W F Hirsch
- Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - J Dingemann
- Institut für diagnostische und interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
- Klinik für Kinderchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - D Gräfe
- Universitätsklinikum Leipzig, Leipzig, Deutschland
| |
Collapse
|
29
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
30
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
31
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
32
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
33
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
34
|
Holmes H, Saini BS, Moir OJ, Darby JRT, Morrison JL, Sun L, Seed M. Pulmonary Vascular Regulation in the Fetal and Transitional Lung. Clin Perinatol 2024; 51:1-19. [PMID: 38325936 DOI: 10.1016/j.clp.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fetal lungs have fewer and smaller arteries with higher pulmonary vascular resistance (PVR) than a newborn. As gestation advances, the pulmonary circulation becomes more sensitive to changes in pulmonary arterial oxygen tension, which prepares them for the dramatic drop in PVR and increase in pulmonary blood flow (PBF) that occur when the baby takes its first few breaths of air, thus driving the transition from fetal to postnatal circulation. Dynamic and intricate regulatory mechanisms control PBF throughout development and are essential in supporting gas exchange after birth. Understanding these concepts is crucial given the role the pulmonary vasculature plays in the development of complications with transition, such as in the setting of persistent pulmonary hypertension of the newborn and congenital heart disease. An improved understanding of pulmonary vascular regulation may reveal opportunities for better clinical management.
Collapse
Affiliation(s)
- Hannah Holmes
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Brahmdeep S Saini
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Olivia J Moir
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, 5001, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, 5001, Australia; Department of Physiology, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada; Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada; Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada; Research Institute, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada; Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8 Canada.
| |
Collapse
|
35
|
Sui X, Sui Y, Long P, Wang Y, Chen Y, Zhai W, Gao L. Arginase 1 does not affect RNA m6A methylation in mouse fetal lung. Birth Defects Res 2024; 116:e2318. [PMID: 38362594 DOI: 10.1002/bdr2.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.
Collapse
Affiliation(s)
- Xuesong Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yanyu Sui
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Peihua Long
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yifei Wang
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Wenjia Zhai
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
36
|
Zhang K, Aung T, Yao E, Chuang PT. Lung patterning: Is a distal-to-proximal gradient of cell allocation and fate decision a general paradigm?: A gradient of distal-to-proximal distribution and differentiation of tip progenitors produces distinct compartments in the lung. Bioessays 2024; 46:e2300083. [PMID: 38010492 DOI: 10.1002/bies.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
37
|
Barnes JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, Suo C, Pett JP, Wilbrey-Clark A, Dann E, Mamanova L, Richardson L, Polanski K, Pennycuick A, Allen-Hyttinen J, Herczeg IT, Arzili R, Hynds RE, Teixeira VH, Haniffa M, Lim K, Sun D, Rawlins EL, Oliver AJ, Lyons PA, Marioni JC, Ruhrberg C, Tuong ZK, Clatworthy MR, Reading JL, Janes SM, Teichmann SA, Meyer KB, Nikolić MZ. Early human lung immune cell development and its role in epithelial cell fate. Sci Immunol 2023; 8:eadf9988. [PMID: 38100545 PMCID: PMC7615868 DOI: 10.1126/sciimmunol.adf9988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1β drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1β-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.
Collapse
Affiliation(s)
- Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam Pennycuick
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James L Reading
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- Tumour Immunodynamics and Interception Laboratory, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Physics/Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Welfley H, Kylat R, Zaghloul N, Halonen M, Martinez FD, Ahmed M, Cusanovich DA. Single-Cell Profiling of Premature Neonate Airways Reveals a Continuum of Myeloid Differentiation. Am J Respir Cell Mol Biol 2023; 69:689-697. [PMID: 37643399 PMCID: PMC10704120 DOI: 10.1165/rcmb.2022-0293oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
Single-cell genomic technologies hold great potential to advance our understanding of lung development and disease. A major limitation lies in accessing intact cells from primary lung tissues for profiling human airway health. Sampling methods such as endotracheal aspiration that are compatible with clinical interventions could enable longitudinal studies, the enrollment of large cohorts, and the development of novel diagnostics. To explore single-cell RNA sequencing profiling of the cell types present at birth in the airway lumen of extremely premature neonates (<28 wk gestation), we isolated cells from endotracheal aspirates collected from intubated neonates within the first hour after birth. We generated data on 10 subjects, providing a rich view of airway luminal biology at a critical developmental period. Our results show that cells present in the airways of premature neonates primarily represent a continuum of myeloid differentiation, including fetal monocytes (25% of total), intermediate myeloid populations (48%), and macrophages (2.6%). Applying trajectory analysis to the myeloid populations, we identified two trajectories consistent with the developmental stages of interstitial and alveolar macrophages, as well as a third trajectory presenting an alternative pathway bridging the distinct macrophage precursors. The three trajectories share many dynamic genes (N = 5,451), but also have distinct transcriptional changes (259 alveolar-specific, 666 interstitial-specific, and 285 bridging-specific). Overall, our results define cells isolated within the so-called "golden hour of birth" in extremely premature neonate airways, representing complex lung biology, and can be used in studies of human development and disease.
Collapse
Affiliation(s)
| | - Ranjit Kylat
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Nahla Zaghloul
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | | | | | - Mohamed Ahmed
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Darren A. Cusanovich
- Asthma and Airway Disease Research Center and
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
39
|
Müller M, Kohl Y, Germann A, Wagner S, Zimmermann H, von Briesen H. Alveolar epithelial-like cell differentiation in a dynamic bioreactor: a promising 3D-approach for the high-throughput generation of lung cell types from human induced pluripotent stem cells. IN VITRO MODELS 2023; 2:249-262. [PMID: 39872502 PMCID: PMC11756466 DOI: 10.1007/s44164-023-00052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 01/30/2025]
Abstract
Purpose Human induced pluripotent stem cell (hiPSC)-derived lung cell types such as alveolar epithelial cells are promising for toxicological and pharmaceutical in vitro screenings. Reproducible differentiation processes are highly demanded, but protocols which are suitable for the high-throughput generation of lung cell types from hiPSCs are lacking. Methods In this study, a new approach for the hiPSC-differentiation in alveolar epithelial-like cells type 2 under dynamic 3D-conditions in a suspension bioreactor is presented. Gene and protein expression analyses of key markers during the embryonal lung development have been performed in comparison to cells differentiated under static 2D-conditions to evaluate the differentiation efficacy of the new bioreactor-based approach. Finally, the resulting cells were infected by SARS-CoV-2 pseudotypes to demonstrate their functionality and suitability for e.g. COVID-19 drug development. Results The dynamic bioreactor is suitable to differentiate hiPSCs in spheroids, which express relevant lung markers in each developmental stage on gene and protein level. The 3D method is able to significantly increase the expression of some markers in comparison to conventional 2D differentiation. 3D-differentiated alveolar epithelial-like cells express functional SARS-CoV-2 receptors and can display the viral infection. Conclusion The presented dynamic 3D-differentiation is a promising, new approach to generate alveolar epithelial-like cells from hiPSCs as cell source for in vitro lung models. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00052-1.
Collapse
Affiliation(s)
- Michelle Müller
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Anja Germann
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
- Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, Saarbrücken, Germany
- Facultad de Ciencias del Mar, Universidad Cato´ Lica del Norte, Coquimbo, Chile
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| |
Collapse
|
40
|
MUSTHAFA AHMAD, RYANTO GUSTYRIZKYTEGUH, SURAYA RATOE, NAGANO TATSUYA, SUZUKI YOKO, HARA TETSUYA, HIRATA KENICHI, EMOTO NORIAKI. Acute Amelioration of Inflammatory Activity Caused by Endothelin-2 Deficiency during Acute Lung Injury. THE KOBE JOURNAL OF MEDICAL SCIENCES 2023; 69:E96-E105. [PMID: 37941117 PMCID: PMC10695096 DOI: 10.24546/0100483406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
In acute lung injury (ALI), a severe insult induces a hyperinflammatory state in the lungs. The mortality rate of severe ALI remains high, and novel mechanistic insights are required to improve therapeutic strategies. Endothelin-2 (Edn2), the least studied isoform of endothelin, is involved in lung physiology and development and can be affected by various factors. One of them is inflammation, and another isoform of endothelin, endothelin-1 (Edn1), affects lung inflammatory responses. Considering the importance of Edn2 in the lungs and how Edn2 works through the same receptors as Edn1, we postulated that Edn2 may affect inflammatory responses that are central to ALI pathophysiology. In this study, we performed 24 hours intratracheal lipopolysaccharide (LPS) instillation or PBS control as an in vivo ALI model in eight-week-old conditional Edn2 knockout mice (Edn2-iKO), with Edn2-floxed mice as controls. Bronchoalveolar lavage (BAL) fluid and tissue were collected after exsanguination and analyzed for its cellular, molecular, functional, and histological inflammatory phenotypes. We found that Edn2-iKO mice displayed a reduced pro-neutrophilic inflammatory phenotype even after acute LPS treatment, shown by the reduction in the overall protein concentration and neutrophil count in bronchoalveolar lavage fluids. Further investigation revealed a reduction in mRNA interferon gamma (IFNγ) level of Edn2-iKO lungs and suppression of its downstream signaling, including phosphorylated level of STAT1 and IL-1β secretion, leading to reduced NFĸB activation. To conclude, Edn2 deletion suppressed acute lung inflammation by reducing neutrophil-mediated IFNγ/STAT1/IL-1β/NFĸB signaling cascade. Targeting Edn2 signaling may be beneficial for the development of novel treatment options for ALI.
Collapse
Affiliation(s)
- AHMAD MUSTHAFA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - RATOE SURAYA
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TATSUYA NAGANO
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOKO SUZUKI
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - TETSUYA HARA
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - KEN-ICHI HIRATA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - NORIAKI EMOTO
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
41
|
Abdelgawad A, Nicola T, Martin I, Halloran BA, Tanaka K, Adegboye CY, Jain P, Ren C, Lal CV, Ambalavanan N, O'Connell AE, Jilling T, Willis KA. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota. MICROBIOME 2023; 11:226. [PMID: 37845716 PMCID: PMC10578018 DOI: 10.1186/s40168-023-01673-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical, host-derived regulators of the microbiota. However, mechanisms that support microbiota homeostasis in response to inflammatory stimuli, such as supraphysiologic oxygen, remain unclear. RESULTS We show that supraphysiologic oxygen exposure to neonatal mice, or direct exposure of intestinal organoids to supraphysiologic oxygen, suppresses the intestinal expression of AMPs and alters intestinal microbiota composition. Oral supplementation of the prototypical AMP lysozyme to hyperoxia-exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. CONCLUSIONS Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury in newborns. Together, these data support that intestinal AMPs modulate lung injury and repair. Video Abstract.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teodora Nicola
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isaac Martin
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Halloran
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kosuke Tanaka
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pankaj Jain
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changchun Ren
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charitharth V Lal
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamás Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kent A Willis
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
43
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. NPJ Regen Med 2023; 8:48. [PMID: 37689780 PMCID: PMC10492838 DOI: 10.1038/s41536-023-00325-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Peggy P Hsu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Charles J Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia R Utter
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abhinav Anand
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yi Zhang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sydney G Clark
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
Yu Y, Liu Y, Sui X, Sui Y, Wang Z, Mendelson CR, Gao L. Arginase 1 and L-arginine coordinate fetal lung development and the initiation of labor in mice. EMBO Rep 2023; 24:e56352. [PMID: 37291976 PMCID: PMC10398669 DOI: 10.15252/embr.202256352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Fetal development and parturition are precisely regulated processes that involve continuous crosstalk between the mother and the fetus. Our previous discovery that wild-type mice carrying steroid receptor coactivator (Src)-1 and Src-2 double-deficient fetuses exhibit impaired lung development and delayed labor, which indicates that the signals for parturition emanate from the fetus. In this study, we perform RNA sequencing and targeted metabolomics analyses of the lungs from fetal Src-1/-2 double-knockout mice and find that expression of arginase 1 (Arg1) is significantly decreased, accompanied by increased levels of the Arg1 substrate L-arginine. Knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. Moreover, treatment of human myometrial smooth muscle cells with L-arginine significantly inhibits spontaneous contractions by attenuating activation of NF-κB and downregulating expression of contraction-associated protein genes. Transcription factors GR and C/EBPβ increase transcription of Arg1 in an Src-1/Src-2-dependent manner. These findings provide new evidence that fetus-derived factors may play dual roles in coordinating fetal lung development and the initiation of labor.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yuanyuan Liu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xuesong Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yanyu Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Zhe Wang
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Carole R Mendelson
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Lu Gao
- Department of PhysiologyNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| |
Collapse
|
45
|
Han S, Lee M, Shin Y, Giovanni R, Chakrabarty RP, Herrerias MM, Dada LA, Flozak AS, Reyfman PA, Khuder B, Reczek CR, Gao L, Lopéz-Barneo J, Gottardi CJ, Budinger GRS, Chandel NS. Mitochondrial integrated stress response controls lung epithelial cell fate. Nature 2023; 620:890-897. [PMID: 37558881 PMCID: PMC10447247 DOI: 10.1038/s41586-023-06423-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA.
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Youngjin Shin
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Regina Giovanni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Ram P Chakrabarty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Mariana M Herrerias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Annette S Flozak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Colleen R Reczek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - José Lopéz-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
46
|
Matkovic Leko I, Schneider RT, Thimraj TA, Schrode N, Beitler D, Liu HY, Beaumont K, Chen YW, Snoeck HW. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc 2023; 18:2283-2312. [PMID: 37165073 PMCID: PMC11486529 DOI: 10.1038/s41596-023-00827-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/24/2023] [Indexed: 05/12/2023]
Abstract
Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Ivana Matkovic Leko
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remy T Schneider
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tania A Thimraj
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nadine Schrode
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Beitler
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin Beaumont
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
47
|
Bush D, Juliano C, Bowler S, Tiozzo C. Development and Disorders of the Airway in Bronchopulmonary Dysplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1127. [PMID: 37508624 PMCID: PMC10378517 DOI: 10.3390/children10071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a disorder characterized by arrested lung development, is a frequent cause of morbidity and mortality in premature infants. Parenchymal lung changes in BPD are relatively well-characterized and highly studied; however, there has been less emphasis placed on the role that airways disease plays in the pathophysiology of BPD. In preterm infants born between 22 and 32 weeks gestation, the conducting airways are fully formed but still immature and therefore susceptible to injury and further disruption of development. The arrest of maturation results in more compliant airways that are more susceptible to deformation and damage. Consequently, neonates with BPD are prone to developing airway pathology, particularly for patients who require intubation and positive-pressure ventilation. Airway pathology, which can be divided into large and small airways disease, results in increased respiratory morbidity in neonates with chronic lung disease of prematurity.
Collapse
Affiliation(s)
- Douglas Bush
- Division of Pediatric Pulmonology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Courtney Juliano
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Selina Bowler
- Department of Pediatrics, New York University Langone-Long Island, Mineola, NY 11501, USA
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
48
|
Hu J, Wang H, Du X, Zhu L, Wang S, Zhang H, Xu Z, Chen H. Morphologic classification of tracheobronchial arborization in children with congenital tracheobronchial stenosis and the associated cardiovascular defects. Front Pediatr 2023; 11:1123237. [PMID: 37287629 PMCID: PMC10242125 DOI: 10.3389/fped.2023.1123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background We sought to classify patients with congenital tracheal stenosis (CTS) according to tracheobronchial morphology and determine anatomic features associated with tracheobronchial anomalies (TBAs) and concurrent cardiovascular defects (CVDs). Methods We enrolled 254 patients who underwent tracheoplasty between November 1, 2009 and December 30, 2018. The anatomic features of the tracheobronchial tree and cardiovascular system were abstracted from bronchoscopy, echocardiography, computerized tomography, and operative reports. Results Four types of tracheobronchial morphology were identified: Type-1, which included normal tracheobronchial arborization (Type-1A, n = 29) and tracheal bronchus (Type-1B, n = 22); Type-2 (tracheal trifurcation; n = 49), and Type-3 (typical bridging bronchus; n = 47). Type-4 (bronchus with an untypical bridging pattern) was divided into Type-4A (involving bronchial diverticulum; n = 52) and Type-4B (absent bronchus; n = 55). Carinal compression and tracheomalacia were significantly more frequent in Type-4 patients than in the other patients (P < 0.01). CVDs were common in patients with CTS, especially in patients with Type-3 and Type-4 (P < 0.01). Persistent left superior vena cava was most common among patients with Type-3 (P < 0.01), and pulmonary artery sling was most frequent among those with Type-4 (P < 0.01). Outflow tract defects were most likely to occur in Type-1B. Early mortality was detected in 12.2% of all patients, and young age (P = 0.02), operation in the early era (P < 0.01), and bronchial stenosis (P = 0.03) were proven to be risk factors. Conclusions We demonstrated a useful morphological classification for CTS. Bridging bronchus was most closely linked with vascular anomalies, while tracheal bronchus was frequently associated with outflow tract defects. These results may provide a clue to CTS pathogenesis.
Collapse
Affiliation(s)
- Jie Hu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwei Du
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Limin Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shunmin Wang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Kastlmeier MT, Gonzalez-Rodriguez E, Cabanis P, Guenther EM, König AC, Han L, Hauck SM, See F, Asgharpour S, Bukas C, Burgstaller G, Piraud M, Lehmann M, Hatz RA, Behr J, Stoeger T, Hilgendorff A, Voss C. Cytokine signaling converging on IL11 in ILD fibroblasts provokes aberrant epithelial differentiation signatures. Front Immunol 2023; 14:1128239. [PMID: 37266432 PMCID: PMC10230276 DOI: 10.3389/fimmu.2023.1128239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Interstitial lung disease (ILD) is a heterogenous group of lung disorders where destruction and incomplete regeneration of the lung parenchyma often results in persistent architectural distortion of the pulmonary scaffold. Continuous mesenchyme-centered, disease-relevant signaling likely initiates and perpetuates the fibrotic remodeling process, specifically targeting the epithelial cell compartment, thereby destroying the gas exchange area. Methods With the aim of identifying functional mediators of the lung mesenchymal-epithelial crosstalk with potential as new targets for therapeutic strategies, we developed a 3D organoid co-culture model based on human induced pluripotent stem cell-derived alveolar epithelial type 2 cells that form alveolar organoids in presence of lung fibroblasts from fibrotic-ILD patients, in our study referring to cases of pulmonary fibrosis, as well as control cell line (IMR-90). Results While organoid formation capacity and size was comparable in the presence of fibrotic-ILD or control lung fibroblasts, metabolic activity was significantly increased in fibrotic-ILD co-cultures. Alveolar organoids cultured with fibrotic-ILD fibroblasts further demonstrated reduced stem cell function as reflected by reduced Surfactant Protein C gene expression together with an aberrant basaloid-prone differentiation program indicated by elevated Cadherin 2, Bone Morphogenic Protein 4 and Vimentin transcription. To screen for key mediators of the misguided mesenchymal-to-epithelial crosstalk with a focus on disease-relevant inflammatory processes, we used mass spectrometry and characterized the secretome of end stage fibrotic-ILD lung fibroblasts in comparison to non-chronic lung disease (CLD) patient fibroblasts. Out of the over 2000 proteins detected by this experimental approach, 47 proteins were differentially abundant comparing fibrotic-ILD and non-CLD fibroblast secretome. The fibrotic-ILD secretome profile was dominated by chemokines, including CXCL1, CXCL3, and CXCL8, interfering with growth factor signaling orchestrated by Interleukin 11 (IL11), steering fibrogenic cell-cell communication, and proteins regulating extracellular matrix remodeling including epithelial-to-mesenchymal transition. When in turn treating alveolar organoids with IL11, we recapitulated the co-culture results obtained with primary fibrotic-ILD fibroblasts including changes in metabolic activity. Conclusion We identified mediators likely contributing to the disease-perpetuating mesenchymal-to-epithelial crosstalk in ILD. In our alveolar organoid co-cultures, we were able to highlight the importance of fibroblast-initiated aberrant epithelial differentiation and confirmed IL11 as a key player in fibrotic-ILD pathogenesis by unbiased fibroblast secretome analysis.
Collapse
Affiliation(s)
- Miriam T. Kastlmeier
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Erika Gonzalez-Rodriguez
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Phoebe Cabanis
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Eva M. Guenther
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core (MPC), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Lianyong Han
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core (MPC), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Fenja See
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sara Asgharpour
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christina Bukas
- Helmholtz AI, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marie Piraud
- Helmholtz AI, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Mareike Lehmann
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Rudolf A. Hatz
- Klinik für Thoraxchirurgie, Asklepios Fachkliniken München-Gauting, Thoraxchirurgie, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, Ludwig-Maximilians University Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
- Dr. von Haunersche Children’s Hospital, Hospital of the Ludwig-Maximilians University, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Carola Voss
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Munich with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
50
|
Wang R, Kang N, Zhang W, Chen B, Xu S, Wu L. The developmental toxicity of PM2.5 on the early stages of fetal lung with human lung bud tip progenitor organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121764. [PMID: 37142209 DOI: 10.1016/j.envpol.2023.121764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Exposure to air pollution has been proven to be associated with impaired fetal lung development. However, due to the lack of reliable human source models, it is still challenging to deeply understand the human fetal lung development under PM2.5 exposure. Here, we utilized human embryonic stem cell (hESC) line H9 to generate lung bud tip progenitor organoids (LPOs), a process that mimics early stages of fetal lung development including definitive endoderm (DE) formation, anterior foregut endoderm (AFE) differentiation and lung progenitor cell specification, to evaluate potential pulmonary developmental toxicity of PM2.5. We demonstrated that PM2.5 exposure the entire LPOs induction from hESCs significantly affected cellular proliferation of LPOs, and altered the expression of lung progenitor cell markers NKX2.1, SOX2 and SOX9, which are canonically defined subsequently proximal-distal airways specification. To explore the dynamic influences of PM2.5 exposure at different stages of LPOs specification, we also found that PM2.5 exposure significantly affected the expression of several transcriptional factors that are important for the differentiation of DE and AFE. Mechanistically, we suggested PM2.5-induced developmental toxicity to LPOs was partially linked with the Wnt/β-catenin signaling pathway. Therefore, our findings further emphasize the substantial health risks in the development of respiratory system associated with prenatal exposure to PM2.5.
Collapse
Affiliation(s)
- Run Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ningning Kang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|