1
|
Nakashima M, Pinkaew D, Pal U, Miyao F, Huynh H, Tanaka L, Fujise K. Fortilin binds CTNNA3 and protects it against phosphorylation, ubiquitination, and proteasomal degradation to guard cells against apoptosis. Commun Biol 2025; 8:1. [PMID: 39747445 PMCID: PMC11695602 DOI: 10.1038/s42003-024-07399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Fortilin, a 172-amino acid polypeptide, is a multifunctional protein that interacts with various protein molecules to regulate their functions. Although fortilin has been shown to interact with cytoskeleton proteins such as tubulin and actin, its interactions with the components of adherens junctions remained unknown. Using co-immunoprecipitation western blot analyses, the proximity ligation assay, microscale thermophoresis, and biolayer interferometry, we here show that fortilin specifically interacts with CTNNA3 (α-T-catenin), but not with CTNNA1, CTNNA2, or CTNNB. The silencing of fortilin using small interfering RNA (siRNAfortilin) promotes the proteasome-mediated degradation of CTNNA3 in 293T cells. Using both fortilin-deficient THP1 cells and 293T cells that overexpress wild-type (WT), phospho-null (5A), and phospho-mimetic (5D) CTNNA3s, we also show that the absence of fortilin accelerates the phosphorylation of CTNNA3, leading to its ubiquitination and proteasome-mediated degradation. Further, the silencing of CTNNA3 using siRNACTNNA3 causes 293T cells to undergo apoptosis. These data suggest that fortilin guards the cells against apoptosis by positively regulating the pro-survival molecule CTNNA3 by protecting it against phosphorylation, ubiquitination, and proteasome-mediated degradation.
Collapse
Affiliation(s)
- Mari Nakashima
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Decha Pinkaew
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Uttariya Pal
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Fei Miyao
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hanna Huynh
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Lena Tanaka
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Ken Fujise
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
3
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
4
|
Kyriakopoulou E, Versteeg D, de Ruiter H, Perini I, Seibertz F, Döring Y, Zentilin L, Tsui H, van Kampen SJ, Tiburcy M, Meyer T, Voigt N, Tintelen VJP, Zimmermann WH, Giacca M, van Rooij E. Therapeutic efficacy of AAV-mediated restoration of PKP2 in arrhythmogenic cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1262-1276. [PMID: 38665939 PMCID: PMC11041734 DOI: 10.1038/s44161-023-00378-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Danielle Versteeg
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Ilaria Perini
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hoyee Tsui
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | | | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | | | - Wolfram H. Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Eva van Rooij
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Hung PF, Chung FP, Hung CL, Lin YJ, Kuo TT, Liao JN, Chen YY, Pan CH, Shaw KP, Chen SA. Decreased Expression of Plakophilin-2 and αT-Catenin in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Markers for Diagnosis. Int J Mol Sci 2022; 23:ijms23105529. [PMID: 35628349 PMCID: PMC9141850 DOI: 10.3390/ijms23105529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary disease of the heart muscle. Clinical challenges remain, however, in identifying patients with ARVC in the early or concealed stages with subtle clinical manifestations. Therefore, we wanted to identify potential targets by immunohistochemical (IHC) analysis in comparison with controls. Pathogenic mutations were identified in 11 of 37 autopsied patients with ARVC. As observed from IHC analysis of the RV, expression of αT-catenin and plakophilin-2 is significantly decreased in autopsied patients with ARVC as compared to controls, and the decreased expression is consistent in patients with and without pathogenic mutations. Furthermore, ARVC specimens demonstrated a reduced localization of αT-catenin, desmocollin-2, desmoglein-2, desmoplakin, and plakophilin-2 on intercalated discs. These findings have been validated by comparing RV specimens obtained via endomyocardial biopsy between patients with ARVC and those without. The pathogenic mutation was present in 3 of 5 clinical patients with ARVC. In HL-1 myocytes, siRNA was used to knockdown CTNNA3, and western blotting analysis demonstrated that the decline in αT-catenin expression was accompanied by a significant decline in the expression of plakophilin-2. The aforementioned effect was directed towards protein degradation rather than mRNA stability. Plakophilin-2 expression decreases concurrently with the decline in CTNNA3 expression. Therefore, the expression of αT-catenin and plakophilin-2 could be potential surrogates for the diagnosis of ARVC.
Collapse
Affiliation(s)
- Pei-Fang Hung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Correspondence:
| | - Chung-Lieh Hung
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan;
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252005, Taiwan
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Tzu-Ting Kuo
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yun-Yu Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| | - Chih-Hsin Pan
- Institute of Forensic Medicine, Ministry of Justice, New Taipei City 235016, Taiwan; (C.-H.P.); (K.-P.S.)
| | - Kai-Ping Shaw
- Institute of Forensic Medicine, Ministry of Justice, New Taipei City 235016, Taiwan; (C.-H.P.); (K.-P.S.)
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (P.-F.H.); (Y.-J.L.); (J.-N.L.); (Y.-Y.C.); (S.-A.C.)
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| |
Collapse
|
6
|
Stadiotti I, Di Bona A, Pilato CA, Scalco A, Guarino A, Micheli B, Casella M, Tondo C, Rizzo S, Pilichou K, Thiene G, Frigo AC, Pompilio G, Basso C, Sommariva E, Mongillo M, Zaglia T. Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy. Int J Cardiol 2021; 342:94-102. [PMID: 34400166 DOI: 10.1016/j.ijcard.2021.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Arrhythmogenic Cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes. AC hearts show fibro-fatty myocardial replacement, which favors stress-related life-threatening arrhythmias, predominantly in the young and athletes. AC lacks effective therapies, as its pathogenesis is poorly understood. Recently, we showed that cardiac Mesenchymal Stromal Cells (cMSCs) contribute to adipose tissue in human AC hearts, although the underlying mechanisms are still unclear. PURPOSE We hypothesize that the sympathetic neurotransmitter, Neuropeptide Y (NPY), participates to cMSC adipogenesis in human AC. METHODS For translation of our findings, we combined in vitro cytochemical, molecular and pharmacologic assays on human cMSCs, from myocardial biopsies of healthy controls and AC patients, with the use of existing drugs to interfere with the predicted AC mechanisms. Sympathetic innervation was inspected in human autoptic heart samples, and NPY plasma levels measured in healthy and AC subjects. RESULTS AC cMSCs expressed higher levels of pro-adipogenic isotypes of NPY-receptors (i.e. Y1-R, Y5-R). Consistently, NPY enhanced adipogenesis in AC cMSCs, which was blocked by FDA-approved Y1-R and Y5-R antagonists. AC-associated PKP2 reduction directly caused NPY-dependent adipogenesis in cMSCs. In support of the involvement of sympathetic neurons (SNs) and NPY in AC myocardial remodeling, patients had elevated NPY plasma levels and, in human AC hearts, SNs accumulated in fatty areas and were close to cMSCs. CONCLUSIONS Independently from the disease origin, AC causes in cMSCs a targetable gain of responsiveness to NPY, which leads to increased adipogenesis, thus playing a role in AC myocardial remodeling.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, via Orus 2, 35129 Padova, Italy
| | - Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milano, Italy; Department of Biochemical, Surgical and Dentist Sciences, University of Milano, Milano, Italy
| | - Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, via Orus 2, 35129 Padova, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Barbara Micheli
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Michela Casella
- Heart Rhythm Center, Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Claudio Tondo
- Department of Biochemical, Surgical and Dentist Sciences, University of Milano, Milano, Italy; Heart Rhythm Center, Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milano, Italy; Department of Biochemical, Surgical and Dentist Sciences, University of Milano, Milano, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milano, Italy.
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, VIMM, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy; CNR Institute of Neuroscience, Padova, Italy.
| | - Tania Zaglia
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
7
|
Zhang K, Cloonan PE, Sundaram S, Liu F, Das SL, Ewoldt JK, Bays JL, Tomp S, Toepfer CN, Marsiglia JDC, Gorham J, Reichart D, Eyckmans J, Seidman JG, Seidman CE, Chen CS. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. SCIENCE ADVANCES 2021; 7:eabh3995. [PMID: 34652945 PMCID: PMC8519574 DOI: 10.1126/sciadv.abh3995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/25/2021] [Indexed: 05/10/2023]
Abstract
Progressive loss of cardiac systolic function in arrhythmogenic cardiomyopathy (ACM) has recently gained attention as an important clinical consideration in managing the disease. However, the mechanisms leading to reduction in cardiac contractility are poorly defined. Here, we use CRISPR gene editing to generate human induced pluripotent stem cells (iPSCs) that harbor plakophilin-2 truncating variants (PKP2tv), the most prevalent ACM-linked mutations. The PKP2tv iPSC–derived cardiomyocytes are shown to have aberrant action potentials and reduced systolic function in cardiac microtissues, recapitulating both the electrical and mechanical pathologies reported in ACM. By combining cell micropatterning with traction force microscopy and live imaging, we found that PKP2tvs impair cardiac tissue contractility by destabilizing cell-cell junctions and in turn disrupting sarcomere stability and organization. These findings highlight the interplay between cell-cell adhesions and sarcomeres required for stabilizing cardiomyocyte structure and function and suggest fundamental pathogenic mechanisms that may be shared among different types of cardiomyopathies.
Collapse
Affiliation(s)
- Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jennifer L. Bays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samuel Tomp
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Ben-Haim Y, Asimaki A, Behr ER. Brugada syndrome and arrhythmogenic cardiomyopathy: overlapping disorders of the connexome? Europace 2021; 23:653-664. [PMID: 33200179 DOI: 10.1093/europace/euaa277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS) are inherited diseases characterized by an increased risk for arrhythmias and sudden cardiac death. Possible overlap between the two was suggested soon after the description of BrS. Since then, various studies focusing on different aspects have been published pointing to similar findings in the two diseases. More recent findings on the structure of the cardiac cell-cell junctions may unite the pathophysiology of both diseases and give further evidence to the theory that they may in part be variants of the same disease spectrum. In this review, we aim to summarize the studies indicating the pathophysiological, genetic, structural, and electrophysiological overlap between ACM and BrS.
Collapse
Affiliation(s)
- Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Angeliki Asimaki
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah R Behr
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Heier JA, Pokutta S, Dale IW, Kim SK, Hinck AP, Weis WI, Kwiatkowski AV. Distinct intramolecular interactions regulate autoinhibition of vinculin binding in αT-catenin and αE-catenin. J Biol Chem 2021; 296:100582. [PMID: 33771561 PMCID: PMC8091058 DOI: 10.1016/j.jbc.2021.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
α-Catenin binds directly to β-catenin and connects the cadherin–catenin complex to the actin cytoskeleton. Tension regulates α-catenin conformation. Actomyosin-generated force stretches the middle (M)-region to relieve autoinhibition and reveal a binding site for the actin-binding protein vinculin. It is not known whether the intramolecular interactions that regulate epithelial (αE)-catenin binding are conserved across the α-catenin family. Here, we describe the biochemical properties of testes (αT)-catenin, an α-catenin isoform critical for cardiac function and how intramolecular interactions regulate vinculin-binding autoinhibition. Isothermal titration calorimetry showed that αT-catenin binds the β-catenin–N-cadherin complex with a similar low nanomolar affinity to that of αE-catenin. Limited proteolysis revealed that the αT-catenin M-region adopts a more open conformation than αE-catenin. The αT-catenin M-region binds the vinculin N-terminus with low nanomolar affinity, indicating that the isolated αT-catenin M-region is not autoinhibited and thereby distinct from αE-catenin. However, the αT-catenin head (N- and M-regions) binds vinculin 1000-fold more weakly (low micromolar affinity), indicating that the N-terminus regulates the M-region binding to vinculin. In cells, αT-catenin recruitment of vinculin to cell–cell contacts requires the actin-binding domain and actomyosin-generated tension, indicating that force regulates vinculin binding. Together, our results show that the αT-catenin N-terminus is required to maintain M-region autoinhibition and modulate vinculin binding. We postulate that the unique molecular properties of αT-catenin allow it to function as a scaffold for building specific adhesion complexes.
Collapse
Affiliation(s)
- Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sabine Pokutta
- Department of Structural Biology, Stanford University, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Ian W Dale
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - William I Weis
- Department of Structural Biology, Stanford University, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Sun Y, Lee SM, Ku BJ, Moon MJ. Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans. Appl Microsc 2020; 50:20. [PMID: 33580457 PMCID: PMC7818339 DOI: 10.1186/s42649-020-00040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Seung-Min Lee
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Bon-Jin Ku
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Myung-Jin Moon
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea.
| |
Collapse
|
11
|
Patel V, Asatryan B, Siripanthong B, Munroe PB, Tiku-Owens A, Lopes LR, Khanji MY, Protonotarios A, Santangeli P, Muser D, Marchlinski FE, Brady PA, Chahal CAA. State of the Art Review on Genetics and Precision Medicine in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2020; 21:E6615. [PMID: 32927679 PMCID: PMC7554944 DOI: 10.3390/ijms21186615] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterised by ventricular arrhythmia and an increased risk of sudden cardiac death (SCD). Numerous genetic determinants and phenotypic manifestations have been discovered in ACM, posing a significant clinical challenge. Further to this, wider evaluation of family members has revealed incomplete penetrance and variable expressivity in ACM, suggesting a complex genotype-phenotype relationship. This review details the genetic basis of ACM with specific genotype-phenotype associations, providing the reader with a nuanced perspective of this condition; whilst also proposing a future roadmap to delivering precision medicine-based management in ACM.
Collapse
Affiliation(s)
- Viraj Patel
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | | | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anjali Tiku-Owens
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Luis R. Lopes
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Mohammed Y. Khanji
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
| | - Alexandros Protonotarios
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Pasquale Santangeli
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Daniele Muser
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Francis E. Marchlinski
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Peter A. Brady
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Cardiology, Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - C. Anwar A. Chahal
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
12
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
13
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
14
|
Poller W, Haas J, Klingel K, Kühnisch J, Gast M, Kaya Z, Escher F, Kayvanpour E, Degener F, Opgen-Rhein B, Berger F, Mochmann HC, Skurk C, Heidecker B, Schultheiss HP, Monserrat L, Meder B, Landmesser U, Klaassen S. Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. J Am Heart Assoc 2020; 9:e015289. [PMID: 32410525 PMCID: PMC7660888 DOI: 10.1161/jaha.119.015289] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany
| | - Jan Haas
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology Department of Pathology University Hospital Tübingen Germany
| | - Jirko Kühnisch
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany
| | - Martina Gast
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Felicitas Escher
- Department of Cardiology Campus Virchow Klinikum Universitätsmedizin Berlin Germany.,Institute for Clinical Diagnostics and Therapy (IKDT) Berlin Germany
| | - Elham Kayvanpour
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Franziska Degener
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | - Felix Berger
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | | | - Carsten Skurk
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Bettina Heidecker
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | | | | | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany.,Department of Genetics Stanford University School of Medicine Palo Alto CA
| | - Ulf Landmesser
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Sabine Klaassen
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| |
Collapse
|
15
|
Sun Y, Kim HJ, Moon MJ. Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata. Appl Microsc 2020; 50:9. [PMID: 33580431 PMCID: PMC7818301 DOI: 10.1186/s42649-020-00030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
The fine structural characteristics of cardiac muscle cells and its myofibril organization in the orb web spider N. clavata were examined by transmission electron microscopy. Although myofibril striations are not remarkable as those of skeletal muscles, muscle fibers contain multiple myofibrils, abundant mitochondria, extensive sarcoplasmic reticulum and transverse tubules (T-tubules). Myofibrils are divided into distinct sarcomeres defined by Z-lines with average length of 2.0 μm, but the distinction between the A-band and the I-bands is not clear due to uniform striations over the length of the sarcomeres. Dyadic junction which consisted of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum is found mainly at the A-I level of sarcomere. Each cell is arranged to form multiple connections with neighboring cells through the intercalated discs. These specialized junctions include three types of intercellular junctions: gap junctions, fascia adherens and desmosomes for heart function. Our transmission electron microscopy (TEM) observations clearly show that spider's cardiac muscle contraction is controlled by neurogenic rather than myogenic mechanism since each cardiac muscle fiber is innervated by a branch of motor neuron through neuromuscular junctions.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Hyo-Jeong Kim
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Myung-Jin Moon
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea.
| |
Collapse
|
16
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
17
|
Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183316. [PMID: 32360073 DOI: 10.1016/j.bbamem.2020.183316] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Abstract
Arrhythmogenic cardiomyopathy is a genetic disorder characterized by the risk of life-threatening arrhythmias, myocardial dysfunction and fibrofatty replacement of myocardial tissue. Mutations in genes that encode components of desmosomes, the adhesive junctions that connect cardiomyocytes, are the predominant cause of arrhythmogenic cardiomyopathy and can be identified in about half of patients with the condition. However, the molecular mechanisms leading to myocardial destruction, remodelling and arrhythmic predisposition remain poorly understood. Through the development of animal, induced pluripotent stem cell and other models of disease, advances in our understanding of the pathogenic mechanisms of arrhythmogenic cardiomyopathy over the past decade have brought several signalling pathways into focus. These pathways include canonical and non-canonical WNT signalling, the Hippo-Yes-associated protein (YAP) pathway and transforming growth factor-β signalling. These studies have begun to identify potential therapeutic targets whose modulation has shown promise in preclinical models. In this Review, we summarize and discuss the reported molecular mechanisms underlying the pathogenesis of arrhythmogenic cardiomyopathy.
Collapse
|
20
|
Glessner JT, Li J, Desai A, Palmer M, Kim D, Lucas AM, Chang X, Connolly JJ, Almoguera B, Harley JB, Jarvik GP, Ritchie MD, Sleiman PM, Roden DM, Crosslin D, Hakonarson H. CNV Association of Diverse Clinical Phenotypes from eMERGE reveals novel disease biology underlying cardiovascular disease. Int J Cardiol 2020; 298:107-113. [DOI: 10.1016/j.ijcard.2019.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|
21
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Vanslembrouck B, Kremer A, VAN Roy F, Lippens S, VAN Hengel J. Unravelling the ultrastructural details of αT-catenin-deficient cell-cell contacts between heart muscle cells by the use of FIB-SEM. J Microsc 2019; 279:189-196. [PMID: 31828778 DOI: 10.1111/jmi.12855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/30/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
The intercalated disc is an important structure in cardiomyocytes, as it is essential to maintain correct contraction and proper functioning of the heart. Adhesion and communication between cardiomyocytes are mediated by three main types of intercellular junctions, all residing in the intercalated disc: gap junctions, desmosomes and the areae compositae. Mutations in genes that encode junctional proteins, including αT-catenin (encoded by CTNNA3), have been linked to arrhythmogenic cardiomyopathy and sudden cardiac death. In mice, the loss of αT-catenin in cardiomyocytes leads to impaired heart function, fibrosis, changed expression of desmosomal proteins and increased risk for arrhythmias following ischemia-reperfusion. Currently, it is unclear how the intercalated disc and the intercellular junctions are organised in 3D in the hearts of this αT-catenin knockout (KO) mouse model. In order to scrutinise this, ventricular cardiac tissue of αT-catenin KO mice was used for volume electron microscopy (VEM), making use of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), allowing a careful 3D reconstruction of the intercalated disc, including gap junctions and desmosomes. Although αT-catenin KO and control mice display a comparable organisation of the sarcomere and the different intercalated disc regions, the folds of the plicae region of the intercalated disc are longer and more narrow in the KO heart, and the pale region between the sarcomere and the intercalated disc is larger. In addition, αT-catenin KO intercalated discs appear to have smaller gap junctions and desmosomes in the plicae region, while gap junctions are larger in the interplicae region of the intercalated disc. Although the reason for this remodelling of the ultrastructure after αT-catenin deletion remains unclear, the excellent resolution of the FIB-SEM technology allows us to reconstruct details that were not reported before. LAY DESCRIPTION: Cardiomyocytes are cells that make up the heart muscle. As the chief cell type of the heart, cardiomyocytes are primarily involved in the contractile function of the heart that enables the pumping of blood around the body. Cardiac muscle cells are connected to each other at their short end by numerous intercellular junctions forming together a structure called the intercalated disc. These intercellular junctions comprise specific protein complexes, which are crucial for both intercellular adhesion and correct contraction of the heart. Imaging by conventional electron microscopy (EM) revealed a heavily folded intercalated disc with apparently random organization of the intercellular junctions. However, this conclusion was based on analysis in two dimensions (2D). 3D information of these structures is needed to unravel their true organization and function. In the present study, we used a more contemporary technique, called volume EM, to image and reconstruct the intercalated discs in 3D. By this approach, EM images are made from a whole block of tissue what differs significantly from classical EM methods that uses only one very thin slice for imaging. Further, we analyzed in comparison to normal mice also a mouse model for cardiomyopathy in which a specific protein of the cardiac intercellular junctions, αT-catenin, is absent. Volume EM revealed that in the hearts of these mice with cardiomyopathy, the finger-like folds of the intercalated disc are longer and thinner compared to control hearts. Also the intercellular junctions on the folded parts of the intercalated disc are smaller and their connection to the striated cytoskeleton seems further away. In conclusion, our volume EM study has expanded our understanding of 3D structures at the intercalated discs and will pave the way for more detailed models of disturbed cell-cell contacts associated with heart failure.
Collapse
Affiliation(s)
- B Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - A Kremer
- VIB BioImaging Core, VIB, Ghent, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - F VAN Roy
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - S Lippens
- VIB BioImaging Core, VIB, Ghent, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - J VAN Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Merkel CD, Li Y, Raza Q, Stolz DB, Kwiatkowski AV. Vinculin anchors contractile actin to the cardiomyocyte adherens junction. Mol Biol Cell 2019; 30:2639-2650. [PMID: 31483697 PMCID: PMC6761764 DOI: 10.1091/mbc.e19-04-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell–cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.
Collapse
Affiliation(s)
- Chelsea D Merkel
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yang Li
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Qanber Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Donna B Stolz
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Adam V Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
24
|
Gul IS, Hulpiau P, Sanders E, van Roy F, van Hengel J. Armc8 is an evolutionarily conserved armadillo protein involved in cell-cell adhesion complexes through multiple molecular interactions. Biosci Rep 2019; 39:BSR20180604. [PMID: 30482882 PMCID: PMC6680376 DOI: 10.1042/bsr20180604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Armadillo-repeat-containing protein 8 (Armc8) belongs to the family of armadillo-repeat containing proteins, which have been found to be involved in diverse cellular functions including cell-cell contacts and intracellular signaling. By comparative analyses of armadillo repeat protein structures and genomes from various premetazoan and metazoan species, we identified orthologs of human Armc8 and analyzed in detail the evolutionary relationship of Armc8 genes and their encoded proteins. Armc8 is a highly ancestral armadillo protein although not present in yeast. Consequently, Armc8 is not the human ortholog of yeast Gid5/Vid28.Further, we performed a candidate approach to characterize new protein interactors of Armc8. Interactions between Armc8 and specific δ-catenins (plakophilins-1, -2, -3 and p0071) were observed by the yeast two-hybrid approach and confirmed by co-immunoprecipitation and co-localization. We also showed that Armc8 interacts specifically with αE-catenin but neither with αN-catenin nor with αT-catenin. Degradation of αE-catenin has been reported to be important in cancer and to be regulated by Armc8. A similar process may occur with respect to plakophilins in desmosomes. Deregulation of desmosomal proteins has been considered to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Howest, University College West Flanders, Bruges, Belgium
| | - Ellen Sanders
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
25
|
Abreu-Velez AM, Upegui-Zapata YA, Valencia-Yepes CA, Upegui-Quiceno E, Jiménez-Echavarría AM, Niño-Pulido CD, Smoller BR, Howard MS. Involvement of the Areae Compositae of the Heart in Endemic Pemphigus Foliaceus. Dermatol Pract Concept 2019; 9:181-186. [PMID: 31384490 DOI: 10.5826/dpc.0903a02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background A new variant of endemic pemphigus foliaceus in El Bagre (El Bagre-EPF), Colombia, South America, shares features with Senear-Usher syndrome and occurs in an endemic fashion. Patients affected by El Bagre-EPF have heterogeneous antigenic reactivity not only to the skin but to other organs, including the heart. Here we test for autoantibodies to the areae compositae of the heart (structure consisting of typical desmosomal amalgamated fascia adherens molecules) and evaluate any possible clinical correlation. Methods A case-control study comparing 45 patients and 45 controls from the endemic area, matched by demographics including age, gender, weight, work activities, and comorbidities, was performed. Direct and indirect immunofluorescence, immunohistochemistry, confocal microscopic studies, and echocardiogram studies were completed. Results The main clinical abnormally seen in the El Bagre-EPF patients was left ventricular hypertrophy in 15/45 patients, compared with no such findings in the control population (P < 0.1). Seventy percent of El Bagre-EPF patients and none of the controls displayed polyclonal autoreactivity using different immunoglobulins and complement to the areae compositae of the heart using different methods and antibodies (P < 0.1). Conclusions Patients affected by El Bagre-EPF demonstrated autoantibodies to the areae compositae of the heart. This finding was associated with left ventricular hypertrophic cardiomyopathy. The areae compositae may play a role in cell junction tension and the El Bagre-EPF patients' autoantibodies possibly disrupting these junctions and thereby contributing to the left ventricular hypertrophy.
Collapse
Affiliation(s)
| | - Yulieth A Upegui-Zapata
- PECET Group, Pharmaceutical Sciences, Medical Research Institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Bruce R Smoller
- Departments of Pathology and Laboratory Medicine & Dermatology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
26
|
Pang SM, Le S, Kwiatkowski AV, Yan J. Mechanical stability of αT-catenin and its activation by force for vinculin binding. Mol Biol Cell 2019; 30:1930-1937. [PMID: 31318313 PMCID: PMC6727763 DOI: 10.1091/mbc.e19-02-0102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
αT (Testes)-catenin, a critical factor regulating cell-cell adhesion in the heart, directly couples the cadherin-catenin complex to the actin cytoskeleton at the intercalated disk (ICD), a unique cell-cell junction that couples cardiomyocytes. Loss of αT-catenin in mice reduces plakophilin2 and connexin 43 recruitment to the ICD. Since αT-catenin is subjected to mechanical stretch during actomyosin contraction in cardiomyocytes, its activity could be regulated by mechanical force. To provide insight in how force regulates αT-catenin function, we investigated the mechanical stability of the putative, force-sensing middle (M) domain of αT-catenin and determined how force impacts vinculin binding to αT-catenin. We show that 1) physiological levels of force, <15 pN, are sufficient to unfold the three M domains; 2) the M1 domain that harbors the vinculin-binding site is unfolded at ∼6 pN; and 3) unfolding of the M1 domain is necessary for high-affinity vinculin binding. In addition, we quantified the binding kinetics and affinity of vinculin to the mechanically exposed binding site in M1 and observed that αT-catenin binds vinculin with low nanomolar affinity. These results provide important new insights into the mechanosensing properties of αT-catenin and how αT-catenin regulates cell-cell adhesion at the cardiomyocyte ICD.
Collapse
Affiliation(s)
- Si Ming Pang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Physics, National University of Singapore, Singapore 117542
- Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546
| |
Collapse
|
27
|
Schinner C, Erber BM, Yeruva S, Waschke J. Regulation of cardiac myocyte cohesion and gap junctions via desmosomal adhesion. Acta Physiol (Oxf) 2019; 226:e13242. [PMID: 30582290 DOI: 10.1111/apha.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
AIMS Mutations in desmosomal proteins can induce arrhythmogenic cardiomyopathy with life-threatening arrhythmia. Previous data demonstrated adrenergic signalling to be important to regulate desmosomal cohesion in cardiac myocytes. Here, we investigated how signalling pathways including adrenergic signalling, PKC and SERCA regulate desmosomal adhesion and how this controls gap junctions (GJs) in cardiac myocytes. METHODS Immunostaining, Western blot, dissociation assay and multi-electrode array were applied in HL-1 cardiac myocytes to evaluate localization, expression and function of desmosomal and GJ components. cAMP levels were determined by ELISA. RESULTS Activation of PKC by PMA or adrenergic signalling increased cell cohesion and desmoglein-2 and desmoplakin localization at cell-cell junctions, whereas tryptophan (Trp) treatment to inhibit cadherin binding or inhibition of SERCA by thapsigargin reduced cell cohesion, while cAMP elevation rescued this effect. Despite no changes in protein expression, accumulation of GJ protein connexin-43 was detectable at cell-cell contacts in parallel to increased cohesion. Disruption of cell cohesion by Trp, PMA or thapsigargin impaired conduction of excitation comparable to GJ inhibition. cAMP elevation was effective to improve arrhythmia after Trp treatment. Weakened cell cohesion by Trp or depletion of desmoglein-2 or plakoglobin blocked signalling via the β1-adrenergic receptor. Moreover, silencing of desmosomal proteins increased arrhythmia and reduced conduction velocity, which were rescued by cAMP elevation. CONCLUSION These data demonstrate the interplay of GJs, desmosomes and the β1-adrenergic receptor with regulation of their function by cell cohesion, adrenergic and PKC signalling or SERCA inhibition. These results support the identification of new targets to treat arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
- Department of Biomedicine; University of Basel; Basel Switzerland
| | - Bernd M. Erber
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| | - Sunil Yeruva
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| | - Jens Waschke
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| |
Collapse
|
28
|
Alterations of protein expression of phospholamban, ZASP and plakoglobin in human atria in subgroups of seniors. Sci Rep 2019; 9:5610. [PMID: 30948763 PMCID: PMC6449388 DOI: 10.1038/s41598-019-42141-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
The mature mammalian myocardium contains composite junctions (areae compositae) that comprise proteins of adherens junctions as well as desmosomes. Mutations or deficiency of many of these proteins are linked to heart failure and/or arrhythmogenic cardiomyopathy in patients. We firstly wanted to address the question whether the expression of these proteins shows an age-dependent alteration in the atrium of the human heart. Right atrial biopsies, obtained from patients undergoing routine bypass surgery for coronary heart disease were subjected to immunohistology and/or western blotting for the plaque proteins plakoglobin (γ-catenin) and plakophilin 2. Moreover, the Z-band protein cypher 1 (Cypher/ZASP) and calcium handling proteins of the sarcoplasmic reticulum (SR) like phospholamban, SERCA and calsequestrin were analyzed. We noted expression of plakoglobin, plakophilin 2 and Cypher/ZASP in these atrial preparations on western blotting and/or immunohistochemistry. There was an increase of Cypher/ZASP expression with age. The present data extend our knowledge on the expression of anchoring proteins and SR regulatory proteins in the atrium of the human heart and indicate an age-dependent variation in protein expression. It is tempting to speculate that increased expression of Cypher/ZASP may contribute to mechanical changes in the aging human myocardium.
Collapse
|
29
|
Li Y, Merkel CD, Zeng X, Heier JA, Cantrell PS, Sun M, Stolz DB, Watkins SC, Yates NA, Kwiatkowski AV. The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics. J Cell Sci 2019; 132:jcs.221606. [PMID: 30630894 PMCID: PMC6382013 DOI: 10.1242/jcs.221606] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Chelsea D Merkel
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Gul IS, Staal J, Hulpiau P, De Keuckelaere E, Kamm K, Deroo T, Sanders E, Staes K, Driege Y, Saeys Y, Beyaert R, Technau U, Schierwater B, van Roy F. GC Content of Early Metazoan Genes and Its Impact on Gene Expression Levels in Mammalian Cell Lines. Genome Biol Evol 2018; 10:909-917. [PMID: 29608715 PMCID: PMC5952964 DOI: 10.1093/gbe/evy040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/20/2023] Open
Abstract
With the genomes available for many animal clades, including the early-branching metazoans, one can readily study the functional conservation of genes across a diversity of animal lineages. Ectopic expression of an animal protein in, for instance, a mammalian cell line is a generally used strategy in structure–function analysis. However, this might turn out to be problematic in case of distantly related species. Here we analyzed the GC content of the coding sequences of basal animals and show its impact on gene expression levels in human cell lines, and, importantly, how this expression efficiency can be improved. Optimization of the GC3 content in the coding sequences of cadherin, alpha-catenin, and paracaspase of Trichoplax adhaerens dramatically increased the expression of these basal animal genes in human cell lines.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jens Staal
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Evi De Keuckelaere
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Kai Kamm
- Institut für Tierökologie und Zellbiologie (ITZ), Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
| | - Tom Deroo
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Ellen Sanders
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Katrien Staes
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Austria
| | - Bernd Schierwater
- Institut für Tierökologie und Zellbiologie (ITZ), Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
| | - Frans van Roy
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
31
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
32
|
Kam CY, Dubash AD, Magistrati E, Polo S, Satchell KJF, Sheikh F, Lampe PD, Green KJ. Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J Cell Biol 2018; 217:3219-3235. [PMID: 29959233 PMCID: PMC6123000 DOI: 10.1083/jcb.201710161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Desmosomal mutations result in potentially deadly cardiocutaneous disease caused by electrical conduction defects and disruption of gap junctions. Kam et al. demonstrate a mechanism whereby loss of the intermediate filament anchoring protein desmoplakin stimulates Cx43 turnover by increasing K-Ras expression, marking Cx43 for lysosomal degradation through ERK1/2 phosphorylation. Desmoplakin (DP) is an obligate component of desmosomes, intercellular adhesive junctions that maintain the integrity of the epidermis and myocardium. Mutations in DP can cause cardiac and cutaneous disease, including arrhythmogenic cardiomyopathy (ACM), an inherited disorder that frequently results in deadly arrhythmias. Conduction defects in ACM are linked to the remodeling and functional interference with Cx43-based gap junctions that electrically and chemically couple cells. How DP loss impairs gap junctions is poorly understood. We show that DP prevents lysosomal-mediated degradation of Cx43. DP loss triggered robust activation of ERK1/2–MAPK and increased phosphorylation of S279/282 of Cx43, which signals clathrin-mediated internalization and subsequent lysosomal degradation of Cx43. RNA sequencing revealed Ras-GTPases as candidates for the aberrant activation of ERK1/2 upon loss of DP. Using a novel Ras inhibitor, Ras/Rap1-specific peptidase (RRSP), or K-Ras knockdown, we demonstrate restoration of Cx43 in DP-deficient cardiomyocytes. Collectively, our results reveal a novel mechanism for the regulation of the Cx43 life cycle by DP in cardiocutaneous models.
Collapse
Affiliation(s)
- Chen Yuan Kam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Adi D Dubash
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Farah Sheikh
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Research Center, Seattle, WA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL .,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
33
|
Chiarella SE, Rabin EE, Ostilla LA, Flozak AS, Gottardi CJ. αT-catenin: A developmentally dispensable, disease-linked member of the α-catenin family. Tissue Barriers 2018; 6:e1463896. [PMID: 29746206 PMCID: PMC6179130 DOI: 10.1080/21688370.2018.1463896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
α-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms transcribed from three distinct genes. While most of α-catenin research has focused on the developmentally essential founding member, αE-catenin, this review discusses recent studies on αT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to cardiac, allergic and neurological diseases.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Erik E. Rabin
- Department of Medicine
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Lorena A. Ostilla
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Annette S. Flozak
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Cara J. Gottardi
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
34
|
Vite A, Zhang C, Yi R, Emms S, Radice GL. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 2018; 145:dev.149823. [PMID: 29467248 PMCID: PMC5868989 DOI: 10.1242/dev.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.
Collapse
Affiliation(s)
- Alexia Vite
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caimei Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roslyn Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sabrina Emms
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Glenn L Radice
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Vanslembrouck B, Kremer A, Pavie B, van Roy F, Lippens S, van Hengel J. Three-dimensional reconstruction of the intercalated disc including the intercellular junctions by applying volume scanning electron microscopy. Histochem Cell Biol 2018; 149:479-490. [PMID: 29508067 DOI: 10.1007/s00418-018-1657-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 11/25/2022]
Abstract
The intercalated disc (ID) contains different kinds of intercellular junctions: gap junctions (GJs), desmosomes and areae compositae, essential for adhesion and communication between adjacent cardiomyocytes. The junctions can be identified based on their morphology when imaged using transmission electron microscopy (TEM), however, only with very limited information in the z-dimension. The application of volume EM techniques can give insight into the three-dimensional (3-D) organization of complex biological structures. In this study, we generated 3-D datasets using serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam SEM (FIB-SEM), the latter resulting in datasets with 5 nm isotropic voxels. We visualized cardiomyocytes in murine ventricular heart tissue and, for the first time, we could three-dimensionally reconstruct the ID including desmosomes and GJs with 5 nm precision in a large volume. Results show in three dimensions a highly folded structure of the ID, with the presence of GJs and desmosomes in both plicae and interplicae regions. We observed close contact of GJs with mitochondria and a variable spatial distribution of the junctions. Based on measurements of the shape of the intercellular junctions in 3-D, it is seen that GJs and desmosomes vary in size, depending on the region within the ID. This demonstrates that volume EM is essential to visualize morphological changes and its potential to quantitatively determine structural changes between normal and pathological conditions, e.g., cardiomyopathies.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, 9000, Ghent, Belgium
| | - Anna Kremer
- VIB BioImaging Core, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Frans van Roy
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Saskia Lippens
- VIB BioImaging Core, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, 9000, Ghent, Belgium.
| |
Collapse
|
36
|
Folmsbee SS, Gottardi CJ. Cardiomyocytes of the Heart and Pulmonary Veins: Novel Contributors to Asthma? Am J Respir Cell Mol Biol 2017; 57:512-518. [PMID: 28481622 DOI: 10.1165/rcmb.2016-0261tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent genome-wide association studies have implicated both cardiac and pulmonary vein-related genes in the pathogenesis of asthma. Since cardiac cells are not present in lung airways or viewed to affect the immune system, interpretation of these findings in the context of more well-established contributors to asthma has remained challenging. However, cardiomyocytes are present in the lung, specifically along pulmonary veins, and recent murine models suggest that cardiac cells lining the pulmonary veins may contribute to allergic airway disease. Notably, the cardiac cell-junction protein αT-catenin (αT-cat, CTNNA3), which is implicated in occupational and steroid-resistant asthma by clinical genetic data, appears to play an important role in regulating inflammation around the cardiac cells of pulmonary veins. Beyond the potential contribution of pulmonary veins, clinical data directly examining cardiac function through echocardiography have found strong associations between asthmatic phenotypes and the mechanical properties of the heart. Together, these data suggest that targeting the function of cardiac cells in the pulmonary veins and/or heart may allow for novel and potentially efficacious therapies for asthma, particularly in challenging cases of steroid-resistant asthma.
Collapse
Affiliation(s)
- Stephen Sai Folmsbee
- Departments of 1 Pulmonary and Critical Care Medicine.,2 The Driskill Graduate Training Program in Life Sciences, and
| | - Cara J Gottardi
- Departments of 1 Pulmonary and Critical Care Medicine.,3 Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
37
|
Ortega A, Tarazón E, Gil-Cayuela C, García-Manzanares M, Martínez-Dolz L, Lago F, González-Juanatey JR, Cinca J, Jorge E, Portolés M, Roselló-Lletí E, Rivera M. Intercalated disc in failing hearts from patients with dilated cardiomyopathy: Its role in the depressed left ventricular function. PLoS One 2017; 12:e0185062. [PMID: 28934278 PMCID: PMC5608295 DOI: 10.1371/journal.pone.0185062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022] Open
Abstract
Alterations in myocardial structure and reduced cardiomyocyte adhesions have been previously described in dilated cardiomyopathy (DCM). We studied the transcriptome of cell adhesion molecules in these patients and their relationships with left ventricular (LV) function decay. We also visualized the intercalated disc (ID) structure and organization. The transcriptomic profile of 23 explanted LV samples was analyzed using RNA-sequencing (13 DCM, 10 control [CNT]), focusing on cell adhesion genes. Electron microscopy analysis to visualize ID structural differences and immunohistochemistry experiments of ID proteins was also performed. RT-qPCR and western blot experiments were carried out on ID components. We found 29 differentially expressed genes, most of all, constituents of the ID structure. We found that the expression of GJA3, DSP and CTNNA3 was directly associated with LV ejection fraction (r = 0.741, P = 0.004; r = 0.674, P = 0.011 and r = 0.565, P = 0.044, respectively), LV systolic (P = 0.003, P = 0.003, P = 0.028, respectively) and diastolic dimensions (P = 0.006, P = 0.001, P = 0.025, respectively). Electron microscopy micrographs showed a reduced ID convolution index and immunogold labeling of connexin 46 (GJA gene), desmoplakin (DSP gene) and catenin α-3 (CTNNA3 gene) proteins in DCM patients. Moreover, we observed that protein and mRNA levels analyzed by RT-qPCR of these ID components were diminished in DCM group. In conclusion, we report significant gene and protein expression changes and found that the ID components GJA3, DSP and CTNNA3 were highly related to LV function. Microscopic observations indicated that ID is structurally compromised in these patients. These findings give new data for understanding the ventricular depression that characterizes DCM, opening new therapeutic perspectives for these critically diseased patients.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María García-Manzanares
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Martínez-Dolz
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Francisca Lago
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Cinca
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Esther Jorge
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Affiliation(s)
- Domenico Corrado
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Cristina Basso
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Daniel P. Judge
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| |
Collapse
|
39
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
41
|
Wickline ED, Dale IW, Merkel CD, Heier JA, Stolz DB, Kwiatkowski AV. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments. J Biol Chem 2016; 291:15687-99. [PMID: 27231342 PMCID: PMC4957052 DOI: 10.1074/jbc.m116.735423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.
Collapse
Affiliation(s)
- Emily D Wickline
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ian W Dale
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Chelsea D Merkel
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathon A Heier
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Donna B Stolz
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Adam V Kwiatkowski
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
42
|
Dubash AD, Kam CY, Aguado BA, Patel DM, Delmar M, Shea LD, Green KJ. Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J Cell Biol 2016; 212:425-38. [PMID: 26858265 PMCID: PMC4754716 DOI: 10.1083/jcb.201507018] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
Members of the desmosome protein family are integral components of the cardiac area composita, a mixed junctional complex responsible for electromechanical coupling between cardiomyocytes. In this study, we provide evidence that loss of the desmosomal armadillo protein Plakophilin-2 (PKP2) in cardiomyocytes elevates transforming growth factor β1 (TGF-β1) and p38 mitogen-activated protein kinase (MAPK) signaling, which together coordinate a transcriptional program that results in increased expression of profibrotic genes. Importantly, we demonstrate that expression of Desmoplakin (DP) is lost upon PKP2 knockdown and that restoration of DP expression rescues the activation of this TGF-β1/p38 MAPK transcriptional cascade. Tissues from PKP2 heterozygous and DP conditional knockout mouse models also exhibit elevated TGF-β1/p38 MAPK signaling and induction of fibrotic gene expression in vivo. These data therefore identify PKP2 and DP as central players in coordination of desmosome-dependent TGF-β1/p38 MAPK signaling in cardiomyocytes, pathways known to play a role in different types of cardiac disease, such as arrhythmogenic or hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Adi D Dubash
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Biology, Furman University, Greenville SC 29613
| | - Chen Y Kam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Brian A Aguado
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago IL 60611
| | - Dipal M Patel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mario Delmar
- New York University School of Medicine, New York, NY 10016
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
43
|
Abstract
β-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to β-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.
Collapse
|
44
|
Affiliation(s)
- Zhiqiang Lin
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
45
|
Vite A, Li J, Radice GL. New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res 2015; 360:773-83. [PMID: 25673211 DOI: 10.1007/s00441-015-2123-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
Abstract
Strong cell-cell adhesion mediated by adherens junctions is dependent on anchoring the transmembrane cadherin molecule to the underlying actin cytoskeleton. To do this, the cadherin cytoplasmic domain interacts with catenin proteins, which include α-catenin that binds directly to filamentous actin. Originally thought to be a static structure, the connection between the cadherin/catenin adhesion complex and the actin cytoskeleton is now considered to be dynamic and responsive to both intercellular and intracellular signals. Alpha-catenins are mechanosensing proteins that undergo conformational change in response to cytoskeletal tension thus modifying the linkage between the cadherin and the actin cytoskeleton. There are three α-catenin isoforms expressed in mouse and human: αE-catenin (CTNNA1), αN-catenin (CTNNA2) and αT-catenin (CTNNA3). This review summarizes recent progress in understanding the in vivo function(s) of α-catenins in tissue morphogenesis, homeostasis and disease. The role of α-catenin in the regulation of cellular proliferation will be discussed in the context of cancer and regeneration.
Collapse
Affiliation(s)
- Alexia Vite
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Suite 543E Jefferson Alumni Hall, 1020 Locust St., Philadelphia, PA, 19107, USA
| | | | | |
Collapse
|
46
|
Folmsbee SS, Morales-Nebreda L, Van Hengel J, Tyberghein K, Van Roy F, Budinger GRS, Bryce PJ, Gottardi CJ. The cardiac protein αT-catenin contributes to chemical-induced asthma. Am J Physiol Lung Cell Mol Physiol 2014; 308:L253-8. [PMID: 25480337 DOI: 10.1152/ajplung.00331.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ten to 25% of adult asthma is occupational induced, a subtype caused by exposure to workplace chemicals. A recent genomewide association study identified single-nucleotide polymorphisms in the cardiac protein αT-catenin (αT-cat) that correlated with the incidence and severity of toluene diisocyanate (TDI) occupational asthma. αT-cat is a critical mediator of cell-cell adhesion and is predominantly expressed in cardiomyocytes, but its connection to asthma remains unknown. Therefore, we sought to determine the primary αT-cat-expressing cell type in the lung and its contribution to lung physiology in a murine model of TDI asthma. We show that αT-cat is expressed in lung within the cardiac sheath of pulmonary veins. Mechanically ventilated αT-cat knockout (KO) mice exhibit a significantly increased pressure-volume curve area compared with wild-type (WT) mice, suggesting that αT-cat loss affects lung hysteresis. Using a murine model of TDI asthma, we find that αT-cat KO mice show increased airway hyperresponsiveness to methacholine compared with WT mice. Bronchoalveolar lavage reveals only a mild macrophage-dominant inflammation that is not significantly different between WT and KO mice. These data suggest that αT-cat may contribute to asthma through a mechanism independent of inflammation and related to heart and pulmonary vein dysfunction.
Collapse
Affiliation(s)
- Stephen Sai Folmsbee
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Driskill Graduate Training Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luisa Morales-Nebreda
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jolanda Van Hengel
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Koen Tyberghein
- Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - G R Scott Budinger
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul J Bryce
- Department of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cara J Gottardi
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| |
Collapse
|
47
|
Rampazzo A, Calore M, van Hengel J, van Roy F. Intercalated Discs and Arrhythmogenic Cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:930-40. [DOI: 10.1161/circgenetics.114.000645] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alessandra Rampazzo
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Martina Calore
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Jolanda van Hengel
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Frans van Roy
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| |
Collapse
|
48
|
Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A. Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res 2014; 360:491-500. [PMID: 25344329 DOI: 10.1007/s00441-014-2015-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/18/2014] [Indexed: 01/13/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an acquired progressive disease having an age-related penetrance and showing clinical manifestations usually during adolescence and young adulthood. It is characterized clinically by a high incidence of severe ventricular tachyarrhythmias and sudden cardiac death and pathologically by degeneration of ventricular cardiomyocytes with replacement by fibro-fatty tissue. Whereas, in the past, the disease was considered to involve only the right ventricle, more recent clinical studies have established that the left ventricle is frequently involved. ACM is an inherited disease in up to 50% of cases, with predominantly an autosomal dominant pattern of transmission, although recessive inheritance has also been described. Since most of the pathogenic mutations have been identified in genes encoding desmosomal proteins, ACM is currently defined as a disease of desmosomes. However, on the basis of the most recent description of the intercalated disc organization and of the identification of a novel ACM gene encoding for an area composita protein, ACM can be considered as a disease of the intercalated disc, rather than only as a desmosomal disease. Despite increasing knowledge of the genetic basis of ACM, we are just beginning to understand early molecular events leading to cardiomyocyte degeneration, fibrosis and fibro-fatty substitution. This review summarizes recent advances in our comprehension of the link between the molecular genetics and pathogenesis of ACM and of the novel role of cardiac intercalated discs.
Collapse
Affiliation(s)
- Martina Calore
- Department of Biology, University of Padua, Via G. Colombo 3, 35131, Padua, Italy
| | | | | | | | | |
Collapse
|
49
|
Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res 2014; 116:70-9. [PMID: 25305307 DOI: 10.1161/circresaha.116.304472] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. Thus, they are unable to effectively replace dying cells in the injured heart. The recent discovery that the transcriptional coactivator Yes-associated protein (Yap) is necessary and sufficient for cardiomyocyte proliferation has gained considerable attention. However, the upstream regulators and signaling pathways that control Yap activity in the heart are poorly understood. OBJECTIVE To investigate the role of α-catenins in the heart using cardiac-specific αE- and αT-catenin double knockout mice. METHODS AND RESULTS We used 2 cardiac-specific Cre transgenes to delete both αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes either in the perinatal or in the adult heart. Perinatal depletion of α-catenins increased cardiomyocyte number in the postnatal heart. Increased nuclear Yap and the cell cycle regulator cyclin D1 accompanied cardiomyocyte proliferation in the α-catenin double knockout hearts. Fetal genes were increased in the α-catenin double knockout hearts indicating a less mature cardiac gene expression profile. Knockdown of α-catenins in neonatal rat cardiomyocytes also resulted in increased proliferation, which could be blocked by knockdown of Yap. Finally, inactivation of α-catenins in the adult heart using an inducible Cre led to increased nuclear Yap and cardiomyocyte proliferation and improved contractility after myocardial infarction. CONCLUSIONS These studies demonstrate that α-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting α-catenins might be a useful strategy to promote myocardial regeneration after injury.
Collapse
Affiliation(s)
- Jifen Li
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Erhe Gao
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Alexia Vite
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Roslyn Yi
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Ludovic Gomez
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Steven Goossens
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Frans van Roy
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Glenn L Radice
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA.
| |
Collapse
|
50
|
Todorovic V, Koetsier JL, Godsel LM, Green KJ. Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation. Mol Biol Cell 2014; 25:3749-64. [PMID: 25208567 PMCID: PMC4230782 DOI: 10.1091/mbc.e14-05-0968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Desmosomal Armadillo family member Pkp3 is established as a coordinator of desmosome and adherens junction assembly and maturation through its physical and functional association with Rap1. It thus functions in a manner distinct from the closely related Pkp2. The pathways driving desmosome and adherens junction assembly are temporally and spatially coordinated, but how they are functionally coupled is poorly understood. Here we show that the Armadillo protein plakophilin 3 (Pkp3) mediates both desmosome assembly and E-cadherin maturation through Rap1 GTPase, thus functioning in a manner distinct from the closely related plakophilin 2 (Pkp2). Whereas Pkp2 and Pkp3 share the ability to mediate the initial phase of desmoplakin (DP) accumulation at sites of cell–cell contact, they play distinct roles in later steps: Pkp3 is required for assembly of a cytoplasmic population of DP-enriched junction precursors, whereas Pkp2 is required for transfer of the precursors to the membrane. Moreover, Pkp3 forms a complex with Rap1 GTPase, promoting its activation and facilitating desmosome assembly. We show further that Pkp3 deficiency causes disruption of an E-cadherin/Rap1 complex required for adherens junction sealing. These findings reveal Pkp3 as a coordinator of desmosome and adherens junction assembly and maturation through its functional association with Rap1.
Collapse
Affiliation(s)
- Viktor Todorovic
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 R.H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|