1
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Li R, Liu B, Wang Y, Yi L, Wang S, Hou X, Wang Y. Targeting AI-2 quorum sensing: harnessing natural products against Streptococcus suis biofilm infection. Vet Res 2025; 56:26. [PMID: 39905565 PMCID: PMC11796197 DOI: 10.1186/s13567-025-01450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
The biofilm acts as a protective layer for Streptococcus suis (S. suis), contributing to the development of drug resistance and chronic infections. Autoinducer 2 (AI-2) quorum sensing represents the primary regulatory pathway governing biofilm formation in S. suis. Consequently, targeting AI-2 quorum sensing to inhibit biofilm formation represents a promising strategy for preventing and managing drug resistance and chronic infections caused by S. suis. This study established a small natural product library by integrating commercial drug molecules with Chinese herbal medicine molecules. Consequently, two natural products, salvianolic acid A (SAA) and rhapontin (RH), which target S. suis AI-2 via quorum sensing, were identified. SAA and RH inhibit AI-2 synthesis through noncompetitive and competitive binding to S-ribosylhomocysteinase (LuxS). By inhibiting S. suis AI-2 quorum sensing, these compounds modulate the expression of adhesion genes and the synthesis of extracellular polysaccharides (EPS), reducing the adhesion ability of S. suis and ultimately inhibiting biofilm formation. Using LC‒MS/MS, we further analysed the impact of SAA and RH on the metabolic activity of S. suis, revealing the potential medicinal value of these compounds. Finally, the efficacy of SAA and RH against S. suis infection was validated in Galleria mellonella larvae, confirming their significant anti-infection effects.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Shaohui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
2
|
Wilton ZER, Jamus AN, Core SB, Frietze KM. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens 2025; 14:112. [PMID: 40005489 PMCID: PMC11858174 DOI: 10.3390/pathogens14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular pathogen that causes the most commonly diagnosed bacterial sexually transmitted infection (STI) and is a leading cause of preventable blindness globally. Ct infections can generate a strong pro-inflammatory immune response, leading to immune-mediated pathology in infected tissues. Neutrophils play an important role in mediating both pathology and protection during infection. Excessive neutrophil activation, migration, and survival are associated with host tissue damage during Chlamydia infections. In contrast, neutrophils also perform phagocytic killing of Chlamydia in the presence of IFN-γ and anti-Chlamydia antibodies. Neutrophil extracellular traps (NETs) and many neutrophil degranulation products have also demonstrated strong anti-Chlamydia functions. To counteract this neutrophil-mediated protection, Chlamydia has developed several evasion strategies. Various Chlamydia proteins can limit potentially protective neutrophil responses by directly targeting receptors present on the surface of neutrophils or neutrophil degranulation products. In this review, we provide a survey of current knowledge regarding the role of neutrophils in pathogenesis and protection, including the ways that Chlamydia circumvents neutrophil functions, and we propose critical areas for future research.
Collapse
Affiliation(s)
| | | | | | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Lee JK, Guevara V, Akanbi OD, Hoff JD, Kupor D, Brannon ER, Eniola-Adefeso O. Deciphering neutrophil dynamics: Enhanced phagocytosis of elastic particles and impact on vascular-targeted carrier performance. SCIENCE ADVANCES 2025; 11:eadp1461. [PMID: 39752488 PMCID: PMC11698085 DOI: 10.1126/sciadv.adp1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance. Here, we explore the impact of particle elasticity on primary human neutrophil phagocytosis using polyethylene glycol-based particles of different elastic moduli. We found that neutrophils effectively phagocytose deformable particles irrespective of their modulus, indicating a departure from established phagocytosis trends seen with other types of immune cells. These findings highlight the observed phenotypic difference between different types of phagocytes and underscore the need to characterize VTC performance using various cell types and animal models that represent human systems closely.
Collapse
Affiliation(s)
- Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oluwaseun D. Akanbi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Damon Hoff
- Small Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
4
|
Francis EA, Laughlin JG, Dokken JS, Finsberg HNT, Lee CT, Rognes ME, Rangamani P. Spatial modeling algorithms for reactions and transport in biological cells. NATURE COMPUTATIONAL SCIENCE 2025; 5:76-89. [PMID: 39702839 PMCID: PMC11774757 DOI: 10.1038/s43588-024-00745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Biological cells rely on precise spatiotemporal coordination of biochemical reactions to control their functions. Such cell signaling networks have been a common focus for mathematical models, but they remain challenging to simulate, particularly in realistic cell geometries. Here we present Spatial Modeling Algorithms for Reactions and Transport (SMART), a software package that takes in high-level user specifications about cell signaling networks and then assembles and solves the associated mathematical systems. SMART uses state-of-the-art finite element analysis, via the FEniCS Project software, to efficiently and accurately resolve cell signaling events over discretized cellular and subcellular geometries. We demonstrate its application to several different biological systems, including yes-associated protein (YAP)/PDZ-binding motif (TAZ) mechanotransduction, calcium signaling in neurons and cardiomyocytes, and ATP generation in mitochondria. Throughout, we utilize experimentally derived realistic cellular geometries represented by well-conditioned tetrahedral meshes. These scenarios demonstrate the applicability, flexibility, accuracy and efficiency of SMART across a range of temporal and spatial scales.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Justin G Laughlin
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jørgen S Dokken
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Henrik N T Finsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Marie E Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway.
- K. G. Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| | - Padmini Rangamani
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Huth SW, Geri JB, Oakley JV, MacMillan DWC. μMap-Interface: Temporal Photoproximity Labeling Identifies F11R as a Functional Member of the Transient Phagocytic Surfaceome. J Am Chem Soc 2024; 146:32255-32262. [PMID: 39532068 DOI: 10.1021/jacs.4c11058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis. Utilizing photocatalyst-conjugated IGG-opsonized beads and initiating phagocytosis in a synchronized manner, we capture phagocytic interactome "snapshots" at the interface of the phagocyte and its target. This allows profiling of the dynamic surface proteome of human macrophages during the engulfment process. We reveal previously known phagocytic mediators as well as potential novel interactors and validate their presence with super-resolution microscopy. This includes F11R, an important cancer target yet to be investigated in the context of phagocytosis. Further, we demonstrate that knocking down F11R leads to an increased degree of phagocytosis; this insight could contribute to explaining its oncogenic activity. Lastly, we show capture of orthogonal phagocytic surfaceomes across different cells, using a neutrophil-like model. We believe this method will enable new insights into phagocytic processes in a variety of contexts.
Collapse
Affiliation(s)
- Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Cohen T, Zemmour C, Cohen OT, Benny O. Elongated Particles Show a Preferential Uptake in Invasive Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1891. [PMID: 39683280 DOI: 10.3390/nano14231891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Mechanically driven cellular preference for drug carriers can enhance selectivity in cancer therapy, underscoring the importance of understanding the physical aspects of particle uptake. In this study, it was hypothesized that elongated particles might be preferentially taken up by deformable, aggressive cancer cells compared to normal cells. Two film-stretching methods were tested for 0.8-2.4 μm polystyrene (PS) particles: one based on solubility in organic solvents and the other on heat-induced softening. The heat-induced method produced more homogenous particle batches, with a standard deviation in the particle aspect ratio of 0.42 compared to 0.91 in the solvent-based method. The ability of cells to engulf elongated PS particles versus spherical particles was assessed in two subsets of human melanoma A375 cells. In the more aggressive cancer cell subset (A375+), uptake of elongated PS particles increased by 10% compared to spherical particles. In contrast, the less aggressive subset (A375-) showed a 25% decrease in uptake of elongated particles. This resulted in an uptake ratio between A375+ and A375- that was 1.5 times higher for elongated PS particles than for spherical ones. To further demonstrate relevance to drug delivery, elongated paclitaxel-loaded biodegradable, slow-releasing poly(lactic-co-glycolic) acid (PLGA) particles were synthesized. No significant difference in cytotoxic effect was observed between A375+ and A375- cells treated with spherical drug-loaded particles. However, treatment with ellipsoidal particles led to a significantly enhanced cytotoxic effect in aggressive cells compared to less aggressive cells. These findings present promising directions for tailored cancer drug delivery and demonstrate the importance of particle physical properties in cellular uptake and drug delivery mechanisms.
Collapse
Affiliation(s)
- Talya Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Chalom Zemmour
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
7
|
Weißelberg S, Both A, Failla AV, Huang J, Linder S, Ohnezeit D, Bartsch P, Aepfelbacher M, Rohde H. Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro. NPJ Biofilms Microbiomes 2024; 10:131. [PMID: 39567551 PMCID: PMC11579364 DOI: 10.1038/s41522-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Biofilm formation shields Staphylococcus epidermidis from host defense mechanisms, contributing to chronic implant infections. Using wild-type S. epidermidis 1457, a PIA-negative mutant (1457-M10), and an eDNA-negative mutant (1457ΔatlE), this study examined the influence of biofilm matrix components on human monocyte-derived macrophage (hMDM) interactions. The wild-type strain was resistant to phagocytosis and induced an anti-inflammatory response in hMDMs, while both mutants were more susceptible to phagocytosis and triggered a pro-inflammatory response. Removing eDNA from the 1457 biofilm matrix increased hMDM uptake and a pro-inflammatory reaction, whereas adding eDNA to the 1457ΔatlE mutant reduced phagocytosis and promoted an anti-inflammatory response. Inhibiting TLR9 enhanced bacterial uptake and induced a pro-inflammatory response in hMDMs exposed to wild-type S. epidermidis. This study highlights the critical role of eDNA in immune evasion and the central role of TLR9 in modulating macrophage responses, advancing the understanding of implant infections.
Collapse
Affiliation(s)
- Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (Umif), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Denise Ohnezeit
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Patricia Bartsch
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
8
|
Li H, Qiang Y, Li X, Brugnara C, Buffet PA, Dao M, Karniadakis GE, Suresh S. Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen. Proc Natl Acad Sci U S A 2024; 121:e2414437121. [PMID: 39453740 PMCID: PMC11536160 DOI: 10.1073/pnas.2414437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024] Open
Abstract
The clearance of senescent and altered red blood cells (RBCs) in the red pulp of the human spleen involves sequential processes of prefiltration, filtration, and postfiltration. While prior work has elucidated the mechanisms underlying the first two processes, biomechanical processes driving the postfiltration phagocytosis of RBCs retained at interendothelial slits (IES) are still poorly understood. We present here a unique computational model of macrophages to study the role of cell biomechanics in modulating the kinetics of phagocytosis of aged and diseased RBCs retained in the spleen. After validating the macrophage model using in vitro phagocytosis experiments, we employ it to probe the mechanisms underlying the kinetics of phagocytosis of mechanically altered RBCs, such as heated RBCs and abnormal RBCs in hereditary spherocytosis (HS) and sickle cell disease (SCD). Our simulations show pronounced deformation of the flexible and healthy RBCs in contrast to minimal shape changes in altered RBCs. Simulations also show that less deformable RBCs are engulfed faster and at lower adhesive strength than flexible RBCs, consistent with our experimental measurements. This efficient sensing and engulfment by macrophages of stiff RBCs retained at IES are expected to temper splenic congestion, a common pathogenic process in malaria, HS, and SCD. Altogether, our combined computational and in vitro experimental studies suggest that mechanical alterations of retained RBCs may suffice to enhance their phagocytosis, thereby adapting the kinetics of their elimination to the kinetics of their mechanical retention, an equilibrium essential for adequately cleaning the splenic filter to preserve its function.
Collapse
Affiliation(s)
- He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens30602, Georgia
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou310027, China
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Pierre A. Buffet
- Université Paris Cité, INSERM, Biologie Intégrée du Globule Rouge, Paris75015, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI02912
- School of Engineering, Brown University, Providence, RI02912
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- School of Engineering, Brown University, Providence, RI02912
| |
Collapse
|
9
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Goldstein Y, Cohen OT, Wald O, Bavli D, Kaplan T, Benny O. Particle uptake in cancer cells can predict malignancy and drug resistance using machine learning. SCIENCE ADVANCES 2024; 10:eadj4370. [PMID: 38809990 PMCID: PMC11314625 DOI: 10.1126/sciadv.adj4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Tumor heterogeneity is a primary factor that contributes to treatment failure. Predictive tools, capable of classifying cancer cells based on their functions, may substantially enhance therapy and extend patient life span. The connection between cell biomechanics and cancer cell functions is used here to classify cells through mechanical measurements, via particle uptake. Machine learning (ML) was used to classify cells based on single-cell patterns of uptake of particles with diverse sizes. Three pairs of human cancer cell subpopulations, varied in their level of drug resistance or malignancy, were studied. Cells were allowed to interact with fluorescently labeled polystyrene particles ranging in size from 0.04 to 3.36 μm and analyzed for their uptake patterns using flow cytometry. ML algorithms accurately classified cancer cell subtypes with accuracy rates exceeding 95%. The uptake data were especially advantageous for morphologically similar cell subpopulations. Moreover, the uptake data were found to serve as a form of "normalization" that could reduce variation in repeated experiments.
Collapse
Affiliation(s)
- Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T. Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Bavli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
11
|
Wang S, Ma S, Li H, Dao M, Li X, Karniadakis GE. Two-component macrophage model for active phagocytosis with pseudopod formation. Biophys J 2024; 123:1069-1084. [PMID: 38532625 PMCID: PMC11079866 DOI: 10.1016/j.bpj.2024.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuhao Ma
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China.
| | | |
Collapse
|
12
|
Francis EA, Rangamani P. Particle-based simulations shed light on cytoskeleton-membrane dynamics in phagocytosis. Biophys J 2024; 123:1031-1033. [PMID: 38549374 PMCID: PMC11079863 DOI: 10.1016/j.bpj.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Emmet A Francis
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
13
|
Zhang Y, Qiang Y, Li H, Li G, Lu L, Dao M, Karniadakis GE, Popel AS, Zhao C. Signaling-biophysical modeling unravels mechanistic control of red blood cell phagocytosis by macrophages in sickle cell disease. PNAS NEXUS 2024; 3:pgae031. [PMID: 38312226 PMCID: PMC10833451 DOI: 10.1093/pnasnexus/pgae031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises. To illuminate the mechanistic control of RBC engulfment by macrophages in SCD, we integrate a system biology model of RBC-macrophage signaling interactions with a biophysical model of macrophage engulfment, as well as in vitro phagocytosis experiments using the spleen-on-a-chip technology. Our modeling framework accurately predicts the phagocytosis dynamics of RBCs under different disease conditions, reveals patterns distinguishing normal and sickle RBCs, and identifies molecular targets including Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP1) and cluster of differentiation 47 (CD47)/signal regulatory protein α (SIRPα) as therapeutic targets to facilitate the controlled clearance of sickle RBCs in the spleen.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Guansheng Li
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Lu Lu
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
Wells M, Mikesh M, Gordon V. Structure-preserving fixation allows scanning electron microscopy to reveal biofilm microstructure and interactions with immune cells. J Microsc 2024; 293:59-68. [PMID: 38098170 PMCID: PMC10764082 DOI: 10.1111/jmi.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Pseudomonas aeruginosa is a pathogen that forms robust biofilms which are commonly associated with chronic infections and cannot be successfully cleared by the immune system. Neutrophils, the most common white blood cells, target infections with pathogen-killing mechanisms that are rendered largely ineffective by the protective physicochemical structure of a biofilm. Visualisation of the complex interactions between immune cells and biofilms will advance understanding of how biofilms evade the immune system and could aid in developing treatment methods that promote immune clearance with minimal harm to the host. Scanning electron microscopy (SEM) distinguishes itself as a powerful, high-resolution tool for obtaining strikingly clear and detailed topographical images. However, taking full advantage of SEM's potential for high-resolution imaging requires that the fixation process simultaneously preserve both intricate biofilm architecture and the morphologies and structural signatures characterising neutrophils responses at an infection site. Standard aldehyde-based fixation techniques result in significant loss of biofilm matrix material and morphologies of responding immune cells, thereby obscuring the details of immune interactions with the biofilm matrix. Here we show an improved fixation technique using the cationic dye alcian blue to preserve and visualise neutrophil interactions with the three-dimensional architecture of P. aeruginosa biofilms. We also demonstrate that this technique better preserves structures of biofilms grown from two other bacterial species, Klebsiella pneumoniae and Burkholderia thailandensis.
Collapse
Affiliation(s)
- Marilyn Wells
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas, USA
| | - Michelle Mikesh
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, USA
| | - Vernita Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas, USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide produced by Lactiplantibacillus plantarum Y12 exhibits inhibitory effect on the Shigella flexneri genes expression related to biofilm formation. Int J Biol Macromol 2023; 253:127048. [PMID: 37748596 DOI: 10.1016/j.ijbiomac.2023.127048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Shigella is a specific enteric pathogen in humans, causing symptoms of bacterial dysentery. The biofilm formation of S. flexneri contributes to the emergence of multidrug resistance and facilitates the establishment of persistent chronic infections. This study investigated the regulatory effects of Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) on gene expression and its spatial hindrance effects in inhibiting the biofilm formation of S. flexneri. The transcriptome analysis revealed a significant impact of L-EPS on the gene expression profile of S. flexneri, with a total of 968 genes showing significant changes (507 up-regulated and 461 down-regulated). The significantly down-regulated KEGG metabolic pathway enriched in phosphotransferase system, Embden-Meyerhf-Parnas, Citrate cycle, Lipopolysaccharide biosynthesis, Cationic antimicrobial peptide resistance, Two-component system. Moreover, L-EPS significantly down-regulated the gene expression levels of fimbriae synthesis (fimF), lipopolysaccharide synthesis (lptE, lptB), anchor protein repeat domain (arpA), virulence factor (lpp, yqgB), antibiotic resistance (marR, cusB, mdtL, mdlB), heavy metal resistance (zraP), and polysaccharide synthesis (mtgA, mdoB, mdoC). The expression of biofilm regulator factor (bssS) and two-component system suppressor factor (mgrB) were significantly up-regulated. The RT-qPCR results indicated that a major component of L-EPS (L-EPS 2-1) exhibited the gene regulatory effect on the S. flexneri biofilm formation. Furthermore, electrophoresis and isothermal microtitration calorimetry demonstrated that the interaction between L-EPS 2-1 and eDNA is electrostatic dependent on the change in environmental pH, disrupting the stable spatial structure of S. flexneri biofilm. In conclusion, L-EPS inhibited the biofilm formation of S. flexneri through gene regulation and spatial obstruction effects.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
16
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
17
|
O'Callaghan JA, Lee D, Hammer DA. Asymmetry-Enhanced Motion of Urease-Powered Micromotors from Double Emulsion-Templated Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37902731 DOI: 10.1021/acsami.3c10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Autonomous motion of enzyme-powered motors has important implications for drug delivery, cell-cell communication, and protocell engineering. Although many of these systems are inspired by the motion of biological cells, most of them lack key structural features, like micrometer-sized boundaries and aqueous compartments, and rely on bubble propulsion to generation motion. In this study, we use droplet microfluidics to generate large populations of cell-sized microcapsules with poly(lactic-co-glycolic acid) shells and functionalize their surfaces with the enzyme urease to drive their motion. We adjust the number of surface functional groups for urease conjugation by preparing microcapsules with two different surfactants, poly(vinyl alcohol) (PVA) and poly(ethylene-alt-maleic anhydride) (PEMA). We also tune the surface roughness of the microcapsules by varying the concentration of silica nanoparticles in the droplet middle phase. We find that PEMA plays a crucial role in increasing the grafting density of urease on the surface of smooth microcapsules, leading to active motion in the presence of urea. In addition, rough microcapsules prepared with PEMA and loaded with comparable amounts of urease move up to three times faster than their smooth counterparts, which we believe is due to an asymmetric distribution of urease on the surface, giving rise to a preferred direction of motion. Taken together, these results provide new insights into the role that various stabilizing agents play in the induction of motion by enzymatic motors prepared from microfluidics, which is a potentially powerful tool for future preparation of motile protocells in biomedicine.
Collapse
Affiliation(s)
- Jessica Ann O'Callaghan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Horonushi D, Yoshida A, Nakata Y, Sentoku M, Furumoto Y, Azuma T, Suzuki S, Ando M, Yasuda K. Membrane backtracking at the maximum capacity of nondigestible antigen phagocytosis in macrophages. Biophys J 2023; 122:2707-2726. [PMID: 37226441 PMCID: PMC10397574 DOI: 10.1016/j.bpj.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/01/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
The zipper model has been dominantly used to describe the driving mechanism of the engulfment process and its specific identification of antigens during phagocytosis in macrophages. However, the abilities and limitations of the zipper model, capturing the process as an irreversible reaction, have not been examined yet under the critical conditions of engulfment capacity. Here, we demonstrated the phagocytic behavior of macrophages after reaching the maximum engulfment capacity by tracking the progression of their membrane extension during engulfment using IgG-coated nondigestible polystyrene beads and glass microneedles. The results showed that, after macrophages reached their maximum engulfment capacity, they induced membrane backtracking (the reverse phenomenon of engulfment) in both polystyrene beads and glass microneedles, regardless of the difference in the shape of these antigens. We evaluated the correlation of engulfment in simultaneous stimulations of two IgG-coated microneedles and found that each microneedle was regurgitated by the macrophage independently of the advancement or backtracking of membranes on the other microneedle. Moreover, assessing the total engulfment capacity determined by the maximum amount the macrophage was capable of engulfing when imposing each antigen geometry showed that the capacity increased as the attached antigen areas increased. These results indicate that the mechanism of engulfment should imply the following: 1) macrophages have a backtracking function to recover their phagocytic activity after reaching maximal engulfment limit, 2) both phagocytosis and backtracking are local phenomena of the macrophage membrane that operates independently, and 3) the maximum engulfment capacity is determined not only by mere local cell membrane capacity but also by the whole-cell volume increase during simultaneous phagocytosis of multiple antigens by the single macrophages. Thus, the phagocytic activity may entail a hidden backtracking function, adding to the conventionally known irreversible zipper-like ligand-receptor binding mechanism during membrane progression to recover the macrophages that are saturated from engulfing targets beyond their capacity.
Collapse
Affiliation(s)
- Dan Horonushi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Amane Yoshida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshiki Nakata
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuya Furumoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshiki Azuma
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Souta Suzuki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Maiha Ando
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
19
|
Eisentraut M, Sabri A, Kress H. The spatial resolution limit of phagocytosis. Biophys J 2023; 122:868-879. [PMID: 36703557 PMCID: PMC10027436 DOI: 10.1016/j.bpj.2023.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades, which induce phagocytosis. The signaling pathways ultimately lead to actin polymerization that induces the protrusion of the membrane around the bacterium until it is completely engulfed. Although many proteins involved in the phagocytic cup formation have already been identified, it is still unclear how far the initial stimulus created by the bacterium-cell contact propagates in the cell. We hypothesize that this spreading distance is closely related to the spatial resolution limit of phagocytosis, the smallest distance in which two stimuli can be differentiated. Here, we probe this resolution limit by using holographic optical tweezers to attach pairs of immunoglobulin G-coated polystyrene microparticles (as models for opsonized bacteria) to murine macrophages in distances ranging from zero to several micrometers. By using 2-μm-sized particles, we found that the particles can be internalized jointly into one phagosome if they are attached to the cell very close together, but that they are taken up separately if they are attached far from each other. To explain this, we developed a model of the signaling process, which predicts the probabilities for separate uptake for different particle sizes and distances using cellular parameters including the average receptor distance. We tested the model by measuring the separate uptake probabilities for particles with a diameter of 1 to 3 μm and for cells with reduced numbers of Fcγ receptors and found very good agreement. Our model shows that the phagocytic uptake behavior can be explained by assuming an effective phagocytic signaling range of about 500 nm. Interestingly, this value corresponds to the lower size limit of phagocytosis. Our work provides quantitative access to spatial parameters of cellular signaling during phagocytosis and thereby contributes to a more quantitative understanding of cellular information processing.
Collapse
Affiliation(s)
| | - Adal Sabri
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
20
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
21
|
Wells M, Schneider R, Bhattarai B, Currie H, Chavez B, Christopher G, Rumbaugh K, Gordon V. Perspective: The viscoelastic properties of biofilm infections and mechanical interactions with phagocytic immune cells. Front Cell Infect Microbiol 2023; 13:1102199. [PMID: 36875516 PMCID: PMC9978752 DOI: 10.3389/fcimb.2023.1102199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Biofilms are viscoelastic materials that are a prominent public health problem and a cause of most chronic bacterial infections, in large part due to their resistance to clearance by the immune system. Viscoelastic materials combine both solid-like and fluid-like mechanics, and the viscoelastic properties of biofilms are an emergent property of the intercellular cohesion characterizing the biofilm state (planktonic bacteria do not have an equivalent property). However, how the mechanical properties of biofilms are related to the recalcitrant disease that they cause, specifically to their resistance to phagocytic clearance by the immune system, remains almost entirely unstudied. We believe this is an important gap that is ripe for a large range of investigations. Here we present an overview of what is known about biofilm infections and their interactions with the immune system, biofilm mechanics and their potential relationship with phagocytosis, and we give an illustrative example of one important biofilm-pathogen (Pseudomonas aeruginosa) which is the most-studied in this context. We hope to inspire investment and growth in this relatively-untapped field of research, which has the potential to reveal mechanical properties of biofilms as targets for therapeutics meant to enhance the efficacy of the immune system.
Collapse
Affiliation(s)
- Marilyn Wells
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Rebecca Schneider
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bikash Bhattarai
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Hailey Currie
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Bella Chavez
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Gordon Christopher
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vernita Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
22
|
Localisation of Intracellular Signals and Responses during Phagocytosis. Int J Mol Sci 2023; 24:ijms24032825. [PMID: 36769146 PMCID: PMC9917157 DOI: 10.3390/ijms24032825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Phagocytosis is one of the most polarised of all cellular activities. Both the stimulus (the target for phagocytosis) and the response (its internalisation) are focussed at just one part of the cell. At the locus, and this locus alone, pseudopodia form a phagocytic cup around the particle, the cytoskeleton is rearranged, the plasma membrane is reorganised, and a new internal organelle, the phagosome, is formed. The effect of signals from the stimulus must, thus, both be complex and yet be restricted in space and time to enable an effective focussed response. While many aspects of phagocytosis are being uncovered, the mechanism for the restriction of signalling or the effects of signalling remains obscure. In this review, the details of the problem of restricting chemical intracellular signalling are presented, with a focus on diffusion into the cytosol and of signalling lipids along the plasma membrane. The possible ways in which simple diffusion is overcome so that the restriction of signalling and effective phagocytosis can be achieved are discussed in the light of recent advances in imaging, biophysics, and cell biochemistry which together are providing new insights into this area.
Collapse
|
23
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
24
|
Sadhu RK, Barger SR, Penič S, Iglič A, Krendel M, Gauthier NC, Gov NS. A theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces. SOFT MATTER 2022; 19:31-43. [PMID: 36472164 PMCID: PMC10078962 DOI: 10.1039/d2sm01152b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarah R Barger
- Molecular, Cellular, Developmental Biology, Yale University, New Haven, USA
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, USA
| | | | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Guan J. A Theoretical Model for Phagocytic Capacity of Phagocytes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjiao Guan
- Department of Chemical and Biomedical Engineering FAMU‐FSU College of Engineering Florida State University 2525 Pottsdamer Street Tallahassee FL 32310‐2870 USA
| |
Collapse
|
26
|
Francis EA, Xiao H, Teng LH, Heinrich V. Mechanisms of frustrated phagocytic spreading of human neutrophils on antibody-coated surfaces. Biophys J 2022; 121:4714-4728. [PMID: 36242516 PMCID: PMC9748254 DOI: 10.1016/j.bpj.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Complex motions of immune cells are an integral part of diapedesis, chemotaxis, phagocytosis, and other vital processes. To better understand how immune cells execute such motions, we present a detailed analysis of phagocytic spreading of human neutrophils on flat surfaces functionalized with different densities of immunoglobulin G (IgG) antibodies. We visualize the cell-substrate contact region at high resolution and without labels using reflection interference contrast microscopy and quantify how the area, shape, and position of the contact region evolves over time. We find that the likelihood of the cell commitment to spreading strongly depends on the surface density of IgG, but the rate at which the substrate-contact area of spreading cells increases does not. Validated by a theoretical companion study, our results resolve controversial notions about the mechanisms controlling cell spreading, establishing that active forces generated by the cytoskeleton rather than cell-substrate adhesion primarily drive cellular protrusion. Adhesion, on the other hand, aids phagocytic spreading by regulating the cell commitment to spreading, the maximum cell-substrate contact area, and the directional movement of the contact region.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Hugh Xiao
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Lay Heng Teng
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California.
| |
Collapse
|
27
|
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621-635. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Citation(s) in RCA: 491] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus Moser
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Francis EA, Heinrich V. Integrative experimental/computational approach establishes active cellular protrusion as the primary driving force of phagocytic spreading by immune cells. PLoS Comput Biol 2022; 18:e1009937. [PMID: 36026476 PMCID: PMC9455874 DOI: 10.1371/journal.pcbi.1009937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamic interplay between cell adhesion and protrusion is a critical determinant of many forms of cell motility. When modeling cell spreading on adhesive surfaces, traditional mathematical treatments often consider passive cell adhesion as the primary, if not exclusive, mechanistic driving force of this cellular motion. To better assess the contribution of active cytoskeletal protrusion to immune-cell spreading during phagocytosis, we here develop a computational framework that allows us to optionally investigate both purely adhesive spreading ("Brownian zipper hypothesis") as well as protrusion-dominated spreading ("protrusive zipper hypothesis"). We model the cell as an axisymmetric body of highly viscous fluid surrounded by a cortex with uniform surface tension and incorporate as potential driving forces of cell spreading an attractive stress due to receptor-ligand binding and an outward normal stress representing cytoskeletal protrusion, both acting on the cell boundary. We leverage various model predictions against the results of a directly related experimental companion study of human neutrophil phagocytic spreading on substrates coated with different densities of antibodies. We find that the concept of adhesion-driven spreading is incompatible with experimental results such as the independence of the cell-spreading speed on the density of immobilized antibodies. In contrast, the protrusive zipper model agrees well with experimental findings and, when adapted to simulate cell spreading on discrete adhesion sites, it also reproduces the observed positive correlation between antibody density and maximum cell-substrate contact area. Together, our integrative experimental/computational approach shows that phagocytic spreading is driven by cellular protrusion, and that the extent of spreading is limited by the density of adhesion sites.
Collapse
Affiliation(s)
- Emmet A. Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Duffy HR, Godfrey RW, Williams DL, Ashton NN. A Porcine Model for the Development and Testing of Preoperative Skin Preparations. Microorganisms 2022; 10:837. [PMID: 35630283 PMCID: PMC9146673 DOI: 10.3390/microorganisms10050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical preoperative skin preparations (PSPs) do not eradicate skin flora dwelling in the deepest dermal regions. Survivors constitute a persistent infection risk. In search of solutions, we created a porcine model intended for PSP developmental testing. This model employed microbiological techniques sensitive to the deep-dwelling microbial flora as these microorganisms are frequently overlooked when using institutionally-entrenched testing methodologies. Clinical gold-standard PSPs were assessed. Ten Yorkshire pigs were divided into two groups: prepared with either povidone iodine (PVP-I) or chlorhexidine gluconate (CHG) PSP. Bioburdens were calculated on square, 4 cm by 4 cm, full-thickness skin samples homogenized in neutralizing media. Endogenous bioburden of porcine skin (3.3 log10 CFU/cm2) was consistent with natural flora numbers in dry human skin. On-label PSP scrub kits with PVP-I (n = 39) or CHG (n = 40) failed the 2-3 log10-reduction criteria established for PSPs by the Food and Drug Administration (FDA), resulting in a 1.46 log10 and 0.58 log10 reduction, respectively. Porcine dermal microbiota mirrored that of humans, displaying abundant staphylococcal species. Likewise, histological sections showed similarity in hair follicle depths and sebaceous glands (3.2 ± 0.7 mm). These shared characteristics and the considerable fraction of bacteria which survived clinical PSPs make this model useful for developmental work.
Collapse
Affiliation(s)
- Hannah R. Duffy
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; (H.R.D.); (R.W.G.); (D.L.W.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rose W. Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; (H.R.D.); (R.W.G.); (D.L.W.)
| | - Dustin L. Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; (H.R.D.); (R.W.G.); (D.L.W.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nicholas N. Ashton
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; (H.R.D.); (R.W.G.); (D.L.W.)
| |
Collapse
|
30
|
Zak A, Dupré-Crochet S, Hudik E, Babataheri A, Barakat AI, Nüsse O, Husson J. Distinct timing of neutrophil spreading and stiffening during phagocytosis. Biophys J 2022; 121:1381-1394. [PMID: 35318004 PMCID: PMC9072703 DOI: 10.1016/j.bpj.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8- and 20-μm-diameter beads as targets. We used a micropipette-based single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20- than on 8-μm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Avin Babataheri
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
31
|
Wang H, Zhou F, Guo Y, Ju LA. Micropipette-based biomechanical nanotools on living cells. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:119-133. [PMID: 35171346 PMCID: PMC8964576 DOI: 10.1007/s00249-021-01587-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.
Collapse
Affiliation(s)
- Haoqing Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| | - Fang Zhou
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Yuze Guo
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia. .,Heart Research Institute, Newtown, NSW, Australia.
| |
Collapse
|
32
|
aVASP boosts protrusive activity of macroendocytic cups and drives phagosome rocketing after internalization. Eur J Cell Biol 2022; 101:151200. [DOI: 10.1016/j.ejcb.2022.151200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
|
33
|
DiNapoli KT, Robinson DN, Iglesias PA. A mesoscale mechanical model of cellular interactions. Biophys J 2021; 120:4905-4917. [PMID: 34687718 PMCID: PMC8633826 DOI: 10.1016/j.bpj.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
34
|
Steinkühler J, Fonda P, Bhatia T, Zhao Z, Leomil FSC, Lipowsky R, Dimova R. Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102109. [PMID: 34569194 PMCID: PMC8564416 DOI: 10.1002/advs.202102109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2-4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a "superelastic" response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Present address:
Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60657USA
| | - Piermarco Fonda
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| | - Tripta Bhatia
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Department of Physical SciencesIndian Institute of Science Education and Research MohaliSector 81, Knowledge City, ManauliSAS NagarPunjab140306India
| | - Ziliang Zhao
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Present address:
Leibniz Institute of Photonic TechnologyJena07745Germany
| | - Fernanda S. C. Leomil
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo043039‐032Brazil
| | - Reinhard Lipowsky
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| | - Rumiana Dimova
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| |
Collapse
|
35
|
Vorselen D, Barger SR, Wang Y, Cai W, Theriot JA, Gauthier NC, Krendel M. Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during phagocytosis. eLife 2021; 10:e68627. [PMID: 34708690 PMCID: PMC8585483 DOI: 10.7554/elife.68627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis requires rapid actin reorganization and spatially controlled force generation to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity directs membrane extensions to engulf such diverse targets remains unclear. Here, we combine lattice light-sheet microscopy (LLSM) with microparticle traction force microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during macrophage phagocytosis. We show that spatially localized forces leading to target constriction are prominent during phagocytosis of antibody-opsonized targets. This constriction is largely driven by Arp2/3-mediated assembly of discrete actin protrusions containing myosin 1e and 1f ('teeth') that appear to be interconnected in a ring-like organization. Contractile myosin-II activity contributes to late-stage phagocytic force generation and progression, supporting a specific role in phagocytic cup closure. Observations of partial target eating attempts and sudden target release via a popping mechanism suggest that constriction may be critical for resolving complex in vivo target encounters. Overall, our findings present a phagocytic cup shaping mechanism that is distinct from cytoskeletal remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic plasticity.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| | - Yifan Wang
- Department of Mechanical Engineering, Stanford UniversityStanfordUnited States
| | - Wei Cai
- Department of Mechanical Engineering, Stanford UniversityStanfordUnited States
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | | | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical UniversitySyracuseUnited States
| |
Collapse
|
36
|
Saito N, Sawai S. Three-dimensional morphodynamic simulations of macropinocytic cups. iScience 2021; 24:103087. [PMID: 34755081 PMCID: PMC8560551 DOI: 10.1016/j.isci.2021.103087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
Macropinocytosis refers to the non-specific uptake of extracellular fluid, which plays ubiquitous roles in cell growth, immune surveillance, and virus entry. Despite its widespread occurrence, it remains unclear how its initial cup-shaped plasma membrane extensions form without any external solid support, as opposed to the process of particle uptake during phagocytosis. Here, by developing a computational framework that describes the coupling between the bistable reaction-diffusion processes of active signaling patches and membrane deformation, we demonstrated that the protrusive force localized to the edge of the patches can give rise to a self-enclosing cup structure, without further assumptions of local bending or contraction. Efficient uptake requires a balance among the patch size, magnitude of protrusive force, and cortical tension. Furthermore, our model exhibits cyclic cup formation, coexistence of multiple cups, and cup-splitting, indicating that these complex morphologies self-organize via a common mutually-dependent process of reaction-diffusion and membrane deformation.
Collapse
Affiliation(s)
- Nen Saito
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Satoshi Sawai
- Department of Basic Science, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Bakhtiari LA, Wells MJ, Gordon VD. High-throughput assays show the timescale for phagocytic success depends on the target toughness. BIOPHYSICS REVIEWS 2021; 2:031402. [PMID: 34632456 PMCID: PMC8485781 DOI: 10.1063/5.0057071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022]
Abstract
Phagocytic immune cells can clear pathogens from the body by engulfing them. Bacterial biofilms are communities of bacteria that are bound together in a matrix that gives biofilms viscoelastic mechanical properties that do not exist for free-swimming bacteria. Since a neutrophil is too small to engulf an entire biofilm, it must be able to detach and engulf a few bacteria at a time if it is to use phagocytosis to clear the infection. We recently found a negative correlation between the target elasticity and phagocytic success. That earlier work used time-consuming, manual analysis of micrographs of neutrophils and fluorescent beads. Here, we introduce and validate flow cytometry as a fast and high-throughput technique that increases the number of neutrophils analyzed per experiment by two orders of magnitude, while also reducing the time required to do so from hours to minutes. We also introduce the use of polyacrylamide gels in our assay for engulfment success. The tunability of polyacrylamide gels expands the mechanical parameter space we can study, and we find that high toughness and yield strain, even with low elasticity, also impact the phagocytic success as well as the timescale thereof. For stiff gels with low-yield strain, and consequent low toughness, phagocytic success is nearly four times greater when neutrophils are incubated with gels for 6 h than after only 1 h of incubation. In contrast, for soft gels with high-yield strain and consequent high toughness, successful engulfment is much less time-sensitive, increasing by less than a factor of two from 1 to 6 h incubation.
Collapse
|
39
|
Berghoff K, Gross W, Eisentraut M, Kress H. Using blinking optical tweezers to study cell rheology during initial cell-particle contact. Biophys J 2021; 120:3527-3537. [PMID: 34181902 PMCID: PMC8391049 DOI: 10.1016/j.bpj.2021.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Phagocytosis is an important part of innate immunity and describes the engulfment of bacteria and other extracellular objects on the micrometer scale. The protrusion of the cell membrane around the bacteria during this process is driven by a reorganization of the actin cortex. The process has been studied on the molecular level to great extent during the past decades. However, a deep, fundamental understanding of the mechanics of the process is still lacking, in particular because of a lack of techniques that give access to binding dynamics below the optical resolution limit and cellular viscoelasticity at the same time. In this work, we propose a technique to characterize the mechanical properties of cells in a highly localized manner and apply it to investigate the early stages of phagocytosis. The technique can simultaneously resolve the contact region between a cell and an external object (in our application, a phagocytic target) even below the optical resolution limit. We used immunoglobulin-G-coated microparticles with a size of 2 μm as a model system and attached the particles to the macrophages with holographic optical tweezers. By switching the trap on and off, we were able to measure the rheological properties of the cells in a time-resolved manner during the first few minutes after attachment. The measured viscoelastic cellular response is consistent with power law rheology. The contact radius between particle and cell increased on a timescale of ∼30 s and converged after a few minutes. Although the binding dynamics are not affected by cytochalasin D, we observed an increase of the cellular compliance and a significant fluidization of the cortex after addition of cytochalasin D treatment. Furthermore, we report upper boundaries for the length- and timescale, at which cortical actin has been hypothesized to depolymerize during early phagocytosis.
Collapse
Affiliation(s)
- Konrad Berghoff
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | | | - Holger Kress
- Department of Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
40
|
Neutrophils and Influenza: A Thin Line between Helpful and Harmful. Vaccines (Basel) 2021; 9:vaccines9060597. [PMID: 34199803 PMCID: PMC8228962 DOI: 10.3390/vaccines9060597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are one of the most prevalent respiratory pathogens known to humans and pose a significant threat to global public health each year. Annual influenza epidemics are responsible for 3-5 million infections worldwide and approximately 500,000 deaths. Presently, yearly vaccinations represent the most effective means of combating these viruses. In humans, influenza viruses infect respiratory epithelial cells and typically cause localized infections of mild to moderate severity. Neutrophils are the first innate cells to be recruited to the site of the infection and possess a wide range of effector functions to eliminate viruses. Some well-described effector functions include phagocytosis, degranulation, the production of reactive oxygen species (ROS), and the formation of neutrophil extracellular traps (NETs). However, while these mechanisms can promote infection resolution, they can also contribute to the pathology of severe disease. Thus, the role of neutrophils in influenza viral infection is nuanced, and the threshold at which protective functions give way to immunopathology is not well understood. Moreover, notable differences between human and murine neutrophils underscore the need to exercise caution when applying murine findings to human physiology. This review aims to provide an overview of neutrophil characteristics, their classic effector functions, as well as more recently described antibody-mediated effector functions. Finally, we discuss the controversial role these cells play in the context of influenza virus infections and how our knowledge of this cell type can be leveraged in the design of universal influenza virus vaccines.
Collapse
|
41
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
42
|
Frey F, Idema T. More than just a barrier: using physical models to couple membrane shape to cell function. SOFT MATTER 2021; 17:3533-3549. [PMID: 33503097 DOI: 10.1039/d0sm01758b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correct execution of many cellular processes, such as division and motility, requires the cell to adopt a specific shape. Physically, these shapes are determined by the interplay of the plasma membrane and internal cellular driving factors. While the plasma membrane defines the boundary of the cell, processes inside the cell can result in the generation of forces that deform the membrane. These processes include protein binding, the assembly of protein superstructures, and the growth and contraction of cytoskeletal networks. Due to the complexity of the cell, relating observed membrane deformations back to internal processes is a challenging problem. Here, we review cell shape changes in endocytosis, cell adhesion, cell migration and cell division and discuss how by modeling membrane deformations we can investigate the inner working principles of the cell.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | |
Collapse
|
43
|
Mussel M, Basser PJ, Horkay F. Ion-Induced Volume Transition in Gels and Its Role in Biology. Gels 2021; 7:20. [PMID: 33670826 PMCID: PMC8005988 DOI: 10.3390/gels7010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Incremental changes in ionic composition, solvent quality, and temperature can lead to reversible and abrupt structural changes in many synthetic and biopolymer systems. In the biological milieu, this nonlinear response is believed to play an important functional role in various biological systems, including DNA condensation, cell secretion, water flow in xylem of plants, cell resting potential, and formation of membraneless organelles. While these systems are markedly different from one another, a physicochemical framework that treats them as polyelectrolytes, provides a means to interpret experimental results and make in silico predictions. This article summarizes experimental results made on ion-induced volume phase transition in a polyelectrolyte model gel (sodium polyacrylate) and observations on the above-mentioned biological systems indicating the existence of a steep response.
Collapse
Affiliation(s)
- Matan Mussel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - Ferenc Horkay
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
44
|
DiNapoli KT, Robinson DN, Iglesias PA. Tools for computational analysis of moving boundary problems in cellular mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 13:e1514. [PMID: 33305503 DOI: 10.1002/wsbm.1514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022]
Abstract
A cell's ability to change shape is one of the most fundamental biological processes and is essential for maintaining healthy organisms. When the ability to control shape goes awry, it often results in a diseased system. As such, it is important to understand the mechanisms that allow a cell to sense and respond to its environment so as to maintain cellular shape homeostasis. Because of the inherent complexity of the system, computational models that are based on sound theoretical understanding of the biochemistry and biomechanics and that use experimentally measured parameters are an essential tool. These models involve an inherent feedback, whereby shape is determined by the action of regulatory signals whose spatial distribution depends on the shape. To carry out computational simulations of these moving boundary problems requires special computational techniques. A variety of alternative approaches, depending on the type and scale of question being asked, have been used to simulate various biological processes, including cell motility, division, mechanosensation, and cell engulfment. In general, these models consider the forces that act on the system (both internally generated, or externally imposed) and the mechanical properties of the cell that resist these forces. Moving forward, making these techniques more accessible to the non-expert will help improve interdisciplinary research thereby providing new insight into important biological processes that affect human health. This article is categorized under: Cancer > Cancer>Computational Models Cancer > Cancer>Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
46
|
Kavanaugh JS, Leidal KG, Nauseef WM, Horswill AR. Cathepsin G Degrades Staphylococcus aureus Biofilms. J Infect Dis 2020; 223:1865-1869. [PMID: 32995850 DOI: 10.1093/infdis/jiaa612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Polymorphonuclear leukocytes (PMN) phagocytose and kill individual bacteria but are far less efficient when challenged with bacterial aggregates. Consequently, growth within a biofilm affords Staphylococcus aureus some protection but PMN penetrate S. aureus biofilms and phagocytose bacteria, suggesting that enzymes released through neutrophil degranulation degrade biofilms into fragments small enough for phagocytosis. Here we show that the capacity of PMN to invade biofilms depended largely on the activity of secreted cathepsin G.
Collapse
Affiliation(s)
- Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin G Leidal
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
47
|
Alhede M, Lorenz M, Fritz BG, Jensen PØ, Ring HC, Bay L, Bjarnsholt T. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes. Med Microbiol Immunol 2020; 209:669-680. [PMID: 32880037 PMCID: PMC7568703 DOI: 10.1007/s00430-020-00691-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The ability of bacteria to aggregate and form biofilms impairs phagocytosis by polymorphonuclear leukocytes (PMNs). The aim of this study was to examine if the size of aggregates is critical for successful phagocytosis and how bacterial biofilms evade phagocytosis. We investigated the live interaction between PMNs and Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Staphylococcus epidermidis using confocal scanning laser microscopy. Aggregate size significantly affected phagocytosis outcome and larger aggregates were less likely to be phagocytized. Aggregates of S. epidermidis were also less likely to be phagocytized than equally-sized aggregates of the other three species. We found that only aggregates of approx. 5 μm diameter or smaller were consistently phagocytosed. We demonstrate that planktonic and aggregated cells of all four species significantly reduced the viability of PMNs after 4 h of incubation. Our results indicate that larger bacterial aggregates are less likely to be phagocytosed by PMNs and we propose that, if the aggregates become too large, circulating PMNs may not be able to phagocytose them quickly enough, which may lead to chronic infection.
Collapse
Affiliation(s)
- Maria Alhede
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Melanie Lorenz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Afsnit 9301, Juliane Maries Vej 22, DK-2100, Copenhagen Ø, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Hans Christian Ring
- Department of Dermatology, Bispebjerg Hospital, Nielsine Nielsens Vej 9, København, NV, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Clinical Microbiology, Rigshospitalet, Afsnit 9301, Juliane Maries Vej 22, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
48
|
Al-Jumaa M, Hallett MB, Dewitt S. Cell surface topography controls phagocytosis and cell spreading: The membrane reservoir in neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118832. [PMID: 32860836 DOI: 10.1016/j.bbamcr.2020.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Neutrophils exhibit rapid cell spreading and phagocytosis, both requiring a large apparent increase in the cell surface area. The wrinkled surface topography of these cells may provide the membrane reservoir for this. Here, the effects of manipulation of the neutrophil cell surface topography on phagocytosis and cell spreading were established. Chemical expansion of the plasma membrane or osmotic swelling had no effects. However, osmotic shrinking of neutrophils inhibited both cell spreading and phagocytosis. Triggering a Ca2+ signal in osmotically shrunk cells (by IP3 uncaging) evoked tubular blebs instead of full cell spreading. Phagocytosis was halted at the phagocytic cup stage by osmotic shrinking induced after the phagocytic Ca2+ signalling. Restoration of isotonicity was able to restore complete phagocytosis. These data thus provide evidence that the wrinkled neutrophil surface topography provides the membrane reservoir to increase the available cell surface area for phagocytosis and spreading by neutrophils.
Collapse
Affiliation(s)
- Maha Al-Jumaa
- Neutrophil Signalling Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Maurice B Hallett
- Neutrophil Signalling Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Sharon Dewitt
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
| |
Collapse
|
49
|
Vorselen D, Labitigan RLD, Theriot JA. A mechanical perspective on phagocytic cup formation. Curr Opin Cell Biol 2020; 66:112-122. [PMID: 32698097 DOI: 10.1016/j.ceb.2020.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
Phagocytosis is a widespread and evolutionarily conserved process with diverse biological functions, ranging from engulfment of invading microbes during infection to clearance of apoptotic debris in tissue homeostasis. Along with differences in biochemical composition, phagocytic targets greatly differ in physical attributes, such as size, shape, and rigidity, which are now recognized as important regulators of this process. Force exertion at the cell-target interface and cellular mechanical changes during phagocytosis are emerging as crucial factors underlying sensing of such target properties. With technological developments, mechanical aspects of phagocytosis are increasingly accessible experimentally, revealing remarkable organizational complexity of force exertion. An increasingly high-resolution picture is emerging of how target physical cues and cellular mechanical properties jointly govern important steps throughout phagocytic engulfment.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Ramon Lorenzo D Labitigan
- Department of Biology, University of Washington, Seattle, WA 98105, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biology, University of Washington, Seattle, WA 98105, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
50
|
Richards DM. Receptor Models of Phagocytosis: The Effect of Target Shape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:55-70. [PMID: 32399825 DOI: 10.1007/978-3-030-40406-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phagocytosis is a remarkably complex process, requiring simultaneous organisation of the cell membrane, the cytoskeleton, receptors and various signalling molecules. As can often be the case, mathematical modelling is able to penetrate some of this complexity, identifying the key biophysical components and generating understanding that would take far longer with a purely experimental approach. This chapter will review a particularly important class of phagocytosis model, championed in recent years, that primarily focuses on the role of receptors during the engulfment process. These models are pertinent to a host of unsolved questions in the subject, including the rate of cup growth during uptake, the role of both intra- and extracellular noise, and the precise differences between phagocytosis and other forms of endocytosis. In particular, this chapter will focus on the effect of target shape and orientation, including how these influence the rate and final outcome of phagocytic engulfment.
Collapse
|